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Abstract

We present an iterative method for constructing additive envelopes of continuous func-
tions on a compact set, with contact at a specified point. For elements of a class of submod-
ular functions we provide closed-form expressions for such additive envelopes.
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1 Introduction

In this article, we are concerned with finding a continuous additive envelope of a given continuous
function on a compact set X, a problem that can be reduced to finding a best additive upper
bound on X. We further require that the envelope has contact with f at a specified point.
This problem has interesting applications in contract theory [7] (cf. Section 5), and in optimal
transportation where it arises naturally as the dual of the Monge-Kantorovich minimization
problem [8].

In response to Hilbert’s 13th problem A.N. Kolmogorov [4] showed that it is possible to rep-
resent any continuous function f of n variables as a linear superposition of continuous functions
of one variable and addition, i.e., f(x1, . . . , xn) =

∑2n+1
k=1 g (

∑n
l=1 κlφk(xl)) for some appropriate

continuous functions φ1, . . . , φ2n+1, g, and constants κ1, . . . , κn. If nonlinearities are excluded
(i.e., g(x) ≡ x), as in our case, then one obtains a problem of best approximation via linear
superposition, which is difficult for n ≥ 3 [3]. Our problem differs from the standard version in
that our approximation is constrained to be without intersection, and with contact at a given
point.

We propose an algorithm for finding an additive envelope of an arbitrary continuous function
with contact at a specified point. Given any additive upper bound (i.e., a continuous additive
function which lies everywhere above the function whose envelope is being computed and which
satisfies the contact condition), the algorithm reduces that bound component-by-component,
and thus yields an improved additive upper bound. At each such iteration the upper bound
tightens (unless an additive envelope has been reached). We provide a starting bound for the
algorithm, and show that the limiting bound is an additive continuous function and does exist.
We also provide conditions (related to supermodularity) on the function and the contact point,
which guarantee that the additive envelope is unique and can be obtained in closed form.

2 Preliminaries

For some positive integer n, let f ∈ C(Rn, R) be a continuous real-valued function and let
X ⊂ Rn be a nonempty compact set. We use the standard definition of continuity with Euclidean
norm, which is automatically satisfied when X is finite. Furthermore, we make the following
assumptions.

A1. 0 ∈ X.

A2. f(0) = 0.

A3. x = (x1, . . . , xn) ∈ X ⇒ ∀ i ∈ {1, . . . , n} : (0, . . . , 0, xi, 0, . . . , 0) ∈ X.

The first two assumptions are without any loss of generality. Indeed, given any f ∈ C(Rn, R)
and any x̂ ∈ X (so that 0 ∈ Y = X − x̂) the function g ∈ C(Rn, R) with g(y) = f(y)− f(x̂) for
all y = x− x̂ ∈ Y is such that g(0) = 0. The function g and the set Y are simple translations of f
and X, and they satisfy A1–2. The third assumption guarantees that any point x ∈ X ⊂ Rn

can be represented as a superposition of coordinate vectors which are also elements of X.

A continuous real-valued function ϕ ∈ C(X, R) is additive if there exist n functions ϕ1, . . . , ϕn

in C(R, R) such that
ϕ(x) = ϕ1(x1) + · · ·+ ϕn(xn)

for any x = (x1, . . . , xn) ∈ X. An additive function may be denoted in terms of its components:
ϕ = [ϕi].
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We consider the problem of finding a continuous real-valued function ϕ ∈ C(X, R) which has
the following properties.

P1. ϕ is additive on X (Additivity).

P2. f ≤ ϕ on X (One-Sidedness).

P3. If ϕ̂ ∈ C(X, R) is additive on X and f ≤ ϕ̂ on X, then ϕ ≤ ϕ̂ on X (Minimality).

P4. ϕ(0) = 0 (Contact at the Origin).

A function ϕ ∈ C(X, R) that satisfies properties P1–3 is called an additive upper envelope of f
(on X). If ϕ satisfies P1–3 with f replaced by −f , then it is called an additive lower envelope
of f (on X). A tuple of functions H = (ϕ, ϕ̂), where ϕ is an additive upper envelope of f and ϕ̂
is an additive lower envelope of f , is called an additive envelope of f. It is clear that in order
to determine an additive envelope of f we can restrict attention to the problem of finding an
additive upper envelope of f . We say that an additive upper envelope of f has contact at the
origin if P1–4 are satisfied. An additive (upper/lower) envelope ϕ of f is called weak if instead
of P3 the following weaker property holds.

P3’. If ϕ̂ ∈ C(X, R) is additive on X and f ≤ ϕ̂ on X, then ϕ̂ ≤ ϕ on X implies that ϕ̂ = ϕ
on X (Weak Minimality).

A function ϕ that satisfies P1–2 and P4 is called an additive upper bound of f (with contact at
the origin).

3 Main Result

We start the construction of an additive upper envelope of f on X with an additive upper
bound ϕ0 ∈ C(X, R) of f , i.e., a function which satisfies properties P1–2 and P4. Such a
function always exists. For example, one may start with

ϕ0(x) =
n∑

i=1

(
max

x̂−i∈Bi(xi)
{f(xi, x̂−i)}

)
, (1)

for all x ∈ X. Here and in what follows, for any x ∈ Rn and any i ∈ {1, . . . , n} we use
the convenient notation x = (xi, x−i) and Bi(xi) = {x−i : (xi, x−i) ∈ X and ‖x−i‖∞ ≤ |xi|},
where x−i = (x1, . . . , xi−1, xi+1, . . . , xn) and ‖x−i‖∞ = max{|x1|, . . . , |xi−1|, |xi+1|, . . . , |xn|}.
The set Bi(xi) contains all points in X which, in the maximum norm, are located not further
away from the origin than the coordinate vector (0, . . . , 0, xi, 0, . . . , 0).

Remark 1 A better (i.e., lower) initial additive upper bound than the one suggested in (1) can
be obtained as follows. For any nonempty set N ⊆ {1, . . . , n} define

ΦN (x) =


1

|N |
∑
i∈N

 max
x̂−i∈Bi(xi)

f(xiei +
∑

j∈N\{i}

x̂jej)− f(
∑

j∈N\{i}

x̂jej)

 + ΦN\{i}(x)

 , if |N | ≥ 2,

f(0, . . . , 0, xj , 0, . . . , 0), if N = {j},

where ei = (0, . . . , 0, 1, 0, . . . , 0) is the i-th vector of a standard Euclidean base in Rn. Then

ϕ̂0(x) = Φ{1,...,n}(x) (1’)

is an additive upper bound of f such that f ≤ ϕ̂0 ≤ ϕ0 on X. In particular, if f is additive,
it is straightforward to verify that ϕ̂0 = f on X. The intuition for the recursive construction
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of ΦN , which we provide here without detailed proof, becomes clear by considering the simple
case where n = 2. Then,

Φ{1,2}(x1, x2) =
1
2

[
max

x̂2∈B1(x1)
{f(x1, x̂2)− f(x1, 0)}+ f(x1, 0)

+ max
x̂1∈B2(x2)

{f(x̂1, x2)− f(0, x2)}+ f(0, x2)
]

,

for all x ∈ X.

In order to satisfy P3, we would like a procedure for tightening a given additive upper bound ϕk ∈
C(X, R) that satisfies P1–2 and P4, where k ∈ {0, 1, . . .}. Specifically, given such a function ϕk =
[ϕk

i ] we now construct an improved additive upper bound ϕk+1 = σ(ϕk) ∈ C(X, R) as follows.
For a given i ∈ {1, . . . , n} and x ∈ X, set

ϕ̃i(xi) = max
x−i:(xi,x−i)∈X

f(xi, x−i)−
∑
j 6=i

ϕk
j (xj)

 . (2)

Then consider ϕ̂ = [ϕ1, . . . , ϕi−1, ϕ̃i, ϕi+1, . . . , ϕn] instead of ϕ = [ϕi] and repeat (2) for a
different index i. Repeating this procedure n times, once for each index i, we obtain the func-
tion ϕk+1 = [ϕk+1

i ] = [ϕ̃i] = σ(ϕk) ∈ C(X, R). The continuity of ϕk+1 follows from Berge’s
maximum theorem in [1].

Lemma 1 For any additive upper bound ϕk of f , the function ϕk+1 = σ(ϕk) is an improved
additive upper bound of f in the sense that ϕk+1 ≤ ϕk. More specifically, for any i ∈ {1, . . . , n}:
(i) ϕk+1

i ≤ ϕk
i on X, and (ii) f ≤ ϕk+1

i +
∑

j 6=i ϕ
k
j on X.

Proof. We obtain from (2), by virtue of P1–2 and P4 with respect to ϕk, that

ϕk
i ≥ ϕ̃i ≥ f −

∑
j 6=i

ϕ̃j ≥ f −
∑
j 6=i

ϕk
j

on X, whence
ϕk

i ≥ ϕk+1
i ≥ f −

∑
j 6=i

ϕk+1
j ≥ f −

∑
j 6=i

ϕk
j

on X, i.e., (i) and (ii) obtain. In addition, ϕk+1 ∈ C(X, R) is an additive upper bound of f ,
since it satisfies P1–2 and P4. �

By setting ϕ0 as in (1) we can construct a sequence {ϕk}∞k=0 of successively improved additive
upper bounds of f , where ϕk+1 = σ(ϕk) for all k ≥ 0. Lemma 1 implies that this sequence is
monotonically decreasing and by P2 it is bounded from below by f . Hence, since every real
decreasing sequence which is bounded from below converges ([6], p. 55), there exists a pointwise
limit function ϕ∞ = [ϕ∞i ] with ϕ∞i = limk→∞ ϕk

i , which may depend on the function ϕ0,
since ϕ∞ = σ∞(ϕ0).

Theorem 1 Given any additive upper bound ϕ0 of f , the limit ϕ∞ = σ∞(ϕ0) is in C(X, R),
and is a weak additive upper envelope of f .

Proof. Let ϕ0 be any additive upper bound of f with contact at the origin, and
let ϕ∞ = σ∞(ϕ0) be its pointwise limit. By (2) the limit function ϕ∞ = [ϕ∞i ] satisfies

ϕ∞i (xi) = sup
x−i:(xi,x−i)∈X

f(xi, x−i)−
∑
j 6=i

ϕ∞j (xj)

 (3)
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for all i. Since f is continuous on the compact set X by hypothesis, it is also uniformly continuous
on X: given any ε > 0 there exists a real number δ(ε) > 0 such that

‖x− x̂‖ ≤ δ(ε) ⇒ |f(x)− f(x̂)| ≤ ε/2

holds for all x, x̂ ∈ X. Thus, as long as ‖x− x̂‖ = ‖(xi, x−i)− (x̂i, x̂−i)‖ ≤ δ(ε),

ϕ∞i (xi)− ϕ∞i (x̂i) ≤ f(xi, zi(xi))− f(x̂i, zi(xi)) ≤ ε, (4)

and
ϕ∞i (x̂i)− ϕ∞i (xi) ≤ f(x̂i, zi(x̂i))− f(xi, zi(x̂i)) ≤ ε, (5)

where zi(xi) = (zi,1(xi), . . . , zi,i−1(xi), zi,i+1(xi), . . . , zi,n(xi)) is such that (xi, zi(xi)) ∈ X, and

ϕ∞i (xi)−

f(xi, zi(xi))−
∑
j 6=i

ϕ∞j (zi,j(xi))

 < ε/2.

The last inequality means that (xi, x−i) = (xi, zi(xi)) is sufficiently close to achieving the supre-
mum in (3). Hence, using relations (4) and (5) we obtain that for any x, x̂ ∈ X,

‖x− x̂‖ ≤ δ(ε) ⇒ |ϕ∞i (xi)− ϕ∞i (x̂i)| ≤ ε,

so that the function ϕ∞ = [ϕ∞i ] is uniformly continuous on X. Clearly, ϕ∞ is an additive upper
envelope of f satisfying P1–2 and P4. In addition, ϕ∞ satisfies the weak-minimality property P3’
by construction. �

Remark 2 The limit function ϕ∞ = σ∞(ϕ0) depends on the initial function ϕ0. However, with
respect to the weak minimality criterion P3’ any two limit functions ϕ∞ = σ∞(ϕ0) and ϕ̂∞ =
σ∞(ϕ̂0) are indistinguishable; that is, if the limit functions are different, one cannot weakly
dominate the other.

Remark 3 The weak additive envelopes identified by the limit of the sequence {ϕ0, ϕ1, . . .} are
solutions to the system of equations (3) for i ∈ {1, . . . , n}. In contrast to the set of all additive
upper bounds of f (with or without contact at the origin), the set of additive envelopes given by
the limits of our algorithm is generally not convex. Indeed, given any two solutions ϕ∞ = [ϕ∞i ]
and ϕ̂∞ = [ϕ̂∞i ] their convex combination in general does not satisfy (3), since the supremum is
subadditive.

Remark 4 The construction of the weak upper envelope provided above is somewhat related to
the levelling algorithm by [2], which in the limit provides the best approximation of an arbitrary
function of two variables by a sum of two functions of one variable.

4 Some Exact Upper Envelopes

We now examine a class of submodular functions for which, instead of relying on the outcome
of the limit process described in the last section, one can obtain an exact expression for a
unique additive upper envelope. Recall that a function h ∈ C(Rn, R) is submodular if for
any x, x̂ ∈ Rn: h(x∧ x̂) + h(x∨ x̂) ≤ h(x) + h(x̂), where x∧ x̂ = (min{x1, x̂1}, . . . ,min{xn, x̂n})
and x ∨ x̂ = (max{x1, x̂1}, . . . ,max{xn, x̂n}).
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Theorem 2 Suppose that f = h◦g, where h ∈ C(Rn, R) with h(0) = 0 is a submodular function,
g = (g1, . . . , gn) with gi ∈ C(R, R+) and gi(0) = 0 for all i ∈ {1, . . . , n}. Then assumptions A1–3
imply that the unique additive upper envelope of f is given by

ϕ(x) = [ϕi(xi)] = [h(0, . . . , 0, gi(xi), 0, . . . , 0)] (6)

for all (x1, . . . , xn) ∈ X.

Proof. Since f(0) = 0 by A2, h is submodular, and all gi’s vanish at the origin and take
only nonnegative values, we have using (6) that

f(x) = h (g1(x1), . . . , gn(xn)) + 0 ≤
n∑

i=1

h(0, . . . , 0, gi(xi), 0, . . . , 0) = ϕ(x)

for all x ∈ X. Hence, ϕ satisfies P1–2 and P4 constituting an additive upper bound of f with
contact at the origin. We now show that ϕ also satisfies P3. This holds trivially true if X = {0}.
To obtain a contradiction, we thus assume that there is an x = (x1, . . . , xn) ∈ X, different from
the origin, such that

f(x) ≤ ϕ̂(x) < ϕ(x) (7)

for some additive upper envelope ϕ̂ = [ϕ̂i] of f which satisfies P1–2 and P4. Assumption A3
guarantees that (0, . . . , 0, xi, 0, . . . , 0) ∈ X for all i. By P4 it is ϕ̂i(0) = 0, so that by P1–2 we
have

f(0, . . . , 0, xi, 0, . . . , 0) = h(0, . . . , 0, gi(xi), 0, . . . , 0) ≤ ϕ̂i(xi),

for all i ∈ {1, . . . , n}. As a result, by the definition of ϕ in (6) we obtain

ϕ(x) =
n∑

i=1

f(0, . . . , 0, xi, 0, . . . , 0) ≤
n∑

i=1

ϕ̂i(xi) = ϕ̂(x),

a contradiction to (7). �

Remark 5 The validity of Theorem 2 critically depends on assumption A3, which can be
seen by considering a simple example. Let X = {(x1, x2) : x1 = x2 ∈ [0, 1]} be the diagonal
of a two-dimensional unit square and let f(x) = max{x1, x2} be a submodular function (of
the form specified in Theorem 2) defined on R2, then assumptions A1–2 are satisfied and (6)
yields ϕ(x) = x1 + x2 = 2x1 > x1 = f(x) for all nonzero x = (x1, x2) in X. However, this
additive upper bound can be strictly improved upon by the additive upper envelope ϕ = [ϕi]
of f with ϕ1(x1) = λx1 and ϕ2(x2) = (1− λ)x2, which for any real constant λ coincides with f
on X.

We now provide an application of Theorem 2, which can be used to determine additive envelopes
of functions that take weighted averages as arguments, as is frequently the case in practical
situations.

Corollary 1 Suppose that f = h ◦ g, where h : R → R with h(0) = 0 is a concave function,
g = [gi] ∈ C(Rn, R+) is additive on X = [0, x̄1] × · · · × [0, x̄n] for some x̄ = (x̄1, . . . , x̄n) ∈ Rn

+,
and gi(0) = 0 for all i ∈ {1, . . . , n}. Then, the unique additive upper envelope ϕ = [ϕi] of f is
given by

ϕ(x) = [ϕ1(x1), . . . , ϕn(xn)] = [(h ◦ g1)(x1), . . . , (h ◦ gn)(xn)]

for all (x1, . . . , xn) ∈ X.
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Proof. Note first that f and X satisfy A1–3. It can easily be verified that the concavity
of h implies that ĥ(y1, . . . , yn) = h(y1+· · ·+yn) is submodular. Thus, Theorem 2 can be directly
applied, since f(x) = ĥ(g1(x), . . . , gn(x)) on X. �

Examples. Let c1, c2, x̄1, x̄2 > 0, and X = [0, x̄1]× [0, x̄2]. (i) For f(x1, x2) = ln(1+c1x1+c2x2)
the additive upper envelope ϕ = [ϕi] with contact at the origin is given by ϕi(x) = ln(1 + cixi).
(ii) For f(x1, x2) = −(xc1

1 +xc2
2 )2 the additive upper envelope ϕ = [ϕi] is given by ϕi(x) = −x2ci .

(iii) For f(x1, x2) = [c1x
ρ
1 + c2x

ρ
2]

1
ρ , with ρ > 1, the additive upper envelope ϕ = [ϕi] is given

by ϕi(x) = (ci)
1
ρ xi. �

5 Discussion

We have shown that an additive upper bound ϕ = [ϕi] of a continuous function f can satisfy
the strong minimality property P3 only in certain special cases. In general, the weak-minimality
property P3’ is the most that can naturally be expected of any additive envelope of f . This
property can be readily interpreted in terms of weak Pareto dominance: if ϕ is an additive
upper envelope of f , then it is not possible to decrease one coordinate function of [ϕi] without
increasing another one. The generic multiplicity of weak additive upper envelopes can be illus-
trated with the following simple example. Consider f(x1, x2) = x1x2 on X = [−1, 1]2. Then,
any ϕ ∈ {|x1|, |x2|, x2

1/2 + x2
2/2} is a weak additive upper envelope of f satisfying P1–2, P3’,

and P4.

Another way to interpret weak minimality is in terms of a solution to a variational problem:
for any weak additive upper envelope ϕ of f there exists a probability distribution F defined
on X, such that ϕ solves

min
ϕ∈C(X,R)

∫
X

(ϕ(x)− f(x)) dF (x), (8)

subject to P1–2 and P4. This feature links the method in Section 3 to problems of equilibrium
construction in economics. For instance, the construction of a minimizing sequence of additive
upper bounds of f can be directly applied to an equilibrium construction by [7]. They analyze the
construction of a complete set of equilibria in a general contracting problem between multiple
principals and multiple agents as discussed by [5]. Lastly, we note that the equations (3) in
Section 3 constitute necessary optimality conditions for (8).
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