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Aniko Öry, Bobby Pakzad-Hurson, Alessandro Pavan, Daniel Rappoport, Larry Samuelson, Ron Siegel, Teck Yong Tan, and Boli Xu for
helpful comments. We acknowledge financial support from NSF Grants SES-1151410, SES-1947021, and SES-2337566.

†Department of Economics, Northwestern University. Email: harrydp@northwestern.edu.
‡Department of Economics, Northwestern University. Email: b-strulovici@northwestern.edu.

1



1 Introduction

When a defendant faces multiple charges, the legal norm is to consider these charges separately and to convict

the defendant for each individual charge for which the evidence of guilt meets the appropriate standard of proof.

However, the desirability of this separation for deterrence and fairness is not obvious. For example, consider

a defendant who may have committed two offenses with probability 0.8 each, independent of each other. If

the conviction threshold for each offense is 0.9, then the defendant is acquitted on both counts, even though

the probability that he is guilty of at least one offense is 1 − 0.2 × 0.2 = 0.96. Under the same threshold, a

defendant accused of a single offense is convicted when his probability of guilt is 0.91 and thus lower than the first

defendant’s.

This issue has received significant attention from prominent legal scholars, starting with Cohen (1977), Bar

Hillel (1984), and Robertson and Vignaux (1993), who explore the possibility of aggregating accusations against

a defendant by considering his overall probability of guilt. Harel and Porat (2009) formalize the Aggregate Prob-

abilities Principle (“APP”), according to which a defendant is convicted if the probability that he has committed

at least one offence exceeds a threshold. Compared to the standard legal norm, which they call the Distinct Prob-

abilities Principle (“DPP”), Harel and Porat advocate the use of APP to varying degrees in both civil and criminal

cases, arguing that APP can reduce adjudication errors, improve deterrence, and reduce the cost of enforcement.

This issue has gained even more momentum over the last decade in both the legal and the philosophy literatures

(see for example, Pundik (2015), Littlejohn (2017), Smith (2018), Di Bello (2019), Backes (2020), Blome-Tilman

(2020), Ross (2020)).1 Schauer (2023) concludes that “....the legal systems ought to be more willing than they now

are to base liability on under-specified wrongs, at least when multiple under-specified acts are relevantly similar

and are alleged to be committed by the same defendant”.

The aforementioned papers rely on two key assumptions. First, the defendant’s guilt for each offense is inde-

pendently distributed across charges. Second, the informativeness of the evidence available regarding each offense

is exogenously given. In particular, this informativeness is independent of the rule used to adjudicate cases with

multiple accusations. These two assumptions ignore the impact that APP can have on (i) the incentives of potential

offenders to commit offenses and (ii) the incentives of potential witnesses to report offenses. This impact may be

significant when a defendant faces multiple accusations that are hard to prove beyond a reasonable doubt, such

as abuses of power for which the main incriminating evidence consists of witness testimonies. In these cases,

the incentives of witnesses to report their observations truthfully are affected by how likely their report is to be
1Much of the related work builds on thought experiments such as Cohen’s (1977) Gatecrasher paradox, Pundik’s (2015) serial burglar,

and Littlejohn (2017)’s Prison Yard, to argue that adjudication rules based on DDP lead to counter-intuitive and problematic outcomes.
Some of these thought experiments are closer to reality, such as Schauer’s (2023) discussion of repeated assaults and driving infractions.
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corroborated by other witnesses and their fear of retaliation.

This paper investigates the effects of APP and DPP on incentives, informativeness, and deterrence from a

game-theoretic perspective.2 Our model features one potential offender and multiple witnesses. The potential

offender’s decisions to commit offenses and the witnesses’ decisions of whether to accuse the potential offender

are both endogenously determined in equilibrium. We show that the strategic implications of APP are such that

a potential offender’s decisions to commit distinct offenses are negatively correlated in equilibrium when the

punishment incurred in case of conviction is large relative to the benefits from committing offenses. This negative

correlation, together with witnesses’ coordination motives, lowers the informativeness of testimonies and increases

the expected number of offenses in equilibrium.

In our model, the potential offender—hereafter the defendant—has multiple opportunities to commit offenses,3

each of which is associated with a distinct witness. Each witness observes whether the offense associated with

him takes place. For example, the defendant could be a firm executive with multiple opportunities to commit fraud

or to violate workplace regulations, and the witnesses could be employees who may observe distinct offenses and

may become whistleblowers.4

Once each witness has privately observed whether the offense associated with him has occurred, the witnesses

independently decide whether to accuse the defendant. A witness’s decision is driven by three considerations: (i)

a preference for convicting guilty defendants and acquitting innocent ones, (ii) a risk of retaliation if the witness

makes an accusation that fails to result in a conviction (e.g., because no other witness comes forward), and (iii) a

private, idiosyncratic bias for or against getting the defendant convicted, whose distribution is independent from

the other witness’s bias.5 After observing witnesses’ testimonies, a judge decides whether to convict or acquit the

defendant.6

2One could perform a more general mechanism design analysis beyond comparing APP and DPP. We undertook this approach in an
earlier version of this paper (Pei and Strulovici 2021) subsumed by the present version. In a somewhat different and more complex model
and using a more involved analysis, we showed that when (i) the defendant may commit at most two offenses and (ii) the punishment in
case of conviction is large relative to the benefit from committing an offense, the optimal mechanism is approximated by either APP or
DPP so that focusing on these two rules is, under these conditions, without loss of optimality. This paper focuses on the simpler and more
practical question of comparing the existing rule to the one suggested in the legal and philosophy literature.

3Formally, the potential offender becomes a defendant only if at least one accusation is made against him. We nonetheless use the
shorter terminology for simplicity.

4In cases that concern abuses of power, police brutality, workplace bullying, and harassment, witnesses may be the victims of these
offenses. In other cases, they may be mere observers.

5In our model, some offenses go unreported and, conversely, some false accusations are made. Both features are consistent with the
empirical evidence on abuses and reports of abuse. For instance, a 2016 survey conducted by the USMSPB concluded that 21% of women
and 8.7% of men experienced at least one of 12 categorized behaviors of sexual harassment, of which only a small fraction was followed
by charges. According to data released by USMSPB, among the harassment charges filed in 2017, only 16% led to merit resolutions. A
similar pattern was found in a study of harassment in the U.S. military by the RAND corporation (2018) and studies of police brutality or
inaction by Ba (2020) and Ba and Rivera (2023) using Chicago data.

6In an extension, we consider the case in which the defendant’s punishment depends not only on the probability of guilt, but also on the
probability that the defendant has committed multiple offenses. We show that this extension does not affect the results of the model with a
simple conviction/acquittal decision.
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We compare equilibrium outcomes across the adjudication rules APP and DPP. Under APP, a defendant is

convicted if the probability that he has committed at least one offense (i.e., that he is guilty of something) exceeds

some exogenous threshold. Under DPP, the defendant is convicted if there is one specific offense for which the

probability that the defendant committed this offense exceeds some threshold. The APP and DPP criteria are

identical when the defendant may commit at most one potential offense, but may lead to different outcomes when

the defendant may commit multiple offenses.

Our analysis shows that APP and DPP lead to radically different outcomes when the defendant’s loss (e.g.,

disutility) from being convicted is large relative to his benefit from committing an offense. Under this assumption,

we show that (i) under APP, each witness’s accusation is arbitrarily uninformative and the expected number of

offenses is close to the conviction threshold being used, while (ii) under DPP, a witness’s accusation is highly

informative (in a likelihood-ratio sense) and the expected number of offenses is arbitrarily small.

Turning to judicial errors, we show that APP introduces a tension between deterrence and false convictions:

while lowering the guilt-probability threshold used to convict defendants results in a lower expected number of

offenses, it also increases the conditional probability that a convicted defendant did not commit any offense.

Precisely, we show that when the threshold probability is p ∈ (0, 1), the expected number of offenses under APP

is close to p and the probability that a convicted defendant is innocent is close to 1 − p. This tension, which may

seem intuitive, does not arise under DPP.

We now provide intuition for our results, focusing on settings in which the defendant can commit at most two

possible offenses (the extension to three or more offenses is also analyzed in the paper). We start by explaining

why, under our maintained assumption that the punishment for conviction is large relative to the benefit from

committing offenses, the defendant is convicted in equilibrium under APP only if both witnesses accuse him. To

see this, suppose by way of contradiction that only one accusation sufficed to get the defendant convicted with

positive probability, i.e., sufficed to raise the defendant’s probability of guilt to the conviction threshold. Then,

two accusations would raise the posterior probability of guilt even further, strictly above the conviction threshold,

and result in the defendant being convicted with probability one. Facing a large punishment in case of conviction,

the defendant would respond by not committing any offense so as to minimize the probability of facing multiple

accusations, contradicting the fact that the defendant is convicted with positive probability in equilibrium.

This observation implies that the defendant’s decisions to commit distinct offenses are strategic substitutes:

the increase in the probability of conviction that results from committing a given offense is higher if the defendant

also commits the other offense than if he does not.

The fact that offenses are strategic substitutes implies, in equilibrium, that witnesses’ private signals are nega-

tively correlated: a witness who observes an offense believes that the other witness is unlikely of also observing
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an offense, and vice versa.

Separately, because each witness faces retaliation if he is the only one to accuse the defendant, witnesses’

decisions to accuse the defendant are strategic complements.

Combining the negative correlation of witnesses’ signals and the complementarity of their accusation decisions

creates a tension between witnesses’ incentives to coordinate on the same reports and the fact that the individual

signals that drive these reports are negatively correlated. This tension has the effect of reducing the dependence

of witnesses’ reports on their private signals, thereby diminishing the informativeness of their testimonies. This

lower informativeness increases the equilibrium probability that the defendant commits offenses and the expected

number of offenses.

DPP is immune to the logic just described. DPP uses each probability that the defendant is guilty of a specific

offense as an input. Crucially, the defendant’s probability of guilt for a specific offence need not increase if he is

accused of another offense. In particular, when the decisions to commit distinct offenses are uncorrelated, a testi-

mony pertaining to a given offense has no bearing on the likelihood of guilt for another offense and thus need not

affect the probability of conviction according to DPP. In fact, we show that this lack of correlation across offenses

must arise in equilibrium when DPP is used. In equilibrium, the judge’s belief about the occurrence of any given

offense reaches the conviction threshold if and only if the witness whose role it is to testify on this specific offense

accuses the defendant, and this belief is independent of other witnesses’ testimonies. In equilibrium, witnesses’

private observations are uncorrelated, which neutralizes the adverse effect that their coordination motive had, un-

der APP, on the credibility of their testimonies. Finally, the defendant’s decisions to commit distinct offenses are

no longer strategic substitutes (and neither are they complements), because the probability of conviction is linear

in the number of accusations made against the defendant.

Our findings are robust with respect to several extensions of our model. First, we consider the case in which the

defendant has a private type that affects his benefit from committing offenses. We consider the case of binary types,

in which the defendant is either a virtuous type who does not benefit from committing offenses or an opportunistic

type who benefits from committing offenses as before. We show that when the probability of the virtuous type is

above some cutoff, the opportunistic type will commit both offenses with positive probability. Nevertheless, our

main theorems extend after we account for such heterogeneity.

Next, we extend our theorems to the case of three or more offenses maintaining our assumption that each

offense, when it occurs, is observed by a distinct witness. We show that, under APP, the informativeness of

witnesses’ testimonies, pooled together, regarding the defendant’s likelihood of guilt is decreasing in the number

of potential offenses, even though there are more witness reports available to the judge. Moreover, we find that

the unconditional probability that a given witness accuses the defendant increases in the number of potential
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offenses. Since each accusation bears a potential cost for the accuser but increases the value of accusations by

other witnesses, accusations may be viewed as a form of contribution to a public good between witnesses. Viewed

in this light , the fact that each witness is more likely to accuse the defendant as the number of witnesses increases

distinguishes our analysis from standard theories of public good provision, in which contributions become scarcer

as the number of players increases.

We also consider the following variations of our model: (i) the defendant faces a larger punishment when

the probability that he has committed multiple offenses exceeds some exogenous threshold; (ii) the defendant’s

utility from committing offenses is concave in the number of offenses; (iii) a witness who makes a false accusation

against the defendant may be uncovered and punished ex post with positive probability; (iv) witnesses have an

intrinsic preference for reporting the truth (above and beyond the effect of their testimony on the verdict); (v) each

witness cares not only about the potential offense that he is associated with, but also about all other offenses that

the defendant may have committed; (vi) the number of opportunities to commit offenses is not publicly known,

and is instead the defendant’s private information; and (vii) the witnesses incur a positive cost when they accuse

the defendant even when the defendant is convicted.

In summary, our comparison between APP and DPP suggests a rationale for using a conviction criterion that

treats each accusation independently of other offenses that the defendant may have committed. Our results echo

some critiques of procedures that link accusations across potential witnesses, especially those that are related to

the credibility of witnesses’ reports.7

One caveat for the applicability of our results is that these results are obtained using equilibrium analysis.

While equilibrium analysis is the norm in economics, it rests on the assumption that all players know one another’s

equilibrium strategies and are playing mutual best replies to these strategies. This assumption is more plausible

when the environment has remained stable for an extended period of time than after a change in the environment,

which might correspond in our context to a change in the conviction rule (e.g., APP vs. DPP) used for adjudication

or to a discrete jump in the punishment level imposed when convicted of a given offense.

We review the related literature in the remainder of this section. Section 2 sets up our model. Section 3

analyzes a single-offense benchmark in which the defendant cannot commit one of the offenses. Section 4 states

and shows our main results, which compare the equilibrium outcomes under APP and DPP when the defendant can

commit multiple offenses. Section 5 studies several extensions which include settings with three or more agents

and settings in which the defendant has private information about his propensity to commit offenses. Section 6

concludes.
7Keith Hiatt, the director of the Technology Program at the Human Rights Center at UC Berkeley School of Law notes, concerning the

multiple-accusations approach taken by the online platform Callisto that “it may also codify an entrenched attitude that women need to
have corroborating evidence to be believed.” New York Times, “The War on Campus Sexual Assault Goes Digital,” Nov. 13, 2015.
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Related Literature: In addition to the debate concerning the potential benefits of aggregating offenses, our

paper contributes to several literatures that concern strategic communication, voting, and law and economics.

First, our paper is related to the literature on strategic communication with multiple senders (Battaglini (2002,

2017), Ambrus and Takahashi (2008), Morgan and Stocken (2008), and Ekmekci and Lauermann (2020, 2022))

and when the sender’s information is endogenous (Pei (2015), Argenziano, Severinov and Squintani (2016), and

Kreutzkamp (2023)). In all these works, senders communicate information about some exogenous state of the

world. In the present paper, by contrast, witnesses (the senders in our model) communicate information about an

endogenous object, which is the defendant’s action. As a result, the correlation between senders’ private signals

is determined by the defendant’s incentives and is therefore endogenous. Our results shed light on how this

endogenous correlation structure combined with the senders’ coordination motives, affects the informativeness of

communication which in turn affects the defendant’s equilibrium behavior.

Second, our paper is related to the literature on strategic voting (Austen-Smith and Banks (1996), Feddersen

and Pesendorfer (1996)). Witnesses’ testimonies under the APP criterion may be viewed as a voting game in

which witnesses vote on whether the defendant is guilty of having committed at least one offense. In contrast to

the earlier literature, in our model the correlation between voters’ private signals is endogenous and the voting rule

used for conviction is also endogenously determined. These features also distinguish our analysis from Schmitz

and Tröger (2012) and Ali, Mihm, and Siga (2018), who analyze the performances of voting rules when voters’

payoffs are negatively but exogenously correlated, and from Persico (2004), Gershkov and Szentes (2009), and

Strulovici (2022), who analyze voters’ incentives to acquire information about some exogenous state of the world.

Third, our paper contributes to the law and economics literature. Our main contribution is to compare the

equilibrium outcomes under different conviction rules when potential offender may commit multiple offenses and

when the offender’s incentives to commit offenses and witnesses’ incentives to testify are both endogenous. In

addition to the works from legal scholarship cited above, our paper is most closely related to the contemporaneous

works of Lee and Suen (2020) and Cheng and Hsiaw (2022). Lee and Suen (2020) study the timing of reports by

victims and libelers in a model in which a criminal commits crimes against each of the two agents with exoge-

nous probability. They provide an explanation for the well-documented fact that victims sometimes delay their

accusations. Their analysis and ours consider complementary aspects of witnesses’ reporting incentives. Cheng

and Hsiaw (2022) adopt a global game perspective to study the reporting incentives of a continuum of agents who

observe conditionally independent signals of the state. In contrast to those papers, endogenizing the behaviors of

potential offenders is the main innovation of our model.
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2 Model

Consider a three-stage game between a defendant, two witnesses (which we will call agents),8 and a judge.

In the first stage, the defendant chooses θ ≡ (θ1, θ2) ∈ {0, 1}2 where θi = 1 stands for the defendant

committing an offense witnessed by (or against) agent i. In the second stage, each agent i ∈ {1, 2} privately

observes θi and the realization of a preference shock ωi ∈ R. We assume that ω1 and ω2 are independently

distributed, both are drawn from a normal distribution with cdf Φ(·) and pdf ϕ(·).9 Then the agents simultaneously

decide whether to accuse the defendant (ai = 1) or not (ai = 0). In the third stage, the judge observes a ≡

(a1, a2) ∈ {0, 1}2 and chooses s ∈ {0, 1}, where s = 1 stands for convicting the defendant and s = 0 stands for

acquitting the defendant.

A strategy profile consists of a tuple
{
σo, (σi)

2
i=1, q

}
where: σo ∈ ∆

(
{0, 1}n

)
is the defendant’s strategy and

represents a probability distribution over vectors θ of offenses; σi : R × {0, 1} → [0, 1] is agent i’s strategy and

maps each realization of ωi and θi to a probability that i accuses the defendant; and q : {0, 1}n → [0, 1] maps

agents’ reports a ∈ {0, 1}2 to the probability of conviction (s = 1).

The defendant’s payoff is given by
∑2

i=1 θi − sL, and interpreted as follows: the defendant receives a benefit

normalized to 1 for each committed offense, and loses L > 0 if he is convicted. Agent i ∈ {1, 2}’s payoff is given

by

ui(ωi, θi, ai) ≡

 ωi + bθi if s = 1

−cai if s = 0.
(2.1)

This payoff should be understood as follows: if the defendant is convicted, agent i receives an idiosyncratic private

benefit ωi plus an additional benefit b > 0 if i had observed offense θi = 1 committed by the defendant. This

payoff structure implies that, other things being equal, i has a stronger incentive to accuse the defendant when

ωi is higher and when i has observed an offense. In addition, i incurs a cost c if i accuses the defendant but this

accusation does not lead to a conviction (s = 0). This cost may be interpreted as defendant retaliating against i in

case of a failed accusation.

Section 5.3 considers several important extensions, including one in which the defendant has a private type that

determines his benefit from from committing offenses and one in which the defendant faces decreasing marginal

returns from committing offenses. That section also considers the case in which agents have a private benefit

from telling the truth irrespective of the conviction outcome or from convicting defendants who have committed

offenses against other agents, in addition to the one that they get to directly to observe.
8Section 5.2 studies an extension in which there are three or more witnesses.
9Our main result (Theorem 1) and our comparative statics result (Theorem 3) hold regardless of the distribution of agents’ prefer-

ence shocks. Proposition 1 and Theorem 2 also extend to other distributions as long as their left tails are not too fat in the sense that
limω→+∞

Φ(ω−b)
Φ(ω)

= 0 for every b > 0. Our condition is satisfied, for example, when the distribution is normal.

8



As noted in the Introduction, an important consideration to frame our analysis is the debate in legal scholarship

regarding whether one should aggregate accusations faced by a defendant to form an overall probability of the

defendant’s guilt. To engage with this debate, we compare equilibrium outcomes for the two adjudication criteria

used in this literature: the Aggregate Probabilities Principle (or APP) and the Distinct Probabilities Principle

(or DPP). Under APP, a defendant is convicted if the probability that he is guilty of committing at least one

offense (i.e., the probability that maxi{θi} = 1) exceeds some threshold, such as 95%, interpreted as the judge’s

standard of proof. Under DPP, by contrast, a defendant is convicted if there is at least one offense for which the

probability that the defendant is guilty of this specific offense exceeds some threshold. Mathematically, DPP leads

to a conviction if maxi Pr(θi = 1) exceeds some threshold.

In practice, DPP is used in many criminal justice systems. For example, when a defendant is charged with a

number of offenses, the court examines each charge individually to decide whether a beyond-a-reasonable-doubt

standard is satisfied. By contrast, APP is more commonly used for punishments meted out outside the criminal

justice system, for example in the case of managers charged with discriminating against minority workers, or

when supervisors are charged with abusing their subordinates, where the accumulation of charges is sometimes

used as proxy for the probability of guilt of the accused. This perspective is supported by Schauer and Zeckhauser

(1996) who write that although sound reasons for the criminal law’s refusal to cumulate multiple low-probability

accusations exist, the reasons for such refusal are often inapt in other settings. Harel and Porat (2009) advocate

for a broader use of APP in judicial settings, arguing that acquitting defendants who are almost surely guilty of

some unspecified crime is neither just nor efficient (page 263).

We now formally define APP and DPP and their corresponding equilibria. A strategy profile
{
σo, (σi)

2
i=1, q

}
is

an equilibrium under APP and standard of proof π∗ ∈ (0, 1) if the following holds: σo maximizes the defendant’s

payoff given (σ1, σ2, q); σi maximizes agent i’s payoff given (σo, σ−i, q) for every i ∈ {1, 2}; and q(a) satisfies

q(a) =

 1 if Pr(θ = 1|a) > π∗

0 if Pr(θ = 1|a) < π∗
(2.2)

where θ ≡ maxi∈{1,2} θi captures whether the defendant is guilty of at least one offense.

A strategy profile
{
σo, (σi)

2
i=1, q

}
is an equilibrium under DPP and standard of proof π∗ ∈ (0, 1) if the

following holds: σo maximizes the defendant’s payoff given (σ1, σ2, q); σi maximizes agent i’s payoff given

(σo, σ−i, q) for every i ∈ {1, 2}; and q(a) satisfies

q(a) =

 1 if maxi∈{1,2} Pr
(
θi = 1

∣∣a) > π∗

0 if maxi∈{1,2} Pr
(
θi = 1

∣∣a) < π∗.
(2.3)
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As is standard in models with discrete action spaces, we allow players to use mixed strategies in order to en-

sure the existence of equilibrium. In particular, the judge may convict the defendant with any probability when

she is indifferent, which corresponds to the condition Pr(θ = 1|a) = π∗ under APP and to the condition

maxi∈{1,2} Pr
(
θi = 1

∣∣a) = π∗ under DPP.

In our model, each agent i signals his private information about θi and ωi by choosing whether to accuse

the defendant. As in other signaling games, there generally exist numerous equilibria, including some which are

arguably unnatural. Fortunately, it is possible to rule out these equilibria using two refinements which are easy to

interpret in our context. First, regardless of the conviction rule and the standard of proof π∗ ∈ (0, 1), there always

exist equilibria in which the defendant commits all offenses and is convicted even when no agent accuses him.

These equilibria violate the principle–akin to a form of presumption of innocence–that a defendant should not be

convicted based on the sole basis of a judge’s prior belief. This motivates the following refinement:

Refinement 1 (No Conviction Unless Accused). (i) The defendant is acquitted for sure if no agent accuses

him. (ii) The event that no agent accuses the defendant occurs with strictly positive probability.

Refinement 1 implies that the defendant cannot, in equilibrium, be guilty with probability 1. Otherwise, the

judge’s posterior belief would assign probability 1 to the defendant being guilty, regardless of the vector a of

accusations made against the defendant on the equilibrium path, including when no agent accuses him, which

violates the refinement.

Next, the judge’s conviction decision is a function of her posterior belief about (θ1, θ2), formed based on the

set of agents who accuse the defendant. There may exist “contrarian” equilibria in which agents are more likely to

accuse the defendant if they did not observe an offense and making an “accusation” (i.e., ai = 1) runs contrary to

its intended meaning. Refinement 2 rules out this case and ensures that accusations have their intuitive meaning

by requiring that each accusation weakly increases the probability of conviction and, hence, that each accusation

is a move against the defendant.

Refinement 2 (Monotonicity). For every i ∈ {1, 2} and a−i ∈ {0, 1}, we have q(1, a−i) ≥ q(0, a−i).

In equilibria that satisfy Refinement 2, each accusation is a move against the defendant. This is consistent with

the interpretation that the parameter c appearing in agents’ payoff functions is a retaliation cost borne by an agent

who accused the defendant but failed to secure a conviction. This refinement is consistent with other models of

retaliation. In Chassang and Padró i Miquel (2019), for instance, a defendant commits to retaliate against messages

that increase the defendant’s probability of conviction, but not against messages that do not have this effect.

10



3 Single-Offense Benchmark

Before considering the case of multiple potential offenses, we begin the analysis with a single-offense benchmark

in which the defendant can commit an offense only against agent 1, but cannot commit offense against agent 2.

Under this assumption, APP and DPP coincide since Pr(θ = 1) = Pr(θ1 = 1) = maxi∈{1,2} Pr(θi = 1).

We show, in this context, that when the defendant’s loss from conviction L is large relative to his benefit from

committing the offense, the probability that the defendant commits the offense (equivalently, since there is only

possible offense, the expected number of offenses) vanishes in equilibrium.

Proposition 1. Suppose that the defendant can only commit an offense against agent 1. For every ε > 0 and

π∗ ∈ (0, 1), there exists L > 0 such that when L > L, there exists a unique equilibrium that satisfies Refinement

1. In this equilibrium, the defendant commits the offense (i.e., θ1 = 1) with probability less than ε.

Proposition 1 shows that when the punishment in case of a conviction is large relative to the defendant’s

benefit from committing offenses, the probability with which offenses taking place vanishes to zero. Although the

mechanisms are different, this result is reminiscent of the classic finding in Becker (1968) that larger punishments

are effective at deterring criminal behaviors.10

The proof Proposition 1, provided in Appendix A, has the following intuition. The judge makes her conviction

decision based on her posterior belief about the defendant’s guilt θ after observing agents’ accusations a ≡

(a1, a2). According to Bayes rule, the judge’s posterior belief Pr(θ = 1|a) satisfies

Pr(θ = 1|a)
Pr(θ = 0|a)

=
Pr(a|θ = 1)

Pr(a|θ = 0)
· Pr(θ = 1)

Pr(θ = 0)
. (3.1)

This equation implies that, fixing the defendant’s equilibrium strategy Pr(θ = 1), or equivalently the judge’s prior

belief about θ, the judge’s posterior belief after observing a is pinned down by the following likelihood ratio:

I(a) ≡ Pr(a|θ = 1)

Pr(a|θ = 0)
. (3.2)

Equation (3.1) suggests that I(a) measures the informativeness of the agents’ accusations a, in the sense that

a larger I(a) implies that the defendant is more likely to be guilty following a. When the defendant does not have

the ability to commit offense against agent 2, I(a) depends only on a1 on the equilibrium path. Since Refinement

1 requires that q(0, 0) = 0, we show that in equilibrium, the defendant is convicted with positive probability only

10The settings are quite different. For instance, Becker does not consider the possibility of convicting an innocent defendant and treats
the probability of convicting a guilty defendant as an instrument chosen by the regulator, rather than the result of a signal based on witness
with endogenous incentives.
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if agent 1 accuses him. Let q denote the expected probability that the defendant is convicted after agent 1 accuses

him. From agent 1’s perspective, if he has witnessed an offense, then he prefers to accuse the defendant when

q(b+ ω1)− (1− q)c ≥ 0 or equivalently ω1 ≥
(1− q)c

q
− b. (3.3)

If he has not witnessed any offense, then he prefers to accuse the defendant when

qω1 − (1− q)c ≥ 0 or equivalently ω1 ≥
(1− q)c

q
. (3.4)

Hence, the defendant’s cost of committing an offense against agent 1 equals
(
Φ( (1−q)c

q ) − Φ( (1−q)c
q − b)

)
L. In

equilibrium, the defendant’s expected cost from committing an offense must be the same as his benefit 1. This

implies that as L becomes large, q must go to 0, and the informativeness of agent 1’s accusation I(a1 = 1, a2)

diverges to +∞.

Since the equilibrium value of q is strictly between 0 and 1, the judge must be indifferent between convicting

and acquitting the defendant after observing a1 = 1, which means that the posterior probability of guilt in this

case must be equal to the judge’s standard of proof π∗. Equation (3.1) then implies that for any fixed π∗, the prior

probability of guilt vanishes to 0 as I(1, a2) diverges to infinity.

4 Comparisons between APP and DPP

We now turn our focus on the main case of interest, in which the defendant can commit multiple offenses.

As in the case of Proposition 1, we focus on the case in which the punishment meted out to the defendant

in case of a conviction is large relative to his benefit from committing offenses and analyze equilibria that satisfy

Refinements 1 and 2. We further focus on equilibria in which the defendant uses symmetric strategies, i.e., chooses

(θ1, θ2) = (1, 0) and (θ1, θ2) = (0, 1) with the same probability. As it turns out, this symmetry requirement is

satisfied by every proper equilibrium as defined by Myerson (1978). For simplicity and brevity, we directly impose

symmetry rather than define proper equilibrium and prove that it implies symmetry.

From here onwards, we will refer to symmetric equilibria that satisfy Refinements 1 and 2 simply as equilibria.

Section 4.1 establishes preliminary results and properties of equilibria that hold for both APP and DPP. Sections

4.2 and 4.3 present our main results, which show that APP leads to uninformative accusations and a large expected

number of offenses and DPP leads to informative accusations and effective deterrence. Section 4.4 discusses the

implications of our results on the use of APP and DPP, and acknowledges their limitations.
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4.1 Common Properties of APP and DPP

In this section, we establish properties of equilibria that hold under both APP or DPP. A useful observation is

that the defendant’s incentive to commit offenses and agents’ incentives to accuse the defendant depend on the

judge’s conviction rule (whether it is APP or DPP) only through the mapping from the agents’ accusations to the

probabilities of conviction q : {0, 1}2 → [0, 1]. Hence, changes in the conviction rule affect the defendant’s and

the agents’ incentives only through the mapping q that arises in equilibrium.

We start by showing that regardless of the conviction rule and of the standard of proof π∗ ∈ (0, 1), the proba-

bility that the defendant commits any given offense lies strictly between 0 and 1 in every equilibrium. Furthermore,

when L is large enough, each agent’s equilibrium strategy must take the form of two cutoffs–one used when the

agent has witnessed an offense and one used when he has not–such that the agent accuses the defendant if and only

if the agent’s realized payoff shock ωi exceeds the cutoff corresponding to agent’s observation.

Lemma 4.1. In every equilibrium, Pr(θi = 1) ∈ (0, 1) for every i ∈ {1, 2}. There exists L > 0 such that in

every equilibrium when L > L, agent i’s strategy is characterized by two cutoffs ω∗
i and ω∗∗

i with −∞ < ω∗
i <

ω∗∗
i < +∞ such that

1. When θi = 1, agent i accuses the defendant if and only if his preference shock ωi is greater than ω∗
i .

2. When θi = 0, agent i accuses the defendant if and only if his preference shock ωi is greater than ω∗∗
i .

The proof of this result, provided in Appendix B, has the following intuition. Refinement 1 requires that

q(0, 0) = 0 and that the report vector a = (0, 0) occurs with strictly positive probability. This, together with

Bayes rule, implies that for any equilibrium and under any conviction threshold π∗ ∈ (0, 1), the defendant must be

innocent of each offense with strictly positive probability, i.e., that Pr(θi = 1) < 1 for every i. The intuition for

the fact that the defendant’s probability of guilt is strictly positive is reminiscent of the equilibrium logic arising

in inspection games: if offenses took place with zero probability, the judge’s posterior belief about the defendant’s

guilt would be equal to zero following every report vector a that arises on the equilibrium path, and the defendant

would not be punished. This, in turn would give the defendant a strict incentive to commit offenses, contradicting

the hypothesis that the defendant commits no crime.

Turning to agents’ behavior, we first observe that agent i chooses ai = 1 with strictly higher probability when

θi = 1. If this were not the case, the defendant would strictly prefer to commit the corresponding offense (θi = 1;

a situation that we have already shown cannot arise in equilibrium) as this would, in addition to providing the

benefit from committing the offense, decrease the probability of being accused by i and lead to a weakly lower

probability of conviction.
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To understand why agents’ equilibrium strategies take the form of two cutoffs, let us compare their payoffs

when they accuse the defendant to their payoffs when they do not. For j ∈ {1, 2} and k ∈ {0, 1}, let Qk,j denote

the probability that aj = 1 conditional on the event that θi = k, where i ̸= j denotes the agent other than j. If

θ1 = 1, then agent 1 prefers to choose a1 = 1 when

{
Q1,2(q(1, 1)− q(0, 1)) + (1−Q1,2)(q(1, 0)− q(0, 0))

}
︸ ︷︷ ︸

the expected increase in conviction probability when agent 1 accuses the defendant

(ω1 + b)

≥ c
{
1−Q1,2q(1, 1)− (1−Q1,2)q(1, 0)

}
︸ ︷︷ ︸

the expected probability that the defendant is acquitted if agent 1 accuses him

(4.1)

where the LHS is his expected payoff when he accuses the defendant and the RHS is his expected payoff when he

does not accuse the defendant. Similarly, if θ1 = 0, then agent 1 prefers to choose a1 = 1 when

{
Q0,2(q(1, 1)− q(0, 1)) + (1−Q0,2)(q(1, 0)− q(0, 0))

}
ω1 ≥ c

{
1−Q0,2q(1, 1)− (1−Q0,2)q(1, 0)

}
. (4.2)

Refinements 1 and 2 imply that q(1, 1) ≥ q(0, 1) and q(1, 0) ≥ q(0, 0) = 0. Hence, the coefficients in front of ω1

are non-negative for both (4.1) and (4.2). To show that agent 1’s equilibrium strategy takes the form of cutoffs, we

only need to rule out cases where where agent 1 believes that his accusation has no impact on the probability of

conviction, i.e., either Q1,2(q(1, 1)−q(0, 1))+(1−Q1,2)q(1, 0) or Q0,2(q(1, 1)−q(0, 1))+(1−Q0,2)q(1, 0) is 0.

Intuitively, these cases cannot arise since once agent 1’s accusation has no impact on the probability of conviction,

the defendant will have a strict incentive to commit offenses against against agent 1. This will then contradict our

earlier conclusion that the probability of guilt against each agent must be strictly between 0 and 1.

Next, we show that when the punishment for conviction L is above some threshold, the defendant must be

convicted with probability less than 1 in every equilibrium regardless of the conviction rule and of the standard of

proof used to convict the defendant.

Lemma 4.2. There exists L ∈ R+ such that for every L > L and π∗ ∈ (0, 1), q(1, 1) ∈ (0, 1) in every

equilibrium under APP and standard of proof π∗ and in every equilibrium under DPP and standard of proof π∗.

The proof of this lemma is provided in Online Appendix A. The key step of the proof is to show that, if

the defendant were convicted for sure when two accusations are made against him, then the increase in conviction

probability when the defendant commits an additional offense would have to be strictly positive and bounded below

away from zero for all punishment levels L large enough. As L increases, the marginal cost from committing

offenses would then have to eventually exceed the marginal benefit from committing each offense (which, we
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recall, has been normalized to 1), which would give the defendant a strict incentive not to commit any offense and

contradict Lemma 4.1.

Lastly, we provide conditions on q that characterize when the defendant’s choices of θ1 and θ2 are substitutes,

and when they are complements. Conditional on his choice of θj , the defendant’s expected cost of committing an

offense against agent i ̸= j is

Ci(θj) ≡
(
E[q(ai, aj)|θi = 1, θj ]− E[q(ai, aj)|θi = 0, θj ]

)
L. (4.3)

We say that the defendant’s choices of θ1 and θ2 are strict complements if Ci(1) < Ci(0) for every i ∈ {1, 2},

that is, if the defendant’s expected cost of committing an offense against agent i is lower if he commits an offense

against agent j than when he doesn’t. Similarly, say that the defendant’s decision variables θ1 and θ2 are strict

substitutes if Ci(1) > Ci(0) for every i ∈ {1, 2}.

Lemma 4.3. The defendant’s choices of θ1 and θ2 are strict substitutes if and only if

q(1, 1) + q(0, 0)− q(1, 0)− q(0, 1) > 0. (4.4)

His choices of θ1 and θ2 are strict complements if and only if q(1, 1) + q(0, 0)− q(1, 0)− q(0, 1) < 0.

Proof. Recall from Lemma 4.1 that agent i accuses the defendant with probability Ψ∗
i ≡ 1−Φ(ω∗

i ) when θi = 1,

and with probability Ψ∗∗
i ≡ 1− Φ(ω∗∗

i ) when θi = 0, where Ψ∗
i > Ψ∗∗

i . If the defendant increases θ1 from 0 to 1

when θ2 = 0, the the probability of conviction increases by

(Ψ∗
1 −Ψ∗∗

1 )
(
(1−Ψ∗∗

2 )
(
q(1, 0)− q(0, 0)

)
+Ψ∗∗

2

(
q(1, 1)− q(0, 1)

))
. (4.5)

If the defendant increases θ1 from 0 to 1 when θ2 = 1, the the probability of conviction increases by

(Ψ∗
1 −Ψ∗∗

1 )
(
(1−Ψ∗

2)
(
q(1, 0)− q(0, 0)

)
+Ψ∗

2

(
q(1, 1)− q(0, 1)

))
(4.6)

The defendant’s choices of θ1 and θ2 are strict substitutes if and only if (4.5) is strictly less than (4.6), which is the

case if and only if (Ψ∗
1−Ψ∗∗

1 )(Ψ∗
2−Ψ∗∗

2 )
(
q(1, 0)+ q(0, 1)− q(0, 0)− q(1, 1)

)
< 0. Since Ψ∗

i > Ψ∗∗
i for every i,

the above inequality is equivalent to (4.4). A similar argument applies to the statement on strict complements.
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4.2 Aggregate Probabilities Principle

This section characterizes equilibrium outcomes under APP. Recall the formula for the judge’s posterior belief

about the defendant’s guilt in (3.1) and the measure for the informativeness of agents’ accusations in (3.2).

Theorem 1. For every π∗ ∈ (0, 1) and ε > 0, there exists L > 0 such that when L > L, in every equilibrium

under APP and standard of proof π∗, we have:

1. Negative Correlation Across Offenses: Pr(θi = 1|θj = 1) < Pr(θi = 1|θj = 0) for every i ̸= j.

2. Uninformative Accusations: maxa∈{0,1}2 I(a) < 1 + ε.11

3. Ineffective Deterrence:
∑2

i=1 Pr(θi = 1) > π∗ − ε.

Theorem 1 suggests that when the punishment in case of conviction L is large relative to the benefit from

committing offenses, APP induces negative correlation between the occurrence of the distinct offenses. This

negative correlation has, in turn, the effect of weakening the credibility of agents’ accusations and results in a high

expected number of offenses. These conclusions stand in contrast to the single-offense benchmark, in which the

expected number of offenses vanishes and the informativeness of the agent’s accusation diverges to infinity as the

punishment for conviction increases.

Two aspects of Theorem 1 are worth emphasizing before presenting its proof. First, the expected number of

offenses in equilibrium is close to the standard of proof π∗. Although a decrease in the standard of proof can lower

the expected number of offenses, such a decrease will also increase the probability that a convicted defendant is

innocent. In fact, we show that when the standard of proof is π∗, the probability that a convicted defendant is

innocent equals 1− π∗. For example, if the standard of proof is only 20%, then a convicted defendant is innocent

with probability 80%. From this perspective, Theorem 1 highlights a tension caused by APP between achieving

deterrence and reducing the probability that convicted defendants are innocent. As we will see, this tension does

not exist under DPP, in the sense a high standard of proof π∗ guarantees that both the expected number of offenses

and the probability that convicted defendants being innocent are low.

Second, since each agent incurs a cost c of accusing the defendant, one might conjecture that ineffective

deterrence is caused by agents’ free-riding motives, as in public good provision games. However, we show in

Theorem 3 of Section 5.2 that this intuition is incorrect in our setting. In fact, each agent accuses the defendant

with strictly higher probability when there are more agents.

Next, we present the proof of Theorem 1, which proceeds in three steps.
11By definition, maxa∈{0,1}2 I(a) is at least 1. Hence, Theorem 1 implies that I is arbitrarily close to the trivial lower bound.
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Step 1: The Defendant’s Incentives Since each agent i ∈ {1, 2} is strictly more likely to accuse the defendant

when θi = 1 than when θi = 0, Bayes rule implies that

Pr(θ = 1|ai = 1, aj) > Pr(θ = 1|ai = 0, aj) for every aj ∈ {0, 1}. (4.7)

That is to say, each additional accusation strictly increases the probability that the defendant is guilty of at least

one offense. This observation plays a key role in the analysis of APP, and distinguishes it from the analysis of

DPP, as explained in Section 4.3.

Suppose by way of contradiction that either q(0, 1) > 0 or q(1, 0) > 0. Then, the posterior probability that

θ = 1 is weakly greater than π∗ either when a = (1, 0) or when a = (0, 1). Inequality (4.7) then implies that the

posterior probability that θ = 1 is strictly greater than π∗ when a = (1, 1). Hence, in equilibrium under APP with

standard of proof π∗, we have q(1, 1) = 1. This contradicts Lemma 4.2 that q(1, 1) < 1 when L is large enough.

Therefore, q(1, 0) = q(0, 1) = q(0, 0) = 0 and q(1, 1) ∈ (0, 1) in every equilibrium. Since the equilibrium

conviction probabilities satisfy (4.4), Lemma 4.3 implies that the defendant’s decisions to commit different of-

fenses are strict substitutes. Since Refinement 1 requires that (θ1, θ2) = (0, 0) occurs with positive probability,

i.e., committing no offense is optimal for the defendant. This implies that the marginal cost of committing the first

offense is weakly greater than 1. Since the marginal cost of committing a second offense is strictly greater than the

marginal cost of committing the first offense, it is strictly suboptimal for the defendant to commit two offenses.

Since the equilibrium probability of guilt is interior, the defendant must be indifferent between committing no

offense and committing one offense. Therefore, his marginal cost of committing the first offense is 1. Since the

defendant’s strategy is required to be symmetric across agents, he will choose (0, 0), (1, 0), and (0, 1) with positive

probability, and choose (1, 0) and (0, 1) with the same probability. This implies that in equilibrium, θ1 and θ2 are

negatively correlated. Let π ≡ Pr(θ = 1) denote the equilibrium probability that the defendant is guilty of at

least one offense. We know that Pr(θi = 1) = π/2 for every i ∈ {1, 2}, and that the conditional on θi = 0, the

probability with which θj = 0 equals β ≡ 1−π
1−π/2 .

Step 2: Symmetry in Agents’ Equilibrium Strategies Since the defendant chooses both (θ1, θ2) = (1, 0) and

(θ1, θ2) = (0, 1) with positive probability in equilibrium, his indifference condition yields:

1

qL
= (1− Φ(ω∗∗

1 ))
(
Φ(ω∗∗

2 )− Φ(ω∗
2)
)
= (1− Φ(ω∗∗

2 ))
(
Φ(ω∗∗

1 )− Φ(ω∗
1)
)
. (4.8)
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To simplify notation, let q ≡ q(1, 1). From agents’ incentive constraints (4.1) and (4.2), q(0, 0) = q(1, 0) =

q(0, 1) = 0, implies that when θi = 1, agent i accuses the defendant if and only if

ωi ≥ ω∗
i ≡ −b− c+

c

qQ1,j
, (4.9)

and when θi = 0, agent i accuses the defendant if and only if:

ωi ≥ ω∗∗
i ≡ −c+

c

qQ0,j
. (4.10)

Since Pr(θi = 1|θj = 1) = 0 and Pr(θi = 1|θj = 0) = 1 − β, we know that Q1,j = 1 − Φ(ω∗∗
j ) and

Q0,j = β(1−Φ(ω∗∗
j ))+ (1−β)(1−Φ(ω∗

j )). Suppose by way of contradiction that ω∗∗
j > ω∗∗

i . Then (4.8) is true

only when ω∗
j > ω∗

i . However, the expression for ω∗
i is strictly decreasing in Q1,j and Q1,j is strictly decreasing

in ω∗∗
j . Therefore, Φ(ω∗∗

j ) > Φ(ω∗∗
i ) together with (4.9) implies that ω∗

i > ω∗
j . This leads to a contradiction

and implies that ω∗∗
1 = ω∗∗

2 . Equation (4.8) then implies that ω∗
1 = ω∗

2 . In the remainder of this section, we

can therefore simplify notation by denoting the cutoffs by ω∗ and ω∗∗ without subscripts and writing Q1 and Q0

instead of Q1,j and Q0,j .

Step 3: Coordination under Negative Correlation Since agent i incurs a cost c when he chooses ai = 1 but

fails to convict the defendant and since q(a1, a2) is weakly increasing in both of its arguments, agent i’s incentive

to report ai = 1 is increasing in the probability he assigns to the event aj = 1. That is, agents’ decisions to accuse

the defendant are strategic complements. Since ω∗ < ω∗∗, we know that Q1 < Q0. The expressions for the cutoffs

then imply that ω∗∗−ω∗ ∈ (0, b). The fact that this difference is strictly less than b stands in contrast to the single-

offense benchmark of Section 3, and it plays an important role in the analysis as it implies that agents’ reports

are less informative relative to the single-offense benchmark. Since the defendant never commits two offenses in

equilibrium, we have

I(1, 1) ≡ Pr(a = (1, 1)|θ = 1)

Pr(a = (1, 1)|θ = 0)
=

1− Φ(ω∗)

1− Φ(ω∗∗)
. (4.11)

Since q(1, 1) ∈ (0, 1), we also have Pr(θ = 1|a = (1, 1)) = π∗. From Bayes rule, π
1−πI(1, 1) =

π∗

1−π∗ . Letting

l∗ ≡ π∗

1−π∗ , we have

β =
2I

l∗ + 2I
and 1− β =

l∗

l∗ + 2I
. (4.12)

Plugging (4.12) into the expressions for Q1 and Q0, we obtain

Q0

Q1
=

β(1− Φ(ω∗∗
j )) + (1− β)(1− Φ(ω∗

j ))

1− Φ(ω∗∗
j )

= β + (1− β)I(1, 1) = (l∗ + 2)I(1, 1)
l∗ + 2I(1, 1)

. (4.13)
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The expressions for ω∗ and ω∗∗ imply that ω∗ + b+ c = c
qQ1

and ω∗∗ + c = c
qQ0

. Therefore,

ω∗ + b+ c

ω∗∗ + c
=

Q0

Q1
=

(l∗ + 2)I(1, 1)
l∗ + 2I(1, 1)

. (4.14)

Since ω∗∗ − ω∗ ∈ (0, b), the difference between ω∗ + b + c and ω∗∗ + c is at most b. Hence, the LHS of (4.14)

converges to 1 as ω∗, ω∗∗ → +∞. The RHS of (4.14) is strictly increasing in I and equals 1 only if I(1, 1) = 1.

Hence I(1, 1) converges to 1 as ω∗, ω∗∗ → +∞.

The defendant’s indifference condition (4.8) implies that as L → +∞, either q → 0 or at least one of 1 −

Φ(ω∗∗) and Φ(ω∗∗) − Φ(ω∗) converges to 0. If q → 0, then the expressions for ω∗ and ω∗∗ in (4.9) and (4.10)

imply that ω∗, ω∗∗ → +∞. If 1 − Φ(ω∗∗) converges to 0, then ω∗∗ → +∞ and ω∗ → +∞ as well since

|ω∗ − ω∗∗| ∈ (0, b). If Φ(ω∗∗)−Φ(ω∗) converges to 0, then either ω∗∗ → +∞ or −∞ or ω∗∗ − ω∗ → 0 or both.

Since (4.10) implies that ω∗∗ ≥ 0, it cannot be the case that ω∗∗ → −∞. Our earlier conclusion implies that the

value of I(1, 1) converges to 1 regardless of whether both ω∗ and ω∗∗ diverge to +∞ or ω∗∗ − ω∗ → 0 and both

thresholds are bounded from above. According to Bayes rule, I(1, 1) → 1 implies that π → π∗.

4.3 Distinct Probabilities Principle

Next, we characterize equilibrium outcomes under DPP and compare them to those under APP.

Theorem 2. For every π∗ ∈ (0, 1) and ε > 0, there exists L ∈ R+ such that when L > L, in every equilibrium

under DPP with standard of proof π∗,

1. Uncorrelated Offenses: Pr(θi = 1|θj = 1) = Pr(θi = 1|θj = 0) for every i ̸= j.

2. Linear Conviction Probability: q(1, 1) = 2q(1, 0) = 2q(0, 1) > 0 and q(0, 0) = 0.

3. Effective Deterrence & Informative Accusations: E[θi] < ε and Pr(ai=1|θi=1)
Pr(ai=1|θi=0) > 1/ε for every i ∈ {1, 2}.

Theorem 2 implies that, under DPP, agents’ private observations of offenses must be uncorrelated and the

conviction probability must be a linear function of the number of accusations. When the conviction probabilities

are linear, the defendant’s incentives to commit different offenses are neither complements nor substitutes, and

deciding to commit each offense independently of one’s decision regarding other offenses is an optimal strategy.

In this case, agents’ private observations of offenses are uncorrelated. Compared to APP, this lack of correlation

restores the credibility of the agents’ accusations, which has the further effect of lowering the expected number of

offenses in equilibrium for any given standard of proof π∗.

The key distinctive feature of DPP is that accusing the defendant of committing an offense under DPP need not

increase the probability that the defendant is guilty of any other offense, and thus need not affect or increase the
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maximal probability, over all possible offenses, that the defendant is guilty of a specific offense. If, for instance,

θ1 and θ2 are negatively correlated, then an accusation by agent 2 can lower the posterior probability that the

defendant is guilty of the first offense.

Next, we present the proof of Theorem 2, which leverages the previous observation and sheds light on how

APP and DPP lead to different structures of the conviction probabilities as functions of agents’ reports and on how

these differences affect the defendant’s and the agents’ incentives.

Step 1: Ruling Out Correlations Suppose by way of contradiction that θ1 and θ2 are negatively correlated, i.e.,

Pr(θi = 1|θj = 1) < Pr(θi = 1|θj = 0) for i ̸= j. Then, Pr(θ1 = 1|a = (1, 1)) < Pr(θ1 = 1|a = (1, 0))

because an accusation by agent 2 increases the posterior probability that θ2 = 1 and, when θ1 and θ2 are negatively

correlated, his accusation lowers the probability that θ1 = 1. Similarly, one can show that Pr(θ2 = 1|a = (1, 1)) <

Pr(θ2 = 1|a = (0, 1)). When conviction is decided according to DPP, the conviction probabilities must satisfy

q(1, 0) ≥ q(1, 1) and q(0, 1) ≥ q(1, 1). For these probabilities to satisfy Refinements 1 and 2, it must be the case

that

q(1, 1) = q(1, 0) = q(0, 1) = 1 and q(0, 0) = 0. (4.15)

According to Lemma 4.3, the defendant’s incentives to commit different offenses are strict complements. Since

Refinement 1 requires that the defendant choosing (θ1, θ2) = (0, 0) with positive probability, he has no incentive

to choose (θ1, θ2) ∈ {(1, 0), (0, 1)} since it is dominated by either (θ1, θ2) = (0, 0) or (θ1, θ2) = (1, 1). This

contradicts our earlier hypothesis that θ1 and θ2 are negatively correlated.

Next, suppose by way of contradiction that θ1 and θ2 are positively correlated, i.e., Pr(θi = 1|θj = 1) >

Pr(θi = 1|θj = 0) for i ̸= j. In this case, a = (1, 1) is the unique maximizer of both Pr
(
θ1 = 1

∣∣a) and

Pr
(
θ2 = 1

∣∣a). If the conviction rule is DPP, then it must be the case that

q(1, 1) ≥ max{q(1, 0), q(0, 1)} ≥ q(0, 0) = 0, (4.16)

and q(1, 1) > max{q(1, 0), q(0, 1)} unless q(1, 1) = q(1, 0) = q(0, 1) = 1. If q(1, 1) = 1, this contradicts

Lemma 4.2 when L is large enough. When q(1, 1) ∈ (0, 1), we know that maxi∈{1,2}{Pr
(
θi = 1

∣∣a = (1, 1)
)
} =

π∗, which implies that maxi∈{1,2},a̸=(1,1){Pr
(
θi = 1

∣∣a)} < π∗. As a result, q(1, 0) = q(0, 1) = 0. Lemma 4.3

then implies that the defendant’s decisions to commit different offenses are strict substitutes. This contradicts our

earlier hypothesis that θ1 and θ2 are positively correlated.
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Step 2: Linear Conviction Probabilities Since θ1 and θ2 must be uncorrelated and Refinement 1 implies that

(θ1, θ2) = (0, 0) occurs with positive probability, the defendant’s incentives to commit offenses (i) cannot be

strict substitutes since he will have no incentive to choose (θ1, θ2) = (1, 1) and (ii) cannot be strict complements

since he will have no incentive to choose (θ1, θ2) = (1, 0) and (θ1, θ2) = (0, 1). Lemma 4.3 then implies that

q(1, 1) = q(1, 0) + q(0, 1) and q(0, 0) = 0. Lemma 4.1 then implies that the defendant must be playing a

completely mixed strategy. The defendant’s indifference between (θ1, θ2) = (1, 0) and (θ1, θ2) = (0, 1) implies

that q(1, 0) = q(0, 1). Hence, the conviction probability is a linear function of the number of accusations.

Step 3: Informative Accusations & Effective Deterrence: The fact that θ1 and θ2 are uncorrelated implies that

each agent’s belief about whether the other agent has witnessed an offense is independent of his private observation

of offenses. According to the formulas for agents’ reporting cutoffs (4.9) and (4.10), the independence of θ1 and

θ2 implies that Q1,j = Q0,j for j ∈ {1, 2}. This together with (4.1) and (4.2) implies that ω∗∗
j − ω∗

j = b for

every j ∈ {1, 2}. Let ∆ ≡ q(1, 1) − q(1, 0) = q(1, 1) − q(0, 1) = q(0, 1) = q(1, 0) denote the increase in

the probability of conviction when there is an additional accusation. Since the defendant is indifferent between

choosing (θ1, θ2) = (1, 0) and (θ1, θ2) = (0, 1), we have:

L∆ = Φ(ω∗
1 + b)− Φ(ω∗

1) = Φ(ω∗
2 + b)− Φ(ω∗

2). (4.17)

Since ω∗
1, ω

∗
2 are both strictly positive when L exceeds some cutoff, the value of Φ(ω∗ + b) − Φ(ω∗) is strictly

decreasing in ω∗. The defendant’s indifference condition then implies that ω∗
1 = ω∗

2 and ω∗∗
1 = ω∗∗

2 . Hence, we

will replace ω∗
i and ω∗∗

i with ω∗ and ω∗∗, respectively. The defendant’s indifference condition also implies that

the cutoffs ω∗ and ω∗∗ diverge to −∞ as L becomes large. Since θ1 and θ2 are uncorrelated, the cutoffs satisfy

ω∗∗ − ω∗ = b. Hence, the informativeness of each agent’s accusation, measured by 1−Φ(ω∗)
1−Φ(ω∗∗) , diverges to +∞ as

L → +∞. Since the judge’s posterior belief about θi = 1 equals π∗ after observing ai = 1, the informativeness

ratio converging to +∞ implies that the prior probability with which θi = 1 converges to 0.

4.4 Discussion

The comparison between Theorems 1 and 2 provides a justification for the use of DPP in criminal justice systems.

It also suggests a rationale for several aspects of the law such as the fact that judges are not allowed to aggregate

the probabilities of different criminal behaviors when making conviction decisions and are prohibited from using

character evidence to establish the guilt of defendants.

Relative to earlier writings of legal scholars that discuss the advantages and disadvantages of aggregating prob-
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abilities across cases (e.g., Schauer and Zeckhauser 1996, Harel and Porat 2009), the contribution of our analysis

is to take potential offenders’ and potential witnesses’ strategic motives into account. Our results suggest that

aggregating probabilities across cases affects the correlations between crimes through the defendant’s incentives,

which can undermine the quality of evidence available to judges when they make conviction decisions.

Nevertheless, implementing DPP in practice requires decision makers (e.g., judges, board of trustees of a firm,

etc.) to have commitment power. This is illustrated by the numerical example in the introduction, and is also

clearly explained by the following thought experiment: Consider a setting with two defendants and four potential

victims. The probabilities that each defendant is guilty of committing crime against the potential victims are

Pr(offense against individual 1) Pr(offense against individual 2) Pr(offense against at least one)

Defendant 1 49.5 % 49.5 % 99 %

Pr(offense against individual 3) Pr(offense against individual 4) Pr(offense against at least one)

Defendant 2 50 % 1 % 51 %

Under DPP, defendant 1 is acquitted whenever defendant 2 is acquitted. This is the case even though defendant 1

is almost surely guilty of at least one crime, and the probability that defendant 2 is guilty is significantly lower.

In practice, firms and organizations may lack the commitment required to implement DPP and yield to social

pressure and aggregate the probabilities across different offenses. For example, firms may face more social pres-

sure to fire a manager whose probabilities of abusing subordinates are given by the first row and political parties

may have a stronger incentive to ostracize party members with bad reputations (e.g., individuals who are believed

to have committed at least some offenses with high probability) even without a thorough investigation of specific

evidence related to any given accusation.

5 Extensions

Section 5.1 extends our model in Section 2 to the case in which the defendant has a private type that determines his

benefit from committing offenses. In Section 5.2, we extend the analysis to three or more offenses and agents. We

establish a comparative statics result showing that each agent accuses the defendant with strictly higher probability

as the number of agents increases. Section 5.3 contains several other extensions and variations of our model.

5.1 Uncertain Propensity to Commit Offenses

We have assumed until now that the defendant’s benefit from committing offenses was common knowledge, and

found that when the penalty from conviction is large relative to the benefit from committing offenses, the defendant

never commit both offenses under APP. In practice, individuals have different propensities to commit offenses and

anecdotal evidence suggests that some defendants are guilty of multiple offenses.

22



Motivated by these observations, we now extend our model in Section 2 to the case in which the defendant has

a private type t ∈ {tv, to}. Specifically, the defendant is either a virtuous type tv whose benefit from committing

offenses is zero (or, more generally, non-positive) or an opportunistic type to whose benefit from committing each

offense is normalized to 1. Let πo denote the prior probability that the defendant has an opportunistic type (the

model in Section 2 corresponds to πo = 1). We show that under APP, a defendant with an opportunistic type

commits multiple offenses with strictly positive probability as long as πo < π∗, i.e., as long as the virtuous type

occurs with high enough probability. This novel feature notwithstanding, we show that the main insight from

Theorem 1 that APP induces negative correlation across offenses still applies.

Proposition 2. For every π∗ ∈ (0, 1), πo ∈ (0, 1), and ε > 0, there exists L > 0 such that when L > L, in

every equilibrium under APP and standard of proof π∗,

1. Endogenous Negative Correlation: Pr(θi = 1|θj = 1) < Pr(θi = 1|θj = 0) for every i ̸= j.

2. Uninformative Accusations & Ineffective Deterrence: Pr(θ = 1) > min{π∗, πo} − ε and

max
a∈{0,1}2

I(a) <
{ π∗

1− π∗

/ min{π∗, πo}
1−min{π∗, πo}

}
+ ε. (5.1)

3. Multiple Offenses with Positive Probability: Pr(θ1 = θ2 = 1|t = to) > 0 if and only if πo < π∗.

The proof is in Appendix C. Proposition 2 shows that, even when the defendant has private information re-

garding his benefit from committing offenses, agents’ private observations about offenses are negatively correlated

as in our model of Section 2, the informativeness of agents’ accusations is low as in that model, and the lack of

informativeness still leads to a high probability that offenses take place.

In Proposition 2, the upper bound regarding the informativeness of agents’ accusations and the lower bound

regarding the probability of offenses are the same as those in Theorem 1 when πo ≥ π∗, i.e., when the proba-

bility of the opportunistic type exceeds the conviction threshold. However, these bounds are different when the

opportunistic type occurs with probability less than π∗. In this case, we show that the defendant commits offenses

with probability πo, which is the highest possible probability of guilt given that the virtuous type never commits

any offense. Given that, in every equilibrium, there exists a ∈ {0, 1}2 such that the defendant is convicted with

positive probability when the judge observes a, the judge’s posterior belief that at least one offense has taken place

is no less than π∗ after observing a. This suggests a lower bound on the informativeness of agents’ accusations:

max
a∈{0,1}2

I(a) ≥ Imin ≡ π∗

1− π∗

/ πo

1− πo
. (5.2)
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Proposition 2 shows that this lower bound Imin is indeed attained in all equilibria when πo < π∗.

The proof of Proposition 2 is similar to that of Theorem 1. We start the proof with the observations that the

virtuous type never commits any offenses and that both Lemma 4.2 and Lemma 4.3 extend to this more general

setting. These observations imply that the opportunistic type’s decisions to commit distinct offenses are strict

substitutes when l is large. As a result, type to cannot be indifferent between committing no offense and committing

two offenses. That is to say, type to is either indifferent between committing no offense and committing only one

offense or indifferent between committing only one offense and committing two offenses. This leads to two

disjoint cases in Proposition 2, whose separation depends on whether the prior probability of the opportunistic

type exceeds π∗:

1. When πo ≥ π∗, the opportunistic type is indifferent between committing no offense and one offense and the

qualitative features of the equilibria remain the same as those characterized by Theorem 1.

2. When πo < π∗ and L is large enough, the opportunistic type commits at least one offense for sure. Oth-

erwise, by the same logic as in Theorem 1, agents’ accusations would be arbitrarily uninformative as L

becomes large. Since the prior probability of guilt is at most πo which is strictly lower than π∗, the posterior

probability of guilt is also strictly lower than π∗ even when both agents accuse the defendant. In this case,

the defendant is never convicted under APP, which leads to a contradiction. Hence, the opportunistic type

must be indifferent between committing one offense and committing both offenses.

Nevertheless, we show that θ1 and θ2 remain negatively correlated. To understand why, suppose by way

of contradiction that θ1 and θ2 are independent or positively correlated. In this case, Q0,j ≤ Q1,j , and the

expressions for agents’ reporting cutoffs (4.9) and (4.10) would imply that ω∗∗
j − ω∗

j ≥ b. According to

Lemma 4.2, q(1, 1) converges to 0 as L → +∞ and agents’ reporting cutoffs both diverge to +∞. As in the

single-offense benchmark, the informativeness of agents’ accusations would then diverge to +∞. Since the

opportunistic type commits at least one offense, the prior probability that the defendant commits at least one

offense is πo. Therefore, the posterior probability that the defendant committed an offense when both agents

accuse the defendant would be strictly greater than π∗. This would contradict Lemma 4.2, which requires

that the judge be indifferent between convicting and acquitting the defendant when both agents accuse him.

Proposition 3 generalizes Theorem 2 to the case in which πo can take any value in (0, 1). It shows that, under

DPP, there is no correlation across different offenses and the conviction probability is a linear function of the num-

ber of accusations. These two features result in informative accusations and a low expected number/probability of

offenses.
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Proposition 3. For every πo ∈ (0, 1), π∗ ∈ (0, 1), and ε > 0, there exists L ∈ R+ such that when L > L, in

every equilibrium under DPP with standard of proof π∗,

1. Uncorrelated Offenses: Pr(θi = 1|θj = 1) = Pr(θi = 1|θj = 0) for every i ̸= j.

2. Linear Conviction Probability: q(1, 1) = 2q(1, 0) = 2q(0, 1) > 0 and q(0, 0) = 0.

3. Effective Deterrence & Informative Accusations: E[θi] < ε and Pr(ai=1|θi=1)
Pr(ai=1|θi=0) > 1/ε for every i ∈ {1, 2}.

The proof of Proposition 3 follows from that of Theorem 2 and is omitted in order to avoid repetition.

5.2 Three or More Potential Offenses and Witnesses

This section extends our main results to settings where the defendant can commit n offenses, i.e., choosing

(θ1, .., θn) ∈ {0, 1}n. For each potential offense, there is a distinct agent who observes whether this offense

has occurred. The defendant’s marginal benefit from committing an offense is still normalized to 1 and the de-

fendant’s loss if convicted is still L > 0. Agent’s payoffs are given by the same formula as in the two-agent

case. Given the standard of proof π∗ ∈ (0, 1), the defendant is convicted under APP if Pr(θ = 1|a) ≥ π∗ where

θ ≡ max1≤i≤n θi, and is convicted under DPP if max1≤i≤n Pr(θi = 1|a) ≥ π∗.

We show that the takeaways from our main results extend to this multi-agent setting and establish a compar-

ative statics result showing that under APP the informativeness of agents’ accusations about the defendant’s guilt

decreases even when all agents’ reports are aggregated in the number of agents. Moreover, we show that the

unconditional probability that each agent accuses the defendant is increasing in the number of agents. We start by

generalizing the measure of informativeness used in Theorem 1 to three or more agents. According to Bayes Rule,

for every a ∈ {0, 1}n,
Pr(a|θ = 1)

Pr(a|θ = 0)
· Pr(θ = 1)

1− Pr(θ = 1)
=

Pr(θ = 1|a)
1− Pr(θ = 1|a)

. (5.3)

Therefore, the ratio

I(a) ≡ Pr(a|θ = 1)

Pr(a|θ = 0)
(5.4)

measures the change in a judge’s posterior belief about θ after observing the agents’ actions a ≡ (a1, ..., an). For

tractability, we again focus on symmetric equilibria that satisfy Refinements 1 and 2 (or, equilibrium for short).

Proposition 4 generalizes the insights of Theorem 1 to the case of three or more agents.

Proposition 4. For every n ≥ 2, π∗ ∈ (0, 1), and ε > 0, there exists Ln,ε > 0 such that for every L > Ln,ε,

in every equilibrium under APP and standard of proof π∗,

1. Pr(maxj ̸=i θj = 1|θi = 1) < Pr(maxj ̸=i θj = 1|θi = 0) for every i ∈ {1, 2, ..., n};
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2. maxa∈{0,1}n I(a) < 1 + ε and Pr(θ = 1) > π∗ − ε.

The proof is in Online Appendix B.1. According to Proposition 4, an agent who has witnessed an offense

assigns a lower probability to other agents having witnessed offenses. In fact, we show that in every equilibrium,

the defendant commits either no offense or only one offense, which implies that agents’ private observations of

offenses are negatively correlated. We also show that, as the punishment for conviction becomes large, agents’

accusations become arbitrarily uninformative and the expected number of offenses is at least π∗.

Next, we establish a comparative statics result with respect to the number of agents, showing that each agent is

more likely to accuse the defendant as the number of agents increases. Recall that in every equilibrium, each agent

i uses a strategy that is characterized by two cutoffs ω∗ and ω∗∗, such that when he has witnessed an offense, he

accuses the defendant if and only if ωi > ω∗, and when has not witnessed an offense, he accuses the defendant if

and only if ωi > ω∗∗, i.e., lower cutoffs imply higher probabilities of filing accusations.

Theorem 3. For every π∗ ∈ (0, 1) and k, n ∈ N with k > n, there exists L > 0 such that for every L > L,

and compare any equilibrium under APP and standard of proof π∗ with k agents to that with n agents:

1. Lower Informativeness: maxa∈{0,1}k I(a) < maxa∈{0,1}n I(a).

2. Higher Number/Probability of Offenses: The equilibrium probability of offense Pr(θ = 1) as well as the

expected number of offenses
∑

i Pr(θi = 1) are both strictly higher with k agents than with n agents.

3. Higher Probability of Filing Accusations: Each agent’s reporting cutoffs (ω∗, ω∗∗) are both strictly lower

with k agents than with n agents.

The proof is in Appendix D. Theorem 3 shows that as the number of potential offenses (or, equivalently, the

number of agents) increases, the informativeness of accusations decreases, the probability of offense increases,

and each agent is more likely to accuse the defendant. This last feature distinguishes our result from those on

public good provision, in which inefficiencies arise because agents free ride on other agents’ contributions.

Next, we study the game’s equilibrium outcomes when the judge uses DPP. Proposition 5 establishes the

existence of equilibria in which agents’ private information is uncorrelated and the conviction probability is a linear

function of the number of accusations against the defendant.12 These equilibria feature arbitrarily informative

reports and a vanishing probability of offenses as the punishment L becomes arbitrarily large.

Proposition 5. For every n ≥ 3, π∗ ∈ (0, 1), and ε > 0, there exists L ∈ R+ such that when L > L, there

exists an equilibrium under DPP with standard of proof π∗ such that θi is independent of θ−i for every i, the

probability of conviction is a linear function in the number of accusations and
12Whether this equilibrium is the unique equilibrium remains an open question. This is because when there are three or more θi, one

cannot use the argument in the proof of Theorem 2 that rules out positive and negative correlation between θ1 and θ2.

26



• Effective Deterrence: E[
∑n

i=1 θi] < ε.

• Informative Accusations: Pr(ai=1|θi=1)
Pr(ai=1|θi=0) > 1/ε for every i ∈ {1, 2, ..., n}.

The proof is in Online Appendix B.2.

5.3 Other Extensions

Decreasing Marginal Benefits from Committing Offenses: Our main result, Theorem 1, continues to hold

when the defendant faces decreasing marginal returns from committing multiple offenses or receives a punishment

larger than L when the probability that he has committed multiple offenses exceeds some threshold. Indeed, these

changes motivate the defendant to commit fewer offenses and induce negative correlation in the agents’ private

observations. As in the model of Section 2, the agents’ coordination motives undermine the informativeness of

their accusations and lead to a high probability of offenses taking place. For example, our results extend when the

defendant is convicted of a minor crime and receives punishment L if the probability with which he is guilty of at

least one offense exceeds π∗, and is convicted of a felony and receives punishment L′(> L) if the probability with

which he is guilty of two offenses exceeds some other cutoff π∗∗. When L is large, in every equilibrium under

APP and standard of proof π∗, the defendant commits at most one offense and the probability with which he does

so approaches π∗.

Agents’ Accusation Costs: Our results continue to hold when agents’ costs of accusing the defendant are strictly

positive even when the defendant is convicted, as long as accusation costs are strictly higher when the defendant

is acquitted than when he is convicted. Our results also continue to hold if each agent suffers a lower retaliation

cost when there are more accusations filed against the defendant as long as the retaliation cost is strictly positive

whenever the defendant is acquitted. Under these variations of our model, the coordination motives among agents

become stronger and their private observations remain negatively correlated.

Interdependent Preferences: Agents may have a preference for convicting defendants who have committed

offenses against or witnessed by other agents, even if they have not witnesses or experienced these offenses them-

selves. Our results extend to the general case where agent i’s payoff is:

ui(ωi, θi, ai) ≡

 ωi + bf(θi, θ−i) if s = 1

−cai if s = 0,
(5.5)
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where f(θi, θ−i) is strictly increasing in θi and is weakly increasing in θ−i. The model of Section 2 considers the

special case where f(θi, θ−i) = θi. Equation (5.5) stipulates that agent i has stronger preference for convicting

defendants who have committed offenses, no matter whether the offense is witnessed by himself or by other agents.

In fact, directly caring about offenses committed against or witnessed by other agents, may lower even further the

informativeness of agents’ accusations, by prompting agent i’s action ai to become more responsive to his belief

about the other agent’s private information θj , in effect magnifying agents’ coordination motive. When θi and θj

are negatively correlated, ai will become less responsive to his own private information θi.

Agents’ Preferences for Truth-telling: Suppose that each agent receives a direct benefit d (> 0) from filing an

accusation when he has witnessed a crime regardless of the conviction decision. This can arise, for example, when

agents have intrinsic preferences for telling the truth. One can show that with two agents and when d < l∗

l∗+2c, the

informativeness of each agent’s accusation is at most

cl∗

cl∗ − (l∗ + 2)d
, (5.6)

which converges to 1 when d → 0, i.e., our results are robust when agents receive small benefits from truth-telling.

Ex Post Evidence & Punishing False Accusations: We consider the possibility that evidence may arrive ex post

that exposes false accusations. For example, suppose that when an innocent defendant is convicted, hard evidence

arrives with probability p∗ that reveals his innocence, causing every false accuser to be penalized by some constant

ℓ ≥ 0. Our analysis is essentially unchanged, because such punishments are equivalent to an increase in the added

benefit b from reporting after witnessing an offense.

Uncertainty about the Number of Potential Victims: In some applications, the number of potential vic-

tims/witnesses is usually not observed by the judge and the victims. We consider an extension of our model,

in which nature randomly selects a subset Ñ of {1, 2, ..., n}, interpreted as the set of agents against whom the de-

fendant has opportunities to commit offenses against. We assume that only agents in Ñ can accuse the defendant:

if an agent outside of Ñ filed an accusation, this accusation would be easily refuted by the defendant (e.g., by

using an alibi). Only the defendant observes Ñ . Agent i privately observes whether i ∈ Ñ as well as (θi, ωi).

We informally argue that the logic behind our results is preserved, and even stronger, when the judge and the

agents face this extra layer of uncertainty. Since the judge does not observe the size of Ñ , whether the defendant is

convicted or not depends only on the number of accusations, but not on the number of potential witnesses. Since

the defendant is convicted with weakly higher probability when there are more accusations, he has a stronger
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incentive to commit offenses when |Ñ | is smaller, i.e., fewer agents can accuse him. If an agent witnesses an

offense, this agent infers that |Ñ | is more likely to be small and, hence, the expected number of accusations filed

by other agents is also likely to be small. This effect dampens an agent’s incentive to accuse the defendant when

he has witnessed an offense which lowers the informativeness of accusations in equilibrium.

6 Concluding Remarks

Motivated by the debate among legal scholars regarding whether judges should aggregate the probabilities of dis-

tinct offenses when making conviction decisions, we present a game-theoretic model in which potential offenders’

incentives to commit offenses and witnesses’ incentives to report offenses, or the absence thereof, are both en-

dogenous. We show that aggregating the probabilities of distinct offenses into a single overall probability of guilt,

on which the conviction is based, can induce negative correlation in the private observations of distinct witnesses.

This negative correlation, together with witnesses’ coordination motive, lowers the informativeness of accusations

and leads to a high number of offenses taking place. By contrast, the distinct probabilities principle commonly

used in criminal justice systems across the world can restore the credibility of witness testimonies and lower the

probability of offenses.

Our conclusions are obtained under the standard assumption that players have correct expectations about other

players’ strategies, and under the further assumption that the punishment received by the defendant in case of a

conviction is large relative to defendants’ benefit from committing an offense. Hence, our results are best suited

for settings in which (i) a conviction rule has been in place for a long time and players in the game (defendants,

witnesses, and judges) know each other’s equilibrium strategies and (ii) conviction is effective for deterrence.

Our results are less suitable to analyze behavior following a sudden change in the conviction rule or in the model’s

parameters, after which the assumption that players’ behaviors form an equilibrium is less plausible. The results are

also less suitable when the benefit from committing an offense is significant relative to the punishment associated

with a conviction. In this case, conviction plays a less central role than in our arguments and the comparison

between different conviction rules will like require a different analysis.

A Proof of Proposition 1

First, we show that under Refinement 1, Pr(θ1 = 1) ∈ (0, 1) and Pr(a1 = 1) ∈ (0, 1). Refinement 1 requires

that q(0, 0) = 0 and Pr((a1, a2) = (0, 0)) > 0, which implies that Pr(θ1 = 1),Pr(a1 = 1) < 1. Suppose by

way of contradiction that Pr(θ1 = 1) = 0. Then, the defendant is never convicted on the equilibrium path. If
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a1 = 1 occurs with positive probability, then q(1, 0) = q(1, 1) = 0 and the defendant has a strict incentive to

choose a1 = 1, which leads to a contradiction. If a1 = 1 occurs with zero probability, then agent 1 always chooses

a1 = 0 when θ1 = 0. Hence, the defendant has an incentive to choose θ1 = 0 only if there exists a2 ∈ {0, 1} that

occurs with positive probability such that q(1, a2) > 0. However, this implies that when θ1 = 0, a type of agent

1 with a sufficiently high ω1 has a strict incentive to choose a1 = 1, which leads to a contradiction. Given that

Pr(θ1 = 1) ∈ (0, 1), suppose by way of contradiction that Pr(a1 = 1) = 0. Then, agent 1 never chooses a1 = 1

regardless of the realization of θ1. This provides the defendant a strict incentive to choose θ1 = 1, which leads to

a contradiction.

Next, we show that when L > (Φ(0))−1, either q(0, 1) = 0 or agent 2 never chooses a2 = 1. Suppose

by way of contradiction that q(0, 1) > 0 and a2 = 1 occurs with positive probability. Let π(a1, a2) denote the

posterior probability that θ = 1 after observing (a1, a2). We have π(0, 0) = π(0, 1) and π(1, 0) = π(1, 1). Since

q(0, 0) = 0 and q(0, 1) > 0, we know that π(0, 0) = π∗. If π(1, 0) ≤ π∗, then agent 1 accuses the defendant with

weakly lower probability when θ1 = 1, which gives the defendant a strict incentive to choose θ1 = 1 and leads to

a contradiction. Hence, π(1, 0) = π(1, 1) > π∗ and, therefore, q(1, 0) = q(1, 1) = 1. Agent 2 has an incentive to

choose a2 = 1 if

ω2 ≥
c(1− q(0, 1))

q(0, 1)
≥ 0

which implies that agent 2 chooses a2 = 0 with probability at least Φ(0). Since q(0, 0) = 0 and q(1, 0) = 1,

the defendant’s expected cost of choosing a1 = 1 is at least LΦ(0), which exceeds his benefit from committing

offenses as long as L > (Φ(0))−1. This leads to a contradiction for L above this threshold.

Let q denote the expected probability of conviction when a1 = 1. We show that q ∈ (0, 1). Suppose by

way of contradiction that q = 0. Then, the defendant has a strict incentive to commit offenses, which leads to a

contradiction. Suppose now by way of contradiction that q = 1. Then, the defendant is accused with probability

1 − Φ(−b) when he commits an offense and with probability 1 − Φ(0) when he does not commit an offense.

Hence, he has an incentive to commit an offense only if L(Φ(0) − Φ(−b)) ≤ 1, which cannot be true when

L > 1
Φ(0)−Φ(−b) .

Hence, when L is large enough, it must be the case that q ∈ (0, 1) in every equilibrium. This implies that the

defendant’s posterior probability of guilt equals π∗ conditional on a = 1. Since the probability that he commits an

offense is strictly between 0 and 1, we have the following indifference condition:

1

L
= Φ

((1− q)c

q

)
− Φ

((1− q)c

q
− b

)
.
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When L is large enough, the conviction probability q becomes arbitrarily small, which implies that

I =
1− Φ

(
(1−q)c

q − b
)

1− Φ
(
(1−q)c

q

)
diverges to infinity. Bayes rule then implies that the probability that the defendant chooses θ1 = 1 converges to 0.

B Proof of Lemma 4.1

Step 1: We show that for every i ∈ {1, 2}, Pr(θi = 1) ∈ (0, 1) in every equilibrium. First, suppose by way of

contradiction that Pr(θi = 1) = 1 for some i ∈ {1, 2}. Then, regardless of the conviction rule used, the defendant

is convicted with probability 1 under every a that occurs with positive probability. This cannot happen in any

equilibrium that satisfies Refinement 1 since q(0, 0) = 0 and a = (0, 0) with positive probability.

Next, suppose by way of contradiction that Pr(θi = 1) = 1. By symmetry, it must be the case that (θ1, θ2) =

(0, 0) with probability 1. In this case, the defendant is acquitted with probability 1 under every a that occurs with

positive probability. In order for the defendant to have an incentive to choose θ = (0, 0), there exists a ∈ {0, 1}2

such that q(a) > 0. Consider two cases. First, suppose q(1, 0) > 0. By Refinement 1, a2 = 0 with positive

probability, which implies that agent 1 has a strict incentive to choose a1 = 1 when ω1 is sufficiently high. Hence

(a1, a2) = (1, 0) occurs with positive probability yet q(1, 0) > 0, which leads to a contradiction. A symmetric

argument rules out q(0, 1) > 0. Next, suppose q(1, 1) > 0 and q(1, 0) = q(0, 1) = 0. If a2 = 1 occurs with zero

probability, then the defendant has a strict incentive to choose θ1 = 1 given that q(1, 0) = q(0, 0) = 0, which

leads to a contradiction. If a2 = 1 occurs with positive probability, then agent 1 has a strict incentive to choose

a1 = 1 when ω1 is large enough, under which (a1, a2) = (1, 1) occurs with positive probability. This contradicts

the requirement that q(a) = 0 for every a that occurs with positive probability.

Step 2: We show that for every i ∈ {1, 2}, agent i accuses the defendant with strictly higher probability when

θi = 1 compared to when θi = 0. To see this, note that if agent i accuses the defendant with weakly higher

probability when θi = 0, the defendant has a strict incentive to choose θi = 1 since the benefit from doing so

is 1 and, according to Refinement 2, reducing the probability that ai = 1 weakly decreases the probability of

conviction. This contradicts the result obtained in the first step that Pr(θi = 1) ∈ (0, 1) for every i ∈ {1, 2}.

Step 3: We rule out cases in which either Q1,2(q(1, 1)−q(0, 1))+(1−Q1,2)q(1, 0) or Q0,2(q(1, 1)−q(0, 1))+

(1−Q0,2)q(1, 0) is 0, which implies that agent 1’s equilibrium strategy takes the form of two cutoffs.
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Suppose by way of contradiction that Q1,2(q(1, 1)− q(0, 1)) + (1−Q1,2)q(1, 0) = 0, in which case the LHS

of (4.1) is 0. Refinement 2 implies that the RHS of (4.1) is weakly positive. If it is strictly positive, then agent 1

never chooses a1 = 1 when θ1 = 1. As a result, the defendant has a strict incentive to choose θ1 = 1, which leads

to a contradiction. If the RHS of (4.1) is 0, then Q1,2 = 1 and q(0, 1) = 1, i.e., conditional on θ1 = 1, agent 2

chooses a2 = 1 with probability 1. We consider two cases separately:

1. Conditional on θ1 = 1, θ2 = 0 with positive probability, and agent 2 plays a2 = 1 when θ2 = 0.

2. Conditional on θ1 = 1, θ2 = 0 with zero probability, and agent 2 plays a2 = 1 when θ2 = 1.

The first case is ruled out since it would give the defendant a strict incentive to choose θ2 = 1, given that doing

so weakly decreases the probability of conviction by decreasing the probability that a2 = 1. In the second case,

the symmetry requirement implies that only (θ1, θ2) = (0, 0) and (θ1, θ2) = (1, 1) occur with strictly positive

probability. This implies that Q1,1 = 1 and q(1, 0) = 1. Plugging q(1, 1) = q(1, 0) = q(0, 1) = 1 into agent 1’s

incentive constraint when θ1 = 0, we know that he will accuse the defendant if (1 −Q0,2)ω1 ≥ 0, and similarly,

we know that when θ2 = 0, he will accuse the defendant if (1 − Q0,1)ω2 ≥ 0. If Q0,i = 1, the defendant has a

strict incentive to choose θi = 1, which leads to a contradiction. If Q0,1, Q0,2 < 1, then when (θ1, θ2) = (0, 0),

agent i accuses the defendant if ωi ≥ 0, which occurs with probability 1− Φ(0). When L is large enough so that

LΦ(0)2 > 2, the defendant strictly prefers (θ1, θ2) = (0, 0) to (θ1, θ2) = (1, 1), which leads to a contradiction.

Suppose by way of contradiction that Q0,2(q(1, 1)− q(0, 1)) + (1−Q0,2)q(1, 0) = 0. Refinement 2 implies

that Q0,2(q(1, 1) − q(0, 1)) = 0 and (1 − Q0,2)q(1, 0) = 0. That is, either q(1, 1) = q(0, 1) or Q0,2 = 0, and

either q(1, 0) = 0 or Q0,2 = 1. We consider three cases separately. First, if q(1, 1) = q(0, 1) and q(1, 0) = 0, then

the defendant has a strict incentive to choose θ1 = 1, which leads to a contradiction. Second, if q(1, 1) = q(0, 1)

and Q0,2 = 1, i.e., θ1 = 0 implies that a2 = 1. Refinement 1 implies that θ2 = 0 occurs with positive probability

conditional on θ1 = 0. However, in this case agent 2 chooses a2 = 1 with probability 1 when θ2 = 0, which

implies that the defendant has a strict incentive to choose θ2 = 1, leading to a contradiction. Third, if q(1, 0) = 0

and Q0,2 = 0, agent 1 believes that agent 2 chooses a2 = 0 for sure after observing θ1 = 0. If θ2 = 1 occurs with

positive probability when θ1 = 0, then agent 2 chooses a2 = 0 for sure when θ2 = 1. In this case, the defendant

has a strict incentive to choose θ2 = 1, which leads to a contradiction. If θ2 = 0 occurs with probability 1 when

θ1 = 0, then agent 2 chooses a2 = 0 for sure when θ2 = 0. This together with q(1, 0) = 0 implies that the

defendant strictly prefers (θ1, θ2) = (1, 0) to (θ1, θ2) = (0, 0), which leads to a contradiction.
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C Proof of Proposition 3

Lemma 4.1, 4.2, and 4.3 apply to this more general setting in which the virtual type occurs with strictly positive

probability. We consider two cases separately depending on which of πo and π∗ has the higher value. The case in

which πo ≥ π∗ is similar to the model in Section 2, while the case in which πo < π∗ requires a different argument.

C.1 Case 1: πo ≥ π∗

Lemma 4.2 implies that q(0, 0) = q(1, 0) = q(0, 1) = 0 and q(1, 1) > 0. Therefore, q(1, 1) + q(0, 0) −

q(1, 0)− q(0, 1) > 0 and the definition of APP implies that Pr(θ = 1|a) ≤ π∗ for every a ∈ {0, 1}2. Therefore,

Pr(θ = 1) < π∗ ≤ πo, which implies that the opportunistic type of the defendant chooses θ = (0, 0) with positive

probability. From Lemma 4.3, the defendant’s choices of committing distinct offenses are strategic substitutes, and

as argued in the proof of Theorem 1, the opportunistic type cannot be indifferent between committing no offense

and committing two offenses. This implies that the defendant chooses θ = (1, 1) with zero probability.

Let π denote the ex ante probability that the defendant commits at least one offense. Our symmetry requirement

implies that (θ1, θ2) equals (1, 0) and (0, 1) with the same probability. Conditional on θi = 0, the probability that

θ = (0, 0) is

β ≡ 1− π

1− π/2
. (C.1)

Let Q1 ≡ Q1,1 = Q1,2 and Q0 ≡ Q0,1 = Q0,2. Since θ = (1, 1) occurs with zero probability,

Q1 = 1− Φ(ω∗∗) (C.2)

and

Q0 = 1− βΦ(ω∗∗)− (1− β)Φ(ω∗) = βQ1 + (1− β)(1− Φ(ω∗)). (C.3)

Subtracting (4.10) from (4.9) yields

ω∗∗ − ω∗ = b− c

q(1, 1)
· −1 +Q0/Q1

Q0
. (C.4)

Lemma C.1. ω∗∗ − ω∗ ∈ (0, b).

Proof of Lemma C.1: According to (C.2) and (C.3), ω∗∗ − ω∗ > 0 is equivalent to Q0 > Q1. To see this, suppose

by way of contradiction that Q0 ≤ Q1. Equation (C.4) implies that ω∗ ≤ ω∗∗−b < ω∗∗. The comparison between

(4.9) and (4.10) then yields Q0 > Q1, which leads to a contradiction. Since Q0 > Q1, the term −1+Q0/Q1

Q0
is

strictly positive, which shows that ω∗∗ − ω∗ < b.
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Let

I ≡ Pr(a1 = a2 = 1| θ = 1)

Pr(a1 = a2 = 1| θ = 0)
.

Since the opportunistic type of the defendant mixes between (0, 1), (1, 0), and (0, 0), we have

I ≡ (1− Φ(ω∗))(1− Φ(ω∗∗))

(1− Φ(ω∗∗))2
=

1− Φ(ω∗)

1− Φ(ω∗∗)
. (C.5)

Since q(1, 1) ∈ (0, 1), the judge assigns probability π∗ to θ = 1 after observing (a1, a2) = (1, 1). This implies

that
π

1− π
=

l∗

I
where l∗ ≡ π∗

1− π∗ . (C.6)

Plugging (C.6) into (C.1), we obtain the following expressions for β and 1− β:

β =
2I

l∗ + 2I
and 1− β =

l∗

l∗ + 2I
. (C.7)

Plugging (C.7) into (C.2) and (C.3) then yields

Q0

Q1
= β + (1− β)I =

(l∗ + 2)I
l∗ + 2I

. (C.8)

Plugging (4.9) and (4.10) into (C.8), we obtain

|ω∗ − c− b|
|ω∗∗ − c|

=
(l∗ + 2)I
l∗ + 2I

. (C.9)

This leads to the following lemma.

Lemma C.2. If ω∗ → −∞, then I → 1 and π → π∗.

Proof of Lemma C.2: Since ω∗ −ω∗∗ ∈ (0, b), the difference between |ω∗ − c− b| and |ω∗∗ − c| is at most b. The

LHS of (C.9) converges to 1 as ω∗ → −∞. Since the RHS of (C.9) is strictly increasing in I and is equal to 1

when I = 1, I must converge to 1 as ω∗ → −∞. Equation (C.6) then shows that π converges to π∗.

The opportunistic type’s indifference condition (4.8) implies that as L → +∞, either q → 0 or at least one

of 1 − Φ(ω∗∗) and Φ(ω∗∗) − Φ(ω∗) converges to 0. If q → 0, then the expressions for ω∗ and ω∗∗ in (4.9) and

(4.10) imply that ω∗, ω∗∗ → +∞. If 1 − Φ(ω∗∗) converges to 0, then ω∗∗ → +∞ and ω∗ → +∞ as well since

|ω∗ − ω∗∗| ∈ (0, b). If Φ(ω∗∗)−Φ(ω∗) converges to 0, then either ω∗∗ → +∞ or −∞ or ω∗∗ − ω∗ → 0 or both.

Since (4.10) implies that ω∗∗ ≥ 0, it cannot be the case that ω∗∗ → −∞. Our earlier conclusion implies that the

value of I(1, 1) converges to 1 regardless of whether both ω∗ and ω∗∗ diverge to +∞ or ω∗∗ − ω∗ → 0 and both
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thresholds are bounded from above by some finite number. According to Bayes rule, I(1, 1) → 1 implies that

π → π∗.

C.2 Case 2: πo < π∗

First, we show that the opportunistic type commits two offenses with positive probability in every equilibrium.

Suppose by way of contradiction that he never commits two offenses. Since type tv defendant never commits any

offense, the equilibrium probability of that an offense occurs cannot exceed πo, which is strictly less than π∗. As

a result,

I ≡ Pr(a1 = a2 = 1|θ = 1)

Pr(a1 = a2 = 1|θ = 0)
≥ πo

1− πo

/ π∗

1− π∗ > 1. (C.10)

The expressions for Q0 and Q1 in (C.2) and (C.3) also apply to this setting. The derivations contained in Appendix

C.1 imply that for every ε > 0, there exists Lε > 0 such that when L ≥ Lε, the informativeness ratio is less than

1+ ε. This contradicts (C.10), which requires that the informativeness ratio be strictly bounded below, away from

1.

Since q(1, 1) ∈ (0, 1) and q(1, 1) + q(0, 0)− q(1, 0)− q(0, 1) > 0, Lemma 4.3 implies that the opportunistic

type cannot be indifferent between committing no offense and committing two offenses. Hence, it can only be the

case that the opportunistic type chooses θ = (0, 1), (1, 0) and (1, 1) with strictly positive probability, and chooses

θ = (0, 0) with zero probability. This is the case when the expected marginal cost of committing a second offense

equals 1, which implies that the expected marginal cost of committing the first offense is strictly less than 1. This

implies that Pr(θ = 1) = πo. The informativeness ratio is pinned down by Bayes Rule:

I Pr(θ = 1)

1− Pr(θ = 1)
=

Pr(θ = 1|a1 = a2 = 1)

1− Pr(θ = 1|a1 = a2 = 1)
. (C.11)

We now show that θ1 and θ2 are negative correlated, i.e., that Pr(θj = 1|θi = 1) < Pr(θj = 1|θi = 0) for

every i ̸= j. Suppose by way of contradiction that there exist i and j with i ̸= j such that Pr(θj = 1|θi = 1) ≥

Pr(θj = 1|θi = 0) for every i ̸= j The definitions of Q1,j and Q0,j imply that Q1,j ≥ Q0,j . The equations (4.9)

and (4.10) for the cutoffs then imply that ω∗∗
i − ω∗

i ≥ b. When L is large enough, we have q(1, 1) → 0 and

ω∗
i → +∞, and the analysis of the single-agent case shows that I → ∞. This contradicts (C.11) and the

conclusion that Pr(θ = 1|a1 = a2 = 1) = π∗.

D Proof of Theorem 3

Our proofs in this section use the following lemma, which is proved in Online Appendix B.
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Lemma D.1. Fix any n ≥ 2 and suppose that the judge uses APP. There exists L > 0 such that for every

L > L and every symmetric equilibrium that satisfies Refinements 1 and 2,

1. the defendant is convicted with positive probability only if a = (1, 1, ..., 1);

2. the defendant commits at most one offense.

With n ≥ 3 agents, we derive formulas for agents’ reporting cutoffs (ω∗
n, ω

∗∗
n ), the informativeness of reports

In, and the equilibrium probability that θ = 1, i.e., that at least one offense occurs, which we denote by πn. Agent

i’s reporting cutoffs are

ω∗
n = −b− c+

c

qnQ1,n
when θi = 1 (D.1)

and

ω∗∗
n = −c+

c

qnQ0,n
when θi = 0 (D.2)

where

Q1,n ≡
(
1− Φ(ω∗∗

n )
)n−1

, (D.3)

Q0,n ≡ nIn
(n− 1)l∗ + nIn

(
1− Φ(ω∗∗

n )
)n−1

+
(n− 1)l∗

(n− 1)l∗ + nIn

(
1− Φ(ω∗∗

n )
)n−2(

1− Φ(ω∗
n)
)
. (D.4)

In any symmetric equilibrium, the aggregate informativeness of reports, defined in (5.5), can be written as

In =
1− Φ(ω∗

n)

1− Φ(ω∗∗
n )

.

Since the judge is indifferent between convicting and acquitting the defendant when there are n accusations, we

have

In =
π∗

1− π∗

/ πn
1− πn

. (D.5)

When L is large enough, the defendant is indifferent between committing only one offense and committing no

offense, which leads to the following indifference condition

1

L
= qn

(
Φ(ω∗∗

n )− Φ(ω∗
n)
)(

1− Φ(ω∗∗
n )

)n−1
. (D.6)

Reporting Cutoffs & Distance Between Cutoffs: We show that ω∗
k < ω∗

n. Suppose by way of contradiction

that ω∗
k ≥ ω∗

n. From (D.1), we know that

qk

(
1− Φ(ω∗∗

k )
)k−1

≤ qn

(
1− Φ(ω∗∗

n )
)n−1

. (D.7)
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Therefore, qkQ1,k ≤ qnQ1,n, which is equivalent to

qk

(
1− Φ(ω∗∗

k )
)k−1(

Φ(ω∗∗
n )− Φ(ω∗

n)
)
≤ qn

(
1− Φ(ω∗∗

n )
)n−1(

Φ(ω∗∗
n )− Φ(ω∗

n)
)

= qk

(
1− Φ(ω∗∗

k )
)k−1(

Φ(ω∗∗
k )− Φ(ω∗

k)
)
.

This implies that

Φ(ω∗∗
n )− Φ(ω∗

n) ≤ Φ(ω∗∗
k )− Φ(ω∗

k). (D.8)

Under our hypothesis that ω∗
k ≥ ω∗

n, inequality (D.8) is true only if

ω∗∗
n − ω∗

n ≤ ω∗∗
k − ω∗

k, (D.9)

which in turn implies that ω∗∗
k ≥ ω∗∗

n and that qkQ0,k ≤ qnQ0,n. Computing the two sides of (D.9) by subtracting

(D.2) from (D.1) for n and k, we obtain

ω∗∗
n − ω∗

n = b− c

qn

Q0,n −Q1,n

Q1,nQ0,n
and ω∗∗

k − ω∗
k = b− c

qk

Q0,k −Q1,k

Q1,kQ0,k
.

Since we have shown that qkQ1,k ≤ qnQ1,n and qkQ0,k ≤ qnQ0,n, (D.9) is true only if

qn(Q0,n −Q1,n) ≥ qk(Q0,k −Q1,k). (D.10)

We have

Q0,n −Q1,n =
(n− 1)l∗

(n− 1)l∗ + nIn
δ
(
Φ(ω∗∗

n )− Φ(ω∗
n)
)(

1− Φ(ω∗∗
n )

)n−2

and (
Φ(ω∗∗

n )− Φ(ω∗
n)
)(

1− Φ(ω∗∗
n )

)n−2
= L−1q−1

n

1

1− Φ(ω∗∗
n )

.

Combining this with (D.6) and (D.10) yields

(n− 1)l∗

(n− 1)l∗
(
1− Φ(ω∗∗

n )
)
+ n

(
1− Φ(ω∗

n)
) ≥ (k − 1)l∗

(k − 1)l∗
(
1− Φ(ω∗∗

k )
)
+ k

(
1− Φ(ω∗

k)
) ,

which may be rewritten as

(n−1)(k−1)l∗
(
1−Φ(ω∗∗

k )
)
+(n−1)k

(
1−Φ(ω∗

k)
)
≥ (n−1)(k−1)l∗

(
1−Φ(ω∗∗

n )
)
+(k−1)n

(
1−Φ(ω∗

n)
)
.
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This inequality cannot hold because 1−Φ(ω∗∗
k ) < 1−Φ(ω∗∗

n ), 1−Φ(ω∗
k) < 1−Φ(ω∗

n) and (n−1)k < (k−1)n.

This leads to a contradiction and shows that ω∗
k < ω∗

n whenever k > n. The relation that k > n was only used in

the last step. Using the fact that ω∗
k < ω∗

n and repeating our earlier argument up until (D.9), we obtain that

ω∗∗
n − ω∗

n > ω∗∗
k − ω∗

k. (D.11)

This, together with ω∗
k < ω∗

n, implies that ω∗∗
k < ω∗∗

n .

The Informativeness of Accusations and Expected Number of Offense: We show that In > Ik. The posterior

probability that an offense was committed reaches π∗ after observing a = (1, 1, ..., 1). This, together with (5.3),

implies that the probability of offenses and the expected number of offenses must be ranked as claimed by Theorem

3.

Applying (D.1) and (D.2) to both n and k, we obtain

−ω∗
n + b+ c

−ω∗
k + b+ c

=
qkQ1,k

qnQ1,n
and

−ω∗∗
n + c

−ω∗∗
k + c

=
qkQ1,k(βk + (1− βk)Ik)
qnQ1,n(βn + (1− βn)In)

. (D.12)

First, we show that
−ω∗

n + b+ c

−ω∗
k + b+ c

>
−ω∗∗

n + c

−ω∗∗
k + c

. (D.13)

Suppose toward a contradiction that the RHS of (D.13) is at least as large as the LHS of (D.13). Then,

−ω∗∗
n + c− (−ω∗

n + b+ c)

−ω∗∗
k + c− (−ω∗

k + b+ c)
≥ −ω∗

n + b+ c

−ω∗
k + b+ c

. (D.14)

When L is large enough, the RHS of (D.14) is strictly greater than 1 since 0 < ω∗
k < ω∗

n. This implies that the

LHS of (D.14) is greater than 1, which is equivalent to

b− (ω∗∗
n − ω∗

n) > b− (ω∗∗
k − ω∗

k).

This contradicts (D.11), which was established earlier, and proves (D.13). This, together with (D.12), implies that

βk + (1− βk)Ik < βn + (1− βn)In.

Plugging in the expressions of In and Ik obtained in (D.5), we get

Ik
(
k + (k − 1)l∗

)(
nIn + (n− 1)l∗

)
< In

(
n+ (n− 1)l∗

)(
kIk + (k − 1)l∗

)
.
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Letting ∆ ≡ Ik − In, the previous inequality reduces to

(k − n)In(Ik − 1) = (k − n)In(In +∆− 1) < k∆−
(
l∗(k − 1)(n− 1) + nk

)
∆.

Suppose toward a contradiction that ∆ ≥ 0. Then, the LHS is strictly positive since Ik > 1 and k > n. The

RHS is negative since l∗(k − 1)(n− 1) + nk > k. This leads to the desired contradiction and implies that ∆ < 0

or, equivalently, that In > Ik. Equation (5.3) then implies that the probability with which the defendant chooses

θ = 1 increases when the number of agents increases from n to k. It also implies that the expected number of

offenses increases since the defendant commits at most one offense on the equilibrium path.
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