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A Proof of Lemma 4.2

Our proof considers three cases separately depending on whether the following expression is strictly positive,

strictly negative, or equal to 0:

q(1, 1) + q(0, 0)− q(1, 0)− q(0, 1). (A.1)

Lemma 4.3 implies that the defendant’s choices of θ1 and θ2 are strict complements when (A.1) is strictly

negative, are strict substitutes when (A.1) is strictly positive, and are neither strict complements nor strict

substitutes when (A.1) is 0. Let Ψ∗
i ≡ 1 − Φ(ω∗

i ) and Ψ∗∗
i ≡ 1 − Φ(ω∗∗

i ), which are the probabilities with

which agent i accuses the defendant when he has witnessed an offense and when he has not witnessed any

offense, respectively.

A.1 The value of (A.1) is strictly positive

First, we show that q(1, 1) must be strictly less than 1 regardless of the conviction rule, which implies

that q(a) < 1 for any a. Suppose by way of contradiction that q(1, 1) = 1. Refinement 1 requires that

q(0, 0) = 0. This leads to the following expressions for agent 1’s reporting cutoffs when he has and has not

witnessed any offense:

ω∗
1 ≡ −b+ c

(1−Ψ∗∗
2 )(1− q(1, 0))

q(1, 0) + Ψ∗∗
2 (1− q(1, 0)− q(0, 1))

, (A.2)

ω∗∗
1 ≡ c

(1−X2)(1− q(1, 0))

q(1, 0) +X2(1− q(1, 0)− q(0, 1))
, (A.3)

where

X2 ≡
1− p1 − p2

1− p1
Ψ∗∗

2 +
p2

1− p1
Ψ∗

2 (A.4)
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and pi is the probability that θi = 1. We note that ω∗
1 is decreasing in Ψ∗∗

2 and q(1, 0) and increasing in

q(0, 1), and that ω∗∗
1 is decreasing in X2 and q(1, 0) and increasing in q(0, 1). The distance between the two

cutoffs can be written as:

ω∗∗
1 − ω∗

1 = b− (Ψ∗
2 −Ψ∗∗

2 )C1 (A.5)

where

C1 ≡ c(1− q(0, 1))(1− q(1, 0))× p2
1− p1

× 1

q(1, 0) +X2(1− q(1, 0)− q(0, 1))
× 1

q(1, 0) + Ψ∗∗
2 (1− q(1, 0)− q(0, 1))

. (A.6)

One can obtain symmetric expressions for ω∗
2 , ω∗∗

2 and their difference. Conditional on θ2 = 0, choosing

θ1 = 1 rather than θ1 = 0 increases the defendant’s conviction probability by

(Ψ∗
1 −Ψ∗∗

1 )
(
q(1, 0) + Ψ∗∗

2 (1− q(1, 0)− q(0, 1))
)

(A.7)

Similarly, fixing θ1 = 0, the defendant choosing θ2 = 1 instead of θ2 = 0 increases the conviction

probability by:

(Ψ∗
2 −Ψ∗∗

2 )
(
q(0, 1) + Ψ∗∗

1 (1− q(1, 0)− q(0, 1))
)
. (A.8)

In every equilibrium (A.7) and (A.8) are bound above by 1/L. In what follows, we establish a lower

bound for the maximum of these two expressions that is independent of L and that will deliver the desired

contradiction when L is large enough. Throughout the proof, we assume without loss of generality that

ω∗
1 ≤ ω∗

2 . The following lemma provides a comparison between q(1, 0) and q(0, 1) when ω∗
1 ≤ ω∗

2 .

Lemma A.1. In every equilibrium such that ω∗
1 ≤ ω∗

2 , we have q(1, 0) ≥ q(0, 1).

This lemma will be shown in Section A.4.

Lower Bound on ω∗
1: For every ϵ > 0,

1. If q(1, 0) ≥ ϵ, then ω∗∗
1 ≤ c1−ϵ

ϵ .
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2. If q(1, 0) < ϵ, then q(0, 1) ∈ (0, ϵ), by Lemma A.1. Therefore,

ω∗
2 = −b+ c

(1−Ψ∗∗
1 )(1− q(0, 1))

q(0, 1) + Ψ∗∗
1 (1− q(1, 0)− q(0, 1))

≤ −b+ c
Φ(ω∗

1 + b)(1− q(0, 1))

q(0, 1) + (1− Φ(ω∗
1 + b))

(
1− q(1, 0)− q(0, 1)

)
≤ −b+ c

Φ(ω∗
2 + b)(1− q(0, 1))

q(0, 1) + (1− Φ(ω∗
2 + b))

(
1− q(1, 0)− q(0, 1)

)
≤ −b+ c

Φ(ω∗
2 + b)

(1− ϵ)(1− Φ(ω∗
2 + b))

. (A.9)

For any given ϵ, the RHS of (A.9) is bounded above uniformly over Φ(ω∗
2). This upper bound, which

we denote ω∗(ϵ), is increasing in ϵ. This yields an upper bound for ω∗
1 given by

ω∗
1 ≡ inf

ϵ∈[0,1]

{
max

{
− b+ c

1− ϵ

ϵ
, ω∗(ϵ)

}}
. (A.10)

This upper bound is finite and independent of L.

Upper Bound on C1: We provide an upper bound for

1

q(1, 0) + Ψ∗∗
2 (1− q(1, 0)− q(0, 1))

. (A.11)

For every ϵ > 0, there are two cases:

1. If q(1, 0) ≥ ϵ, then (A.11) is no more than 1/ϵ.

2. If q(1, 0) < ϵ, then Lemma A.1 implies that q(0, 1) < ϵ. Let ω∗∗
2 (ϵ) denote the smallest root ω of the

following equation:

ω = c
Φ(ω)

(1− Φ(ω))(1− ϵ)
. (A.12)

Since q(1, 0), q(0, 1) ∈ [0, ϵ], ω∗∗
2 (ϵ) is an upper bound for ω∗∗

2 . An upper bound on (A.11) is given

by
1

q(1, 0) + Ψ∗∗
2 (1− q(1, 0)− q(0, 1))

≤ 1

(1− Φ(ω∗∗
2 (ϵ)))(1− 2ϵ)

. (A.13)

In summary:

C1 ≤ cY 2 (A.14)
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where

Y ≡ inf
ϵ∈[0,1]

{
max

{
1/ϵ,

1

(1− Φ(ω∗∗
2 (ϵ)))(1− 2ϵ)

}}
.

Lower Bound on the Maximum of (A.7) and (A.8): Since ϕ ≥ 0 is the derivative of Φ, we have for all

ω′ > ω′′

Φ(ω′)− Φ(ω′′) ≥ (ω′ − ω′′) min
ω∈[ω′,ω′′]

ϕ(ω). (A.15)

We consider two subcases. First, suppose that Φ(ω∗∗
1 )− Φ(ω∗

1) ≥ Φ(ω∗∗
2 )− Φ(ω∗

2), which implies that

1

minω∈[ω∗∗
1 ,ω∗

1 ]
ϕ(ω)

(
Φ(ω∗∗

1 )− Φ(ω∗
1)
)
≥ ω∗∗

1 − ω∗
1 = b− C1(Ψ

∗
2 −Ψ∗∗

2 ) ≥ b− C1(Ψ
∗
1 −Ψ∗∗

1 ). (A.16)

This, together with (A.14), gives an lower bound on Ψ∗
1 −Ψ∗∗

1 . Moreover,

q(1, 0) + Ψ∗∗
2 (1− q(1, 0)) ≥ q(1, 0) + Ψ∗∗

2

(
1− q(1, 0)− q(0, 1)

)
≥

c
(
1− q(1, 0)

)
(1−Ψ∗∗

2 )

|ω∗
1|

, (A.17)

where the last inequality uses (A.2) and the fact that ω∗
1 ≥ ω∗

1 . This provides a lower bound for q(1, 0) and

implies a lower bound on (A.7).

Second, consider the case Φ(ω∗∗
1 )− Φ(ω∗

1) < Φ(ω∗∗
2 )− Φ(ω∗

2), and let

β ≡ ω∗∗
1 − ω∗

1

b
. (A.18)

Since X2 > Ψ∗∗
2 , we have β ∈ (0, 1). Recalling that ω∗

1 ≥ ω1, we have

Ψ∗
1 −Ψ∗∗

1 = Φ(ω∗∗
1 )− Φ(ω∗

1) ≥ βbϕ(ω∗
1 + b). (A.19)

Moreover, (A.5) and (A.14) imply that

Ψ∗
2 −Ψ∗∗

2 = (1− β)b/C1 ≥
(1− β)bY 2

c
(A.20)

Since the pdf of ωi is decreasing in ω for ω > 0, (A.20) yields an upper bound on ω∗∗
2 . We denote this upper

bound by ω̃(β). By construction, ω̃(β) is increasing in β.

1. When β ≥ 1/2, (A.19) implies a lower bound for Φ(ω∗∗
1 ) − Φ(ω∗

1). Inequality (A.17) then yields a

lower bound for q(1, 0) and implies a lower bound on (A.7).
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2. When β < 1/2, we have ω∗∗
2 ≤ ω̃(1/2) and

Ψ∗∗
2 −Ψ∗

2 ≥
b

2C1
.

The upper bound on ω∗∗
2 also delivers a lower bound on q(0, 1) + Ψ∗∗

1 (1 − q(1, 0) − q(0, 1)), since

(A.3) implies that

ω̃(1/2) ≥ ω∗∗
2 ≥ ω∗

2 = c
(1−Ψ∗∗

1 )(1− q(0, 1))

q(0, 1) + Ψ∗∗
1 (1− q(1, 0)− q(0, 1))

,

which leads to

q(0, 1) + Ψ∗∗
1 (1− q(1, 0)− q(0, 1)) ≥ (1−Ψ∗∗

1 )(1− q(0, 1))

−ω̃(1/2)/c
. (A.21)

Since 1−Ψ∗∗
1 ≥ 1−Φ(0) and 1−q(0, 1) ≥ 1/2, the lower bound on q(0, 1)+Ψ∗∗

1 (1−q(1, 0)−q(0, 1))

is strictly less than 0. This leads to a uniform lower bound on (A.8).

In the next step, we show that under APP, any equilibrium that satisfies (A.1) max{q(0, 1), q(1, 0)} > 0

must also satisfy q(1, 1) = 1. Suppose by way of contradiction that both q(1, 0) and q(1, 1) are strictly

between 0 and 1. Then, agent 2’s accusation does not affect the posterior belief about θ. This implies that

a2 is uninformative about θ2. This is only possible if ω∗
2 = ω∗∗

2 , which contradicts the conclusion of Lemma

4.1 in the main text.

A.2 The value of (A.1) is strictly negative

Next, we study the case in which q(1, 0) + q(0, 1) > q(0, 0) + q(1, 1), i.e., the case in which θ1 and

θ2 are strategic complements. Lemma 4.3 in the main text implies that, conditional on committing an

offense against one agent, the defendant has a strict incentive to commit an offense against the other agent.

Therefore, in such equilibria, the defendant commits either he commits both offenses or no offense.

We proceed in two steps, as in the previous case. First, we prove by contradiction that q(1, 1) < 1

regardless of whether the conviction rule is APP or DPP. This will imply that q(a) < 1 for any a and under

any decision rule. When q(1, 0)+q(0, 1) > q(0, 0)+q(1, 1), Lemma 4.3 in the main text implies that θ1 and

θ2 are strict complements. Therefore, agent i assigns a higher probability to agent j accusing the defendant

when θi = 0 than when θi = 1. This implies that

min{ω∗∗
1 − ω∗

1, ω
∗∗
2 − ω∗

2} > b. (A.22)
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By choosing θ1 = θ2 = 1, the defendant raises the probability that he is convicted by at least

(Ψ∗
1−Ψ∗∗

1 )
(
Ψ∗

2(1−q(0, 1))+(1−Ψ∗
2)q(1, 0)

)
+(Ψ∗

2−Ψ∗∗
2 )

(
Ψ∗∗

1 (1−q(1, 0))+(1−Ψ∗∗
1 )q(0, 1)

)
(A.23)

compared to the case in which he chooses θ1 = θ2 = 0. Therefore, the value of (A.23) cannot exceed 2/L.

The remainder of this proof establishes a strictly positive lower bound on (A.23) that applies uniformly

across all L. This will imply that when L is large enough, equilibria that exhibit strategic complementarities

between θ1 and θ2 do not exist.

First, since q(0, 1)+q(1, 0) ≥ 1, we know that max{q(0, 1), q(1, 0)} ≥ 1/2 . Without loss of generality,

we assume that q(1, 0) ≥ 1/2. Second, it is a dominant strategy for agent i to abstain from accusing the

defendant when ωi < 0, which implies that 1−Ψ∗
i ≥ δΦ(0). Third, agent 1’s threshold for accusing when

θ1 = 1 is given by

ω∗
1 = b− c

(1−QH
2 )(1− q(1, 0))

QH
2 (1− q(0, 1)) + (1−QH

2 )q(1, 0)
, (A.24)

where QH
2 is the probability that agent 2 accuses the defendant conditional on θ1 = 1. The RHS of (A.24)

is strictly increasing in QH
2 . Therefore,

ω∗
1 ≤ −b+ c

1− q(1, 0)

q(1, 0)
≤ −b+ c.

According to (A.22), we know that

Ψ∗
1 −Ψ∗∗

1 = Φ(ω∗∗
1 )− Φ(ω∗

1) ≥ b min
ω∈[0,b+c]

ϕ(ω). (A.25)

This yields the desired lower bound for (A.23):

(Ψ∗
1 −Ψ∗∗

1 )︸ ︷︷ ︸
a lower bound is given by (A.25)

(
Ψ∗

2(1− q(0, 1))︸ ︷︷ ︸
≥0

+ (1−Ψ∗
2)︸ ︷︷ ︸

≥(1−Φ(0))

q(1, 0)︸ ︷︷ ︸
≥1/2

)
+ (Ψ∗

2 −Ψ∗∗
2 )

(
Ψ∗∗

1 (1− q(1, 0)) + (1−Ψ∗∗
1 )q(0, 1)︸ ︷︷ ︸

≥0

)

≥ b

2
(1− Φ(0)) min

ω∈[0,b+c]
ϕ(ω) (A.26)

and implies that q(1, 1) < 1 when L is large enough.
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A.3 The value of (A.1) is 0

Part I: Suppose there exists an equilibrium in which the value of (A.1) is 0. The requirement that q(0, 0) =

0 together with the hypothesis q(1, 1) + q(0, 0)− q(1, 0)− q(0, 1) = 0 imply that q(1, 0) + q(0, 1) = 1.

First, we show that each agent witnesses an offense with strictly positive probability. Suppose by way

of contradiction that the defendant chooses a1 = 1 with zero probability. Then, agent 1’s accusation does

not affect the judge’s posterior belief about the values of θ1 and θ2. Therefore, q(1, 0) = q(0, 0) = 0. Since

the value of (A.1) is 0, we have q(0, 1) = q(1, 1) ∈ (0, 1]. If q is not responsive to agent 1’s accusation,

then the defendant has a strict incentive to choose θ1 = 1, which contradicts the conclusion of Lemma 4.1

that the probability with which θ1 = 1 is strictly between 0 and 1. A direct implication of this step is that

the marginal cost of committing an offense must be the same across the two agents and that this marginal

cost equals the marginal benefit 1 from committing each offense. This leads to the following indifference

condition:

1 = L(Ψ∗
1 −Ψ∗∗

1 )q(1, 0) = L(Ψ∗
2 −Ψ∗∗

2 )q(0, 1),

which further implies that

(Ψ∗
1 −Ψ∗∗

1 )q(1, 0) = (Ψ∗
2 −Ψ∗∗

2 )q(0, 1). (A.27)

Second, suppose by way of contradiction that q(1, 1) ∈ (0, 1) and that each agent witnesses an offense

with positive probability. Then, at least one of the following conditions must hold: q(1, 0) ∈ (0, 1) or

q(0, 1) ∈ (0, 1). The previous paragraph has ruled out equilibria in which either q(1, 0) or q(0, 1) is equal to

0. Suppose that q(1, 0), q(0, 1), q(1, 1) ∈ (0, 1). Then, the agents’ action profiles a = (1, 1), (1, 0), (0, 1)

must lead to the same posterior probability that the defendant has committed at least one offense. For

i ∈ {1, 2}, let pi denote the probability that θi = 1 and θ−i = 0 conditional on the defendant having

committed at least one offense. Since the posterior probability of guilt is the same for reporting profiles

a = (1, 1) and a = (1, 0), we have

(1− p1 − p2)
Ψ∗

1Ψ
∗
2

Ψ∗∗
1 Ψ∗∗

2

+ p1
Ψ∗

1

Ψ∗∗
1

+ p2
Ψ∗

2

Ψ∗∗
2

= (1− p1 − p2)
Ψ∗

1(1−Ψ∗
2)

Ψ∗∗
1 (1−Ψ∗∗

2 )
+ p1

Ψ∗
1

Ψ∗∗
1

+ p2
1−Ψ∗

2

1−Ψ∗∗
2

. (A.28)

Since Ψ∗
2 > Ψ∗∗

2 , we know that
Ψ∗

1Ψ
∗
2

Ψ∗∗
1 Ψ∗∗

2

>
Ψ∗

1(1−Ψ∗
2)

Ψ∗∗
1 (1−Ψ∗∗

2 )

and
Ψ∗

2

Ψ∗∗
2

>
1−Ψ∗

2

1−Ψ∗∗
2

.
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The two inequalities above imply that the LHS of (A.28) is strictly greater than the RHS of (A.28) unless

p1 = 1. Since p1 is the probability that (θ1, θ2) = (1, 0) conditional on (θ1, θ2) ̸= (0, 0), p1 = 1 implies

that θ2 = 1 with zero probability. This contradicts the hypothesis that the defendant commits an offense

against each agent with strictly positive probability.

Part II: We show that when L is above some threshold, there exists no equilibrium in which q(1, 1) = 0

and the value of (A.1) is 0.

Suppose by way of contradiction that there exists an equilibrium in which q(1, 1) = 1. We derive a

lower bound on (A.27), i.e., (Ψ∗
1−Ψ∗∗

1 )q(1, 0), that holds for all values of L. Without loss of generality, we

assume that q(1, 0) ≥ q(0, 1), which implies that q(1, 0) ≥ 1/2. Agent 1’s cutoffs can be written as:

ω∗
1 = −b+ c

q(0, 1)

q(1, 0)

(
1− pxΨ

∗
2 − (1− px)Ψ

∗∗
2

)
and

ω∗∗
1 = c

q(0, 1)

q(1, 0)

(
1− pyΨ

∗
2 − (1− py)Ψ

∗∗
2

)
where px, py ∈ [0, 1] represent agent 1’s beliefs about θ2 conditional on each realization of θ1. This implies

that

ω∗∗
1 − ω∗

1 = b− c
q(0, 1)

q(1, 0)
(px − py)(Ψ

∗
2 −Ψ∗∗

2 ). (A.29)

The absolute value of

c
q(0, 1)

q(1, 0)
(px − py)

is at most c. To bound the LHS of (A.27) from below, we proceed according to the following two steps.

Step 1: Upper bound on ω∗
1 The formula for ω∗

1 and the assumption that q(1, 0) ≥ q(0, 1) imply that

ω∗
1 ≤ −b+ c

(
1− pxΨ

∗
2 − (1− px)Ψ

∗∗
2

)
≤ −b+ c(1− Φ(0)). (A.30)

We note the upper bound on the RHS by ω∗
1.

Step 2: Lower bound on (A.27) Since q(1, 0) ≥ q(0, 1) and q(1, 0) + q(0, 1) ≥ q(1, 1) = 1, we have

q(1, 0) ≥ 1/2. Therefore, (A.27) will be bounded below if we establish a strictly positive lower bound on

min{Ψ∗
1 −Ψ∗∗

1 , q(0, 1)(Ψ∗
2 −Ψ∗∗

2 )}.

If px − py ≤ 0, we have ω∗∗
1 − ω∗

1 ≥ b. The lower bound on ω∗
1 then implies a strictly positive lower
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bound on Ψ∗
1 − Ψ∗∗

1 , as desired. If px − py > 0, we follow same derivation as in the last step of Online

Appendix A.1. More precisely, we consider two cases separately.

First, suppose that Ψ∗
1 −Ψ∗∗

1 ≥ Ψ∗
2 −Ψ∗∗

2 . Then, we have

Ψ∗
1 −Ψ∗∗

1

ϕ(ω∗
1 + b)

≥ ω∗∗
1 − ω∗

1 = b− c(Ψ∗
2 −Ψ∗∗

2 ) ≥ b− c(Ψ∗
1 −Ψ∗∗

1 ). (A.31)

This yields a strictly positive lower bound on Ψ∗
1 −Ψ∗∗

1 .

Second, suppose that Ψ∗
1 −Ψ∗∗

1 < Ψ∗
2 −Ψ∗∗

2 . Then, the variable β ≡ (ω∗∗
1 − ω∗

1)/b lies between 0 and

1 due to the assumption that px − py > 0. Equality (A.29) implies that

ω∗∗
1 − ω∗

1 = b− c
q(0, 1)

q(1, 0)
(px − py)(Ψ

∗
2 −Ψ∗∗

2 ) ≥ b− c(Ψ∗
2 −Ψ∗∗

2 ),

which yields

Ψ∗
2 ≥ Ψ∗

2 −Ψ∗∗
2 ≥ (1− β)b/c. (A.32)

This provides an upper bound on ω∗
2 that is decreasing in β and that we denote ω̃(β). We also have

Ψ∗
1 −Ψ∗∗

1 = Φ(ω∗∗
1 )− Φ(ω∗

1) ≥ βbϕ(ω∗
1 + b). (A.33)

We consider two subcases, depending on the value of β relative to 1/2.

1. If β ≥ 1/2, then (A.33) implies that

Ψ∗
1 −Ψ∗∗

1 ≥ bϕ(ω∗
1 + b)/2. (A.34)

2. If β < 1/2, then (A.32) implies that

Ψ∗
2 −Ψ∗∗

2 ≥ b/2c. (A.35)

We have

ω∗
2 = −b+ c(1−Q)

q(1, 0)

q(0, 1)
≤ ω2(β) (A.36)

where Q is a number between 0 and (1 − δ)α + δΦ(0). This yields the following lower bound on

q(0, 1):

q(0, 1) ≥ b− c(1−Q)q(1, 0)

ω2(β)
≥ b− c

2ω2(β)
. (A.37)

This expression is strictly greater than 0 for all β < 1/2. This, together with (A.35), lead to the
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following lower bound on the RHS of (A.27):

q(0, 1)(Ψ∗
2 −Ψ∗∗

2 ) ≥ (b− c)b

4cω2(β)
. (A.38)

A.4 Proof of Lemma A.1:

Suppose by way of contradiction that there exists an equilibrium in which the value of (A.1) is strictly

positive, ω∗
1 < ω∗

2 , and q(1, 0) < q(0, 1). Then, (A.2) implies that Φ(ω∗∗
2 ) < Φ(ω∗∗

1 ) or, equivalently, that

ω∗∗
2 < ω∗∗

1 . This, together with ω∗
1 < ω∗∗

1 and ω∗
2 < ω∗∗

2 , implies that

ω∗∗
1 > ω∗∗

2 > ω∗
2 > ω∗

1. (A.39)

We start by showing that p1, p2 > 0. Suppose that p1 = 0 and p2 > 0. Then, (A.4) implies that X1 = Ψ∗∗
1

and, hence, that ω∗∗
2 −ω∗

2 = b > ω∗∗
1 −ω∗

1 , which contradicts (A.39). Now suppose that p1 > 0 and p2 = 0.

Then,

p1
Ψ∗

1

Ψ∗∗
1

+ p2
1−Ψ∗

2

1−Ψ∗∗
2

> p2
Ψ∗

2

Ψ∗∗
2

+ p1
1−Ψ∗

1

1−Ψ∗∗
1

. (A.40)

This means that the judge assigns a higher probability to θ = 1 when only agent 1 accuses the defendant

than when only agent 2 does. This implies that q(1, 0) ≥ q(0, 1), which leads to a contradiction.

Having established that p1, p2 both lie in (0, 1), we conclude that (A.7) and (A.8) are equal to each other.

Applying (A.2) to both agents, we have

∣∣∣ω∗
1 + b

ω∗
2 + b

∣∣∣ =
1−Ψ∗∗

2

1−Ψ∗∗
1

· 1− q(1, 0)

1− q(0, 1)
· q(0, 1) + Ψ∗∗

1 (1− q(1, 0)− q(0, 1))

q(1, 0) + Ψ∗∗
2 (1− q(1, 0)− q(0, 1))

=
1−Ψ∗∗

2

1−Ψ∗∗
1

· 1− q(1, 0)

1− q(0, 1)
· Ψ

∗
1 −Ψ∗∗

1

Ψ∗
2 −Ψ∗∗

2

. (A.41)

Since 1−Ψ∗∗
1

1−Ψ∗∗
2

<
Ψ∗

1−Ψ∗∗
1

Ψ∗
1−Ψ∗∗

2
≤ Ψ∗

1−Ψ∗∗
1

Ψ∗
2−Ψ∗∗

2
, we get

1 ≥
∣∣∣ω∗

1 + b

ω∗
2 + b

∣∣∣ > 1− q(1, 0)

1− q(0, 1)
. (A.42)

The RHS of (A.42) is greater than 1 since q(1, 0) < q(0, 1). This yields the desired contradiction.
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B Proofs for Section 5.2: Three or More Potential Offenses and Witnesses

We first show that when L is large enough, every equilibrium satisfies q(1, 1, ..., 1) < 1 and q(a) = 0 for

every a ̸= (1, 1, ..., 1). Suppose by way of contradiction that for every L′ ∈ R+, there exists L ≥ L′

and an equilibrium with punishment L such that q(1, 1, ..., 1) = 1. We establish a lower bound on the

marginal increase in conviction probabilities that uniformly applies across all L. For every a ≻ a′, we

have Pr(θ = 1|a) > Pr(θ = 1|a′). As a result, there exist m ∈ {1, 2, ..., n} and q ∈ [0, 1) such that the

defendant is convicted for sure when there are m accusations or more, and is convicted with probability q

when there are m− 1 accusations. Refinement 1 requires that q = 0 when m = 1.

Recall the definitions of ω∗ and ω∗∗. Let Ψ∗ ≡ 1−Φ(ω∗) and Ψ∗∗ ≡ 1−Φ(ω∗∗) denote the probabilities

with which agent i accuses the defendant when he has witnessed an offense and when he has not witnessed

an offense, respectively. Since ω∗ < ω∗∗, we know that Ψ∗ > Ψ∗∗. For every m ≤ n− 1, let Q(m, θ−i) be

the probability that m agents other than i accuse the defendant given θ−i. Fixing θ−i, changing θi from 0 to

1, the marginal increase in conviction probability is given by

(Ψ∗ −Ψ∗∗)P (m, q, θ−i), (B.1)

where

P (m, q, θ−i) ≡ qQ(m− 2, θ−i) +

n−1∑
j=m−1

Q(j, θ−i)− qQ(m− 1, θ−i)−
n−1∑
j=m

Q(j, θ−i). (B.2)

This yields

P (m, q, θ−i) = (1− q)Q(m− 1, θ−i) + qQ(m− 2, θ−i). (B.3)

Since θ is binary and the equilibrium is symmetric, the functions Q(m, θ−i) and P (m, q, θ−i) depend on

θ−i only through the number of 1’s in the entries of θ−i. Let |θ−i| denote the number of 1’s in the vector

θ−i. Abusing notation, we rewrite Q(m, θ−i) as Q(m, |θ−i|), and P (m, q, θ−i) as P (m, q, |θ−i|). For any

fixed values of m, q, Ψ∗, and Ψ∗∗: we show that at least one of these three statements is true:

1. P (m, q, |θ−i|) is strictly increasing in |θ−i|,

2. P (m, q, |θ−i|) is strictly decreasing in |θ−i|,

3. P (m, q, |θ−i|) is first increasing and then decreasing in |θ−i|.

Proof. To simplify notation, we omit the first two arguments from P (m, q, |θ−i|) and write it as P (|θ−i|).
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By definition, P (|θ−i|) is a convex combination of the probability that the other n−1 agents produce m−1

accusations and the probability that they produce m accusations.

To establish the quasi-concavity of P , it suffices to show that for any k ∈ {1, 2, ..., n−1}, P (k)−P (k−

1) < 0 implies that P (k + 1) − P (k) < 0. Fix any agent other than 1 (say agent 2), and let X(k, θ−1,2)

denote the probability that agents other than 1 and 2 produce k accusations conditional on the values of

(θ3, ..., θn). By definition,

P (k)− P (k − 1)

Ψ∗ −Ψ∗∗ = q(X(m− 1, θ−1,2)−X(m, θ−1,2)) + (1− q)(X(m− 2, θ−1,2)−X(m− 1, θ−1,2)).

Similarly,

P (k + 1)− P (k)

Ψ∗ −Ψ∗∗ = q(X(m− 1, θ∗−1,2)−X(m, θ∗−1,2)) + (1− q)(X(m− 2, θ∗−1,2)−X(m− 1, θ∗−1,2))

where θ∗−1,2 and θ−1,2 are the same for all entries except for one, in which θ∗−1,2 has a value of 1 and θ−1,2

has a value of 0. Since each agent accuses the defendant with higher probability after he has witnessed an

offense, we know that

X(m− 1, θ−1,2)−X(m, θ−1,2) ≥ X(m− 1, θ∗−1,2)−X(m, θ∗−1,2)

and

X(m− 2, θ−1,2)−X(m− 1, θ−1,2) ≥ X(m− 2, θ∗−1,2)−X(m− 1, θ∗−1,2).

Therefore, P (k)− P (k − 1) < 0 implies that P (k + 1)− P (k) < 0.

In equilibrium, the defendant is indifferent between committing an offense against k agents and not

committing any offense, where k satisfies:

k ∈ arg min
k̃∈{1,...,n}

1

k̃

k̃−1∑
j=0

P (m, q, |θ−i|). (B.4)

For this value of k, the average cost of committing an offense when the defendant commits k offenses

equals the marginal benefit 1, and there does not exist k′ ∈ {1, 2, ..., n} such that if the defendant commits

k′ offenses, his average cost of committing an offense is strictly less than 1.

The value of k depends on the monotonicity of P (m, q, ·). When P (m, q, ·) is strictly increasing, k = 1

and the defendant is indifferent between committing only one offense and committing no offense. When
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P (m, q, ·) is strictly decreasing, k = n and the defendant is indifferent between committing no offense and

committing offense against all agents. When P (m, q, ·) is first increasing and then decreasing, k is either 1

or n, depending on the parameters. In what follows, we consider the two values of k separately.

Strategic Substitutes: When k = 1, if agent i has witnessed an offense, he prefers to choose ai = 1 if

and only if

ωi ≥ ω∗ = −b+ c

{
1− qQ(m− 2, 0)−

n−1∑
j=m−1

Q(j, 0)
}

P (m, q, 0)
. (B.5)

If agent i has not witnessed any offense, he prefers to choose ai = 1 if and only if

ωi ≥ ω∗∗ ≡ c

1− β
{
qQ(m− 2, 0) +

n−1∑
j=m−1

Q(j, 0)
}
− (1− β)

{
qQ(m− 2, 1) +

n−1∑
j=m−1

Q(j, 1)
}

βP (m, q, 0) + (1− β)P (m, q, 1)
(B.6)

where β is the probability that θ1 = ... = θn = 0 conditional on θi = 0. Refinements 1 and 2 imply that

ω∗∗−ω∗ > 0 because if this inequality were violated, the defendant would have a strict incentive to commit

an offense against agent i since a decrease in ai from 1 to 0 weakly decreases the probability of conviction.

In the first step, we show that ω∗∗ − ω∗ < b. This inequality comes from the fact that k = 1, which implies

that P (m, q, 1) > P (m, q, 0). Moreover,

qQ(m− 2, 1) +
n−1∑

j=m−1

Q(j, 1) > qQ(m− 2, 0) +
n−1∑

j=m−1

Q(j, 0).

Therefore,

ω∗∗ − ω∗ − b

c
=

1− β
{
qQ(m− 2, 0) +

n−1∑
j=m−1

Q(j, 0)
}
− (1− β)

{
qQ(m− 2, 1) +

n−1∑
j=m−1

Q(j, 1)
}

βP (m, q, 0) + (1− β)P (m, q, 1)

−

{
1− qQ(m− 2, 0)−

n−1∑
j=m−1

Q(j, 0)
}

P (m, q, 0)
< 0.

In the second step, we bound ω∗ from above using our earlier conclusion that |ω∗∗ − ω∗| < b and

q(1, 1, ..., 1) = 1. First, for every m ∈ {0, 1, ..., n − 1} and q, P (m, q, 0) ≥ P (n − 1, 0, 0) = (Ψ∗∗)n−1.
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From (B.5), we know that

ω∗ + b

c
≥ (Ψ∗∗)−(n−1) ≥

(
1− Φ(ω∗ − b)

)−(n−1)
.

Since the RHS of the last formula is strictly positive, there exists ω∗ > 0 that is independent of L, such that

ω∗ ≤ ω∗.

In the third step, we derive a lower bound for the term Ψ∗ −Ψ∗∗. Let

X0 ≡ qQ(m− 2, 0) +

n−1∑
j=m−1

Q(j, 0) and X1 ≡ qQ(m− 2, 1) +

n−1∑
j=m−1

Q(j, 1).

From (B.5) and (B.6),

ω∗∗ − ω∗

c
=

b

c
− (1− β)

P (m, q, 1)(1−X0)− P (m, q, 0)(1−X1)

P (m, q, 0)
(
βP (m, q, 0) + (1− β)P (m, q, 1)

) . (B.7)

We start by deriving an upper bound for

P (m, q, 1)(1−X0)− P (m, q, 0)(1−X1)

Ψ∗ −Ψ∗∗ . (B.8)

Since

P (m, q, 1)(1−X0)−P (m, q, 0)(1−X1) = (X1 −X0)P (m, q, 0) + (1−X0)(P (m, q, 1)−P (m, q, 0)),

and since 1 − X0 and P (m, q, 0) are both bounded above by 1, we only need to bound X1−X0
Ψ∗−Ψ∗∗ and

P (m,q,1)−P (m,q,0)
Ψ∗−Ψ∗∗ from above. Notice that

Q(j, 1)−Q(j, 0)

Ψ∗ −Ψ∗∗ =

(
n− 2

j − 1

)
(Ψ∗∗)j−1(1−Ψ∗∗)n−1−j −

(
n− 2

j

)
(Ψ∗∗)j(1−Ψ∗∗)n−2−j

which is bounded from above by
(
n−2
j−1

)
. Since X1 − X0 and P (m, q, 1) − P (m, q, 0) are both linear

combinations of terms of the form of Q(j, 1) − Q(j, 0), X1−X0
Ψ∗−Ψ∗∗ and P (m,q,1)−P (m,q,0)

Ψ∗−Ψ∗∗ are also bounded

above. Let C0 ∈ R+ be the upper bound on (B.8). Since P (m, q, 0)
(
βP (m, q, 0) + (1 − β)P (m, q, 1)

)
is

bounded away from 0, we can also bound

1

Ψ∗ −Ψ∗∗ · P (m, q, 1)(1−X0)− P (m, q, 0)(1−X1)

P (m, q, 0)
(
βP (m, q, 0) + (1− β)P (m, q, 1)

) . (B.9)
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Letting C1 ∈ R+ denote this bound, we have

ω∗∗ − ω∗

c
≥ b

c
− (1− β)C1(Φ(ω

∗)− Φ(ω∗∗)). (B.10)

Letting C2 ≡ δ(1− β)C1, we obtain

ω∗∗ − ω∗

c
+ C2(Φ(ω

∗)− Φ(ω∗∗)) ≥ b

c
. (B.11)

We have shown in the previous step that ω∗ < ω∗. Let ϵ ∈ R+ denote the unique solution of the equation

ϵ

c
+ C2ϵϕ(ω

∗ + ϵ) =
b

c
,

whose LHS is continuous, strictly increasing in ϵ, strictly greater than b
c for ϵ → ∞, and strictly less than b

c

when ϵ → −∞. From (B.11), we know that

Ψ∗ −Ψ∗∗ = (Φ(ω∗∗)− Φ(ω∗)) ≥ ϵϕ(ω∗ + ϵ). (B.12)

The defendant’s incentive constraint is P (m, q, 0)(Ψ∗−Ψ∗∗)L = 1. Since P (m, q, 0) is bounded below by(
δΦ(ω∗ − b) + (1 − δ)α

)−(n−1)
and Ψ∗ − Ψ∗∗ is bounded below by (B.12), the LHS must go to +∞ as

L → +∞, which leads to a contradiction.

Strategic Complements: When k = n, if agent i has witnessed an offense, he prefers to choose ai = 1 if

and only if

ωi ≥ ω∗ = −b+ c

{
1− qQ(m− 2, n− 1)−

n−1∑
j=m−1

Q(j, n− 1)
}

P (m, q, n− 1)
(B.13)

Similarly, if agent i has not witnessed any offense, he prefers to choose ai = 1 if and only if

ωi ≥ ω∗∗ = c

{
1− qQ(m− 2, 0)−

n−1∑
j=m−1

Q(j, 0)
}

P (m, q, 0)
(B.14)

Since k = n, P (m, q, n− 1) > P (m, q, 0). Moreover, since Ψ∗ −Ψ∗∗ > 0,

qQ(m− 2, n− 1)−
n−1∑

j=m−1

Q(j, n− 1) > qQ(m− 2, 0)−
n−1∑

j=m−1

Q(j, 0). (B.15)
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These inequalities imply that the distance between the cutoffs is strictly greater than b. As before, we obtain

an upper bound on ω∗, which we denote by ω∗. The defendant’s marginal cost of committing another offense

is bounded below by

L(Ψ∗ −Ψ∗∗)P (m, q, n− 1) ≥ Lδbϕ(ω∗ + b)(1− δ)n−1αn−1. (B.16)

The RHS goes to infinity as L → ∞, which leads to a contradiction.

The Defendant’s Equilibrium Strategy: Since q(1, 1, ..., 1) ∈ (0, 1) and ω∗ < ω∗∗, we have Pr(θ =

1|a) < Pr(θ = 1|(1, 1, ..., 1)) = π∗ for every a ̸= (1, 1, ..., 1). Therefore, q(a) = 0 for every a ̸=

(1, 1, ..., 1). Let q ≡ q(1, 1, ..., 1). When the defendant commits an offense in addition to m ∈ {0, 1, 2, ...,m−

1} offenses, the probability that he gets convicted increases by q(Ψ∗ − Ψ∗∗)(Ψ∗∗)n−m(Ψ∗)m, which is

a strictly increasing function of m. Therefore, if the defendant commits m ≥ 2 offenses with positive

probability, the probability Pr(θ = 1) that he commits at least one offense is equal 1, which leads to a

contradiction. Therefore, the defendant must be indifferent between committing one offense and committing

no offense, and he does both with strictly positive probability in equilibrium.

B.1 Proof of Proposition 4

We start by deriving formulas for the agents’ reporting cutoffs when there are n agents in total, which

we denote by (ω∗
n, ω

∗∗
n ). We also calculate the informativeness of accusations when all n agents accuse

the defendant denoted by In, and the equilibrium probability with which at least one offense taking place

denoted by πn. For every i ∈ {1, 2, ..., n}, if agent i has witnessed an offense, then he prefers to choose

ai = 1 when

ωi ≥ ω∗
n = −b− c+

c

qnQ1,n
. (B.17)

If agent i has not witnessed any offense, then he prefers to choose ai = 1 when

ωi ≥ ω∗∗
n = −c+

c

qnQ0,n
(B.18)

where

Q1,n ≡
(
1− Φ(ω∗∗

n )
)n−1

(B.19)
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and

Q0,n ≡ nIn
(n− 1)l∗ + nIn

(
1− Φ(ω∗∗

n )
)n−1

+
(n− 1)l∗

(n− 1)l∗ + nIn

(
1− Φ(ω∗∗

n )
)n−2(

1− Φ(ω∗
n)
)
. (B.20)

We have shown earlier that when L is large enough, the defendant commits at most one offense in every

equilibrium. This leads to the following formula for the informativeness ratio:

In =
δΦ(ω∗

n) + (1− δ)α

δΦ(ω∗∗
n ) + (1− δ)α

.

Under APP, the judge convicts a defendant with probability strictly between 0 and 1 when there are n

accusations. This implies that

In =
π∗

1− π∗

/ πn
1− πn

. (B.21)

When L is large enough, the defendant’s indifference condition for committing no offense and committing

only one offense is given by:

1

L
= qn

(
Φ(ω∗∗

n )− Φ(ω∗
n)
)(

1− Φ(ω∗∗
n )

)n−1
. (B.22)

Using these formulas, we now show that ω∗∗
n −ω∗

n ∈ (0, b). Suppose by way of contradiction that ω∗∗
n −ω∗

n ≤

0. Then, comparing (B.19) and (B.20) yields Q1,n ≥ Q0,n. Plugging this into (B.17) and (B.18) implies

that ω∗
n ≤ ω∗∗

n − b, which contradicts our earlier hypothesis that ω∗∗
n − ω∗

n ≤ 0 and implies ω∗∗
n − ω∗

n > 0.

Since ω∗∗
n −ω∗

n > 0, we have Q1,n < Q0,n. The expressions for these cutoffs then imply that ω∗∗
n −ω∗

n < b.

Next, we show that In → 1 as ω∗
n → +∞. Equations (B.17) and (B.18) yield

|ω∗
n − b− c|
|ω∗∗

n − c|
=

Q0,n

Q1,n
=

(n− 1)l∗

(n− 1)l∗ + nIn
In +

nIn
(n− 1)l∗ + nIn

. (B.23)

Since ω∗∗
n − ω∗

n ∈ (0, b), the LHS converges to 1 as ω∗
n → +∞, which implies that the RHS also converges

to 1. This can occur only if In → 1.

In the last step, we show that ω∗
n → +∞ as L → +∞. Suppose by way of contradiction that there exists

a finite accumulation point ω∗ > 0 for ω∗
n. The LHS of (B.22) converges to 0 when L → +∞. Therefore, at

least one of the following properties must occur along some subsequence: qn → 0 or Φ(ω∗∗
n )−Φ(ω∗

n) → 0.

Since ω∗
n → ω∗, Φ(ω∗∗

n )− Φ(ω∗
n) → 0 implies that ω∗∗

n − ω∗
n → 0.

First, suppose by way of contradiction that qn → 0 along some subsequence. From (B.17), ω∗
n → +∞

along this subsequence, which leads to a contradiction.
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Second, suppose by way of contradiction that qn is bounded away from 0 along some subsequence, i.e.,

strictly greater than some q > 0. For the LHS of (B.22) to converge to 0, we need ω∗∗
n − ω∗

n → 0 along this

subsequence. Subtracting the expression of ω∗
n from that of ω∗∗

n , we obtain

qn
c

(
ω∗∗
n − (ω∗

n + b)
)
=

(n− 1)l∗

(n− 1)l∗ + n

{ 1

1− Φ(ω∗
n)

− 1

1− Φ(ω∗∗
n )

}
. (B.24)

The absolute value of the LHS is no less than qb/c in the limit as ω∗∗
n − ω∗

n → 0. The absolute value of the

RHS converges to 0 as Φ(ω∗∗
n ) − Φ(ω∗

n) → 0, leading to a contradiction. This implies that ω∗
n → +∞ in

every equilibrium as L → +∞.

The three parts together imply that as L → +∞, ω∗
n and ω∗∗

n diverge to +∞, In → 1 andπn → π∗.

B.2 Proof of Proposition 5

Since the defendant is indifferent between all action profiles, his marginal cost of committing an offense

equals his marginal benefit: qL(Ψ∗−Ψ∗∗) = 1 where q ∈ (0, 1) is the incremental probability of conviction

after an agent accuses him, Ψ∗ is the probability of ai = 1 conditional on θi = 1, and Ψ∗∗ is the probability

of ai = 1 conditional on θi = 0. The reporting cutoffs are given by ω∗ ≡ c(P−q)
q − b and ω∗∗ ≡ c(P−q)

q ,

where P ≡ Pr(s = 0|ai = 0). Therefore, ω∗∗ − ω∗ = b, which implies that Ψ∗ − Ψ∗∗ → 0 if and only

if ω∗ → +∞. As L → +∞, the indifference condition implies that either q → 0 or Ψ∗ − Ψ∗∗ → 0 or

both. The formulas for the reporting cutoffs implies that ω∗ → +∞ if and only if q → 0. This implies that

ω∗ → +∞ as L → ∞. In the limit as L → ∞, the informativeness ratio I ≡ 1−Φ(ω∗
i )

1−Φ(ω∗∗
i ) diverges to +∞.
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