Optimal Monetary and Fiscal Policy with Investment Spillovers and Endogenous Private Information

Luca Colombo Gianluca Femminis Alessandro Pavan

2021 ASSA Meetings
This Paper

- Economies with
 - investment spillovers
 - endogenous private information
 - real and nominal rigidities

- Optimal fiscal rule
 - usual subsidy/tax on revenues/employment correcting for market power
 - NOVEL subsidy to innovating firms
 - constant (exogenous information)
 - state-dependent (endogenous information)
 - co-moves with optimal monetary policy

- Optimal policies with exogenous information need not be optimal with endogenous information

- Optimal monetary policy
 - pro-cyclical
 - stabilizes prices within (endogenous) groups
 - must co-move with fiscal policy to create right incentives for information acquisition
Policy with dispersed Information
- Angeletos and Pavan (2009)
- Paciello and Wiederholt (2013)
- Angeletos and La’O (2019)
- La’O and Tahbaz-Salehi (2020)
- ..

Inefficiency in information acquisition
- Colombo, Femminis, Pavan (2014)
- Pavan (2017)
- Hebert and La’O (2020)
- ...
Plan

1. Introduction
2. Model
3. Efficient allocation
4. Real Rigidities
 1. exogenous information
 2. endogenous information
5. Nominal + Real Rigidities
6. Conclusions
Model
Model

- Economy populated by
 - representative household
 - (measure 1) continuum of agents
 - (measure 1) continuum of monopolistically-competitive firms producing differentiated intermediate goods
 - competitive retail sector producing final good
 - benevolent planner controlling monetary and fiscal policy
Model

- Each firm run by single entrepreneur
 - initially located on “island” with imperfect information about TFP Θ
 - chooses whether to “upgrade” technology for intermediate good $i \in [0, 1]$

$$y_i = \begin{cases}
\gamma \Theta (1 + \beta N)^\alpha l_i^\psi & \text{when } n_i = 1 \quad \text{(new)} \\
\Theta (1 + \beta N)^\alpha l_i^\psi & \text{when } n_i = 0 \quad \text{(old)}
\end{cases}$$

with $\gamma > 1$, $\beta \geq 0$, $\alpha \geq 0$, $\psi \leq 1$

- $N = \int n_i \, di$: aggregate investment in new technology
- l_i: undifferentiated labor (more below)

- Differential $y_i(n_i = 1) - y_i(n_i = 0)$ increasing in Θ and N

- dependence on N: spillover (within and across technologies)
 - human capital
 - physical capital

- Cost of new technology: $k > 0$ (effort)
Model

- Final good (produced by competitive retail sector):
 \[Y = \left(\int y_i^{\frac{v-1}{v}} \, di \right)^{\frac{v}{v-1}} \]

- Profits of competitive retail sector \(\Pi = PY - \int p_i y_i \, di \)

 - \(P \): price of final good

 - \(p_i \) price of intermediate good of variety \(i \)
Entrepreneurs are members of representative household with utility

\[U = \frac{C^{1-R}}{1-R} - k \int n_i di - \frac{l^{1+\varepsilon_l}}{1 + \varepsilon_l} - \int \mathcal{I}(\pi^x_i)di \]

- \(C \): consumption of final good
- \(\mathcal{I}(\pi^x) \): disutility of info of precision \(\pi^x \)
- \(\mathcal{I}' > 0, \mathcal{I}'' \geq 0, \mathcal{I}'(0) = 0. \)
Each entrepreneur maximizes her firm’s market valuation

\[C^{-R} \left(\frac{p_i y_i - W l_i + T_i}{P} \right) - k n_i - I(\pi_i^x) \]

- \(W \): wage rate
- \(T_i \): fiscal transfer
Model

- Cash-in-advance' constraint:
 \[PY \leq M \]

- \(M \): money provided by planner (returned at end of period)

- Benevolent planner maximizes ex-ante utility of representative household
 - monetary rule \(M(\theta) \)
 - fiscal rule \(T_n(r_i, \theta) \)
 - \(r_i = p_iy_i \): firm’s revenue

- Alternatively, \(T(P, p_i, l_i) \)
Model: Timing

1. Nature draws θ from $N(\theta_0, \pi_\theta^{-1})$

2. Each entrepreneur i chooses π_i^x and receives signal $x_i = \theta + \xi_i$, with ξ_i drawn from $N(0, (\pi_i^x)^{-1})$, independent from θ, independently across i

3. Each entrepreneur chooses
 1. whether or not to upgrade technology
 2. p_i (nominal rigidities)

4. After θ revealed,
 1. government supplies $M = M(\theta)$
 2. each entrepreneur posts price p_i (flexible prices)

5. Retail sector chooses demand y_i of each intermediate good

6. Entrepreneur i hires l_i to meet demand

7. Representative consumer chooses C
1. Both retail sector and representative consumer take price P as given.

2. Retail sector also takes prices of intermediate goods p_i as given.

3. Labor l_i acquired on competitive market.
Plan

1. Introduction
2. Model
3. Efficient allocation
4. Real Rigidities
 1. exogenous information
 2. endogenous information
5. Nominal + Real Rigidities
6. Conclusions
Efficient Allocation
Efficient Allocation

Definition 1
Efficient allocation is given by \(\pi^{x^*}, n^*(x), \text{ and } l^*(x, \theta) \) that jointly maximize \(E_0[U] \).
Proposition 1

Under appropriate parameters' restrictions, efficient upgrade policy given by
\[\hat{n}(x) = I(x \geq \hat{x}). \]

Efficient employment policy given by \(\hat{l}_0(\theta) \) for firms retaining old technology and by \(\hat{l}_1(\theta) = \gamma^\varphi \hat{l}_0(\theta) \) for those innovating, where \(\varphi \equiv \frac{v-1}{v+\psi(1-v)}. \)

Efficient precision \(\hat{\pi}^x \) given by

\[
E \left[\hat{C}(\theta)^{1-R} \left(\frac{\alpha \beta}{1 + \beta \hat{N}(\theta)} + \frac{v}{v-1} \frac{\gamma^\varphi - 1}{(\gamma^\varphi - 1) \hat{N}(\theta) + 1} \right) \frac{\partial \hat{N}(\theta)}{\partial \pi^x} \right]
\]

effect on \(C \)

\[
E \left[\hat{l}_0(\theta)^{1+\varepsilon} \left((\gamma^\varphi - 1) \hat{N}(\theta) + 1 \right)^\varepsilon (\gamma^\varphi - 1) \frac{\partial \hat{N}(\theta)}{\partial \pi^x} \right]
\]

effect on disutility of labor

\[-k E \left[\frac{\partial \hat{N}(\theta)}{\partial \pi^x} \right] = \frac{dI(\hat{\pi}^x)}{d\pi^x} \]

where \(\hat{N}(\theta) = 1 - \Phi(\hat{x}|\theta) \).
Plan

1. Introduction
2. Model
3. Efficient allocation
4. Real Rigidities
 1. exogenous information
 2. endogenous information
5. Nominal + Real Rigidities
6. Conclusions
Real Rigidities
Proposition 2

Suppose information is exogenous and let \(r = p_y \). Any monetary and fiscal policy \(M \) and \(T \) satisfying following conditions are optimal

\[
T_1(\theta, r) = s(\theta) + \frac{1}{v-1} r
\]

\[
T_0(\theta, r) = \frac{1}{v-1} r
\]

\[
\mathbb{E} \left[\hat{C}(\theta)^{-R} \frac{s(\theta)}{\hat{P}(\theta)} \mid \hat{x} \right] = \mathbb{E} \left[\hat{C}(\theta)^{1-R} \frac{\alpha \beta}{1 + \beta \hat{N}(\theta)} \mid \hat{x} \right]
\]

with \(\hat{C}(\theta)^{-R} s(\theta) / \hat{P}(\theta) \) non-decreasing.
Exogenous Information

- No spillovers:
 - $s(\theta) = 0$
 - familiar subsidy $T = \frac{1}{v-1} r$

- Spillovers:
 - subsidy to innovating firms
 $$T_1 - T_0 = s(\theta)$$
 - corrects for externality in investment
 $$\mathbb{E} \left[\hat{C}(\theta)^{1-R} \frac{\alpha \beta}{1 + \beta \hat{N}(\theta)} \right] = \mathbb{E} \left[\hat{C}(\theta)^{-R} \frac{\partial \hat{C}(\theta)}{\partial N} \right]$$

- Single-crossing: $\hat{C}(\theta)^{-R} s(\theta)/\hat{P}(\theta)$ non-decreasing
 - guarantees efficient investment

- multiple combinations of mon and fiscal policy yielding efficiency
Proposition 3

In addition to previous conditions policy must satisfy

$$
\mathbb{E} \left[C^* (\theta)^{-R} \frac{s(\theta)}{P^*(\theta)} \frac{\partial \hat{N}(\theta; \pi^{**})}{\partial \pi_i^x} \right] = \mathbb{E} \left[C^* (\theta)^{1-R} \left(\frac{\alpha \beta}{1 + \beta N^*(\theta)} \right) \frac{\partial \hat{N}(\theta; \pi^{**})}{\partial \pi^x} \right]
$$
Endogenous Information

Corollary 1

Policies that are optimal with exogenous info need not be optimal with endogenous info

- However, policies exist correcting inefficiencies in **both usage and acquisition**
Nominal + Real Rigidities
Proposition 4

No matter whether information is exogenous or endogenous, optimal monetary policy given by

\[\hat{M}(\theta)^{1-R} = m\hat{l}_0(\theta)^{1+\varepsilon} \left((\gamma^\varphi - 1)\hat{N}(\theta) + 1\right)^{(1+\varepsilon)(v-1)+R-1} \]

with \(m > 0 \).

- **Group-dependent price stability**: All entrepreneurs choosing same technology set same price.

- But then, necessarily \(s(\theta) \) state dependent with endogenous information

- Example:

\[s(\theta) = \hat{P}(\theta)\hat{C}(\theta)\frac{\alpha\beta}{1 + \beta\hat{N}(\theta)} \]

- \(P^*(\theta) \) pinned down by mon. policy
Conclusions

- **Optimal fiscal policy**
 - standard subsidy correcting for market power
 - NOVEL subsidy to innovating firms
 - sensitivity of fiscal policy to fundamentals higher when information is endogenous

- **Optimal monetary policy**
 - pro-cyclical
 - stabilizes prices within groups
 - supports efficient investment and information acquisition
THANKS!