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Abstract

This paper reviews recent research that grapples with the question: What happens
after an exogenous shock to monetary policy? We argue that this question is inter-
esting because it lies at the center of a particular approach to assessing the empirical
plausibility of structural economic models that can be used to think about systematic
changes in monetary policy institutions and rules.

The literature has not yet converged on a particular set of assumptions for iden-
tifying the e®ects of an exogenous shock to monetary policy. Nevertheless, there is
considerable agreement about the qualitative e®ects of a monetary policy shock in the
sense that inference is robust across a large subset of the identi¯cation schemes that
have been considered in the literature. We document the nature of this agreement as
it pertains to key economic aggregates.
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1. Introduction

In the past decade there has been a resurgence of interest in developing quantitative, mone-

tary general equilibrium models of the business cycle. In part, this re°ects the importance of

ongoing debates that center on monetary policy issues. What caused the increased in°ation

experienced by many countries in the 1970s? What sorts of monetary policies and institu-

tions would reduce the likelihood of it happening again? How should the Federal Reserve

respond to shocks that impact the economy? What are the welfare costs and bene¯ts of

moving to a common currency area in Europe? To make fundamental progress on these

types of questions requires that we address them within the con¯nes of quantitative general

equilibrium models.

Assessing the e®ect of a change in monetary policy institutions or rules could be accom-

plished using purely statistical methods. But only if we had data drawn from otherwise

identical economies operating under the monetary institutions or rules we are interested in

evaluating. We don't. So purely statistical approaches to these sorts of questions aren't

feasible. And, real world experimentation is not an option. The only place we can perform

experiments is in structural models.

But we now have at our disposal a host of competing models, each of which emphasizes

di®erent frictions and embodies di®erent policy implications. Which model should we use for

conducting policy experiments? This paper discusses a literature that pursues one approach

to answering this question. It is in the spirit of a suggestion made by R.E. Lucas (1980). He

argues that economists

\...need to test them (models) as useful imitations of reality by subjecting them to

shocks for which we are fairly certain how actual economies or parts of economies

would react. The more dimensions on which the model mimics the answers actual

economies give to simple questions, the more we trust its answers to harder

questions."

The literature we review applies the Lucas program using monetary policy shocks. These

shocks are good candidates for use in this program because di®erent models respond very dif-

ferently to monetary policy shocks (see Christiano, Eichenbaum and Evans (CEE) (1997a)).1

The program is operationalized in three steps:

² First, one isolates monetary policy shocks in actual economies and characterizes the
nature of the corresponding monetary experiments.

1Other applications of the Lucas program include the work of Gali (1997) who studies the dynamic e®ects
of technology shocks, and Rotemberg and Woodford (1992) and Ramey and Shapiro (1997), who study the
dynamic e®ects of shocks to government purchases.
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² Second, one characterizes the actual economy's response to these monetary experi-
ments.

² Third, one performs the same experiments in the model economies to be evaluated
and compares the outcomes with actual economies' responses to the corresponding

experiments.

These steps are designed to assist in the selection of a model that convincingly answers the

question, `how does the economy respond to an exogenous monetary policy shock?' Granted,

the fact that a model passes this test is not su±cient to give us complete con¯dence in its

answers to the types of questions we are interested in. However this test does help narrow

our choices and gives guidance in the development of existing theory.

A central feature of the program is the analysis of monetary policy shocks. Why not

simply focus on the actions of monetary policy makers? Because monetary policy actions

re°ect, in part, policy makers' responses to nonmonetary developments in the economy. A

given policy action and the economic events that follow it re°ect the e®ects of all the shocks

to the economy. Our application of the Lucas program focuses on the e®ects of a monetary

policy shock per se. An important practical reason for focusing on this type of shock is

that di®erent models respond very di®erently to the experiment of a monetary policy shock.

In order to use this information we need to know what happens in response to the analog

experiment in the actual economy. There is no point in comparing a model's response to

one experiment with the outcome of a di®erent experiment in the actual economy. So, to

proceed with our program, we must know what happens in the actual economy after a shock

to monetary policy.

The literature explores three general strategies for isolating monetary policy shocks. The

¯rst is the primary focus of our analysis. It involves making enough identifying assumptions

to allow the analyst to estimate the parameters of the Federal Reserve's feedback rule, i.e.,

the rule which relates policymakers' actions to the state of the economy. The necessary iden-

tifying assumptions include functional form assumptions, assumptions about which variables

the Fed looks at when setting its operating instrument and an assumption about what the

operating instrument is. In addition, assumptions must be made about the nature of the

interaction of the policy shock with the variables in the feedback rule. One assumption is

that the policy shock is orthogonal to these variables. Throughout, we refer to this as the

recursiveness assumption. Along with linearity of the Fed's feedback rule, this assumption

justi¯es estimating policy shocks by the ¯tted residuals in the ordinary least squares re-

gression of the Fed's policy instrument on the variables in the Fed's information set. The

economic content of the recursiveness assumption is that the time t variables in the Fed's
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information set do not respond to time t realizations of the monetary policy shock. As an

example, CEE (1996a) assume that the Fed looks at current prices and output, among other

things, when setting the time t value of its policy instrument. In that application, the recur-

siveness assumption implies that output and prices respond only with a lag to a monetary

policy shock.

While there are models that are consistent with the previous recursiveness assumption,

it is nevertheless controversial.2 This is why authors like Bernanke (1986), Sims (1986),

Sims and Zha (1995) and Leeper, Sims and Zha (1996) adopt an alternative approach. No

doubt there are some advantages to abandoning the recursiveness assumption. But there

is also a substantial cost: a broader set of economic relations must be identi¯ed. And the

assumptions involved can also be controversial. For example, Sims and Zha (1995) assume,

among other things, that the Fed does not look at the contemporaneous price level or output

when setting its policy instrument and that contemporaneous movements in the interest rate

do not directly a®ect aggregate output. Both assumptions are clearly debatable. Finally,

it should be noted that abandoning the recursiveness assumption doesn't require one to

adopt an identi¯cation scheme in which a policy shock has a contemporaneous impact on

all nonpolicy variables. For example, Leeper and Gordon (1992) and Leeper, Sims and Zha

(1996) assume that aggregate real output and the price level are not a®ected in the impact

period of a monetary policy shock.

The second and third strategies for identifying monetary policy shocks do not involve

explicitly modelling the monetary authority's feedback rule. The second strategy involves

looking at data that purportedly signal exogenous monetary policy actions. For exam-

ple, Romer and Romer (1989) examine records of the Fed's policy deliberations to identify

times in which they claim there were exogenous monetary policy shocks. Other authors like

Rudebusch (1995a) assume that, in certain sample periods, exogenous changes in monetary

policy are well measured by changes in the federal funds rate. Finally, authors like Cooley

and Hansen (1989, 1997), King (1991), Christiano (1991) and Christiano and Eichenbaum

(1995) assume that all movements in money re°ect exogenous movements in monetary policy.

The third strategy identi¯es monetary policy shocks by the assumption that they do not

a®ect economic activity in the long run.3 We will not discuss this approach in detail. We

refer the reader to Faust and Leeper (1997) and Pagan and Robertson (1995) for discussions

and critiques of this literature.

The previous overview makes clear that the literature has not yet converged on a partic-

2See Christiano, Eichenbaum and Evans (1997b) and Rotemberg and Woodford (1997) for models that
are consistent with the assumption that contemporaneous output and the price level do not respond to a
monetary policy shock.

3For an early example of this approach see Gali (1992).
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ular set of assumptions for identifying the e®ects of an exogenous shock to monetary policy.

Nevertheless, as we show, there is considerable agreement about the qualitative e®ects of a

monetary policy shock in the sense that inference is robust across a large subset of the iden-

ti¯cation schemes that have been considered in the literature. The nature of this agreement

is as follows: after a contractionary monetary policy shock, short term interest rates rise,

aggregate output, employment, pro¯ts and various monetary aggregates fall, the aggregate

price level responds very slowly, and various measures of wages fall, albeit by very modest

amounts. In addition, there is agreement that monetary policy shocks account for only a

very modest percentage of the volatility of aggregate output; they account for even less of

the movements in the aggregate price level.4 The literature has gone beyond this to provide

a richer more detailed picture of the economy's response to a monetary policy shock (see

section 4.6). But even this small list of ¯ndings has proven to be useful in evaluating the

empirical plausibility of alternative monetary business cycle models (see CEE (1997a)). In

this sense the Lucas program, as applied to monetary policy shocks, is already proving to

be a fruitful one.

Identi¯cation schemes do exist which lead to di®erent inferences about the e®ects of

a monetary policy shock than the consensus view just discussed. How should we select

between competing identifying assumptions? We suggest one selection scheme: eliminate a

policy shock measure if it implies a set of impulse response functions that is inconsistent with

every element in the set of monetary models that we wish to discriminate between. This is

equivalent to announcing that if none of the models that we are interested in can account for

the qualitative features of a set of impulses response functions, we reject the corresponding

identifying assumptions, not the entire set of models. In practice, this amounts to a set of

sign and shape restrictions on impulse response functions (see Uhlig (1997) for a particular

formalization of this argument). Since we have been explicit about the restrictions we impose,

readers can make their own decisions about whether to reject the identifying assumptions in

question.

In the end, the key contribution of the monetary policy shock literature may be this:

it has clari¯ed the mapping from identi¯cation assumptions to inference about the e®ects

of monetary policy shocks. This substantially eases the task of readers and model builders

in evaluating potentially con°icting claims about what actually happens after a monetary

policy shock.

The remainder of the paper is organized as follows:

² Section 2: We discuss possible interpretations of monetary policy shocks.
4These latter two ¯ndings say nothing about the impact of the systematic component of monetary policy

on aggregate output and the price level. The literature that we review is silent on this point.
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² Section 3: We discuss the main statistical tool used in the analysis, namely the Vector
Autoregression (VAR). In addition we present a reasonably self-contained discussion

of the identi¯cation issues involved in estimating the economic e®ects of a monetary

policy shock.

² Section 4: We discuss inference about the e®ects of a monetary policy shock using
the recursiveness assumption. First, we discuss the link between the recursiveness as-

sumption and identi¯ed VAR's. Second, we display the dynamic response of various

economic aggregates to a monetary policy shock under three benchmark identi¯cation

schemes, each of which satis¯es the recursiveness assumption. In addition, we discuss

related ¯ndings in the literature concerning other aggregates not explicitly analyzed

here. Third, we discuss the robustness of inference to various perturbations including:

alternative identi¯cation schemes which also impose the recursiveness assumption, in-

corporating information from the federal funds futures market into the analysis and

varying the subsample over which the analysis is conducted. Fourth, we consider some

critiques of the benchmark identi¯cation schemes. Fifth, we consider the implications

of the benchmark identi¯cation schemes for the volatility of various economic aggre-

gates.

² Section 5: We consider other approaches which focus on the monetary authority's
feedback rule, but which do not impose the recursiveness assumption.

² Section 6: We discuss the di±culty of directly interpreting estimated monetary policy
rules.

² Section 7: We consider the narrative approach to assessing the e®ects of a monetary
policy shock.

² Section 8: We conclude with a brief discussion of various approaches to implementing
the third step of the Lucas program as applied to monetary policy shocks. In partic-

ular we review a particular approach to performing monetary experiments in model

economies, the outcomes of which can be compared to the estimated e®ects of a policy

shock in actual economies. In addition we provide some summary remarks.

2. Monetary Policy Shocks: Some Possible Interpretations

Many economists think that a signi¯cant fraction of the variation in central bank policy

actions re°ects policy makers' systematic responses to variations in the state of the economy.

As noted in the introduction, this systematic component is typically formalized with the
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concept of a feedback rule, or reaction function. As a practical matter, it is recognized that

not all variations in central bank policy can be accounted for as a reaction to the state of

the economy. The unaccounted variation is formalized with the notion of a monetary policy

shock. Given the large role that the concepts of a feedback rule and a policy shock play

in the literature, we begin by discussing several sources of exogenous variation in monetary

policy.

Throughout this paper we identify a monetary policy shock with the disturbance term

in an equation of the form

St = f(­t) + ¾s"
s
t : (2.1)

Here St is the instrument of the monetary authority, say the federal funds rate or some

monetary aggregate, and f is a linear function that relates St to the information set ­t:

The random variable, ¾s"
s
t ; is a monetary policy shock. Here, "

s
t is normalized to have unit

variance, and we refer to ¾s as the standard deviation of the monetary policy shock.

One interpretation of f and ­t is that they represent the monetary authority's feedback

rule and information set, respectively. As we indicate in section 6, there are other ways to

think about f and ­t which preserve the interpretation of "
s
t as a shock to monetary policy.

What is the economic interpretation of these policy shocks? We o®er three interpre-

tations. The ¯rst is that "st re°ects exogenous shocks to the preferences of the monetary

authority, perhaps due to stochastic shifts in the relative weight given to unemployment and

in°ation. These shifts could re°ect shocks to the preferences of the members of the Federal

Open Market Committee (FOMC), or to the weights by which their views are aggregated. A

change in weights may re°ect shifts in the political power of individual committee members

or in the factions that they represent. A second source of exogenous variation in policy can

arise because of the strategic considerations developed in Ball (1995) and Chari, Christiano

and Eichenbaum (1997). These authors argue that the Fed's desire to avoid the social costs

of disappointing private agents' expectations can give rise to an exogenous source of variation

in policy like that captured by "st : Speci¯cally, shocks to private agents' expectations about

Fed policy can be self-ful¯lling and lead to exogenous variations in monetary policy. A third

source of exogenous variation in Fed policy could re°ect various technical factors. For one

set of possibilities, see Hamilton (1997). Another set of possibilities, stressed by Bernanke

and Mihov (1995), focuses on the measurement error in the preliminary data available to

the FOMC at the time it makes its decision.

We ¯nd it useful to elaborate on Bernanke and Mihov's suggestion for three reasons.

First, their suggestion is of independent interest. Second, we use it in section 6 to illustrate

some of the di±culties involved in trying to interpret the parameters of f: Third, we use a

version of their argument to illustrate how the interpretation of monetary policy shocks can
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interact with the plausibility of alternative assumptions for identifying "st :

Suppose the monetary authority sets the policy variable, St; as an exact function of

current and lagged observations on a set of variables, xt. We denote the time t observations

on xt and xt¡1 by xt(0) and xt¡1(1) where:

xt(0) = xt + vt; and xt¡1(1) = xt¡1 + ut¡1: (2.2)

So, vt represents the contemporaneous measurement error in xt; while ut represents the

measurement error in xt from the standpoint of period t+ 1: If xt is observed perfectly with

a one period delay, then ut ´ 0 for all t: Suppose that the policy maker sets St as follows:

St = ¯0St¡1 + ¯1xt(0) + ¯2xt¡1(1): (2.3)

Expressed in terms of correctly measured variables, this policy rule reduces to equation (2.1)

with:

f(­t) = ¯0St¡1 + ¯1xt + ¯2xt¡1; ¾s"
s
t = ¯1vt + ¯2ut¡1: (2.4)

This illustrates how noise in the data collection process can be a source of exogenous variation

in monetary policy actions.

This example can be used to illustrate how one's interpretation of the error term can

a®ect the plausibility of alternative assumptions used to identify "st . Recall the recursive-

ness assumption, according to which "st is orthogonal to the elements of ­t: Under what

circumstances would this assumption be correct under the measurement error interpretation

of "st?

To answer this, suppose that vt and ut are classical measurement errors, i.e. they are

uncorrelated with xt at all leads and lags. If ¯0 = 0; then the recursiveness assumption

is satis¯ed. Now suppose that ¯0 6= 0: If ut ´ 0; then this assumption is still satis¯ed.

However, in the more plausible case where ¯2 6= 0; ut 6= 0 and ut and vt are correlated

with each other, then the recursiveness condition fails. This last case provides an important

caveat to measurement error as an interpretation of the monetary policy shocks estimated

by analysts who make use of the recursiveness assumption. We suspect that this may also

be true for analysts who do not use the recursiveness assumption (see Section 5 below),

because in developing identifying restrictions, they typically abstract from the possibility of

measurement error.

3. Vector Autoregressions and Identi¯cation

A fundamental tool in the literature that we review is the vector autoregression (VAR).

A VAR is a convenient device for summarizing the ¯rst and second moment properties
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of the data. We begin by de¯ning more precisely what a VAR is. We then discuss the

identi¯cation problem involved in measuring the dynamic response of economic aggregates

to a fundamental economic shock. The basic problem is that a given set of second moments

is consistent with many such dynamic response functions. Solving this problem amounts to

making explicit assumptions that justify focusing on a particular dynamic response function.

A VAR for a k-dimensional vector of variables, Zt; is given by:

Zt = B1Zt¡1 + :::+BqZt¡q + ut; Eutu
0
t = V: (3.1)

Here, q is a nonnegative integer and ut is uncorrelated with all variables dated t ¡ 1 and

earlier.5 Consistent estimates of the Bi's can be obtained by running ordinary least squares

equation by equation on (3.1). One can then estimate V from the ¯tted residuals.

Suppose that we knew the Bi's, the ut's and V . It still would not be possible to compute

the dynamic response function of Zt to the fundamental shocks in the economy. The basic

reason is that ut is the one step ahead forecast error in Zt: In general, each element of ut

re°ects the e®ects of all the fundamental economic shocks. There is no reason to presume

that any element of ut corresponds to a particular economic shock, say for example, a shock

to monetary policy.

To proceed, we assume that the relationship between the VAR disturbances and the

fundamental economic shocks; "t, is given by A0ut = "t: Here, A0 is an invertible, square

matrix and E"t"
0
t = D; where D is a positive de¯nite matrix.6 Premultiplying (3.1) by A0,

we obtain:

A0Zt = A1Zt¡1 + :::+AqZt¡q + "t: (3.2)

Here Ai is a k x k matrix of constants, i = 1; :::q and

Bi = A
¡1
0 Ai; i = 1; :::; q; and V = A

¡1
0 D

³
A¡10

´0
: (3.3)

The response of Zt+h to a unit shock in "t; °h; can be computed as follows. Let ~°h be

the solution to the following di®erence equation:

~°h = B1~°h¡1 + :::+Bq~°h¡q; h = 1; 2; ::: (3.4)

with initial conditions

~°0 = I; ~°¡1 = ~°¡2 = :::: = ~°¡q = 0: (3.5)

5For a discussion of the class of processes that VAR's summarize, see Sargent (1987). The absence of a
constant term in (3.1) is without loss of generality, since we are free to set one of the elements of Zt to be
identically equal to unity.

6This corresponds to the assumption that the economic shocks are recoverable from a ¯nite list of current
and past Zt's. For our analysis, we only require that a subset of the "t's be recoverable from current and
past Zt's.
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Then,

°h = ~°hA
¡1
0 ; h = 0; 1; ::: (3.6)

Here, the (j; l) element of °h represents the response of the jth component of Zt+h to a unit

shock in the lth component of "t: The °h's characterize the `impulse response function' of the

elements of Zt to the elements of "t:

Relation (3.6) implies we need to know A0 as well as the Bi's in order to compute

the impulse response function. While the Bi's can be estimated via ordinary least squares

regressions, getting A0 is not so easy. The only information in the data about A0 is that it

solves the equations in (3.3). Absent restrictions on A0 there are in general many solutions

to these equations. The traditional simultaneous equations literature places no assumptions

on D; so that the equations represented by V = A¡10 D
³
A¡10

´0
provide no information about

A0: Instead, that literature develops restrictions on Ai; i = 0; :::; q that guarantee a unique

solution to A0Bi = Ai, i = 1; :::; q:

In contrast, the literature we survey always imposes the restriction that the fundamental

economic shocks are uncorrelated (i.e. D is a diagonal matrix), and places no restrictions on

Ai; i = 1; :::; q:
7 Absent additional restrictions on A0 we can set

D = I: (3.7)

Also note that without any restrictions on the Ai's; the equations represented by A0Bi = Ai,

i = 1; :::; q provide no information about A0: All of the information about this matrix is

contained in the relationship, V = A¡10
³
A¡10

´0
: De¯ne the set of solutions to this equation

by

QV =
½
A0 : A

¡1
0

³
A¡10

´0
= V

¾
: (3.8)

In general, this set contains many elements. This is because A0 has k
2 parameters while the

symmetric matrix, V; has at most k(k+1)=2 distinct numbers. So, QV is the set of solutions

to k(k + 1)=2 equations in k2 unknowns. As long as k > 1, there will in general be many

solutions to this set of equations, i.e., there is an identi¯cation problem.

To solve this problem we must ¯nd and defend restrictions on A0 so that there is only

one element in QV satisfying them. In practice, the literature works with two types of

restrictions: a set of linear restrictions on the elements of A0 and a requirement that the

diagonal elements of A0 be positive. Suppose that the analyst has in mind l linear restrictions

on A0. These can be represented as the requirement ¿vec(A0) = 0; where ¿ is a matrix of

dimension l£ k2 and vec(A0) is the k2 £ 1 vector composed of the k columns of A0. Each of
7See Leeper, Sims and Zha (1996) for a discussion of (3.7).
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the l rows of ¿ represents a di®erent restriction on the elements of A0: We denote the set of

A0 satisfying these restrictions by:

Q¿ = fA0 : ¿vec(A0) = 0g : (3.9)

In the literature that we survey, the restrictions summarized by ¿ are either zero restrictions

on the elements of A0 or restrictions across the elements of individual rows of A0: Cross

equation restrictions, i.e., restrictions across the elements of di®erent rows of A0; are not

considered.

Next we motivate the sign restrictions that the diagonal elements of A0 must be strictly

positive.8 If Q¿ \QV is nonempty, it can never be composed of just a single matrix. This is
because if A0 lies in QV \ Q¿ ; then ~A0 obtained from A0 by changing the sign of all elements
of an arbitrary subset of rows of A0 also lies in Q¿ \ QV : To see this, let W be a diagonal

matrix with an arbitrary pattern of ones and minus ones along the diagonal. It is obvious

that WA0 2 Q¿ : Also, because W is orthonormal (i.e., W 0W = I), WA0 2 QV as well.
Suppose we impose the restriction that the diagonal elements of A0 be strictly positive.

This rules out matrices ~A0 that are obtained from an A0 2 Q¿ \ QV by changing the signs
of all the elements of A0: In what follows we only consider A0 matrices that obey the sign

restrictions. That is, we insist that A0 2 QS ; where

QS = fA0 : A0 has strictly positive diagonal elementsg : (3.10)

>From (3.2) we see that the ith diagonal of A0 being positive corresponds to the normalization

that a positive shock to the ith element of "t represents a positive shock to the i
th element

of Zt when the other elements of Zt are held ¯xed.

When there is more than one element in the set QV \ Q¿ \ QS we say that the system
is `underidenti¯ed', or, `not identi¯ed'. When QV \ Q¿ \ QS has one element, we say it
is `identi¯ed'. So, in these terms, solving the identi¯cation problem requires selecting a ¿

which causes the system to be identi¯ed.

Note that QV \Q¿ is the set of solutions to k(k+1)=2+ l equations in the k2 unknowns
of A0: In practice, the literature seeks to achieve identi¯cation by selecting a full row rank

¿ satisfying the order condition, l ¸ k(k ¡ 1)=2: However, the order and sign conditions

are not su±cient for identi¯cation. For example, when l = k(k ¡ 1)=2 underidenti¯cation

could occur for two reasons. First, a neighborhood of a given A0 2 QV \ Q¿ \ QS could
contain other matrices belonging to QV \ Q¿ \ QS. This possibility can be ruled out by

8The following discussion ignores the possibility that Q¿ \ QV contains a matrix with one or more
diagonal elements that are exactly zero. A suitable modi¯cation of the argument below can accommodate
this possibility.
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verifying a simple rank condition, namely that the matrix derivative with respect to A0

of the equations de¯ning (3.8) is of full rank.9 In this case, we say we have established

local identi¯cation. A second possibility is that there may be other matrices belonging to

QV \ Q¿ \ QS but which are not in a small neighborhood of A0:10 In general, no known
simple conditions rule out this possibility. If we do manage to rule it out, we say the system

is globally identi¯ed.11 In practice, we use the rank and order conditions to verify local

identi¯cation. Global identi¯cation must be established on a case by case basis. Sometimes,

as in our discussion of Bernanke and Mihov (1995), this can be done analytically. More

typically, one is limited to building con¯dence in global identi¯cation by conducting an ad

hoc numerical search through the parameter space to determine if there are other elements

in QV \Q¿ \QS:
The di±culty of establishing global identi¯cation in the literature we survey stands in

contrast to the situation in the traditional simultaneous equations context. There, the iden-

ti¯cation problem only involves systems of linear equations. Under these circumstances,

local identi¯cation obtains if and only if global identi¯cation obtains. The traditional si-

multaneous equations literature provides a simple set of rank and order conditions that are

necessary and su±cient for identi¯cation. These conditions are only su±cient to characterize

local identi¯cation for the systems that we consider.12 Moreover, they are neither necessary

nor su±cient for global identi¯cation.

We now describe two examples which illustrate the discussion above. In the ¯rst case, the

order and sign conditions are su±cient to guarantee global identi¯cation. In the second, the

9Here we de¯ne a particular rank condition and establish that the rank and order conditions are su±cient
for local identi¯cation. Let ® be the k(k + 1)=2 dimensional column vector of parameters in A0 that remain
free after imposing (3.9), so that A0(®) 2 Q¿ for all ®: Let f(®) denote the k(k + 1)=2 dimensional row

vector composed of the upper triangular part of A0(®)¡1
£
A0(®)¡1

¤0 ¡V: Let F (®) denote the k(k +1)=2 by
k(k+1)=2 derivative matrix of f(®) with respect to ®: Let ®¤ satisfy f(®¤) = 0. Consider the following rank
condition: F (®) has full rank for all ® 2 D(®¤); where D(®¤) is some neighborhood of ®¤: We assume that f
is continuous and that F is well de¯ned. A straightforward application of the mean value theorem (see Bartle
(1976), p.196) establishes that this rank condition guarantees f(®) 6= 0 for all ® 2 D(®¤) and ® 6= ®¤: Let
g¶ : ["¶; "¶] ! Rk(k+1)=2 be de¯ned by g¶(") = f(®¤ + ¶"); where ¶ is an arbitrary non-zero k(k +1)=2 column
vector, and "¶ and "¶ are the smallest and largest values, respectively, of " such that (®¤ + ¶") 2 D(®¤) .
Note that g0

¶(") = ¶0F (®¤ + ¶") and "¶ < 0 < "¶: By the mean value theorem, g¶(") = g¶(0) + g0
¶(°)" for some

° between 0 and ": This can be written g¶(") = ¶0F (®¤ +¶")": The rank condition implies that the expression
to the right of the equality is nonzero, as long as " 6= 0: Since the choice of ¶ 6= 0 was arbitrary, the result is
established.

10A simple example is (x ¡ a) (x ¡ b) = 0; which is one equation with two isolated solutions, x = a and
x = b:

11We can also di®erentiate other concepts of identi¯cation. For example, asymptotic and small sample
identi¯cation correspond to the cases where V is the population and ¯nite sample value of the variance
covariance matrix of the VAR disturbances, respectively. Obviously, asymptotic identi¯cation could hold
while ¯nite sample identi¯cation fails, as well as the converse.

12To show that the rank condition is not necessary for local identi¯cation, consider f(x) = (x ¡ a)2 : For
this function there is a globally unique zero at x = a; yet f 0(a) = 0:
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order condition and sign conditions for identi¯cation hold, yet the system is not identi¯ed.

In the ¯rst example, we select ¿ so that all the elements above (alternatively, below) the

diagonal of A0 are zero. If in addition, we impose the sign restriction, then it is well known

that there is only one element in QV \Q¿ \QS; i.e., the system is globally identi¯ed. This

result is an implication of the uniqueness of the Cholesky factorization of a positive de¯nite

symmetric matrix. This example plays a role in the section on identi¯cation of monetary

policy shocks with a recursiveness assumption.

For our second example, consider the case k = 3 with the following restricted A0 matrix:

A0 =

2
64
a11 0 a13
0 a22 a23
0 a32 a33

3
75 ;

where aii > 0 for i = 1; 2; 3: Since there are three zero restrictions, the order condition is

satis¯ed. Suppose that A0 2 QV ; so that A0 2 QV \ Q¿ \ QS: Let W be a block diagonal

matrix with unity in the (1; 1) element and an arbitrary 2 £ 2 orthonormal matrix in the

second diagonal block. Let W also have the property that WA0 has positive elements on

the diagonal. Then, WW 0 = I; and WA0 2 QV \ Q¿ \ QS :13 In this case we do not have
identi¯cation, even though the order and sign conditions are satis¯ed. The reason for the

failure of local identi¯cation is that the rank condition does not hold. If it did hold, then

identi¯cation would have obtained. The failure of the rank condition in this example re°ects

that the second and third equations in the system are indistinguishable.

It is easy to show that every element in QV \ Q¿ \ QS generates the same dynamic
response function to the ¯rst shock in the system. To see this, note from (3.5) that the

¯rst column of A¡10 is what characterizes the response of all the variables to the ¯rst shock.

Similarly, the ¯rst column of (WA0)¡1 controls the response of the transformed system to

the ¯rst shock. But, the result (WA0)
¡1 = A¡10 W

0; and our de¯nition of W imply that

the ¯rst columns of (WA0)
¡1 and of A¡10 are the same. So, if one is only interested in the

dynamic response of the system to the ¯rst shock, then the choice of the second diagonal

block of W is irrelevant. An extended version of this observation plays an important role in

our discussion of nonrecursive identi¯cation schemes below.

13To see that this example is non empty, consider the case a11 = 0:70; a13 = 0:40; a22 = 0:38; a23 = 0:50;
a32 = 0:83; a33 = 0:71 and let the 2 £ 2 lower block in W be

·
0:4941 0:8694
0:8694 ¡0:4941

¸
:

It is easy to verify that WA0 satis¯es the zero and sign restrictions on A0.
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4. The E®ects of a Monetary Policy Shock: A Recursiveness As-
sumption

In this section we discuss one widely used strategy for estimating the e®ects of a monetary

policy shock. The strategy is based on the recursiveness assumption, according to which

monetary policy shocks are orthogonal to the information set of the monetary authority.

Section 4.1 discusses the relationship between the recursiveness assumption and VARs. Sec-

tion 4.2 describes three benchmark identi¯cation schemes which embody the recursiveness

assumption. In addition, we display estimates of the dynamic e®ects of a monetary policy

shock on various economic aggregates, obtained using the benchmark identi¯cation schemes.

Section 4.3 reviews some results in the literature regarding the dynamic e®ects of a monetary

policy shock on other economic aggregates, obtained using close variants of the benchmark

schemes. Section 4.4 considers robustness of the empirical results contained in section 4.2.

Section 4.5 discusses various critiques of the benchmark identi¯cation schemes. Finally, sec-

tion 4.6 investigates the implications of the benchmark schemes for the volatility of various

economic aggregates.

4.1. The Recursiveness Assumption and VARs

The recursiveness assumption justi¯es the following two-step procedure for estimating the

dynamic response of a variable to a monetary policy shock. First, estimate the policy shocks

by the ¯tted residuals in the ordinary least squares regression of St on the elements of ­t.

Second, estimate the dynamic response of a variable to a monetary policy shock by regressing

the variable on the current and lagged values of the estimated policy shocks.

In our analysis we ¯nd it convenient to map the above two-step procedure into an as-

ymptotically equivalent VAR-based procedure. There are two reasons for this. First, the

two-step approach implies that we lose a number of initial data points equal to the number

of dynamic responses that we wish to estimate, plus the number of lags, q; in ­t. With the

VAR procedure we only lose the latter. Second, the VAR methodology provides a complete

description of the data generating process for the elements of ­t. This allows us to use a

straightforward bootstrap methodology for use in conducting hypothesis tests.

We now indicate how the recursiveness assumption restricts A0 in (3.2). Partition Zt

into three blocks: the k1 variables, X1t; whose contemporaneous values appear in ­t; the k2

variables, X2t; which only appear with a lag in ­t; and St itself. Then, k = k1 + k2 + 1;

where k is the dimension of Zt: That is:

Zt =

0
B@
X1t
St
X2t

1
CA :
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We consider k1; k2 ¸ 0: To make the analysis interesting we assume that if k1 = 0; so that

X1t is absent from the de¯nition of Zt; then k2 > 1: Similarly, if k2 = 0; then k1 > 1: The

recursiveness assumption places the following zero restrictions on A0 :

A0 =

2
666664

a11
(k1£k1)

0
(k1£1)

0
(k1£k2)

a21
(1£k1)

a22
(1£1)

0
(1£k2)

a31
(k2£k1)

a32
(k2£1)

a33
(k2£k2)

3
777775
: (4.1)

Here, expressions in parentheses indicate the dimension of the associated matrix and a22 =

1=¾s; where ¾s > 0:

The zeros in the middle row of this matrix re°ect the assumption that the policy maker

does not see X2t when St is set. The two zero blocks in the ¯rst row of A0 re°ect our

assumption that the monetary policy shock is orthogonal to the elements in X1t: These

blocks correspond to the two distinct channels by which a monetary policy shock could in

principle a®ect the variables in X1t: The ¯rst of these blocks corresponds to the direct e®ect

of St onX1t. The second block corresponds to the indirect e®ect that operates via the impact

of a monetary policy shock on the variables in X2t:

We now show that the recursiveness assumption is not su±cient to identify all the el-

ements of A0: This is not surprising, in light of the fact that the ¯rst k1 equations are

indistinguishable from each other, as are the last k2 equations. Signi¯cantly, however, the

recursiveness assumption is su±cient to identify the object of interest: the dynamic response

of Zt to a monetary policy shock. Speci¯cally, we establish three results. The ¯rst two are

as follows: (i) there is a nonempty family of A0 matrices, one of which is lower triangular

with positive terms on the diagonal, which are consistent with the recursiveness assumption

(i.e., satisfy (4.1)) and satisfy A¡10
³
A¡10

´0
= V ; and (ii) each member of this family generates

precisely the same dynamic response function of the elements of Zt to a monetary policy

shock. The third result is that if we adopt the normalization of always selecting the lower

triangular A0 matrix identi¯ed in (i), then the dynamic response of the variables in Zt are

invariant to the ordering of variables in X1t and X2t:

To prove (i)-(iii) it is useful to establish a preliminary result. We begin by de¯ning some

notation. Let the ((k1 + 1)k2 + k1) £ k2 matrix ¿ summarize the zero restrictions on A0 in
(4.1). So, Q¿ is the set of A0 matrices consistent with the recursiveness assumption. Let QV

be the set of A0 matrices de¯ned by the property that A
¡1
0 (A

¡1
0 )

0 (see (3.8)). In addition,

let

W =

2
64
W11 0 0
0 1 0
0 0 W33

3
75 ; (4.2)
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where W is partitioned conformably with A0 in (4.1) and W11 and W33 are arbitrary ortho-

normal matrices. De¯ne

Q ¹A0 =
n
A0 : A0 =W ¹A0; for some W satisfying (4.2)

o
:

Here ¹A0 is a matrix conformable with W .

We now establish the following result:

Q ¹A0 = QV \Q¿ ; (4.3)

where ¹A0 is an arbitrary element of QV \Q¿ : It is straightforward to establish that A0 2 Q ¹A0

implies A0 2 QV \Q¿ . The result, A0 2 QV follows from orthonormality of W and the fact,
¹A0 2 QV : The result, A0 2 Q¿ ; follows from the block diagonal structure of W in (4.2).

Now consider an arbitrary A0 2 QV \ Q¿ : To show that A0 2 Q ¹A0; consider the candidate

orthonormal matrix W = A0 ¹A
¡1
0 ; where invertibility of ¹A0 re°ects ¹A0 2 QV : Since W is

the product of two block-lower triangular matrices, it too is block-lower triangular. Also,

it is easy to verify that WW 0 = I: The orthonormality of W; together with block-lower

triangularity imply that W has the form, (4.2). This establishes A0 2 Q ¹A0 and, hence, (4.3).

We now prove result (i). The fact that QV \ Q¿ is not empty follows from the fact that

we can always set A0 equal to the inverse of the lower triangular Cholesky factor of V: The

existence and invertability of this matrix is discussed in Hamilton (1994, p. 91).14 To see

that there is more than one element in QV \Q¿ ; use the characterization result, (4.3), with ¹A0
equal to the inverse of the Cholesky factor of V: Construct the orthonormal matrixW 6= I by
interchanging two of either the ¯rst k1 rows or the last k2 rows of the k-dimensional identity

matrix.15 Then, W ¹A0 6= ¹A0: Result (i) is established because W ¹A0 2 QV \ Q¿ :
We now prove result (ii). Consider any two matrices, A0; ~A0 2 QV \Q¿ : By (4.3) there

exists a W satisfying (4.2) with the property, ~A0 = WA0; so that

~A¡10 = A¡10 W
0:

In conjunction with (4.2), this expression implies that the (k1 + 1)
th column of ~A¡10 and A¡10

are identical. But, by (3.6) the implied dynamic responses of Zt+i, i = 0; 1; ::: to a monetary

policy shock are identical too. This establishes result (ii).

14The Cholesky factor of a positive de¯nite, symmetric matrix, V; is a lower triangular matrix, C; with
the properties (i) it has positive elements along the diagonal, and (ii) it satis¯es the property, CC 0 = V:

15Recall, orthonormality of a matrix means that the inner product between two di®erent columns is zero
and the inner product of any column with itself is unity. This property is obviously satis¯ed by the identity
matrix. Rearranging the rows of the identity matrix just changes the order of the terms being added in the
inner products de¯ning orthonormality, and so does not alter the value of column inner products. Hence a
matrix obtained from the identity matrix by arbitrarily rearranging the order of its rows is orthonormal.
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We now prove (iii) using an argument essentially the same as the one used to prove

(ii). We accomplish the proof by starting with a representation of Zt in which A0 is lower

triangular with positive diagonal elements. We then arbitrarily reorder the ¯rst k1 and the

last k2 elements of Zt: The analog to A0 in the resulting system need not be lower triangular

with positive elements. We then apply a particular orthonormal transformation which results

in a lower triangular system with positive diagonal elements. The response of the variables

in Zt to a monetary policy shock is the same in this system and in the original system.

Consider ~Zt = DZt; where D is the orthonormal matrix constructed by arbitrarily re-

ordering the columns within the ¯rst k1 and the last k2 columns of the identity matrix.
16

Then, ~Zt corresponds to Zt with the variables in X1t and X2t reordered arbitrarily. Let Bi;

i = 1; :::; q and V characterize the VAR of Zt and let A0 be the unique lower triangular matrix

with positive diagonal terms with the property A¡10
³
A¡10

´0
= V: Given the Bi's, A0 charac-

terizes the impulse response function of the Zt's to "t (see (3.4) - (3.6).) The VAR representa-

tion of ~Zt; obtained by suitably reordering the equations in (3.1), is characterized by DBiD0,

i = 1; :::; q; and DVD0:17 Also, it is easily veri¯ed that (A0D0)¡1
h
(A0D

0)¡1
i0
= DVD0; and

that given the DBiD
0's, A0D0 characterizes the impulse response function of the ~Zt's to "t:

Moreover, these responses coincide with the responses of the corresponding variables in Zt

to "t. Note that A0D0 is not in general lower triangular. Let ~A0 = A0D0:

~A0 =

2
64
~a11 0 0
~a21 ~a22 0
~a31 ~a32 ~a33

3
75 ;

where ~aii is full rank, but not necessarily lower triangular, for i = 1; 3: Let the QR decom-

position of these matrices be ~aii = QiRi; where Qi is a square, orthonormal matrix, and Ri

is lower triangular with positive elements along the diagonal. This decomposition exists as

long as ~aii; i = 1; 3; is nonsingular, a property guaranteed by the fact A0 2 QV \ Q¿ (see
Strang (1976, p. 124)).18 Let

W =

2
64
Q01 0 0
0 1 0
0 0 Q03

3
75 :

Note that WW 0 = I;
³
W ~A0

´¡1 ·³
W ~A0

´¡1¸0
= DVD0; and W ~A0 is lower triangular with

16The type of reasoning in the previous footnote indicates that permuting the columns of the identity
matrix does not alter orthonormality.

17To see this, simply premultiply (3.1) by D on both sides and note that BiZt¡i = BiD
0DZt¡i; because

D0D = I:
18Actually, it is customary to state the QR decomposition of the (n £ n) matrix A as A = QR; where R

is upper triangular. We get it into lower triangular form by constructing the orthonormal matrix E with
zeros everywhere and 1's in the (n + 1 ¡ i; i)th entries, i = 1; 2; :::; n; and writing A = (QE) (E0R) : The
orthonormal matrix to which we refer in the text is actually QE:
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positive elements along the diagonal. Since
³
W ~A0

´¡1
= ~A¡10 W

0; the (k1 + 1)th columns

of ~A¡10 W
0 and ~A¡10 coincide. We conclude that, under the normalization that A0 is lower

diagonal with positive diagonal terms, the response of the variables in Zt to a monetary

policy shock is invariant to the ordering of variables in X1t and X2t: This establishes (iii).

We now summarize these results in the form of a proposition.

Proposition 4.1. Consider the sets QV and Q¿ :

(i) The set QV \Q¿ is nonempty and contains more than one element.

(ii) The (k1 + 1)
th column of °i; i = 0; 1; ::: in (3.6) is invariant to the choice of A0 2 QV \Q¿ :

(iii) Restricting A0 2 QV \ Q¿ to be lower triangular with positive diagonal terms, the
(k1 + 1)

th column of °i; i = 0; 1; ::: is invariant to the ordering of the elements in X1t

and X2t:

We now provide a brief discussion of (i)-(iii). According to results (i) and (ii), under

the recursiveness assumption the data are consistent with an entire family, QV \ Q¿ ; of
A0 matrices. It follows that the recursiveness assumption is not su±cient to pin down the

dynamic response functions of the variables in Zt to every element of "t: But, each A0 2
QV \Q¿ does generate the same response to one of the "t's, namely the one corresponding to
the monetary policy shock. In this sense, the recursiveness assumption identi¯es the dynamic

response of Zt to a monetary shock, but not the response to other shocks.

In practice, computational convenience dictates the choice of some A0 2 QV \ Q¿ : A
standard normalization adopted in the literature is that the A0 matrix is lower triangular

with nonnegative diagonal terms. This still leaves open the question of how to order the

variables in X1t and X2t: But, according to result (iii), the dynamic response of the variables

in Zt to a monetary policy shock is invariant to this ordering. At the same time, the dynamic

impact on Zt of the nonpolicy shocks is sensitive to the ordering of the variables in X1t and

X2t: The recursiveness assumption has nothing to say about this ordering. Absent further

identifying restrictions, the nonpolicy shocks and the associated dynamic response functions

simply re°ect normalizations adopted for computational convenience.

4.2. Three Benchmark Identi¯cation Schemes

We organize our empirical discussion around three benchmark recursive identi¯cation schemes.

These correspond to di®erent speci¯cations of St and ­t: In our ¯rst benchmark system, we

measure the policy instrument, St, by the time t federal funds rate. This choice is moti-

vated by institutional arguments in McCallum (1983), Bernanke and Blinder (1992) and
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Sims (1986,1992). Let Yt; Pt; PCOMt; FFt; TRt; NBRt; and Mt denote the time t values of

the log of real GDP, the log of the implicit GDP de°ator, the smoothed change in an index

of sensitive commodity prices (a component in the Bureau of Economic Analysis' index of

leading indicators), the federal funds rate, the log of total reserves, the log of nonborrowed

reserves plus extended credit, and the log of either M1 or M2; respectively. Here all data

are quarterly. Our benchmark speci¯cation of ­t includes current and four lagged values of

Yt; Pt; and PCOMt; as well as four lagged values of FFt; NBRt; TRt and Mt. We refer to

the policy shock measure corresponding to this speci¯cation as an FF policy shock.

In our second benchmark system we measure St by NBRt: This choice is motivated by

arguments in Eichenbaum (1992) and Christiano and Eichenbaum (1992) that innovations to

nonborrowed reserves primarily re°ect exogenous shocks to monetary policy, while innova-

tions to broader monetary aggregates primarily re°ect shocks to money demand. We assume

that ­t includes current and four lagged values of Yt; Pt; and PCOMt; as well as four lagged

values of FFt; NBRt; TRt and Mt. We refer to the policy shock measure corresponding to

this speci¯cation as an NBR policy shock.

Note that in both benchmark speci¯cations, the monetary authority is assumed to see Yt;

Pt and PCOMt; when choosing St:19 This assumption is certainly arguable because quarterly

real GDP data and the GDP de°ator are typically known only with a delay. Still, the Fed

does have at its disposal monthly data on aggregate employment, industrial output and other

indicators of aggregate real economic activity. It also has substantial amounts of information

regarding the price level. In our view the assumption that the Fed sees Yt and Pt when they

choose St seems at least as plausible as assuming that they don't.
20 Below we document the

e®ect of deviating from this benchmark assumption.

Notice that under our assumptions, Yt; Pt and PCOMt do not change in the impact

period of either an FF or an NBR policy shock. CEE (1997b) present a dynamic stochastic

general equilibrium model which is consistent with the notion that prices and output do not

move appreciably in the impact period of a monetary policy shock. The assumption regarding

PCOMt is more di±cult to assess on theoretical grounds absent an explicit monetary general

equilibrium model that incorporates a market for commodity prices. In any event, we show

below that altering the benchmark speci¯cation to exclude the contemporaneous value of

PCOMt from ­t has virtually no e®ect on our results.21

In the following subsection we display the time series of the two benchmark policy shock

19Examples of analyses which make this type of information assumption include Christiano and Eichen-
baum (1992), CEE (1996a, 1997a), Eichenbaum and Evans (1995), Strongin (1995), Bernanke and Blinder
(1992), Bernanke and Mihov (1995), and Gertler and Gilchrist (1994).

20See for example the speci¯cations in Sims and Zha (1995) and Leeper, Sims and Zha (1996).
21This does not mean that excluding lagged values from ­t has no e®ect on our results.
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estimates. After that, we study the dynamic response of various economic time series to

these shocks. At this point, we also consider our third benchmark system, a variant of the

NBR policy shocks associated with Strongin (1995). Finally, we consider the contribution

of di®erent policy shock measures to the volatility of various economic aggregates.

4.2.1. The Benchmark Policy Shocks Displayed

We begin by discussing some basic properties of the estimated time series of the FF and

NBR policy shocks. These are obtained using quarterly data over the sample period 1965:3

- 1995:2. Figure 1 contains two time series of shocks. The dotted line depicts the quarterly

FF policy shocks. The solid line depicts the contemporaneous changes in the federal funds

rate implied by contractionary NBR policy shocks. In both cases the variable Mt was

measured as M1t.

Since the policy shock measures are by construction serially uncorrelated, they tend to

be noisy. For ease of interpretation we report the centered, three quarter moving average of

the shock, i.e. we report ("s
t+1
+"st+"

s
t¡1)=3: Also, for convenience we include shaded regions,

which begin at a National Bureau of Economic Research (NBER) business cycle peak, and

end at a trough. The two shocks are positively correlated, with a correlation coe±cient of

0:51. The estimated standard deviation of the FF policy shocks is 0:71, at an annual rate.

The estimated standard deviation of the NBR is 1.53% and the standard deviation of the

implied federal funds rate shock is 0:39, at an annual rate.

In describing our results, we ¯nd it useful to characterize monetary policy as `tight' or

`contractionary', when the smoothed policy shock is positive, and `loose' or `expansionary'

when it is negative. According to the FF policy shock measure, policy was relatively tight

before each recession, and became easier around the time of the trough.22 A similar pattern

is observed for the movements in the federal funds rate implied by the NBR shocks, except

that in the 1981-1982 period, policy was loose at the start, very tight in the middle, and

loose at the end of the recession.

4.2.2. What Happens After a Benchmark Policy Shock?

Results for Some Major Economic Aggregates Figure 2 displays the estimated im-

pulse response functions of contractionary benchmark FF and NBR policy shocks on various

economic aggregates included in ­t: These are depicted in columns 1 and 2, respectively. Col-

umn 3 reports the estimated impulse response functions from a third policy shock measure

22In Figure 1, the beginning of the 1973-74 recession appears to be an exception to the general pattern.
To some extent this re°ects the e®ects of averaging since there was a 210 basis point FF policy shock in
1973Q3.
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which we refer to as an NBR=TR policy shock. This shock measure was proposed by Stron-

gin (1995) who argued that the demand for total reserves is completely interest inelastic

in the short run, so that a monetary policy shock initially only rearranges the composition

of total reserves between nonborrowed and borrowed reserves. Strongin argues that, after

controlling for movements in certain variables that are in the Fed's information set, a policy

shock should be measured as the innovation to the ratio of nonborrowed to total reserves. We

capture this speci¯cation by measuring St as NBR and assuming that ­t includes the cur-

rent value of TR. With this speci¯cation, a shock to "st does not induce a contemporaneous

change in TR.

All three identi¯cation schemes were implemented using M1 and M2 as our measure of

money. This choice turned out to have very little e®ect on the results. The results displayed

in Figure 2 are based on a system that included M1: The last row of Figure 2 depicts

the impulse response function of M2 to the di®erent policy shocks measures, obtained by

replacingM1 withM2 in our speci¯cation of ­t: The solid lines in the ¯gure report the point

estimates of the di®erent dynamic response functions. Dashed lines denote a 95% con¯dence

interval for the dynamic response functions.23

The main consequences of a contractionary FF policy shock can be summarized as

follows. First, there is a persistent rise in the federal funds rate and a persistent drop in

nonborrowed reserves. This ¯nding is consistent with the presence of a strong liquidity

e®ect. Second, the fall in total reserves is negligible initially. But eventually total reserves

fall by roughly 0:3 percent. So according to this policy shock measure, the Fed insulates

total reserves in the short run from the full impact of a contraction in nonborrowed reserves

by increasing borrowed reserves.24 This is consistent with the arguments in Strongin (1995).

Third, the response of M1 is qualitatively similar to the response of TR: In contrast, for the

23These were computed using a bootstrap Monte Carlo procedure. Speci¯cally, we constructed 500 time
series on the vector Zt as follows. Let fbutgT

t=1 denote the vector of residuals from the estimated VAR. We
constructed 500 sets of new time series of residuals, fbut(j)gT

t=1; j = 1; :::; 500: The tth element of fbut(j)gT
t=1

was selected by drawing randomly, with replacement, from the set of ¯tted residual vectors, fbutgT
t=1. For

each fbut(j)gT
t=1; we constructed a synthetic time series of Zt; denoted fZt(j)gT

t=1; using the estimated VAR
and the historical initial conditions on Zt: We then re-estimated the VAR using fZt(j)gT

t=1 and the historical
initial conditions, and calculated the implied impulse response functions for j = 1; :::; 500: For each ¯xed
lag, we calculated the 12th lowest and 487th highest values of the corresponding impulse response coe±cients
across all 500 synthetic impulse response functions. The boundaries of the con¯dence intervals in the ¯gures
correspond to a graph of these coe±cients. In many cases the point estimates of the impulse response
functions are quite similar to the mean value of the simulated impulse response functions. But there is some
evidence of bias, especially for Y; M2; NBR and FF: The location of the solid lines inside the con¯dence
intervals indicates that the estimated impulse response functions are biased towards zero in each of these
cases. See Killian (1996) and Parekh (1997) for di®erent procedures for accommodating this bias.

24A given percentage change in total reserves corresponds roughly to an equal dollar change in the total
and nonborrowed reserves. Historically, nonborrowed reserves are roughly 95 percent of total reserves. Since
1986, that ratio has moved up, being above 98 percent most of the time.
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M2 system, the FF policy shock leads to an immediate and persistent drop in M2: Fourth,

after a delay of 2 quarters, there is a sustained decline in real GDP. Notice the `hump shaped'

response function with the maximal decline occurring roughly a year to a year and a half

after the policy shock. Fifth, after an initial delay, the policy shock generates a persistent

decline in the index of commodity prices. The GDP de°ator is °at for roughly a year and a

half after which it declines.

Before going on, it is of interest to relate these statistics to the interest elasticity of the

demand for NBR and M1: Following Lucas (1988,1993), suppose the demand for either of

these two assets has the following form:

Mt = fM(­t) ¡ 'FFt + "dt ;

where "dt denotes the money demand disturbance and M denotes the log of either M1 or

NBR: Here, ' is the short run, semi-log elasticity of money demand. A consistent estimate

of ' is obtained by dividing the contemporaneous response of Mt to a unit policy shock

by the contemporaneous response of FFt to a unit policy shock. This ratio is just the

instrumental variables estimate of ' using the monetary policy shock. The consistency of

this estimator relies on the assumed orthogonality of "st with "
d
t and the elements of ­t:

25

Performing the necessary calculations using the results in the ¯rst column of Figure 9, we

¯nd that the short run money demand elasticities for M1 and NBR are roughly ¡0:1 and
¡1:0; respectively. The M1 demand elasticity is quite small, and contrasts sharply with
estimates of the long run money demand elasticity. For example, the analogous number

in Lucas (1988) is ¡8:0. Taken together, these results are consistent with the widespread
view that the short run money demand elasticity is substantially smaller than the long run

elasticity (see Goodfriend (1991)).

We next consider the e®ect of an NBR policy shock. As can be seen, with two exceptions,

inference is qualitatively robust. The exceptions have to do with the impact e®ect of a policy

shock on TR andM1:According to the FF policy shock measure, total reserves are insulated,

roughly one to one, contemporaneously from a monetary policy shock. According to the

25To see this, note ¯rst the consistency of the instrumental variables estimator:

¡' =
Cov(Mt; "s

t )

Cov(FFt; "
s
t)

:

Note too that:
Cov(Mt; "

s
t ) = 'M¾2

" ; Cov(FFt; "
s
t ) = 'R¾2

" ;

where 'M and 'R denote the contemporaneous e®ects of a unit policy shock on Mt and FFt; respectively, and
¾2

" denotes the variance of the monetary policy shock. The result, that the instrumental variable estimator
coincides with 'M='R; follows by taking the ratio of the above two covariances. These results also hold if
Mt; FFt; and ­t are nonstationary. In this case, we think of the analysis as being conditioned on the initial
observations.
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NBR policy shock measure, total reserves fall by roughly one half of a percent. Consistent

with these results, an NBR policy shock leads to a substantially larger contemporaneous

reduction in M1; compared to the reduction induced by an FF policy shock. Interestingly,

M2 responds in very similar ways to an FF and an NBR policy shock.

>From column 3 we see that, aside from TR andM1; inference is also qualitatively similar

to an NBR=TR policy shock. By construction TR does not respond in the impact period

of a policy shock. While not constrained, M1 also hardly responds in the impact period of

the shock but then falls. In this sense the NBR=TR shock has a®ects that are more similar

to an FF policy shock than an NBR policy shock.

A maintained assumption of the NBR; FF and NBR=TR policy shock measures is that

the aggregate price level and output are not a®ected in the impact period of a monetary

policy shock. On a priori grounds, this assumption seems more reasonable for monthly

rather than quarterly data. So it seems important to document the robustness of inference

to working with monthly data. Indeed this robustness has been documented by various

authors.26 Figure 3 provides such evidence for the benchmark policy shocks. It is the

analog of Figure 2 except that it is generated using monthly rather than quarterly data.

In generating these results we replace aggregate output with nonfarm payroll employment

and the aggregate price level is measured by the implicit de°ator for personal consumption

expenditures. Comparing Figures 2 and 3 we see that qualitative inference is quite robust

to working with the monthly data.

To summarize, all three policy shock measures imply that in response to a contractionary

policy shock, the federal funds rate rises, monetary aggregates decline (although some with a

delay), the aggregate price level initially responds very little, aggregate output falls, display-

ing a hump shaped pattern, and commodity prices fall. In the next subsection, we discuss

other results regarding the e®ects of a monetary policy shock.

We conclude this subsection by drawing attention to an interesting aspect of our results

that is worth emphasizing. The correlations between our three policy shock measures are all

less than one (see, for example, Figure 1).27 Nevertheless, all three lead to similar inference

about qualitative e®ects of a disturbance to monetary policy. One interpretation of these

results is that all three policy shock measures are dominated by a common monetary policy

shock. Since the bivariate correlations among the three are less than one, at least two must

be confounded by nonpolicy shocks as well. Evidently, the e®ects of these other shocks is not

26See for example Geweke and Runkle (1995), Bernanke and Mihov (1995) and Christiano, Eichenbaum
and Evans (1996b).

27Recall, the estimated correlation between an FF and NBR shock is 0:51: The analog correlation between
an NBR = TR shock and an FF shock is 0:65: Finally, the correlation between an NBR=TR shock and an
NBR shock is 0:82.
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strong enough to alter the qualitative characteristics of the impulse response functions. It

is interesting to us just how low the correlation between the shock measures can be without

changing the basic features of the impulse response functions.

A similar set of observations emerges if we consider small perturbations to the auxiliary

assumptions needed to implement a particular identi¯cation scheme. For example, suppose

we implement the benchmark FF model in two ways: measuring Mt by the growth rate

of M2 and by the log of M1: The resulting policy shock measures have a correlation co-

e±cient of only 0:85: This re°ects in part that in several episodes the two shock measures

give substantially di®erent impressions about the state of monetary policy. For example in

1993Q4, the M1 based shock measure implies a 20 basis point contractionary shock. The

M2 growth rate based shock measure implies an 80 basis point contractionary shock. These

types of disagreements notwithstanding, both versions of the benchmark FF model give rise

to essentially the same inference about the e®ect of a given monetary policy shock.

We infer from these results that while inference about the qualitative e®ects of a monetary

policy shock appears to be reliable, inference about the state of monetary policy at any

particular date is not.

4.3. Results for other Economic Aggregates

In the previous section we discussed the e®ects of the benchmark policy shocks on various

economic aggregates. The literature has provided a richer, more detailed picture of the way

the economy responds to a monetary policy shock. In this section we discuss some of the

results that have been obtained using close variants of the benchmark policy shocks. Rather

than provide an exhaustive review, we highlight a sample of the results and the associated

set of issues that they have been used to address. The section is divided into two parts. The

¯rst subsection considers the e®ects of a monetary policy shock on domestic U.S. economic

aggregates. In the second subsection, we discuss the e®ects of a monetary policy shock

on exchange rates. The papers we review use di®erent sample periods as well as di®erent

identifying assumptions. Given space constraints, we refer the reader to the papers for these

details.

4.3.1. U.S. Domestic Aggregates

The work in this area can be organized into two categories. The ¯rst category pertains to

the e®ects of a monetary policy shock on di®erent measures of real economic activity, as well

as on wages and pro¯ts. The second category pertains to the e®ects of a monetary policy

shock on the borrowing and lending activities of di®erent agents in the economy.
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Aggregate Real Variables, Wages and Pro¯ts In section 4.2.2 we showed that aggre-

gate output declines in response to contractionary benchmark FF and NBR policy shocks.

CEE (1996a) consider the e®ects of a contractionary monetary policy shock on various other

quarterly measures of economic activity. They ¯nd that after a contractionary benchmark

FF policy shock, unemployment rises after a delay of about two quarters.28 Other measures

of economic activity respond more quickly to the policy shock. Speci¯cally, retail sales,

corporate pro¯ts in retail trade and non¯nancial corporate pro¯ts immediately fall while

manufacturing inventories immediately rise.29

Fisher (1997) examines how di®erent components of aggregate investment respond to

a monetary policy shock (see also Bernanke and Gertler (1995)). He does so using shock

measures that are closely related to the benchmark FF and NBR policy measures. Fisher

argues that all components of investment decline after a contractionary policy shock. But

he ¯nds important di®erences in the timing and sensitivity of di®erent types of investment

to a monetary policy shock. Speci¯cally, residential investment exhibits the largest decline,

followed by equipment, durables, and structures. In addition he ¯nds a distinctive lead-lag

pattern in the dynamic response functions: residential investment declines the most rapidly,

reaching its peak response several quarters before the other variables do. Fisher uses these

results to discuss the empirical plausibility of competing theories of investment.

Gertler and Gilchrist (1994) emphasize a di®erent aspect of the economy's response to

a monetary policy shock: large and small manufacturing ¯rms' sales and inventories.30 Ac-

cording to Gertler and Gilchrist, small ¯rms account for a disproportionate share of the

decline in manufacturing sales that follows a contractionary monetary policy shock. In ad-

dition they argue that while small ¯rms' inventories fall immediately after a contractionary

policy shock, large ¯rms' inventories initially rise before falling. They use these results, in

conjunction with other results in their paper regarding the borrowing activities of large and

small ¯rms, to assess the plausibility of theories of the monetary transmission mechanism

that stress the importance of credit market imperfections.

Campbell (1997) studies a di®erent aspect of how the manufacturing sector responds to a

monetary policy shock: the response of total employment, job destruction and job creation.

Using a variant of the benchmark FF policy shock measure, Campbell ¯nds that, after a

28Working with monthly data Bernanke and Blinder (1992) also ¯nd that unemployment rises after a
contractionary monetary policy shock. The shock measure which they use is related to our benchmark FF
policy shock measure in the sense that both are based on innovations to the Federal Funds rate and both
impose a version of the recursiveness assumption.

29CEE (1996a) qualitative results are robust to whether they work with benchmark NBR; FF policy
shocks or with Romer and Romer (1989) shocks.

30Gertler and Gilchrist (1994) use various monetary policy shock measures, including one that is related
to the benchmark FF policy shock as well as the onset of Romer and Romer (1989) episodes.
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contractionary monetary policy shock, manufacturing employment falls immediately, with

the maximal decline occurring roughly a year after the shock. The decline in employment

primarily re°ects increases in job destruction as the policy shock is associated with a sharp,

persistent rise in job destruction but a smaller, transitory fall in job creation. Campbell

argues that these results are useful as a guide in formulating models of cyclical industry

dynamics.

We conclude this subsection by discussing the e®ects of a contractionary monetary policy

shock on real wages and pro¯ts. CEE (1997a) analyze various measures of aggregate real

wages, manufacturing real wages, and real wages for ten 2 digit SIC level industries. In

all cases, real wages decline after a contractionary benchmark FF policy shock, albeit by

modest amounts. Manufacturing real wages fall more sharply than economy - wide measures.

Within manufacturing, real wages fall more sharply in durable goods industries than in

nondurable good industries. CEE (1997a) argue that these results cast doubt on models

of the monetary transmission mechanism which stress the e®ects of nominal wage stickiness

per se. This is because those types of models predict that real wages should rise, not fall,

after a contractionary monetary policy shock.

To study the response of real pro¯ts to a monetary policy shock, CEE (1997a) consider

various measures of aggregate pro¯ts as well as before tax pro¯ts in ¯ve sectors of the

economy: manufacturing, durables, nondurables, retail and transportation and utilities. In

all but two cases, they ¯nd that a contractionary FF policy shock leads to a sharp persistent

drop in pro¯ts.31 CEE (1997a) argue that these results cast doubt on models of the monetary

transmission mechanism which stress the e®ects of sticky prices per se but don't allow for

labor market frictions whose e®ect is to inhibit cyclical movements in marginal costs. This is

because those types of models predict that pro¯ts should rise, not fall, after a contractionary

monetary policy shock.

Finally, we note that other authors have obtained similar results to those cited above using

policy shock measures that are not based on the recursiveness assumption. For example,

policy shock measures based on the identifying assumptions in Sims and Zha (1995) lead to

a qualitatively similar impact on wages, pro¯ts and various measures of aggregate output as

the benchmark FF policy shock. Similarly, Leeper, Sims and Zha (1996) results' regarding

the response of investment are quite similar to Fisher's.

Borrowing and Lending Activities Various authors have investigated how a monetary

policy shock a®ects borrowing and lending activities in di®erent sectors of the economy. In

31The two exceptions are nondurable goods and transportation and utilities. For these industries they
cannot reject the hypothesis that pro¯ts are una®ected by contractionary policy shock.
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an early contribution, Bernanke and Blinder (1992) examined the e®ects of a contractionary

monetary policy shock on bank deposits, securities and loans. Their results can be summa-

rized as follows. A contractionary monetary policy shock (measured using a variant of the

benchmark FF policy shock) leads to an immediate, persistent decline in the volume of bank

deposits as well as a decline in bank assets. The decline in assets initially re°ects a fall in the

amount of securities held by banks. Loans are hardly a®ected. Shortly thereafter security

holdings begin climbing back to their preshock values while loans start to fall. Eventually,

securities return to their pre-shock values and the entire decline in deposits is re°ected in

loans. Bernanke and Blinder (1992) argue that these results are consistent with theories of

the monetary transmission mechanism that stress the role of credit market imperfections.

Gertler and Gilchrist (1993, 1994) pursue this line of inquiry and argue that a monetary

policy shock has di®erent e®ects on credit °ows to small borrowers (consumers and small

¯rms) versus large borrowers. Using a variant of the benchmark FF policy shock, they ¯nd

that consumer and real estate loans fall after a contractionary policy shock but commercial

and industrial loans do not (Gertler and Gilchrist (1993)). In addition, loans to small

manufacturing ¯rms decline relative to large manufacturing ¯rms after a contractionary

monetary policy shock. In their view, these results support the view that credit market

imperfections play an important role in the monetary transmission mechanism.

CEE (1996a) examine how net borrowing by di®erent sectors of the economy responds

to a monetary policy shock. Using variants of the FF and NBR benchmark policy shocks,

they ¯nd that after a contractionary shock to monetary policy, net funds raised in ¯nancial

markets by the business sector increases for roughly a year. Thereafter, as the decline in

output induced by the policy shock gains momentum, net funds raised by the business sector

begin to fall. CEE (1996a) argue that this pattern is not captured by existing monetary

business cycle models.32 CEE (1996a) also ¯nd that net funds raised by the household sector

remains unchanged for several quarters after a monetary policy shock. They argue that this

response pattern is consistent with limited participation models of the type discussed in

CEE (1997a,b). Finally CEE (1996a) show that the initial increase in net funds raised

by ¯rms after a contractionary benchmark FF policy shock coincides with a temporary

reduction in net funds raised (i.e. borrowing) by the government. This reduction can be

traced to a temporary increase in personal tax receipts. After about a year, though, as

output declines further and net funds raised by the business and household sectors falls, net

funds raised by the government sector increases (i.e., the government budget de¯cit goes

up.)

Taken together, the above results indicate that a contractionary monetary policy shock

32CEE (1996a) and Gertler and Gilchrist (1994) discuss possible ways to account for this response pattern.
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has di®erential e®ects on the borrowing and lending activities of di®erent agents in the

economy. Consistent with the version of the Lucas program outlined in the introduction

to this survey, these ¯ndings have been used to help assess the empirical plausibility of

competing theories of the monetary transmission mechanism.

4.3.2. Exchange Rates and Monetary Policy Shocks

Various papers have examined the e®ects of a monetary policy shock on exchange rates.

Identifying exogenous monetary policy shocks in an open economy can lead to substantial

complications relative to the closed economy case. For example, in some countries, monetary

policy may not only respond to the state of the domestic economy but also to the state of

foreign economies, including foreign monetary policy actions. At least for the U.S., close

variants of the benchmark policy shock measures continue to give reasonable results. For ex-

ample, Eichenbaum and Evans (1995) consider variants of the benchmark FF and NBR=TR

policy shock measures in which some foreign variables appear in the Fed's reaction function.

A maintained assumption of their analysis is that the Fed does not respond contemporane-

ously to movements in the foreign interest rate or the exchange rate. Eichenbaum and Evans

use their policy shock measures to study the e®ects of a contractionary U.S. monetary policy

shock on real and nominal exchange rates as well as domestic and foreign interest rates.33

They ¯nd that a contractionary shock to U.S. monetary policy leads to (i) persistent, signif-

icant appreciations in U.S. nominal and real exchange rates and (ii) persistent decreases in

the spread between foreign and U.S. interest rates, and (iii) signi¯cant, persistent deviations

from uncovered interest rate parity in favor of U.S. investments.34 Under uncovered interest

rate parity, the larger interest rate di®erential induced by a contractionary U.S. monetary

policy shock should be o®set by expected future depreciations in the dollar. Eichenbaum

and Evans' empirical results indicate that the opposite is true: the larger return is actually

magni¯ed by expected future appreciations in the dollar. Eichenbaum and Evans discuss the

plausibility of alternative international business cycle models in light of their results.

While variants of the benchmark FF identi¯cation scheme generate results that are

consistent with traditional monetary analyses when applied to the U.S., this is generally

not the case when they are used to identify foreign monetary policy shocks. For example,

Grilli and Roubini (1995) consider policy shock measures for non-U.S. G7 countries that are

closely related to Eichenbaum and Evans' measures. Using these measures, they ¯nd that a

contractionary shock to a foreign country's monetary policy leads initially to a depreciation

33The foreign countries which they look at are Japan, Germany, Italy, France and the Great Britain.
34Sims (1992) and Grilli and Roubini (1995) also analyze the e®ect of a monetary policy shock on U.S.

exchange rates using close variants of the FF benchmark policy shock. They too ¯nd that a contractionary
policy shock leads to an appreciation of the U.S. exchange rate.
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in the foreign country's currency. Grilli and Roubini argue that this result re°ects that

the measured policy shocks are confounded by the systematic reaction of foreign monetary

policy to U.S. monetary policy and expected in°ation. This motivates them to construct

an alternative policy shock measure which is based on the recursiveness assumption and a

measure of St equal to the spread between foreign short term and long term interest rates.

With this measure, they ¯nd that a contractionary shock to foreign monetary policy leads

to a transitory appreciation in the foreign exchange rate and a temporary fall in output.

In contrast to Grilli and Roubini, authors like Cushman and Zha (1997), Kim and Roubini

(1995), and Clarida and Gertler (1997) adopt identi¯cation schemes that do not employ the

recursiveness assumption. In particular, they abandon the assumption that the foreign

monetary policy authority only looks at predetermined variables when setting its policy

instrument. Cushman and Zha (1997) assume that Bank of Canada o±cials look at con-

temporaneous values of the Canadian money supply, the exchange rate, the U.S. foreign

interest rate and an index of world commodity prices when setting a short term Canadian

interest rate. Kim and Roubini (1995) assume that the reaction function of foreign central

bankers includes contemporaneous values of the money supply, the exchange rate and the

world price of oil (but not the federal fund rate). Clarida and Gertler (1997) assume that

the Bundesbank's reaction function includes current values of an index of world commodity

prices, the exchange rate, as well as the German money supply (but not the U.S. federal

funds rate).35 In all three cases, it is assumed that the money supply and the exchange

rate are not predetermined relative to the policy shock. As a consequence, monetary policy

shocks cannot be recovered from an ordinary least squares regression. Further identifying

assumptions are necessary to proceed.

The precise identifying assumptions which these authors make di®er. But in all cases,

they assume the existence of a group of variables that are predetermined relative to the

policy shock.36 These variables constitute valid instruments for estimating the parameters

in the foreign monetary policy maker's reaction function. We refer the reader to the papers

for details regarding the exact identifying assumptions.37

With their preferred policy shocks measures, all three of the above papers ¯nd that a

contractionary foreign monetary policy shock causes foreign exchange rates to appreciate

35Clarida, Gali and Gertler (1997b) provide a di®erent characterization of the Bundesbank's reaction
function as well as the reaction functions of ¯ve other central banks.

36For example in all these cases it is assumed that a measure of commodity prices, foreign industrial
production, the foreign price level and the federal funds rate are predetermined relative to the foreign
monetary policy shock.

37Clarida and Gali (1994) use long run identifying restrictions to assess the e®ects of nominal shocks on
real exchange rates.
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and leads to a rise in the di®erential between the foreign and domestic interest rate.38 In

this sense, their results are consistent with Eichenbaum and Evans' evidence regarding the

e®ects of a shock to monetary policy. In addition, all three papers provide evidence that a

contractionary foreign monetary policy shock drives foreign monetary aggregates and output

down, interest rates up and a®ects the foreign price level only with a delay. In this sense, the

evidence is consistent with the evidence in section 4.2.2 regarding the e®ect of a benchmark

FF policy shock on the U.S. economy.

4.4. Robustness of the Benchmark Analysis

In this subsection we assess the robustness of our benchmark results to various perturbations.

First, we consider alternative identi¯cation schemes which also impose the recursiveness

assumption. Second, we consider the e®ects of incorporating information from the federal

funds futures market into the analysis. Finally, we analyze the subsample stability of our

results.

4.4.1. Excluding Current Output and Prices From ­t

The estimated one-step-ahead forecast errors in Yt and FFt are positively correlated (:38),

while those in Yt and NBRt are negatively correlated (¡:22): Any identi¯cation scheme
in which St is set equal to either the time t federal funds rate or nonborrowed reserves

must come to terms with the direction of causation underlying this correlation: Does it

re°ect (a) the endogenous response of policy to real GDP via the Fed's feedback rule, or

(b) the response of real GDP to policy? Our benchmark policy measures are based on the

assumption that the answer to this question is (a). Under this assumption we found that

a contractionary monetary policy shock drives aggregate output down. Figure 4 displays

the results when the answer is assumed to be (b). Speci¯cally, columns 1 and 3 report

the estimated impulse response functions of various economic aggregates to policy shock

measures that were computed under the same identi¯cation assumptions as those underlying

the FF and NBR policy shocks except that Yt is excluded from ­t: The key result is that

under these identifying assumptions, a contractionary policy shock drives aggregate output

up before driving it down. In other respects, the results are una®ected.

It might be thought that the initial response pattern of output could be rationalized

by monetary models which stress the e®ects of an in°ation tax on economic activity, as in

Cooley and Hansen (1989). It is true that in these models a serially correlated decrease

38Consistent with the evidence in Eichenbaum and Evans (1995), Cushman and Zha (1997) ¯nd that
a contractionary foreign monetary policy shock induces a persistent, signi¯cant deviation from uncovered
interest parity in favor of foreign investments.
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in the money supply leads to an increase in output. But, in these models this happens

via a reduction in anticipated in°ation and in the interest rate. Although the candidate

policy shock is associated with a serially correlated decrease in the money supply, it is also

associated with a rise in the interest rate and virtually no movement in the price level. This

response pattern is clearly at variance with models in which the key e®ects of monetary

policy shocks are those associated with the in°ation tax. We do not know of other models

which can rationalize a rise in output after a contractionary monetary policy shock. Absent

some coherent model that can account for the response functions in columns 1 and 3 of ¯gure

4, we reject the underlying identifying assumptions as being implausible. We suspect that

the resulting shock measures confound policy and nonpolicy disturbances.

Columns 2 and 4 of Figure 4 report the estimated impulse response functions to policy

shock measures computed under the same identi¯cation assumptions as those underlying

the FF and NBR policy shocks except that Pt is excluded from ­t: As can be seen, the

benchmark results are virtually una®ected by this perturbation.

4.4.2. Excluding Commodity Prices from ­t: The Price Puzzle

On several occasions in the postwar era, a rise in in°ation was preceded by a rise in the

federal funds rate and in commodity prices. An example is the oil price shock in 1974. Re-

cursive identi¯cation schemes that set St equal to FFt and do not include the commodity

prices in ­t as leading indicators of in°ation in the Fed's feedback rule sometimes imply that

contractionary monetary policy shocks lead to a sustained rise in the price level.39 Eichen-

baum (1992) viewed this implication as su±ciently anomalous relative to standard theory to

justify referring to it as `the price puzzle'.40 Sims (1992) conjectured that prices appeared

to rise after certain measures of a contractionary policy shock because those measures were

based on speci¯cations of ­t that did not include information about future in°ation that was

available to the Fed. Put di®erently, the conjecture is that policy shocks which are associ-

ated with substantial price puzzles are actually confounded with nonpolicy disturbances that

signal future increases in prices. CEE (1996a) and Sims and Zha (1995) show that when one

modi¯es such shock measures by including current and lagged values of commodity prices

in ­t; the price puzzle often disappears. It has now become standard practice to work with

39The ¯rst paper that documents the `price puzzle' for the US and several other countries appears to be
Sims (1990).

40There do exist some models that predict a temporary rise in the price level after a contraction. These
models stress the role of self ful¯lling shocks to expectations in the monetary transmission mechanism. See for
example Beaudry and Devereaux (1995). Also there exist some limited participation models of the monetary
transmission mechanism in which the impact e®ect of contractionary monetary policy shocks is so strong
that prices rise in the impact period of the policy shock. See for example Fuerst (1992) and Christiano,
Eichenbaum and Evans (1997a).
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policy shock measures that do not generate a price puzzle.

To document both the nature of the puzzle and the resolution, Figure 5 displays the

impulse response of Pt to eight di®erent contractionary monetary policy shock measures.

The top and bottom rows display the e®ects of shocks to systems in which St is measured

by FFt and NBRt; respectively. Columns one through four correspond to policy shock

measures in which (i) the current value of Pt; Yt and current and lagged values of PCOMt

are omitted from ­t; (ii) current and lagged values of PCOMt are omitted from ­t; (iii)

the current value of PCOMt is omitted from ­t; and (iv) ­t is given by our benchmark

speci¯cation, respectively.

A number of interesting results emerge here. First, policy shock measures based on spec-

i¯cations in which current and lagged values of PCOM are omitted from ­t imply a rise in

the price level that lasts several years after a contractionary policy shock. Second, according

to the point estimates, the price puzzle is particularly pronounced for the speci¯cation in

which the current values of Yt and Pt are also excluded from ­t (column 1). Recall that

deleting Pt from ­t had virtually no e®ect on our results. These ¯ndings suggest that current

Y and current and past PCOM play a similar role in purging policy shock measures of non-

policy disturbances. Third, the 95% con¯dence intervals displayed in Figure 5 indicate that

the price puzzle is statistically signi¯cant for the Fed Funds based shock measures associated

with columns 1 and 2 in Figure 5.41 Fourth, consistent with results in Eichenbaum (1992),

the price puzzle is less severe for the NBR based policy shocks. Fifth, little evidence of a

price puzzle exists for the benchmark FF and NBR policy shocks.

We conclude this section by noting that, in results not reported here, we found that the

dynamic responses of nonprice variables to monetary policy shocks are robust to deleting

current and lagged values of PCOM from ­t:

4.4.3. Equating the Policy Instrument, St; With M0, M1 or M2

There is a long tradition of identifying monetary policy shocks with statistical innovations to

monetary aggregates like the base (M0), M1 andM2: Indeed this was the standard practice

in the early literature on the output and interest rate e®ects of an unanticipated shock

41We used the arti¯cial data underlying the con¯dence intervals reported in Figure 5 to obtain a di®erent
test of the price puzzle. In particular, we computed the number of times that the average price response over
the ¯rst 2; 4 and 6 quarters was positive. For the FF model underlying the results in column 1 the results
were 96:4%; 97.2%, and 98.0%, respectively. Thus, at each horizon, the price puzzle is signi¯cant at the
5% signi¯cance level. For the FF model underlying the second column, the results are 95:6%; 94:6%; and
89:8%; so that there is a marginally signi¯cant price puzzle over the ¯rst year. Regardless of the horizon,
the price puzzle was not signi¯cant at even the 10% signi¯cance level for the other speci¯cations in Figure
5.
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to monetary policy.42 This practice can be thought of as setting St equal to a monetary

aggregate like M0; M1 or M2 and using a particular speci¯cation of ­t: We refer the reader

to Sims, Leeper and Zha (1996) and Cochrane (1994) for critical reviews of this literature.

Here we discuss the plausibility of identi¯cation schemes underlying M based policy

shock measures by examining the implied response functions to various economic aggregates.

Figure 6 reports estimated response functions corresponding to six policy measures. Columns

1 and 2 pertain to policy shock measures in which St is set equal to M0t: Column 1 is

generated assuming that ­t consists of 4 lagged values of Yt; Pt; PCOMt; FFt; NBRt and

M0t: For column 2, we add the current value of Yt; Pt; and PCOMt to ­t: Columns 3 and

4 are the analogs of columns 1 and 2 except that M0t is replaced by M1t. Columns 5 and

6 are the analogs of columns 1 and 2 except that M0t is replaced by M2.

We begin by discussing the dynamic response functions corresponding to the M0 based

policy shock measures. Notice that the responses in column 1 are small and estimated very

imprecisely. Indeed, it would be di±cult to reject the hypotheses that Y; P , PCOM; and

FF are all una®ected by the policy shock. Once we take sampling uncertainty into account,

it is hard to argue that these response functions are inconsistent with the benchmark policy

shock measure based response functions. In this limited sense, inference is robust. Still, the

point estimates of the response functions are quite di®erent from our benchmark results. In

particular, they indicate that a contractionary policy shock drives Pt and FFt down. The

fall in Pt translates into a modest decline in the rate of in°ation.
43 After a delay of one or

two periods, Yt rises by a small amount. The delay aside, this response pattern is consistent

with a simple neoclassical monetary model of the sort in which there is an in°ation tax e®ect

on aggregate output (see for example Cooley and Hansen (1989)).

The response functions in column 2 are quite similar to those in column 1. As be-

fore, they are estimated with su±cient imprecision that they can be reconciled with various

models. The point estimates themselves are consistent with simple neoclassical monetary

models. Compared to column 1, the initial decline in Yt after a contractionary policy shock

is eliminated, so that the results are easier to reconcile with a simple neoclassical monetary

model.

The impulse response functions associated with the M1 based policy shocks in columns 3

and 4 are similar to those reported in columns 1 and 2, especially when sampling uncertainty

is taken into account. The point estimates themselves seem harder to reconcile with a simple

42See for example Barro (1977), Mishkin (1983), S. King (1983) and Reichenstein (1987). For more recent
work in this tradition see King (1991) and Cochrane (1994).

43The fall in Pt translates into an initial :20 percent decline in the annual in°ation rate. The maximal
decline in the in°ation rate is about :25 percent which occurs after 3 periods. The in°ation rate returns to
its preshock level after two years.
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monetary neoclassical model. For example, according to column 3, output falls for over two

quarters after a contractionary policy shock. The fact that output eventually rises seems

di±cult to reconcile with limited participation or sticky wage/price models. This is also true

for the results displayed in column 4. Moreover, the results in that column also appear to be

di±cult to reconcile with the neoclassical monetary model. For example, initially in°ation is

hardly a®ected by a monetary contraction, after which it actually rises. Sampling uncertainty

aside, we conclude that the M1 based policy shock measures are di±cult to reconcile with

known (at least to us) models of the monetary transmission mechanism.

Finally, consider the M2 based policy shock measures. Here a number of interesting

results emerge. First, the impulse response functions are estimated more precisely than

those associated with the M0 and M1 based policy shock measures. Second, the impulse

response functions share many of the qualitative properties of those associated with the

benchmark policy shocks measures. In particular, according to both columns 5 and 6, a

contractionary monetary policy shock generates a prolonged decline in output and a rise in

FFt: Also the price level hardly changes for roughly 3 quarters. This is true even for the

policy shock measure underlying column 5 where the price level is free to change in the

impact period of the shock. There is one potentially important anomaly associated with the

M2 based policy shock measures: after a delay, NBR and M2 move in opposite directions.

In sum, the M based policy shock measures provide mixed evidence on the robustness

of the ¯ndings associated with our benchmark policy shocks. The response functions asso-

ciated with the M0 and M1 policy shock measures are estimated quite imprecisely. In this

sense they do not provide evidence against robustness. The point estimates of the response

functions associated with the M1 based policy shock measures are hard to reconcile with ex-

isting models of the monetary transmission mechanism. But the point estimates associated

with the M0 based policy shock measures are consistent with simple neoclassical monetary

models. If one wants evidence that is not inconsistent with simple neoclassical monetary

models, this is where to look. Finally, apart from the anomalous response of NBR, quali-

tative inference about the e®ects of a monetary policy shock are robust to whether we work

with the M2 based policy shock measure or the benchmark policy shock measures.

4.4.4. Using Information From the Federal Funds Futures Market

An important concern regarding the benchmark policy shock measures is that they may

be based on a smaller information set than the one available to the monetary authority or

private agents. Rudebusch (1995) notes that one can construct a market-based measure of

the one-month ahead unanticipated component of the federal funds rate. He does so using
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data from the federal funds futures market, which has been active since late 1988.44 He

recognizes that a component of the unanticipated move in the federal funds rate re°ects

the Federal Reserve's endogenous response to the economy. To deal with this problem, he

measures the exogenous shock to monetary policy as the part of the unanticipated component

of the federal funds rate which is orthogonal to a measure of news about employment. In

Rudebusch's view, the correlation between the resulting measure and our FF benchmark

policy shock measure is su±ciently low to cast doubt upon the latter.45 But policy shock

measures can display a low correlation, while not changing inference about the economic

e®ects of monetary policy shocks. We now investigate whether and how inference is a®ected

by incorporating federal funds futures market data into the analysis.

To study this question, we repeated the benchmark FF analysis, replacing FFt with

FFt ¡FMt¡1 in the underlying monthly VAR.46 Here FMt¡1 denotes the time t¡ 1 futures
rate for the average federal funds rate during time t:47 We refer to the orthogonalized dis-

turbance in the FFt ¡ FMt¡1 equation as the FM policy shock. In addition, because of

data limitations, we redid the analysis for what we refer to as the Rudebusch sample period,

1989:04 - 1995:03. Because of the short sample period, we limit the number of lags in the

VAR to six. Before considering impulse response functions to the policy shocks, we brie°y

discuss the shocks themselves. Panel A of Figure 7 displays the FM policy shocks for the

period 1989:10 - 1995:03. In addition, we display FF policy shocks for the same period.

These were computed using our benchmark, monthly VAR model, estimated over the whole

sample period, using six lags in the VAR. Panel B is the same as Panel A, except that

the VAR underlying the benchmark FF policy shocks is estimated using data only over the

Rudebusch sample period.

A few features of Figure 7 are worth noting. First, the shock measures in Panel A are

of roughly similar magnitude, with a standard deviation of the benchmark and FM policy

shocks being 0:22 and 0:16, respectively. Consistent with the type of ¯ndings reported by

Rudebusch, the correlation between the two shock measures is relatively low, 0:34.48 Second,

when we estimate the VARs underlying the benchmark FF and FM policy shocks over the

same sample period, the correlations rise to approximately 0:45: Interestingly, the FF policy

44See Brunner (1994), Carlson, McIntire and Thomson (1995), and Krueger and Kuttner (1996) for further
discussion and analysis of the federal funds futures market.

45See Sims (1996) for a critique of Rudebusch's analysis.
46Evans and Kuttner (1997) ¯nd that small, statistically insigni¯cant deviations from futures market

e±ciency partially account for the low correlations between variants of the FF benchmark policy shocks and
FFt ¡ FMt¡1:

47This data taken was from Krueger and Kuttner (1996).
48Rudebusch actually reports the R2 in the regression relation between the two shocks. This is the square

of the correlation between the two variables. So, our correlation translates into an R2 of 0:12:
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shocks now have a smaller standard deviation than the FM policy shocks.49

We now proceed to consider robustness of inference regarding the e®ects of monetary

policy shocks. The dynamic response functions to an FM policy shock, together with 95%

con¯dence intervals, are displayed in column 1 of Figure 8. There are two obvious features to

these results. First, the policy shock itself is very small (a little over 10 basis points). Second,

with the exception of FFt ¡ FMt¡1; the response of the other variables is not signi¯cantly

di®erent from zero at all lags.

To compare these results with those based on the benchmark FF policy shocks, we need

to control for the di®erence in sample periods and lag lengths. To this end, we report the

impulse response functions and standard errors of the 6 lag benchmark FF model estimated

over the Rudebusch sample period. These are displayed in column 2 of Figure 8. We see that

the same basic message emerges here as in column 1: over the Rudebusch sample period, the

shocks are small and the impulse response functions are imprecisely estimated. We conclude

that there is no evidence to support the notion that inference is sensitive to incorporating

federal funds market data into the analysis. This conclusion may very well re°ect the limited

data available for making the comparison.

4.4.5. Sample Period Sensitivity

Comparing the results in Figure 8 with our full sample, benchmark FF results (see column

1 Figure 2) reveals that the impulse response functions are much smaller in the Rudebusch

sample period. A similar phenomenon arises in connection with our benchmark NBR model.

Pagan and Robertson (1995) characterize this phenomenon as the `vanishing liquidity e®ect'.

Wong (1996) also documents this phenomenon for various schemes based on the recursiveness

assumption. These ¯ndings help motivate the need to study the robustness of inference to

di®erent sample periods.

We now proceed to investigate subsample stability. Our discussion is centered around

two general questions. First, what underlies the di®erence in impulse response functions

across subsamples? Here, we distinguish between two possibilities. One possibility is that

the di®erence re°ects a change in the size of the typical monetary policy shock. The other

possibility is that it re°ects a change in the dynamic response to a shock of a given magni-

tude. We will argue that, consistent with the ¯ndings in Christiano's (1995) discussion of

the vanishing liquidity e®ect, the evidence is consistent with the hypothesis that the ¯rst

consideration dominates. Second, we discuss robustness of qualitative inference. Not surpris-

ingly in view of our ¯ndings regarding the ¯rst question, we ¯nd that qualitative inference

49Given the short sample, it is important to emphasize that the standard deviations have been adjusted
for degrees of freedom.
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about the e®ects of a monetary policy shock is robust across subsamples. This last ¯nding

is consistent with results in CEE (1996b). In the analysis that follows, we focus primarily

on results for the benchmark FF policy shocks. We then brie°y show that our conclusions

are robust to working with the NBR policy shocks.

To begin our analysis of subsample stability, we test the null hypothesis that there was

no change at all in the data generating mechanism for the Rudebusch sample period. To this

end, we constructed con¯dence intervals for the impulse response functions in column 2 of

Figure 8 under the null hypothesis that the true model is the one estimated using data over

the full sample.50 The resulting con¯dence intervals are reported in column 3. In addition,

that column reports for convenience the estimated response functions from column 2. We see

that the estimated impact e®ect of a one standard deviation policy shock on the federal funds

rate (see the fourth row of column 3) lies well below the 95% con¯dence interval. So, we

reject the null hypothesis that there was no change at all in the data generating mechanism

in the Rudebusch sample.51 Next, we modi¯ed the null hypothesis to accommodate the

notion that the only thing which changed in the Rudebusch sample was the nature of the

monetary policy shocks. In all other respects, the data generating mechanism is assumed

to remain unchanged. Under this null hypothesis, we generated 95% con¯dence intervals

for the estimated impulse response functions in column 2 of Figure 8.52 These con¯dence

intervals are reported in column 4 of Figure 8, which also repeats for convenience the point

estimates from column 2. Notice that, with one exception, all of the estimated impulse

response functions lie within the plotted con¯dence intervals.53 The exception is that the

50These con¯dence intervals were computed using a variant of the standard bootstrap methodology em-
ployed in this paper. In particular, we generated 500 arti¯cial time series, each of length equal to that of the
full sample, using the six lag, benchmark full sample FF VAR and its ¯tted disturbances. In each arti¯cial
time series we estimated a six lag, benchmark FF VAR model using arti¯cial data over the period corre-
sponding to the Rudebusch sample period. The 95% con¯dence intervals are based on the impulse response
functions corresponding to the VARs estimated from the arti¯cial data.

51The procedure we have used to reject the null hypothesis of no change versus the alternative of a change
in 1989 implicitly assumes the choice of break date is exogenous with respect to the stochastic properties of
the data. There is a large literature (see Christiano [1992] and the other papers in that Journal of Business
and Economic Statistics volume) which discusses the pitfalls of inference about break dates when the choice
of date is endogenous. In this instance our choice was determined by the opening of the Federal Funds
Futures Market. Presumably, this date can be viewed as exogenous for the purpose of our test.

52With one exception, these con¯dence intervals were computed using the procedure described in the
previous footnote. The exception has to do with the way the shocks were handled. In particular, the arti¯cial
data were generated by randomly sampling from the orthogonalized shocks, rather than the estimated VAR
disturbances. Residuals other than the policy shocks were drawn, with replacement, from the full sample
period set of residuals. The policy shocks were drawn from two sets. Shocks for periods prior to the analog
of the Rudebusch sample period were drawn, with replacement, from the pre-Rudebusch sample ¯tted policy
shocks. Shocks for periods during the analog of the Rudebusch sample period were drawn, with replacement,
from the Rudebusch sample ¯tted policy shocks.

53In this manuscript, we have adopted the extreme assumption that the stochastic properties of the policy
shock changed abruptly on particular dates. An alternative is that the changes occur smoothly in the manner
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impulse response function of PCOM lies just outside the plotted con¯dence intervals for

roughly the ¯rst six periods. Based on these results, we conclude that there is little evidence

against the joint hypothesis that (i) the response of the aggregates to a given policy shock

is the same in the two sample periods and (ii) the size of the shocks was smaller in the

post 1988:10 period. For any particular subsample, we refer to these two conditions as the

modi¯ed subsample stability hypothesis.

We now consider the stability of impulse response functions in other subsamples. Figure

9 reports response functions to monthly benchmark FF policy shocks, estimated over four

subsamples: the benchmark sample, and the periods 1965:1 - 1979:9, 1979:10 - 1994:12, and

1984:2 - 1994:12. In each case, the method for computing con¯dence intervals is analogous

to the one underlying the results in column 4 of Figure 8.54 From Figure 9 we see that the

estimated response functions for employment, P; PCOM; and M1 almost always lie within

the con¯dence intervals. For the third and fourth sample periods there is no evidence against

the modi¯ed subsample stability hypothesis. There is some marginal evidence against the

hypothesis in the ¯rst subsample. In particular, the PCOM and price level responses lie

outside the plotted con¯dence interval at some horizons. We ¯nd these results somewhat

troubling, since they may indicate that the benchmark FF policy shocks are contaminated

by other shocks to which the Fed responds. Despite this, the overall impression one gets

from these results is that the modi¯ed subsample stability hypothesis is not rejected for the

benchmark FF policy shocks.

At the same time, there is strong evidence that the variance of the policy shocks changed

over the sample. One interpretation is that the early 1980s were a period in which policy

shocks were very large, but that the shocks were of comparable magnitude and substantially

smaller size throughout the rest of the post-war period. One bit of evidence in favor of

this view is that the estimated policy shocks in the second and fourth sample periods are

reasonably similar in size, 20 basis points versus 12 basis points, respectively.

We now brie°y point out that qualitative inference is robust across subsamples. For each

subsample we ¯nd evidence consistent with a liquidity e®ect. Speci¯cally, a policy-induced

rise in the federal funds rate is associated with a decline nonborrowed reserves, total reserves

and M1: In addition, the contractionary policy shock is associated with a delayed response

of employment and a very small change in the price level.

We now consider the results for the benchmark NBR policy shocks, reported in Figure

captured by an ARCH speci¯cation for the policy shocks. Parekh (1997) pursues this interpretation. He
modi¯es our bootstrap procedures to accommodate ARCH behavior in the shocks.

54That is, they are computed under the assumption that the data generating mechanism is the six lag,
full sample estimated VAR with policy shocks drawn only from the relevant subsample. All other shocks are
drawn randomly from the full sample of ¯tted shocks.
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10. The overall impression conveyed here is similar to what we saw in Figure 9. There

is relatively little evidence against the modi¯ed subsample sensitivity hypothesis. For the

most part, the point estimates all lie within the plotted con¯dence intervals. Note that the

impulse response functions are qualitatively robust across subsamples.

We now turn to a complementary way of assessing subsample stability, which focuses on

the magnitude of the liquidity e®ect. Panels A and B of Table 1 report summary statistics

on the initial liquidity e®ect associated with the benchmark FF and NBR identi¯cation

schemes, respectively. In that table, FF=NBR denotes the average of the ¯rst three re-

sponses in the federal funds rate, divided by the average of the ¯rst three responses in

nonborrowed reserves. These responses are taken from the appropriate entries in Figure 9.

As a result, FF=NBR denotes the percentage point change in the federal funds rate result-

ing from a policy-induced one percent change in NBR: FF=M1 denotes the corresponding

statistic with the policy-induced change in M1 in the denominator. Because of the shape of

the impulse response function in M1; we chose to calculate this statistic by averaging the

¯rst six responses in FF and M1: The statistics are reported for the four sample periods

considered in Figure 9. In addition, the 95% con¯dence intervals are computed using the

appropriately modi¯ed version of the bootstrap methodology used to compute con¯dence

intervals in Figure 9. Panel B is the exact analog of Panel A, except that the results are

based on the NBR policy shocks.

We begin our discussion by reviewing the results in panel A. The full sample results

indicate that a one percent policy-shock induced increase in nonborrowed reserves results in

roughly a one percentage point reduction in the federal funds rate. A one percent policy-

shock induced increase inM1 results in roughly a two percentage point decline in the federal

funds rate. The point estimates do vary across the subsamples. However, the evidence

suggests that the di®erences in estimated responses can be accounted for by sampling un-

certainty. In particular, there is little evidence against the null hypothesis that the true

responses are the same in the subsamples. This is evident from the fact that the con¯dence

intervals in the subsamples include the point estimates for the full sample.

Turning to panel B, we see that, using the NBR identi¯cation scheme, we obtain point

estimates of the responses that are generally smaller. Again, there is little evidence against

subsample stability.

We now summarize our ¯ndings regarding subsample stability. We have two basic ¯nd-

ings. First, there is evidence that the variance of the policy shocks is larger in the early 1980's

than in the periods before or after. Second, we cannot reject the view that the response of

economic variables to a shock of given magnitude is stable over the di®erent subsamples

considered.
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We conclude this section by noting that other papers have also examined the subsample

stability question. See, for example Balke and Emery (1994), Bernanke and Mihov (1995)

and Strongin (1995). These papers focus on a slightly di®erent question than we do. They

investigate whether the Fed adopted di®erent operating procedures in di®erent subperiods,

and provide some evidence that di®erent speci¯cations of the policy rule in (2.1) better char-

acterize di®erent subsamples. At the same time, Bernanke and Mihov (1995) and Strongin

(1995) do not ¯nd that the dynamic response functions to a monetary policy shock are quali-

tatively di®erent over the di®erent subsample periods that they consider. In this sense, their

results are consistent with ours.

4.5. Discriminating Between the Benchmark Identi¯cation Schemes

In the introduction we sketched a strategy for assessing the plausibility of di®erent iden-

ti¯cation schemes. The basic idea is to study the dynamic response of a broad range of

variables to a monetary policy shock. We dismiss an identi¯cation scheme if it implies a

set of dynamic response functions that is inconsistent with every model we are willing to

consider.

The ¯rst subsection illustrates our approach by comparing the plausibility of two interpre-

tations of an orthogonalized shock to NBR. These amount to two alternative identi¯cation

schemes. The ¯rst corresponds to the benchmark NBR identi¯cation scheme described in

section 4. Under this scheme, an orthogonalized contractionary shock to NBR is interpreted

as a negative money supply shock. The second scheme, recently proposed by Coleman,

Gilles and Labadie (1996), interprets the same shock as either a positive shock to money

demand, or as news about a future monetary expansion. When use our strategy to assess

their identi¯cation scheme, we ¯nd that we can dismiss it as implausible.55

The second subsection contrasts our approach to discriminating among identi¯cation

schemes with one recently proposed in Bernanke and Mihov (1995). We review their method-

ology and explain why we think our approach is more likely to be fruitful.

4.5.1. The Coleman, Gilles and Labadie Identi¯cation Scheme

According to Coleman, Gilles and Labadie (1996), understanding why an NBR policy shock

may not coincide with an exogenous contractionary shock to monetary policy requires under-

standing the technical details about the way the Fed allocates the di®erent tasks of monetary

policy between the discount window and the Federal Open Market Committee. They argue,

via two examples that a contractionary NBR shock may correspond to other types of shocks.

55The discussion presented here summarizes the analysis in Christiano (1996).

41



In their ¯rst example, they argue that a negative NBR shock may actually correspond

to a positive shock to the demand for money. The argument goes as follows. Suppose that

there was a shock to either the demand for TR, M1 or M2 that drove up the interest rate.

Absent a change in the discount rate, this would lead to an increase in Borrowed Reserves

via the discount window. Suppose in addition that the FOMC believes that the managers

of the discount window always over accommodate shocks to the demand for money, and

respond by pulling nonborrowed reserves out of the system. An attractive feature of this

story is that it can potentially account for the fact that the federal funds rate is negatively

correlated with nonborrowed reserves and positively correlated with borrowed reserves (see

Christiano and Eichenbaum (1992)). Unfortunately the story has an important problem: it

is hard to see why a positive shock to money demand would lead to a sustained decline in

total reserves, M1 or M2: But this is what happens after an NBR policy shock (see ¯gure

2). In light of this fact, the notion that a negative NBR policy shock really corresponds to

a positive money demand shock seems unconvincing.

In their second example, Coleman, Gilles and Labadie argue that a negative NBR shock

may actually correspond to a positive future shock to the money supply. The basic idea is

that the Fed signals policy shifts in advance of actually implementing them, and that a signal

of an imminent increase in total reserves produces an immediate rise in the interest rate.

Such a rise would occur in standard neoclassical monetary economies of the type considered

by Cooley and Hansen (1989). Suppose that the rise in the interest rate results in an increase

in borrowed reserves. If the Fed does not wish the rise in borrowed reserves to generate an

immediate rise in total reserves, it would respond by reducing nonborrowed reserves.

This interpretation of the rise in the interest rate after an NBR policy shock is partic-

ularly interesting because it does not depend on the presence of a liquidity e®ect. Indeed

this interpretation presumes that the interest rate rises in anticipation of a future increase

in the money supply. To the extent that the interpretation is valid, it would constitute an

important attack on a key part of the evidence cited by proponents of the view that plausible

models of the monetary transmission mechanism ought to embody strong liquidity e®ects.

Again there is an important problem with this interpretation of the evidence: the anticipated

rise in the future money supply that the contractionary NBR policy shock is supposed to be

proxying for never happens: TR; M1 and M2 fall for over two years after a contractionary

NBR policy shock. In light of this, the notion that a contractionary NBR policy shock is

proxying for expansionary future money supply shocks seems very unlikely.
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4.5.2. The Bernanke-Mihov Critique

The preceding subsection illustrates our methodology for assessing the plausibility of di®erent

identi¯cation schemes. Bernanke and Mihov (BM) propose an alternative approach. Under

the assumption that the policy function is of the form, (2.1), they develop a particular test

of the null hypothesis that "st is a monetary policy shock against the alternative that "
s
t is

confounded by nonmonetary policy shocks to the market for federal funds.

To implement their test, Bernanke and Mihov develop a model of the federal funds market

which is useful for interpreting our benchmark identi¯cation schemes. These schemes are all

exactly identi¯ed, so that each ¯ts the data equally well. To develop a statistical test for

discriminating between these schemes, BM impose a particular overidentifying restriction:

the amount that banks borrow at the discount window is not in°uenced by the total amount

of reserves in the banking system. BM interpret a rejection of a particular overidenti¯ed

model as a rejection of the associated NBR; FF or NBR=TR identi¯cation scheme. But

a more plausible interpretation is that it re°ects the implausibility of their overidentifying

restriction. This is because that restriction is not credible in light of existing theory about

the determinants of discount window borrowing and the empirical evidence presented below.

A Model of the Federal Funds Market BM assume that the demand for total reserves

is given by

TRt = fTR(­t)¡ ®FFt + ¾d"dt ; (4.4)

where fTR(­t) is a linear function of the elements of ­t; ®; ¾d > 0; and "
d
t is a unit variance

shock to the demand for reserves which is orthogonal to ­t: According to (4.4), the demand

for total reserves depends on the elements of ­t and responds negatively to the federal funds

rate. The demand for borrowed reserves is:

BRt = fBR(­t) + ¯FFt ¡ °NBRt + ¾b"bt ; (4.5)

where fBR(­t) is a linear function of the elements of ­t and ¾b > 0. The unit variance shock

to borrowed reserves, "bt ; is assumed to be orthogonal to ­t. BM proceed throughout under

the assumption that ° = 0: Below, we discuss in detail the rationale for speci¯cation (4.5).56

Finally, they specify the following Fed policy rule for setting NBRt:

NBRt = fNBR (­t) + et; (4.6)

where

56We follow BM in not including the interest rate charged at the discount window (the discount rate) as
an argument in (4.5). BM rationalize this decision on the grounds that the discount rate does not change
very often.

43



et = Á
d¾d"

d
t + Á

b¾b"
b
t + ¾s"

s
t (4.7)
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Ád and Áb control the extent to which Fed responds contemporaneously to shocks in the
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¡ 1
¯+®

3
775

2
64
fTR(­t)
fNBR(­t)
fBR(­t)

3
75 (4.9)

and

B =

2
664

¾d
¯¡Ád®°+Ád®

¯+®
¡®¾s °¡1¯+®

¡®¾b¡1+Á
b°¡Áb

¯+®

¾dÁ
d ¾s ¾bÁ

b

¾d
Ád°¡Ád+1

¯+®
¾s

°¡1
¯+®

¾b
¡1+Áb°¡Áb

¯+®

3
775 ; (4.10)

"t =

2
64
"dt
"st
"bt

3
75 ; E"t"0t = I: (4.11)

Identifying the Parameters of the Model We now turn to the problem of identifying

the parameters of the money market model. As in section 3, we ¯rst estimate ut using the

¯tted disturbances, ût; in a linear regression of the money market variables on ­t; and then

estimate "t from "̂t = B¡1ût using a sample estimate of B: The latter can be obtained by

solving:

V = BB0; (4.12)

where V is the Gaussian maximum likelihood estimate of Eutu
0
t which respects the restric-

tions, if any, implied by (4.12) and the structure of B in (4.10). The estimate, V; is obtained

by maximizing

¡ T

2

n
log jV j+ tr

³
SV ¡1

´o
; where S =

1

T

TX

t=1

ûtû
0
t; (4.13)

subject to (4.10)-(4.12). When the latter restrictions are not binding, the solution to this

maximization problem is V = S:57

57BM use a slightly di®erent estimation strategy. See the appendix in BM.
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Denote the model's eight structural parameters by

Ã = [®; ¯; °; Ád; Áb; ¾2d; ¾
2
b ; ¾

2
s ]: (4.14)

Let Ã̂T denote a value of Ã which implies a B that satis¯es (4.12). The model is underi-

denti¯ed if there exist other values of Ã that have this property too. The model is exactly

identi¯ed if Ã̂T is the only value of Ã with this property. Finally, the model is overidenti¯ed

if the number of structural parameters is less than six, the number of independent elements

in S:

Given the symmetry of V; (4.12) corresponds to six equations in eight unknown parame-

ters: ®; ¯; °; Ád; Áb; ¾2d; ¾
2
b ; ¾

2
s : To satisfy the order condition discussed in section 3, at least

two more restrictions must be imposed.

Recall that the FF; NBR and NBR=TR identi¯cation schemes analyzed in the previous

section correspond to a particular orthogonality condition on the monetary policy shock.

These conditions are satis¯ed in special cases of the federal funds market model described

above. Each special case corresponds to a di®erent set of two restrictions on the elements of

Ã: In each case, the estimation procedure described above reduces to ¯rst setting V = S and

then solving the inverse mapping from V to the free elements of Ã in (4.12). The uniqueness

of this inverse mapping establishes global identi¯cation.

When St = NBRt; relations (4.8)-(4.10) imply that the measured policy shock is given

by (4.7). So, from the perspective of this framework, our NBR system assumes:

Ád = Áb = 0: (4.15)

The free parameters in Ã are uniquely recovered from V as follows:

® = ¡V21
V32
; ¾2s = V22; (4.16)

¯ =
V11 + ®V31
V31 + ®V33

; ¾2d = (¯ + ®) [V31 + ®V33] ; (4.17)

° = 1¡ V21(¯ + ®)

®¾2s
; ¾2b = V33(®+ ¯)

2 ¡ ¾2d ¡ (1¡ °)2¾2s : (4.18)

where Vij refers to the (i; j) element of V:

When St = FFt then

et =
Ád (° ¡ 1) + 1

¯ + ®
"dt +

¡1 + Áb (° ¡ 1)
¯ + ®

"bt +
° ¡ 1
¯ + ®

"st : (4.19)

>From the perspective of this framework, the benchmark FF system assumes:

Ád =
1

1¡ ° ; Á
b = ¡Ád: (4.20)
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The free parameters in Ã are recovered from V as follows:

c =
° ¡ 1
¯ + ®

; ¾2s =
V 232
V33
; ® = ¡V31

V33
; (4.21)

¾2d = V11 ¡ ®2c2¾2s ; ° = 1¡
"

¾2d
V21 + ®c¾2s

#
; (4.22)

¾2b = (1¡ °)2
"
V22 ¡ ¾2d

(1¡ °)2 ¡ ¾2s
#
; ¯ = (° ¡ 1) V32

V33
¡ ®: (4.23)

The NBR=TR system assumes:

® = Áb = 0: (4.24)

Under these conditions, it is easy to verify that the error of the regression of NBRt on ­t

and TRt is "st : The free parameters of the money model are recovered from V as follows:

¾2d = V11; Á
d =

V21
V11
; ¾2s = V22 ¡

³
Ád

´2
¾2d; (4.25)

c1 =
V32 ¡ ÁdV31

¾2s
; c2 =

V31
¾2d
; ¯ =

h
c2 ¡ Ádc1

i¡1
; (4.26)

¾2b = ¯2
h
V33 ¡ c22¾2d ¡ c21¾2s

i
; ° = ¯c1 + 1: (4.27)

Restrictions (4.15), (4.20), (4.24) guarantee that the benchmarkNBR; FF andNBR=TR

policy shock measures are not polluted by nonmonetary policy shocks, respectively.

The Bernanke-Mihov Test Recall that the basic purpose of the money market model

discussed above is to help assess whether di®erent monetary policy shock measures are pol-

luted by nonpolicy shocks to the money market. In the case of the NBR policy system this

amounts to testing (4.15). For the FF and NBR=TR systems this corresponds to testing

(4.20) and (4.24), respectively. The problem is that, since each of these systems is exactly

identi¯ed, the restrictions cannot be tested using standard statistical procedures. From this

perspective, the money market model is not helpful. As the model stands, to assess the dif-

ferent identi¯cation schemes, one must revert to the strategy laid out in the previous section.

Namely, one must examine the qualitative properties of the impulse response functions.

Instead BM impose an additional maintained assumption on the model. Speci¯cally,

they assume ° = 0; i.e., the demand for borrowed reserves does not depend on the level of

nonborrowed reserves. With this additional restriction, the NBR; FF and NBR=TRmodels

have only ¯ve structural parameters, so each is overidenti¯ed. Consequently, each can be

tested using standard likelihood ratio methods. An important limitation of this approach

is that we can always interpret a rejection as evidence against the maintained hypothesis,

° = 0; rather than as evidence against the NBR; FF or NBR=TR identi¯cation schemes.

46



A rejection would be strong evidence against one of these identi¯cation schemes only to the

extent that one had overwhelmingly sharp priors that ° really is zero: In fact, there are no

compelling reasons to believe that ° is zero. Just the opposite is true. Standard dynamic

models of the market for reserves suggest that ° is not zero.

Consider for example Goodfriend's (1983) model of a bank's demand for borrowed re-

serves. Goodfriend highlights two factors that a®ect a bank's decision to borrow funds from

the Federal Reserve's discount window. The ¯rst factor is the spread between the federal

funds rate and the Fed's discount rate (here assumed constant). The higher this spread

is, the lower is the cost of borrowing funds from the discount window, relative to the cost

of borrowing in the money market. The second factor is the existence of nonprice costs of

borrowing at the Federal Reserve discount window. These costs rise for banks that borrow

too much or too frequently, or who are perceived to be borrowing simply to take advantage

of the spread between the federal funds rate and the discount rate.

Goodfriend writes down a bank objective function which captures both of the aforemen-

tioned factors and then derives a policy rule for borrowed reserves that is of the following

form:

BRt = ¸1BRt¡1 ¡ ¸2hFFt ¡ h
1X

i=2

¸i2Et (FFt¡1+i) , (4.28)

¡1 < ¸1; ¸2 < 0, h > 0:

Here Et denotes the conditional expectation based on information at time t: Re°ecting

the presence of the ¯rst factor in banks' objective functions, the current federal funds rate

enters the decision rule for BR with a positive coe±cient. The variable, BRt¡1; enters this

expression with a negative coe±cient because of the second factor. The presence of the

expected future federal funds rate in the policy rule re°ects both factors. For example, when

EtFFt+1 is high, banks want BRt to be low so that they can take full advantage of the high

expected funds rate in the next period without having to su®er large nonprice penalties at

the discount window.

The crucial thing to note from (4.28) is that any variable which enters Et (FFt¡1+i) also

enters the `demand for borrowed reserves', (4.5). So, if nonborrowed reserves help forecast

future values of the federal funds rate, ° should not equal zero. To assess the empirical

importance of this argument we proceeded as follows. We regressed FFt on 12 lagged values

(starting with month t ¡ 1) of data on employment, P; Pcom; FF; NBR; and TR: The

estimation period for the regression is the same as for our monthly benchmark VAR's. We

computed an F -statistic for testing the null hypothesis that all the coe±cients on NBR in

this equation are equal to zero. The value of this statistic is 3:48 which has a probability

value of less than 0:001 percent using conventional asymptotic theory.

47



Given our concerns about the applicability of conventional asymptotic theory in this

context we also computed the probability value of the F -statistic using an appropriately

modi¯ed version of the bootstrap methodology used throughout this paper. Speci¯cally,

we estimated a version of our benchmark monthly VAR in which all values of NBR were

excluded from the federal funds equation.58 Using the estimated version of this VAR, we

generated 500 synthetic time series by drawing randomly, with replacement, from the set

of ¯tted residuals. On each synthetic data set, we computed an F -statistic using the same

procedure that was applied in the actual data. Proceeding in this way, we generated a

distribution for the F -statistic under the null hypothesis that lagged values of NBR do not

help forecast the federal funds rate. We ¯nd that none of the simulated F -statistics exceed the

empirical value of 3:48: This is consistent with the results reported in the previous paragraph

which were based on conventional asymptotic distribution theory. Based on this evidence,

we reject the null hypothesis that lagged values of NBR are not useful for forecasting future

values of FF and the associated hypothesis that NBR is not an argument of the demand

for BR:

The argument against the BM exclusion restriction (° = 0); is a special case of the general

argument against exclusion restrictions presented in Sargent (1984) and Sims (1980a). In

fact, this argument suggests that none of the parameters of BM's money market model are

identi¯ed since even exact identi¯cation relies on the exclusion of NBR and BR from total

reserves demand, (4.4), and TR from the borrowed reserves function, (4.5).

There is another reason not to expect ° = 0: The second factor discussed above suggests

that a bank which is not having reserve problems, but still borrows funds at the discount

window, may su®er a higher nonprice marginal cost of borrowing. This would happen if the

discount window o±cer suspected such a bank were simply trying to pro¯t from the spread

between the federal funds rate and discount rate.59 Presumably a bank that possesses a

large amount of nonborrowed reserves could be viewed as having an `ample supply of federal

funds'. The appropriate modi¯cation to the analysis in Goodfriend (1983) which re°ects

these considerations leads to the conclusion that NBRt should enter on the right hand side

of (4.28) with a negative coe±cient. We conclude that what we know about the operation

of the discount window and the dynamic decision problems of banks provides no support for

the BM maintained hypothesis that ° is equal to zero.

58Each equation in this VAR was estimated separately using OLS and 12 lags of the right hand side
variables.

59Regulation A, the regulation which governs the operation of the discount window, speci¯cally excludes
borrowing for this purpose.
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Empirical Results To make concrete the importance of BM's maintained assumption

that ° = 0; we estimated both the restricted and unrestricted NBR, FF and NBR=TR

models, as discussed above. The results are reported in Tables 2a and 2b. Each table reports

results based on two data sets, the BM monthly data and the quarterly data used in the

rest of this paper. For the BM data, we used their estimated S matrix, which they kindly

provided to us. The column marked `restricted' reports results for the model with ° = 0:

These correspond closely to those reported by BM.60 The columns marked `unrestricted'

report the analog results when the restriction, ° = 0; is not imposed. The bottom row of

Tables 2a and 2b reports the p-values for testing the monthly restricted versus unrestricted

model.61

Several results in these tables are worth noting. To begin with, according to column 1

of Table 2a, BM's restricted NBR model is strongly rejected. Recall, they interpret this

rejection as re°ecting that Ád and/or Áb are nonzero. As we have stressed, one can just as

well infer that ° is not zero. In fact, from column 2 we see that the estimated value of ° is

positive and highly statistically signi¯cant. Of course, this result would not be particularly

interesting if the estimated values of the other parameters in the unrestricted model violated

BM's sign restrictions. But, this is not the case. All the parameter values satisfy BM's sign

restrictions. This is the case whether we use monthly or quarterly data. Taken together, our

results indicate that BM's claim to have rejected the benchmark NBR model is unwarranted.

Next, from column 4 of Table 2a, we see that, consistent with BM's results, the FF

model cannot be rejected on the basis of the likelihood ratio test. Notice, however, that the

estimated value of ® is negative. Indeed, the null hypothesis, ® ¸ 0; is strongly rejected.

This calls into question the usefulness of their model for interpreting the benchmark FF

identi¯cation scheme for the sample period as a whole.62 Finally, note from Table 2b that

the NBR=TR model is not strongly rejected by BM's likelihood ratio test and the parameter

values are consistent with all of BM's sign restrictions.

In sum, BM have proposed a particular way to test whether the policy shock measures as-

sociated with di®erent identi¯cation schemes are polluted by nonpolicy shocks. The previous

results cast doubt on the e®ectiveness of that approach.

60The small di®erences between the two sets of results re°ect di®erent estimation methods.
61We use a likelihood ratio statistic which, under the null hypothesis, has a chi-square distribution with 1

degree of freedom.
62BM actually argue that this model is most suitable for the pre-1979 period. Here too, their point estimate

of ® is negative and signi¯cantly di®erent from zero.
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4.6. Monetary Policy Shocks and Volatility

Up to now we have focussed on answering the question, what are the dynamic e®ects of a

monetary policy shock? A related question is: How have monetary policy shocks contributed

to the volatility of various economic aggregates? The answer to this question is of interest

for two reasons. First, it sheds light on the issue of whether policy shocks have been an

important independent source of impulses to the business cycle. Second, it sheds light on

identi¯cation strategies which assume that the bulk of variations in monetary aggregates

re°ect exogenous shocks to policy. For example, this is a maintained assumption in much of

the monetized real business cycle literature.63

Table 3 summarizes the percentage of the variance of the k step ahead forecast errors in

P; Y; PCOM; FF; NBR; TR and M1 that are attributable to quarterly benchmark FF;

NBR and NBR=TR policy shocks: Analog results for policy shock measures based on M0,

M1; and M2 are reported in Table 4.

We begin by discussing the results based on the benchmark policy measures. First,

according to the benchmark FF measure, monetary policy shocks have had an important

impact on the volatility of aggregate output, accounting for 21%, 44% and 38% of the variance

of the 4; 8 and 12 quarter ahead forecast error variance in output, respectively. However,

these e®ects are smaller when estimated using the NBR =TR policy shock measures and

smaller still for the benchmark NBR policy shocks. Indeed the latter account for only 7%;

10% and 8% of the 4; 8 and 12 quarter ahead forecast error variance of output. Evidently,

inference about the importance of monetary policy shocks depends sensitively on which

policy shock measure is used. In addition, conditioning on the policy shock measure, there

is substantial sampling uncertainty regarding how important policy shocks are in accounting

for the variance of the k step forecast error.

Second, none of the policy shock measures account for much of the volatility of the price

level, even at the three year horizon. In addition, only the FF benchmark policy shock

measure accounts for a nontrivial portion of the variability of PCOM: Evidently, monetary

policy shocks are not an important source of variability in prices, at least at horizons of time

up to three years in length.

Third, regardless of whether we identify St with the federal funds rate or NBR, policy

shocks account for a large percent of the volatility of St at the two quarter horizon. How-

ever, their in°uence declines substantially over longer horizons. Fourth, according to the

benchmark FF and NBR = TR measures, monetary policy shocks play a very minor role

in accounting for the variability in TR and M1: Policy shocks play a more important role

63See Cooley and Hansen (1989), Chari, Kehoe and McGrattan (1996) and Christiano and Eichenbaum
(1995).
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according to the benchmark NBR measure. Even here, most of the volatility in TR and

M1 arise as a consequence of nonpolicy shocks. Identi¯cation strategies which assume that

monetary aggregates are dominated by shocks to policy are inconsistent with these results.

Finally, policy shocks are more important in explaining the volatility in M2 than for TR or

M1: This is true regardless of which of which benchmark policy measure we consider. Still,

the variation in M2 due to policy shocks never exceeds 50%:

Next we consider the results obtained for policy shock measures based on M0, M1; and

M2. The VAR's underlying these results correspond to the ones underlying the results

reported in columns 2, 4 and 6 in ¯gure 6. In each case, St is equated to either M0; M1

or M2; and the information set, ­t, includes current and past values of Yt; Pt; PCOMt as

well as lagged values of FFt; TRt and St: A number of results are interesting to note here.

First, the M0 and M1 - based policy shock measures account for only a trivial fraction of

the °uctuations in output. In contrast, at horizons greater than a year, M2-based policy

measures account for a noticeably larger fraction of output variations. While they account

for a smaller fraction of output volatility than do the FF policy shocks, they are similar

on this dimension to the NBR=TR policy shock measures. Second, neither the M0 or M1-

based policy shock measures account for more than a trivial part of the volatility of P and

PCOM: Policy shock measures based on M2 play a somewhat larger role at horizons of

a year or longer. However, there is considerable sampling uncertainty about these e®ects.

Finally, at horizons up to a year, M0; M1; and M2-based policy shocks account for sizeable

percentages ofM0, M1; andM2; respectively. At longer horizons the percentages are lower.

Viewed across both sets of identi¯cation strategies that we have discussed, there is a

great deal of uncertainty about the importance of monetary policy shocks in aggregate

°uctuations. The most important role for these shocks emerged with the FF -based measure

of policy shocks. The smallest role is associated with the M0 and M1-based policy shock

measures.

We conclude this subsection by noting that even if monetary policy shocks have played

only a very small role in business °uctuations, it does not follow that the systematic compo-

nent, f in (2.1), of monetary policy has played a small role. The same point holds for prices.

A robust feature of our results is that monetary policy shocks account for a very small part

of the variation in prices. This ¯nding does not deny the proposition that systematic changes

in monetary policy, captured by f; can play a fundamental role in the evolution of prices at

all horizons of time.
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5. The E®ects of Monetary Policy Shocks: Abandoning the Recur-
siveness Approach

In this section we discuss an approach to identifying the e®ects of monetary policy shocks that

does not depend on the recursiveness assumption. Under the recursiveness assumption, the

disturbance term, "st ; in the monetary authority's reaction function (see (2.1)) is orthogonal

to the elements of their information set ­t: As discussed above (see (4.1)) this assumption

corresponds to the notion that economic variables within the quarter are determined in a

block recursive way: ¯rst, the variables associated with goods markets (prices, employment,

output, etc.) are determined; second, the Fed sets its policy instrument (i.e., NBR in the

case of the benchmark NBR system, and FF in the case of the benchmark FF system);

and third, the remaining variables in the money market are determined.

To help compare the recursiveness assumption with alternative identifying assumptions,

it is convenient to decompose it into two parts. First, it posits the existence of a set of

variables that are predetermined relative to the policy shock. Second, it posits that the

Fed only looks at predetermined variables in setting its policy instrument. Together, these

assumptions imply that monetary policy shocks can be identi¯ed with the residuals in the

ordinary least squares regression of the policy instrument on the predetermined variables.

The papers discussed in this section abandon di®erent aspects of the recursiveness as-

sumption. All of them drop the assumption that the Fed only looks at variables that are

predetermined relative to the monetary policy shock. This implies that ordinary least squares

is not valid for isolating the monetary policy shocks. Consequently, all these papers must

make further identifying assumptions to proceed. The papers di®er in whether they assume

the existence of variables which are predetermined relative to the monetary policy shock.

Sims and Zha (1995) (SZ) assume there are no variables with this property. In contrast, pa-

pers like Sims (1986), Gordon and Leeper (1994), and Leeper, Sims and Zha (1996) assume

that at least a subset of goods market variables are predetermined. Under their assumptions,

these variables constitute valid instruments for estimating the parameters of the Fed's policy

rule.

The section is organized as follows. First, we discuss the identifying assumptions in

SZ. We then compare their results with those obtained using the benchmark identi¯cation

schemes. Finally, we brie°y consider the analyses in the second group of papers mentioned

above.
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5.1. A Fully Simultaneous System

This section is organized as follows. In the ¯rst subsection we discuss the speci¯cation of

the SZ model and corresponding identi¯cation issues. In the second subsection, we compare

results obtained with a version of the SZ model to those obtained using the benchmark

policy shocks.

5.1.1. Sims-Zha: Model Speci¯cation and Identi¯cation

We begin our discussion of SZ by describing their speci¯cation of the money supply equation.

It is analogous to our policy function, (2.1), with St identi¯ed with a short term interest rate,

Rt. SZ assume that the only contemporaneous variables which the Fed sees when setting

St are a producer's price index for crude materials (Pcm) and a monetary aggregate (M).

In addition, the Fed is assumed to see a list of lagged variables to be speci¯ed below. Note

that unlike the benchmark systems, ­t does not contain the contemporaneous values of the

aggregate price level and output. As SZ point out, this is at best only a reasonable working

hypothesis.64 The reaction function in SZ can be summarized as follows:

Rt = const+ a1Mt + a2Pcmt + fS(Zt¡1; :::; Zt¡q) + ¾"
s
t ; (5.1)

where fS(Zt¡1; :::; Zt¡q) is a linear function of past values of all the variables in the system,

q > 0; ¾ > 0; and "St is a serially uncorrelated monetary policy shock.

SZ assume that Pcm and M are immediately a®ected by a monetary policy shock. As

noted above, this rules out ordinary least squares as a method to estimate (5.1). Instrumental

variables would be a possibility if SZ made the identifying assumption that there exists a

set of variables predetermined relative to the monetary policy shock. However, they are

unwilling to do so. They make other identifying assumptions instead.

First, they postulate a money demand function of the form:

Mt ¡ Pt ¡ Yt = const+ b1Rt + fM (Zt¡1; :::; Zt¡q) + ¾M"Mt : (5.2)

Here, fM(Zt¡1; :::; Zt¡q) is a linear function of past values of all the variables in the system,

¾M > 0; and "
M
t is a serially uncorrelated shock to money demand. Recall, Yt and Pt denote

64This is because the Fed does have at its disposal various indicators of price and output during the
quarter. For example, the Fed has access to weekly reports on unemployment claims and retail sales. Also,
two weeks prior to each FOMC meeting, policymakers have access to the `Beige Book', which is compiled
from nationwide surveys of business people. In addition, FOMC members are in constant contact with
members of the business community. Moreover, the Fed receives, with a one month lag, various monthly
measures of output and prices (e.g. employment, wages and the consumer price level).
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aggregate output and the price level. Note that the coe±cients on Yt and Pt are restricted

to unity. SZ display a model which rationalizes a money demand relationship like (5.2).65

Second, SZ assume that Pcmt responds contemporaneously to all shocks in the system.

They motivate this assumption from the observation that crude materials prices are set in

auction markets. Third, as noted above, they are not willing to impose the assumption

that goods market variables like P and Y are predetermined relative to the monetary policy

shock. Clearly, they cannot allow P and Y to respond to all shocks in an unconstrained way,

since the system would then not be identi¯ed. Instead, they limit the channels by which

monetary policy and other shocks have a contemporaneous e®ect on P and Y: To see how

they do this, it is convenient to de¯ne a vector of variables denoted by Xt, which includes Pt

and Yt: SZ impose the restriction that Xt does not respond directly to Mt or Rt, but that

it does respond to Pcmt: A monetary policy shock has a contemporaneous impact on the

variables in Xt via its impact on Pcmt:

To see this, ¯rst let

Xt =

2
6666664

Pt
Yt
Wt

P imt

Tbkt

3
7777775
; Zt =

2
6664

Pcmt

Mt

Rt
Xt

3
7775 :

where Pim denotes the producer price index of intermediate materials, W denotes average

hourly earnings of nonagricultural workers, Tbk denotes the number of personal and business

bankruptcy ¯lings. The assumptions stated up to now imply the following restrictions on

the matrix A0 in representation (3.2) of Zt:

A0 =

2
66666666666664

a11 a12 a13 a14 a15 a16 a17 a18
0 a22 a23 0 ¡a22 0 ¡a22 0
a31 a32 a33 0 0 0 0 0
a41 0 0 a44 a45 a46 a47 a48
a51 0 0 a54 a55 a56 a57 a58
a61 0 0 a64 a65 a66 a67 a68
a71 0 0 a74 a75 a76 a77 a78
a81 0 0 a84 a85 a86 a87 a88

3
77777777777775

(5.3)

The ¯rst row of A0 corresponds to the Pcm equation. The second and third rows correspond

to the money demand equation, (5.2), and to the monetary policy rule, (5.1), respectively.

The next ¯ve rows correspond to Xt: The second and third elements of "t in (3.2) correspond

to "Mt and "st :

65Their model rationalizes a relationship between the contemporaneous values of Mt; Pt; Yt and St. One
can rationalize the lagged terms in the money demand equation if there is a serially correlated shock to
the marginal product of money in their model economy. Ireland (1997) and Kim (1997) rationalize similar
relationships with Y replaced by consumption.
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It is evident from (5.3) that the impact of a monetary policy shock operates on Xt via its

in°uence on Pcm: Speci¯cally, this re°ects the fact that the (4; 1) to (8; 1) elements of A0

are potentially nonzero. If we impose that these elements are zero, then, given the other zero

restrictions in the second and third columns of A0; the variables in Xt are predetermined

relative to a monetary policy shock.

We now consider identi¯cation of the SZ model. Notice that the last ¯ve rows in A0

have the same restrictions, suggesting that (3.2) is not identi¯ed. To see that this is in fact

the case, consider the following orthonormal matrix:

W =

2
64

I
(3£3)

0
(3£5)

0
(5£3)

fW
(5£5)

3
75 ; (5.4)

where the dimensions are indicated in parentheses and fW is an arbitrary orthonormal matrix.

Note that if A0 satis¯es (i) the restrictions in (5.3) and (ii) the relation A
¡1
0

³
A¡10

´0
= V;

then WA0 does too. Here, V denotes the variance covariance matrix of the ¯tted residuals

in the VAR, (3.1), for Zt: By the identi¯cation arguments in section 3, representation (3.2)

with A0 and with WA0 are equivalent from the standpoint of the data. That is, there is a

family of observationally equivalent representations, (3.2), for the data. Each corresponds

to a di®erent choice of A0:

We now discuss the implications of this observational equivalence result for impulse re-

sponse functions. Recall from (3.6) that, conditional on the Bi's characterizing the VAR

of Zt; the dynamic response functions of Zt to "t are determined by A
¡1
0 : Also, note that

(WA0)
¡1 = A¡10 W

0: Two important conclusions follow from these observations. First, the

impulse response functions of Zt to the ¯rst three elements of "t are invariant to the choice of

A0 belonging to the set of observational equivalent A0's de¯ned above, i.e. generated using

W 0s of the form given by (5.4). Second, the dynamic response functions to the last ¯ve

elements of "t are not. To the extent that one is only interested in the response functions to

the ¯rst three elements of "t; the precise choice of fW is irrelevant. SZ choose to work with

the A0 satisfying (5.3) and the additional restriction that the square matrix formed from the

bottom right 5£ 5 matrix in A0 is upper triangular.66 The corresponding dynamic response
functions of Zt to the last ¯ve shocks in "t simply re°ect this normalization.

We nowmake some summary remarks regarding identi¯cation of the SZ model. In section

66The A0 matrix is contained in the set of observationally equivalent A0's as long as that set is non-empty.

To see this, suppose there is some A0 that satis¯es (i) (5.3) and (ii) the relation A¡1
0

¡
A¡1

0

¢0
= V: Let QR

denote the QR decomposition of the lower right 5£5 part of this matrix ~a: The 5£5 matrix Q is orthonormal
and R is upper triangular. Then, form the orthonormal matrix W as in (5.4), with fW = Q0: The matrix
WA0 satis¯es (i) and (ii) with the additional restriction on (5.3) that the lower right 5 £ 5 matrix in A0W
is upper triangular. This establishes the result sought.
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3 we discussed an order condition which, in conjunction with a particular rank condition,

is su±cient for local identi¯cation. According to that order condition, we need at least

28 restrictions on A0: The restrictions in (5.3), along with the normalization mentioned in

the previous paragraph, represent 31 restrictions on A0. So, we satisfy one of the su±cient

conditions for identi¯cation. The rank condition must be assessed at the estimated parameter

values. Finally, to help guarantee global identi¯cation, SZ impose the restriction that the

diagonal element of A0 are positive.

5.1.2. Empirical Results

We organize our discussion of the empirical results around three major questions. First, what

are the e®ects of a contractionary monetary policy shock using the SZ identi¯cation scheme?

Second, how do these e®ects compare to those obtained using the benchmark identi¯cation

scheme? Third, what is the impact on SZ's results of their assumption that the variables in

Xt respond contemporaneously to a monetary policy shock?

To answer these questions, we employ a version of the SZ model in whichMt corresponds

to M2 growth and Rt corresponds to the 3 month Treasury Bill Rate.67 The four-lag VAR

model was estimated using data over the period 1965Q3 - 1995Q2.68 Our results are presented

in column 1 of Figure 11. The solid lines correspond to our point estimates of the dynamic

response of the variables in Zt to a contractionary monetary policy shock. The dotted lines

represent 95% con¯dence intervals about the mean of the impulses.69 The main consequences

of a contractionary SZ policy shock can be summarized as follows. First, there is a persistent

decline in the growth rate of M2 and a rise in the interest rate. Second, there is a persistent

decline in the GDP de°ator and the prices of intermediate goods and crude materials. Third,

after a delay, the shock generates a persistent decline in real GDP. Finally, note that the real

wage is basically una®ected by the SZ policy shock. Comparing these results with those in

Figure 2, we see that the qualitative response of the system to an SZ policy shock is quite

similar to those in the benchmark FF and NBR systems. It is interesting to note that the

estimated SZ policy shocks are somewhat smaller than the estimated benchmark FF policy

67The variable, Tbk; is not used in our analysis. Also, SZ measure M as the log level of M2: Comparing
the estimated dynamic response functions to a monetary shock in our version of SZ with those in SZ it can
be veri¯ed that these two perturbations make essentially no di®erence to the results.

68The variable, Pcm; was measured as the log of the producer price index for crude materials, SA; Pim
is the logged producer price index for intermediate materials, SA; Y is logged GDP in ¯xed-weight 1987
dollars, SA; P is the logged GDP de°ator derived from nominal GDP and GDP in ¯xed-weight 1987 dollars,
SA; R is the three-month Treasury bill rate; and the change in the log of M2, SA. These data series are
taken from the Federal Reserve Board's macroeconomic database. Logged average hourly earnings of private
nonagricultural production workers are divided by the GDP de°ator, SA, and are derived from the Citibase
data set.

69These were computed using the procedure described in Sims and Zha (1995a).
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shocks. For example, the impact e®ect of a benchmark FF policy shock on the federal funds

rate is about 70 basis points, while the impact of a SZ policy shock on the three-month

Treasury bill rate is about 40 basis points. At the same time, the SZ policy shock measure

is roughly of the same order of magnitude as an NBR policy shock. In both cases a policy

shock is associated with a forty basis point move in the federal funds rate.

We now turn to the third question posed above. We show that SZ's insistence that Xt

is not predetermined relative to a monetary policy shock has essentially no impact on their

results. To do this, we simply shut down the coe±cients in A0 which allow a monetary policy

shock to have a contemporaneous impact on Xt and reestimate the system. Column 2 in

Figure 11 reports the results. Comparing columns 1 and 2, we see that inference is virtually

una®ected.

It is interesting to compare SZ with the analysis in Leeper, Sims and Zha (1996). They

work with a system that contains more variables. But, the fundamental di®erence is that

they impose the assumption that goods market variables are predetermined relative to a

monetary policy shock.70 The response to a monetary policy shock of the variables that

these analyses have in common is very similar. This is consistent with our ¯nding that the

absence of predeterminedness of good market variables in SZ is not important.

A number of other studies also impose predeterminedness of at least some goods market

variables. These include Sims (1986), who assumes predeterminedness of investment, and

Gordon and Leeper (1994), who assume all goods market variables and the 10 year Treasury

rate are predetermined. Inference about the dynamic response of economic aggregates is very

similar across these papers, SZ, Leeper, Sims and Zha (1996) and the benchmark systems.

6. Some Pitfalls in Interpreting Estimated Monetary Policy Rules

In section 4 and 5 we reviewed alternative approaches for identifying the e®ects of a monetary

policy shock. A common feature of these di®erent approaches is that they make enough

identifying assumptions to enable the analyst to estimate the parameters of the Federal

Reserves's feedback rule. A natural question is: why did we not display or interpret the

parameter estimate? The answer is that these parameters are not easily interpretable.

In this section we describe three examples which illustrate why the estimated policy rules

are di±cult to interpret in terms of the behavior of the monetary authority. We emphasize,

however, that the considerations raised here need not necessarily pose a problem for the

70In their description of the model, monetary policy shocks impact on the analog of X via a limited set
of variables. In practice, however, they set the coe±cients on these variables equal to zero. So, all their
estimated systems have the property that the goods market variables are predetermined relative to the
monetary policy shock.
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econometrician attempting to isolate monetary policy shocks and their consequences.

The central feature of our examples is that the policy maker reacts to data that are

di®erent from the data used by the econometrician. In the ¯rst example, the decision maker

uses error-corrupted data, while the econometrician uses error-free data. In the second and

third examples the decision maker reacts to a variable that is not in the econometrician's

data set. The policy rule parameters estimated by the econometrician are a convolution of

the parameters of the rule implemented in real time by the policy maker and the parameters

of the projection of the missing data onto the econometrician's data set. It is the convolution

of these two types of parameters which makes it di±cult to assign behavioral interpretations

to the econometrician's estimated policy rule parameters.

Our ¯rst example builds on the measurement error example discussed in section 2. We

assume there is measurement error in the data used by real time policy makers, while the

econometrician uses ¯nal revised data. We suppose xt + vt corresponds to the raw data

received by the primary data collection agency and that vt re°ects classical reporting and

transmission errors that are uncorrelated with the true variable, xt; at all leads and lags. In

addition, we suppose that the reporting errors are discovered in one period, so that ut in (2.2)

is zero. We assume that the data collection agency (or, the sta® of the policy maker) reports

its best guess, x̂t; of the true data, xt; using its knowledge of the underlying data generating

mechanism and the properties of the measurement error process.71 Finally, suppose that xt

evolves according to:

xt = ½1St¡1 + ½2xt¡1 + !t;

where !t is uncorrelated with all variables dated t¡1 and earlier. Suppose the data collection
authority computes x̂t as the linear projection of xt on the data available to it. Then,

x̂t = P [xtjSt¡1; xt + vt; xt¡1] = a0St¡1 + a1(xt + vt) + a2xt¡1; (6.1)

where the ai's are functions of ½1; ½2; and the variances of !t and vt: Now, suppose that

the policy authority is only interested in responding to xt; and that it attempts to do so by

setting

St = ®x̂t (6.2)

in real time. Substituting (6.1) into this expression, we see that (6.2) reduces to (2.1) and

(2.4) with

¯0 = ®a0; ¯1 = ®a1; ¯2 = ®a2: (6.3)

Notice how di®erent the econometrician's estimated policy rule, (2.4) and (6.3), is from the

real time policy rule, (6.2). The ¯'s in the estimated policy rule are a convolution of the

71For a discussion of the empirical plausibility of this model of the data collection agency, see Mankiw,
Runkle and Shapiro (1984), and Mankiw and Shapiro (1986).
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behavioral parameter, ®; the measurement error variance, and the parameters governing

the data generating mechanism underlying the variables that interest the policy maker.72

Also notice that an econometrician who estimates the policy rule using the recursiveness

assumption will, in population, correctly identify the monetary policy shock with ®a1vt:

This example shows how variables might enter f; perhaps even with long lags, despite the

fact that the policy maker does not care about them per se. In the example, the variables

St¡1 and xt¡1 enter only because they help solve a signal extraction problem. Finally, the

example illustrates some of the dangers involved in trying to give a structural interpretation

to the coe±cients in f: Suppose a0 and ® are positive. An analyst might be tempted to

interpret the resulting positive value of ¯0 as re°ecting a desire to minimize instrument

instability. In this example, such an interpretation would be mistaken. Signi¯cantly, even

though the estimated policy rule has no clear behavioral interpretation, the econometrician

in this example correctly identi¯es the exogenous monetary policy shock.

For our second example, we assume that the policy maker responds only to the current

innovation in some variable, for example, output. In particular suppose that,

St = ®et + ¾s"
s
t ;

where et is the innovation to which the policy maker responds, ® is the policy parameter,

and "st is the exogenous policy shock. Suppose that et is related to data in the following way,

et =
P1
i=0 ¯ixt¡i; so that in (2.1),

f(­t) = ®
1X

i=0

¯ixt¡i:

Suppose the econometrician makes the correct identi¯cation assumptions and recovers f (­t) exactly.

An analyst with sharp priors about the number of lags in the policy maker's decision rule,

or about the pattern of coe±cients in that rule, might be misled into concluding that funda-

mental speci¯cation error is present. In fact, there is not. The disturbance recovered by the

econometrician, St ¡ f (­t); corresponds exactly to the exogenous monetary policy shock.
Our ¯nal example is taken from Clarida and Gertler (1997) and Clarida, Gertler and Gali

(1997a,b). They consider the possibility that the rule implemented by the policy authority

has the form, St = ®Etxt+1 + ¾s"st : In this case, f (­t) = ®Etxt+1 and ­t contains all the

variables pertinent to the conditional expectation, Etxt+1: Assuming there is substantial

persistence in xt; f will contain long lags and its coe±cients will be hard to interpret from

the standpoint of the behavior of policy makers.73

72See Sargent (1989), for a discussion of how to econometrically unscramble parameters like this in the
presence of measurement error.

73Clarida, Gali and Gertler (1997a,b) estimate the parameters of forward looking policy rules, so that in
principle they can uncover interpretable parameters like ®:
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These examples suggest to us that direct interpretation of estimated policy rules is fraught

with pitfalls. This is why we did not discuss or report the estimated policy rules. Instead we

focused on dynamic response functions of economic aggregates to monetary policy shocks.

7. The E®ects of a Monetary Policy Shock: The Narrative Ap-
proach

In the previous sections, we have discussed formal statistical approaches to identifying exoge-

nous monetary policy shocks and their e®ects on the economy. The central problem there lies

with the identi¯cation of the exogenous monetary policy shock itself. As we discussed above,

there are many reasons why shocks measured in this way may not be exogenous. These in-

clude all the reasons that policy rules, like (2.1), might be misspeci¯ed. For example, there

may be subsample instability in the monetary policy rule, policymakers' information sets

may be misspeci¯ed. In addition, the various auxiliary assumptions that must be made in

practice, e.g., the speci¯cation of lag lengths, are always subject to question. Romer and

Romer motivate what they call the narrative approach as a way of identifying monetary

policy shocks that avoids these di±culties.74

This section is organized as follows. First, we discuss the speci¯c identifying assump-

tions in Romer and Romer's analysis. Second, we contrast results obtained under their

assumptions with the benchmark results reported above.75

Any approach that wishes to assess the e®ects of a monetary policy action on the economy

must grapple with the endogeneity problem. Romer and Romer do so by identifying episodes

(p. 134) `...when the Federal Reserve speci¯cally intended to use the tools it had available to

attempt to create a recession to cure in°ation.' They select such episodes based on records

pertaining to policy meetings of the Federal Reserve. They interpret the behavior of output

in the wake of these episodes as re°ecting the e®ects of monetary policy actions and not some

other factors. To justify this interpretation, they make and attempt to defend two identifying

assumptions. First, in these episodes, in°ation did not exert a direct e®ect on output via,

say, the anticipated in°ation tax e®ects emphasized in Cooley and Hansen (1989). Second,

in these episodes in°ation was not driven by shocks which directly a®ected output, such as

supply shocks. These two assumptions underlie their view that the behavior of output in

the aftermath of a Romer and Romer episode re°ected the e®ects of the Fed's actions.

The Romer and Romer (1989) episodes are: December 1968; April 1974; August 1978;

October 1979. We follow Kashyap, Stein and Wilcox (1993) by adding the 1966 credit crunch

(1966:2) to the index of monetary contractions. In addition we add the August 1988 episode

74They attribute the narrative approach to Friedman and Schwartz (1963).
75See CEE (1996b), Eichenbaum and Evans (1995) and Leeper (1996) for a similar comparison.
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identi¯ed by Oliner and Rudebusch (1996) as the beginning of a monetary contraction.76

For ease of exposition, we refer to all of these episodes as Romer and Romer episodes.

It is di±cult to judge on a priori grounds whether the narrative approach or the strategy

discussed in the previous sections is better. The latter approach can lead to misleading

results if the wrong identifying assumptions are made in specifying the Fed's policy rule. A

seeming advantage of Romer and Romer's approach is that one is not required formally to

specify a Fed feedback rule. But there is no free lunch. As we pointed out, they too must

make identifying assumptions which are subject to challenge. Shapiro (1994) for example

challenges the usefulness of these dates on the grounds that they do not re°ect an exogenous

component of monetary policy. In his view, they re°ect aspect of monetary policy that are

largely forecastable using other macro variables. An additional shortcoming of the Romer

and Romer approach, at least as applied to postwar monetary policy, is that it delivers only

a few episodes of policy actions, with no indications of their relative intensity. In contrast

the strategy discussed in the previous section generates many `episodes', one for each date

in the sample period, and a quantitative measure of the intensity of the exogenous shock for

each date. So in principle, this approach can generate more precise estimates of the e®ects

of a monetary policy shock.

It is of interest to compare the Romer and Romer episodes with the benchmark FF

and NBR shocks. According to Figure 12, with one exception each Romer and Romer

episode is followed, within one or two quarters, by a contractionary FF and NBR policy

contraction. The exception is October 1979, which is not followed by a contractionary NBR

policy shock.77 At the same time, we identify several contractionary policy shocks which are

not associated with a Romer and Romer episode.

We now turn to the issue of how qualitative inference is a®ected by use of the Romer

and Romer index. To determine the impact of a Romer and Romer episode on the set of

variables, Zt; we proceed as follows. First, we de¯ne the dummy variable, dt; to be one

during a Romer and Romer episode, and zero otherwise. Second, we modify the benchmark

VAR to include current and lagged values of dt:

Zt = A(L)Zt¡1 + ¯(L)dt + ut: (7.1)

Here, ¯(L) is a ¯nite ordered vector polynomial in nonnegative powers of L: We estimate

(7.1) using equation-by-equation least squares. For calculations based on quarterly data, the

highest power of L in A(L) and in ¯(L) are 5 and 6, respectively. For calculations based on

monthly data, the corresponding ¯gures are 11 and 12. The response of Zt+k to a Romer

76In a later paper, Romer and Romer (1994) also add a date around this time.
77We cannot estimate benchmark shocks for 1966:2 because of data limitations.
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and Romer episode is given by the coe±cient on Lk in the expansion of [I ¡ A(L)L]¡1 ¯(L):
To obtain con¯dence intervals for the dynamic response function of Zt; we apply a version of

the bootstrap Monte Carlo procedure used above which accommodates the presence of dt in

(7.1). In principle, the right way to proceed is to incorporate into the bootstrap simulations

a model of how the Fed and then Romer and Romer process the data in order to assign

values to dt. This task is clearly beyond the scope of this analysis. In our calculations, we

simply treat dt as ¯xed in repeated samples.

We also report results obtained using the monetary policy index constructed by Boschen

and Mills (1991). Based on their reading of the FOMC minutes, Boschen and Mills rate

monetary policy on a discrete scale, f¡2;¡1; 0; 1; 2g where ¡2 denotes very tight and +2
denotes very loose. To look at the a®ects of this policy measure, we include it in our

de¯nition of Zt and calculate the dynamic response of the variables in Zt to an innovation

in the Boschen and Mills index.

Figure 13 reports the monthly data based estimates of the dynamic response of various

aggregates to a Romer and Romer shock and an innovation in the Boschen and Mills index.

To facilitate comparisons, column 1 reproduces the dynamic response functions associated

with our monthly benchmark FF policy shocks.

According to our point estimates, the qualitative responses to an FF policy shock and a

Romer and Romer episode shock are quite similar: the federal funds rate rises, the price level

is not much a®ected, at least initially, employment falls with a delay, PCOM falls, and all

the monetary aggregates (NBR; M1 and M2) fall. It is interesting that the initial impacts

of a Romer and Romer episode on employment and the price level are quite small. Unlike the

identi¯cation schemes underlying the benchmark shock measures, this is not imposed by the

Romer and Romer procedure. There are some di®erences between the estimated e®ects of

the two shock measures. These pertain to the magnitude and timing of the responses. Romer

and Romer episodes coincide with periods in which there were large rises in the federal funds

rate. The maximal impact on the federal fund rate after a Romer and Romer episode is

roughly 100 basis points. In contrast, the maximal impact on the federal funds rate induced

by an FF policy shock is roughly 60 points. Consistent with this di®erence, the maximal

impact of a Romer and Romer shock on employment, PCOM; NBR; TR, M1 and M2 is

much larger than that of a FF policy shock. Finally, note that the response functions to a

Romer and Romer shock are estimated less precisely than the response functions to an FF

policy shock. Indeed, there is little evidence against the hypothesis that output is una®ected

by a Romer and Romer shock.78

78Romer and Romer report statistically signi¯cant e®ects on output. This di®erence could arise for two
reasons. First, we include more variables in our analysis than do Romer and Romer. Second, we compute
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While similar in some respects, the estimated response functions to an innovation in the

Boschen and Mills results do di®er in some important ways from both the FF and Romer

and Romer shocks. First, the impact of a Boschen and Mills shock is delayed compared

to the impact of the alternative shock measures. For example the maximal increase in

the federal funds rate occurs 14 months after a Boschen and Mills shock. In contrast, the

maximal increase of the federal funds rate occurs 1 and 3 periods after an FF and Romer

and Romer shock, respectively. Another anomaly associated with the Boschen and Mills

response functions is the presence of a price puzzle: both PCOM and the price level rise for

a substantial period of time after a contraction.

Figure 14 reports the quarterly data based estimates of the dynamic response of various

aggregates to a Romer and Romer shock and an innovation in the Boschen and Mills index.

The key ¯nding here is that the qualitative properties of the estimated impulse response

functions associated with the three policy shock measures are quite similar. Unlike the

monthly results where employment initially rises in response to a Romer and Romer episode,

there is no initial rise in aggregate output. The only major di®erence is that, as with the

monthly data, the maximal impact of a Boschen and Mills shock measure on the federal

funds rate is substantially delayed relative to the other two shock measures. Integrating over

the monthly and quarterly results, we conclude that qualitative inference about the e®ects

of a monetary policy shock is quite robust to the di®erent shock measures discussed in this

section.

8. Conclusion

In this paper we have reviewed the recent literature that grapples with the question: What

happens after a shock to monetary policy? This question is of interest because it lies at

the center of the particular approach to model evaluation that we discussed: the Lucas

program applied to monetary economics. The basic step in that program involves subjecting

monetary models to a particular experiment: a monetary policy shock. Since alternative

models react very di®erently to such a shock, this experiment can, in principle, be the basis

of a useful diagnostic test. But to be useful in practice, we need to know how the actual

economy responds to the analog experiment. Isolating these data based experiments requires

identifying assumptions. We argued that qualitative inference about the e®ects of a monetary

policy shock is robust across many, but not all the sets of identifying assumptions that have

been pursued in the literature.

A key question remains: How can the results of the literature we reviewed be used

standard errors using a di®erent method than they do.
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to quantitatively assess the performance of a particular model? Much of the empirical

literature on monetary policy shocks proceeds under the assumption that monetary policy

is highly reactive to the state of the economy. In sharp contrast, analyses of quantitative

general equilibrium models often proceed under much simpler assumptions about the nature

of the monetary authority's reaction function. This leads to an obvious problem: unless the

monetary policy rule has been speci¯ed correctly, the nature of the monetary experiment

being conducted in the model is not the same as the experiment in the data.

One way to deal with the problem is to solve theoretical models using estimated reaction

functions taken from the policy shock literature. There are two potential problems associated

with this approach. First, and most importantly, it is often the case that models have

multiple equilibria when policy is speci¯ed as a relationship between endogenous variables.

Second, the complexity of estimated reaction functions makes it di±cult (at least for us) to

gain intuition for the way a monetary policy shock impacts on a model economy.

CEE (1997b) suggest an alternative approach to ensuring the consistency between model

and data based experiments. The basic idea is to calculate the dynamic e®ects of a policy

shock in a model economy under the following representation of monetary policy: the growth

rate of money depends only on current and past shocks to monetary policy. Formally such

a speci¯cation represents the growth rate of money as a univariate, exogenous stochastic

process. However this representation cannot be developed by examining the univariate time

series properties of the growth rate of money, say by regressing the growth rate of money on

its own lagged values. Instead the representation must be based on the estimated impulse

response function of the growth rate of money to a monetary policy shock.

The rationale underlying the CEE (1997b)'s proposal is as follows. To actually imple-

ment a particular monetary policy rule, the growth rate of money must (if only implicitly)

respond to current and past exogenous shocks in an appropriate way. This is true even when

the systematic component of policy is thought of as a relationship between endogenous vari-

ables, like the interest rate, output and in°ation. The literature on monetary policy shocks

provides an estimate of the way the growth rate of money actually does respond to a par-

ticular shock - a monetary policy shock. For concreteness we refer to the estimated impulse

response function of the growth rate of money to a policy shock as `the exogenous monetary

policy rule'.79

Suppose that an analyst solves a monetary model under the assumption that policy is

79CEE (1997b) argue that a good representation for the exogenous monetary policy rule relating the
growth rate of M1 to current and past policy shocks is a low order MA process with a particular feature:
the contemporaneous e®ect of a monetary policy shock is small while the lagged e®ects are much larger. In
contrast, the dynamic response function of the growth rate of M2 to current and past policy shocks is well
approximated by an AR(1) process.
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given by the exogenous policy rule. In addition, suppose that the model has been speci¯ed

correctly. In this case, the dynamic responses of the model variables to a policy shock should

be the same as the dynamic response functions of the corresponding variables to a policy

shock in the VAR underlying the estimate of exogenous policy rule (see CEE (1997b)). This

is true even if the monetary policy shock was identi¯ed in the VAR assuming a policy rule

that was highly reactive to the state of the economy. So, the empirical plausibility of a model

can be assessed by comparing the results of an exogenous policy shock in the model to the

results of a policy shock in a VAR.

It is often the case that a model economy will have multiple equilibria when policy is

represented as a relationship between endogenous variables. Each may be supported by a

di®erent rule for the way the growth rate of money responds to fundamental economic shocks.

Yet, for any given rule relating the growth rate of money to these shocks, it is often (but not

always) the case that there is a unique equilibrium (see CEE (1997b) for examples). Under

these circumstances CEE's (1997b) proposal for evaluating models is particularly useful.

The monetary policy shock literature tells us which exogenous policy rule the Fed did adopt

and how the economy did respond to a policy shock. These responses can be compared

to the unique prediction of the model for what happens after a shock to monetary policy.

However it is unclear how to proceed under a parameterization of monetary policy in which

there are multiple equilibria.

We conclude by noting that we have stressed one motivation for isolating the e®ects

of a monetary policy shock: the desire to isolate experiments in the data whose outcomes

can be compared with the results of analog experiments in models. Authors like Sims and

Zha (1995) and Bernanke, Gertler and Watson (1997) have pursued a di®erent motivation.

These authors argue that if the analyst has made enough assumptions to isolate another

fundamental shock to the economy, then it is possible to understand the consequences of

a change in the systematic way that monetary policy responds to that shock, even in the

absence of a structural model. Their arguments depend in a critical way on ignoring the

Lucas critique. This may or may not be reasonable in their particular applications. We are

open minded but skeptical. For now we rest our case for the usefulness of the monetary

policy shock literature on the motivation we have pursued: the desire to build structural

economic models that can be used to think about systematic changes in policy institutions

and rules.
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Fed Funds Model, Y after MP
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Fed Funds Model with M1
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Short Sample Rudebusch FM Model
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Fed Funds Model 65:01 to 94:12
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Fed Funds Model 65:01 to 79:09
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Fed Funds Model 84:02 to 94:12
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NBR Model 65:01 to 94:12
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NBR Model 65:01 to 79:09
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NBR Model 79:10 to 94:12
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Sims_Zha, Quarterly
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Contractionary benchmark policy shocks in units of federal funds rate

Three-month centered, equal-weighted moving average, with Romer dates
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Monthly Fed Funds Model with M1
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Monthly Boschen & Mills Model with M1
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Fed Funds Model with M1
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