
Contract Negotiation and the Coase Conjecture:

A Strategic Foundation for Renegotiation-Proof Contracts ∗

Bruno Strulovici

Northwestern University

December 8, 2016

Abstract

What does contract negotiation look like when some parties hold private infor-

mation and negotiation frictions are negligible? This paper analyzes this question and

provides a foundation for renegotiation-proof contracts in this environment. The model

extends the framework of the Coase conjecture to situations in which the quantity or

quality of the good is endogenously determined and to more general environments in

which preferences are nonseparable in the traded goods. As frictions become negli-

gible, all equilibria converge to a unique outcome which is separating, efficient, and

straightforward to characterize.
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1 Introduction

Real negotiations contain a puzzle: On the one hand, parties often try to withhold private

information until a deal is reached. On the other hand, the very fact of agreeing to a deal,

and the timing of this agreement, reveals to some extent the parties’ real stakes in the

negotiations. How is this new information incorporated in the final agreement, when players

can freely renegotiate their contract?

This puzzle does not arise in the best-known models of negotiation, because of their spe-

cific structure. In Coase’s model of a durable-good monopolist (Coase (1972)), for instance,

buyers need only one unit of the good. Any sale is therefore efficient, and further negotia-

tions are pointless regardless of the information revealed about the buyer by the timing of

his purchase. Similarly, when players with privately known patience bargain over splitting a

pie (Rubinstein (1985)), any split of the pie is ex-post efficient and further negotiations are

pointless regardless of what players learn about each other’s patience.

In richer contractual environments, however, an initial agreement may be inefficient. If,

for example, a buyer may value multiple units or various qualities of a good, his acceptance

to buy the good early in the negotiation process may reveal a preference for more units

or higher qualities of the good, spurring further negotiations before the final agreement.

Moreover, this perspective affects both parties’ incentives from the outset of negotiations.

This paper’s objective is to characterize the possible outcomes of negotiation in these

richer contractual environments, when the ability to refine contracts is (almost) unrestricted.

It provides a dynamic resolution of the above puzzle by describing the gradual succession of

agreements leading to the final outcome, and answers the following questions: How gradual

are the agreements? How fast do they incorporate private information? How much efficiency

is lost in the process? How does the outcome depend on the buyer’s type and on the seller’s

belief about it? And on the initial relationship between these parties?

The analysis is based on an explicit protocol of negotiation in which one party—the

agent—possesses private information while the other party—the principal—makes the offers.

The framework is broader than the buyer-seller model with quasilinear preferences and linear

cost. For example, the goods traded may be complements.

The main result is that all equilibria of this negotiation game converge to a unique out-
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come, which is fully separating and efficient, as negotiation frictions become negligible. The

outcome is renegotiation-proof in the sense that no surplus may be gained from renegotiating

it further. Seen in this light, the paper provides a strategic foundation for renegotiation-proof

contracts, as well as a dynamic implementation, without commitment, of efficient allocations.

In the negotiation protocol considered here, the principal can propose new contracts or

changes to a previously accepted contract at any time, including after the agent has accepted

or rejected a previous proposal. The principal is thus unable to commit not to renegotiate the

contract. Time is divided into negotiation rounds: In each round, the principal can propose

various changes to the current agreement. The agent then accepts a proposal or rejects

all changes. This exchange captures in a stylized fashion the idea of a gradual agreement

formation in real negotiations; here, any agreement is interpreted as a (possibly oral) bilateral

contract, binding unless both parties agree to replace it by another contract.1

For the final outcome to be well defined, negotiations must end somehow, and the protocol

relies on a particular concept of negotiation friction: at the end of each round, negotiations

are exogenously interrupted with a fixed probability, η, in which case the current agreement

is implemented. This interruption may be interpreted in various ways. For example, suppose

that parties are negotiating a risk-sharing contract, each dimension of which concerns a state

of the world. Then, the realization of the state of the world (or its public announcement)

makes any further negotiation moot. In a sales contract application, interruption may be

coming from a third party, supplier or customer, demanding a commitment or service which

requires the immediate implementation of the contract. The interruption probability cap-

tures the negotiation friction. When η is equal to 1, the protocol reduces to full commitment

since the first proposal is also the last one. In this case, it is well-known that the principal

typically distorts the allocation of some types of the agent, causing ex post inefficiency. This

paper’s interest lies in the opposite case, in which negotiation frictions are negligible (η goes

to 0). This case should be interpreted as parties having arbitrarily frequent opportunities

to negotiate with each other: the time interval between consecutive rounds is so small that

parties become unlikely to be exogenously interrupted in any such interval. Under this inter-

1In practice, reneging on an agreement is costly even if it was made orally or informally—indeed, many

jurisdictions recognize oral contracts as legally binding. Reneging on an informal agreement bears other

costs, as it damages the reputation of the reneging party and puts a strain on further negotiations.
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pretation, the time interval between rounds is of order η. Therefore, even though it takes an

increasing number rounds for negotiations to stop as η goes to zero, the expected stopping

time of negotiation is independent of η and thus uniformly bounded.2

While the ability to freely modify past agreements seems necessary to guarantee an ex

post efficient outcome, establishing that it is sufficient involves complex issues. To appreci-

ate the difficulty, consider again the standard durable-good monopolist. Efficiency in that

context means that the good is sold without any delay, and was established by Gul, Sonnen-

schein, and Wilson (1986) as the discount rate between consecutive periods goes to zero.3

The proof is sophisticated even in this considerably simpler contractual environment, where

each contract amounts to a single posted price. The key question is to determine whether

the seller can benefit from distorting the allocation of the low-valuation buyer by inefficiently

delaying the sale, in order to extract some rent from the high-valuation buyer. In richer envi-

ronments, the question is more complex because i) any initial agreement may be followed by

further negotiations (e.g., contractual covenants, increases in quantities or qualities), ii) the

principal may benefit from proposing multiple new contracts at each round instead of a

single one,4 iii) the agent can randomize over all such contracts resulting in complex belief

dynamics, and iv) utility may be nonlinear and non-separable in the contract components.

Due to the complexity of the analysis, the model focuses on a binary information struc-

2Precisely, suppose that the time interval between two rounds is equal to a × η for some a > 0. Then

the interruption time has mean a regardless of η and becomes approximately exponentially distributed with

parameter 1/a as η goes to zero.
3The result is shown for the “gap” case and the “no gap” case under some Lipschitz condition on the

distribution of types, for weak Markov equilibria (see also Sobel and Takahashi (1983) and Fudenberg, Levine,

and Tirole (1985)). Ausubel and Deneckere (1989) show that the conjecture can fail when more general

equilibria are allowed. The analysis of the Coase conjecture has been extended to various environments:

interdependent values (Deneckere and Liang (2006)), an incoming flow of new buyers (Fuchs and Skrzypacz

(2010)), and outside options for the buyer (Board and Pycia (2013)). In Board and Pycia, the seller can

extract all the surplus owing to positive selection, unlike the present model, which is closer to negative

selection. Skreta (2006) takes a mechanism design approach and shows the optimality of price posting.

All these papers assume that the buyer can buy only one unit of the good, a single quality of the good is

available, and utility functions are quasilinear.
4For example, the principal may propose one contract for each type of the agent, or propose multiple

almost identical contracts as a communication device to emulate cheap talk.
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ture: the agent can be of two types, and the corresponding utility functions satisfy a standard

single-crossing condition. As long as the types of the agent have not been fully separated,

there are strictly positive gains from renegotiation, and the paper’s main result shows that

all these gains are realized as frictions become negligible: all Perfect Bayesian Equilibria

(PBEs) converge to a unique outcome, which is separating and efficient.

The type-specific contracts to which all PBE outcomes converge are straightforward to

characterize and determine graphically. Unlike the full-commitment case (but like the Coase

conjecture, which it generalizes in this respect), these contracts are independent of the initial

(non degenerate) belief that the principal holds about the type of the agent. They do depend

on the initial contract—or absence thereof, which is formally equivalent to a ‘null’ contract—

which may lie in three possible regions of the contract space. In the “No-Rent” region, the

principal extracts all surplus of renegotiation regardless of the agent’s type. In the other

two regions, there is one region-specific type (“L”, say) who gains nothing from negotiation

while the other type (“H”) gets a positive rent.

The fact that almost-efficient contracts are proposed immediately implies that renegotia-

tion plays a relatively minor role in equilibrium, even though the possibility of renegotiation

has a major impact on the outcome. This suggests that, empirically, one should not infer

that renegotiation is impossible or difficult in practice just because the observed renegoti-

ation activity seems negligible. Instead, negotiation may be feasible and cheap but largely

internalized in the very first contracts that are proposed.

Section 2 presents the setting and main results. Section 3 compares the results with the

Coase conjecture. The main arguments are given in Sections 4 and 5. Section 6 discusses

the related literature and extensions of the framework.

2 Setting and Overview of the Results

There are two players, a principal (P) and an agent (A), who negotiate a contract lying in

some compact and convex subset C of R2 whose components are denoted x1 and x2.

A has a utility function uθ : C → R, where θ ∈ {L,H} denotes his type, and P has a cost

function Q : C → R. The functions uL, uH , and Q are twice continuously differentiable and

have strictly positive derivatives with respect to x1 and x2; uL and uH are concave and Q is

5



R0 = (xA1 , x
A
2 )

CLCH

x̄1 = xA1 + xP1

x̄2 = xA2 + xP2

H

EL

EH

x1

x2

Figure 1: Setting (trade interpretation)

convex. Although it is convenient to think of the agent’s type as being “high” (H) or “low”

(L) to connect the results to the existing literature, the role played by each type is in fact

determined by the initial contract, as explained below.

A contract C = (x1, x2) ∈ C is θ-efficient if it minimizes the principal’s cost among all

contracts in C providing θ with some given utility level. For each θ, let Eθ denote the set

of θ-efficient contracts in the interior of C; θ’s iso-utility curve and P’s iso-cost curve are

tangent at any such contract. It is assumed that the efficiency curves EL, EH are smooth and

upward sloping.5 The setting is represented on Figure 1 in the context of a trade application

(other applications are described later in this section). It is also assumed that, given any

contract C on Eθ, P’s and θ’s indifference curves going through C do not both have a zero

curvature at C. The assumption is satisfied, for instance, when the agent has a quasi-linear

utility function and his valuation for the good is strictly concave.6

5These assumptions hold, e.g., if uH , uL, and −Q are weakly supermodular in (x1, x2) and either uθ’s or

−Q is strictly concave in x2, as explained in Appendix J. Substantively, these assumptions holds as long as

the goods are not too strongly substitutes of each other.
6Alternatively, the agent’s utility could be linear in the good if P’s cost function is strictly convex. The

assumption does rule out settings in which both A’s and P ’s indifference curves are linear, but even this

case can be approximated by an arbitrarily small curvature (cf. Section 3). The assumption guarantees that
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The functions uL and uH are required to satisfy a standard single-crossing condition:

iso-utility curves of L are steeper than those of H at their intersection point. This implies

that the efficiency curve EL lies to the lower right of EH . C can therefore be partitioned into

three regions separated by EL and EH . Contracts in the inner region are said to be in the ‘No

Rent’ configuration, while contracts strictly below EL (above EH) are in the ‘H-Rent’ (‘L-

Rent’) configuration. The set of contracts in the H-Rent configuration is denoted by H. In

the trade application, C represents an Edgeworth box, delimited by the sum of endowments

of the agent and the principal. A contract C specifies the final allocation of the agent, the

efficiency curve Eθ is the ‘contract curve’ corresponding to type θ, and the status quo R0

represents the endowment of the agent before any trade.

The Negotiation Game

The game unfolds as follows. First, the agent privately observes his type θ; P has a

prior characterized by the probability β0 = Pr(θ = H). The game starts with a reference

“contract” R0 ∈ C, which represents the current engagement between the principal and the

agent. In many settings this initial contract would simply represent the absence of any past

engagement, as in most contracting models. In the durable-good monopolist application,

the initial contract is the “no sale” outcome; in the trade application, the initial contract

corresponds to the initial endowment of the agent before any trade. Specifying R0 explicitly

is useful for two reasons: First, it will allow us to treat the initial round like any later round

in which an agreement has already been made, which simplifies the exposition. Second,

there are environments, such as the trade application, in which the initial contract (initial

endowment of the agent) plays an important role on the outcome of negotiations.

There are countably many potential rounds, indexed by n ∈ N. At each round n, P can

propose a finite menuMn of contracts in C. In terms of interpretation, proposing contracts or

changes to the current contract is formally equivalent; the former formulation is used here.7

the distance between the two curves increases quadratically as one moves away from C, a property used to

compute a lower bound for the inefficiency of some contracts (see Lemma 15).
7One could restrict the principal to propose at most two contracts in each round. Such a restriction is not

desirable for several reasons. First, there is no guarantee that proposing only two contracts at each round

is without loss of generality. As Bester and Strausz (2001) have shown, the set of implementable outcomes
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The agent chooses a contract inMn or holds on to the last accepted contract, Rn. Any mixed

strategy over the choice set Mn ∪{Rn} is allowed. The selected contract, Rn+1, becomes the

new reference. At the end of each round, negotiations are frozen with probability η ∈ (0, 1],

in which case the last accepted contract, Rn+1, is implemented. Otherwise, negotiations

move on to the next round. The event of a negotiation freeze will be hereafter referred to

as a “breakdown.” This term means that future negotiations are terminated. However, the

last agreement formed before the breakdown (or the initial contract, if no agreement was

formed) is still valid. As explained in the Introduction, one may view η as the time interval

between two rounds, in which case the expected stopping time of negotiation is independent

of η and thus bounded as η goes to zero.

Letting {Rn} denote the stochastic process of contracts entering each round n, the agent’s

expected utility is equal to

Vθ = E

[

∑

n≥0

(1− η)nηuθ(Rn+1)

]

while P’s expected cost is

Q = E

[

∑

n≥0

(1− η)nηQ(Rn+1)

]

.

The parameter η represents the negotiation friction of the game.8 The objective of this

paper is to characterize the PBEs of the game as η goes to zero. The existence of a PBE is

guaranteed by Theorem 1, whose proof is in the Online Appendix (Appendix D).

Theorem 1 For each η ∈ (0, 1], there exists a PBE of the negotiation game.

To prove this theorem, backward induction techniques cannot be used because there is no

non-degenerate belief, no matter how extreme, for which negotiations end in finite time, as

generally requires strictly more “messages” (or contracts) than the number of types of the agent, even in a

two-period setting. Here, one must consider all possible continuation equilibria, including incentive inefficient

ones. Indeed, an inefficient continuation equilibrium may provide incentives at earlier stages of the game

and it is precisely the purpose of the analysis to show that the negotiation outcome is efficient, rather than

assume this. Second, such a restriction would not necessarily simplify the analysis as the agent would still

choose between three contracts (the two contracts offered and the current one), which potentially results in

all the issues, such as belief non-monotonicity, which arise when more contracts are allowed. Finally, allowing

more contracts paves the way for an extension to three or more agent types, as explained in Appendix L.
8There is another interpretation of the setting where η is the discount rate and the parties receive payoffs

at each period of the on going relationship. This interpretation is discussed in Section 6.
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Figure 2: Renegotiation outcomes

will be explained in the analysis below and proved in Appendix K. Instead, the proof builds

on a theorem by Harris (1985) for games of perfect information to show the existence of

an equilibrium in an auxiliary game between the principal and the high type of the agent,

which treats the low type “mechanically.” This equilibrium is then used to construct an

equilibrium of the negotiation game with private information.

For any contract R ∈ C, let EH(R) and EL(R) denote the least costly pair of H- and

L-efficient contracts such that each type θ 6= θ′ weakly prefers Eθ(R) to Eθ′(R) and to R.

This pair is well defined for each possible configuration of R.9 Figure 2 represents these

definitions for the case of CRRA utility functions and a linear cost function.

Theorem 2, below, requires that no contract arising in equilibrium be jointly efficient

9If R is in the No-Rent configuration, Eθ(R) is simply the θ-efficient contract that gives θ the same utility

as R. If R is in the H-Rent configuration, then EL(R) is similarly defined, while EH(R) is the H-efficient

contract that gives H the same utility as EL(R). Because that contract gives a strictly higher utility to H

than the initial contract R, H must be getting a positive rent in any equilibrium, hence the name of that

configuration. A symmetric construction obtains if R is instead in the L-Rent configuration.
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for both agent types. The single-crossing property already rules out such contracts in the

interior of C. To deal with C’s boundary, say that a contract R0 is regular if it is in the No-

Rent configuration or if it satisfies the following condition, stated for R0 ∈ H (an analogous

condition is required for the L-Rent configuration): for any R′ ∈ H,

uH(EL(R
′)) ≥ uH(R0) ⇒ EL(R

′) 6= EH(R
′) (1)

Given any contract R0, regularity—whose role is explained below—can always be achieved

by arbitrarily small perturbations of the utility or the cost functions, as illustrated by Sec-

tion 3.10 In Figure 2, all contracts are regular except for the origin.

Theorem 2 Consider any regular contract R0, belief β0 ∈ (0, 1), and ε > 0. There exists

η̄ > 0 such that the following statements hold for any η ≤ η̄ and corresponding PBE:

A: The expected utility of each type θ is bounded below by uθ(Eθ(R0))− ε.

B: The probability that each type θ gets a contract within a distance11 ε of Eθ(R0) when

renegotiation breaks down is greater than 1− ε.

Theorem 2 shows that all PBEs reduce to an essentially unique one, which is efficient, as η

becomes arbitrarily small. The proof identifies a feasible strategy for P, which is to “give

up” on screening H , and proceeds to show that there is essentially nothing more that P can

do. Methodologically, it is interesting to contrast this result with Ausubel and Deneckere

(1989) who show that a large range of utilities and profits can be sustained in a Coase

conjecture environment with zero gap by punishing any seller deviation with a zero-screening

equilibrium. What serves in their setting as a punishment threat for the seller becomes here

a tempting deviation for the principal, which prevents the existence of (essentially) any other

equilibrium. This model is thus closer to the positive-gap case of the Coase conjecture but

the gap here is endogenous and vanishes asymptotically, creating several major challenges

for the analysis explained in Section 5.

Theorem 2 implies that P always extracts some surplus from negotiation: When R0 is in

the No-Rent configuration, P extracts, in fact, all the surplus regardless of the agent’s type.

10These arbitrarily small perturbations are chosen so as to slightly push efficient contracts on C’s boundary
into the interior of C, by an arbitrarily small amount.

11The statement holds for any norm on R
2.
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When R0 is in the H-Rent configuration, P extracts all the surplus from negotiating with L,

and extracts some additional surplus if he faces H , corresponding to a move from EL(R0) to

EH(R0).

Regularity is used as follows: When R0 ∈ H, one may show that any contract R′ ∈ H
arising in equilibrium satisfies uH(EL(R

′)) ≥ uH(R0) (Proposition 1, Part iv) and, hence,

that the premise of (1) is always satisfied on path. If R0 is regular, this implies that any

breakdown with a non-degenerate belief yields some inefficiency.

Applications

1. Durable-Good Monopolist. A is a buyer with quasi-linear utility uθ(C) = θū(x2)+

x1, where x2 is the quantity of the good sold by P, x1 is A’s wealth, and ū is a strictly concave

function.12 The initial contract, R0, is equal to (x̄1, 0) where x̄1 is A’s initial wealth. P’s

cost is Q(x1, x2) = cx2 + x1, where c > 0 is the marginal cost for producing the good and x1

captures how much wealth P “leaves” to A.13

2. Labor Contract. P is a potential employer and A is a worker. −x2 represents A’s

effort and x1, his wage. A gets a utility uθ(C) = θψ(−x2) + x1 from contract C, where ψ

is a factor entering A’s cost of effort, increasing in its argument, and θ is a worker-specific

skill entering his cost. The status quo R0 = (0, 0) represents unemployment. P’s profit is

Π(x1, x2) = −Q(x1, x2) = −x2p− x1, where p > 0 is the unit price of the good.

3. Consumption Smoothing and Insurance. There are two periods and a single

good. The dimensions of C represent A’s consumption in each period. P is a social planner

or a bank who can help the agent smooth his consumption. The agent’s type corresponds to

a privately known patience/discount factor, or a distribution parameter describing how likely

the agent is to value the good in the second period. For example, u(x1, x2) may be equal

to v(x1) + θv(x2) or to v(x1) + E[w(x2, ρ̃)|θ] where ρ̃ is a taste shock whose distribution is

increasing in θ in the sense of first-order stochastic dominance and where w is supermodular,

so that E[∂w/∂x(x2, ρ̃)|θ] is increasing in θ.14 R0 is A’s autarkic income stream. Q(x1, x2) =

12The iso-level curves of uθ have a positive curvature as long as the second derivative of ū is strictly

negative, as is easily checked. A similar observation applies to ψ in the labor contract application.
13P’s profit is Π(t, x2) = t − cx2, where t is how much the agent pays P. Letting t = x̄1 − x1, yields the

formulation in terms of the cost function Q.
14This application is explored in detailed by Strulovici (2013).
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p1x1 + p2x2, where pt is the market price for the good in period t.

4. Risk Sharing Each dimension corresponds to a state of the world. The quantity xi

specifies the transfer of a good from P to A if state i is realized. L values the good more in

state 1 than state 2, relative to H . Alternatively, the types have the same preferences but

have different subjective beliefs, with L assigning a higher probability to the first state of

the world than H does.

5. Trade. More generally, the model describes a trade environment in which the dimen-

sions of C represent distinct goods, with xi denoting the quantity of good i consumed by

A. Type L cares more about the first good than the second, relative to H . P (like A) has

convex preferences and Q is the negative of a utility function representing P’s preferences.

R0 denotes A’s initial holdings of the goods.

3 Relation to the Coase conjecture

In the standard Coase conjecture, all buyer types have a single-unit valuation. The set of

efficient contracts is the same for all types: it consists of all contracts for which the buyer

gets the good, regardless of the sale price.15 However, when goods are divisible or available

in multiple qualities, it becomes rather restrictive to assume that the same contracts which

are efficient for one type of the agent are also efficient for the other types. In fact, when

efficient contracts lie in the interior of the contract space, the strict single-crossing property

implies that whatever contract is efficient for one agent type is inefficient for the other.

This distinction explains why, in this paper, the principal can always extract some surplus

from the “high” type, in contrast to the Coase conjecture. It also explains why, when the

initial contact lies between the efficiency curves of both types—an impossibility for the

standard Coase conjecture, where these curves coincide—the principal can extract all the

surplus from negotiation. In this sense, the Coase conjecture appears to be non-generic as

it relies on the assumption that all agent types share the same efficient outcomes.

However, because the model imposes no lower bound on how “far” the efficiency curves

of both types have to be, it is easy to recover the Coase conjecture as a limit of Theorem 2.

15This statement concerns the “positive gap” case (lowest buyer valuation exceeds seller cost), which is

the relevant comparison here.
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To see this, suppose that the first contractual dimension represents the agent’s wealth and

the second dimension represents the quantity, between 0 and 1, of a divisible good sold to

the agent. The initial contract is (W, 0), where W is the agent’s initial wealth. An agent of

type θ has utility u(x1, x2) = vθx2 + x1 with vH > vL > 0. The principal incurs a marginal

cost ∂Q
∂x2

(x1, x2) = c(1 − x2)
δ−1 for producing a quantity x2 of the good, where c < vL and

δ ∈ [0, 1]. When δ = 1, the marginal cost is constant equal to c. The parameter δ is chosen

arbitrarily close to 1, so that Q is slightly convex with a strictly positive curvature.

The efficiency curve EH is horizontal and characterized by the quantity xH2 (δ) solving

vH = c(1 − xH2 (δ))
δ−1. Likewise, EL is characterized by the quantity xL2 (δ) such that vL =

c(1− xL2 (δ))
δ−1. We have

xL2 (δ) = 1−
(

c

vL

)
1

1−δ

and xH2 (δ) = 1−
(

c

vH

)
1

1−δ

,

so x2(δ, L) < x2(δ,H) and both converge to 1 as δ goes to 1. The efficiency curves of both

types are thus distinct but converge to the same contract curve, characterized by a single

unit of good sold to the agent, as δ goes to 1. The setting is represented on Figure 3. Red

(blue) curves represent the iso-utility curves of the high (low) type. The boundary of regular

contracts is shown on the left of the figure. All contracts of H lying to the right of this

boundary, including R0, are regular and if necessary one could expand the contract space to

the left (or translate the agent’s wealth) to make any given contract R ∈ H regular.

The Coase conjecture is recovered as follows: if P were sure to face H , he would move to

the contract CH on Figure 3. With uncertainty about the buyer’s type, however, Theorem

2 implies that the outcome is given by the contracts EH(R0), EL(R0), which converge to the

same contract as δ goes to 1. Both types of the buyer obtain essentially the same outcome,

which is the (almost) sure sale of the good at the same price. The high type gets a rent

corresponding to the distance between EH(R0) and CH , while L gets no rent.

Theorem 2 shows which part of the Coase conjecture is robust to a richer contractual

environment: the efficiency part continues to hold, but the seller’s inability to extract any

surplus disappears. The richer contract space also gets rid of the stark discontinuity arising

in the Coase conjecture between the gap and no gap cases: With two types, H ’s rent increases

as L’s valuation vL (and hence the equilibrium price) becomes lower. However, when L’s

valuation reaches P’s marginal cost c, turning into the “no gap” case, H ’s rent suddenly
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Figure 3: Recovering the standard Coase conjecture

drops to zero and P’s profit leaps up from zero to β0(vH − vL). Consider a similar exercise

in the setting of Theorem 2, where L’s efficiency curve is lowered until it goes through R0.

The surplus that P extracts from H then varies continuously, until EL goes exactly through

R0 and P extracts all surplus from H .

4 Results holding for all friction levels

This section presents results holding for all values of η which will be used to prove Theorem 2.

When P assigns probability 1 to either type of the agent, or when the contract is in the No-

Rent configuration, there is a unique continuation PBE: P immediately extracts all the rent

from negotiation and efficiency obtains exactly.16 In other cases, one may compute an upper

bound on the rent which the mimicking type (i.e., H , if R0 ∈ H) can extract. Intuitively, the

rent cannot exceed what this type would get if P “gave up” on screening H by immediately

giving the other type (L) his efficient contract. These results are collected in Proposition 1.

16Showing that this outcome constitutes an equilibrium is straightforward, but establishing uniqueness is

more involved. The proof uses a cost undercutting argument similar to the one applied to utility levels in

Rubinstein’s (1982) bargaining model with complete information.
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Unless indicated otherwise, all results of this section are proved in Appendix B.

Proposition 1 The following holds for any η and corresponding PBE:

i) If the prior β puts probability 1 on some type θ, P immediately proposes the θ-efficient

contract that leaves θ’s utility unchanged, and θ accepts it.

ii) If R0 is θ-efficient, P immediately proposes Eθ′(R0) (θ
′ 6= θ), and θ′ accepts it.

iii) If R0 is in the No-Rent configuration, P immediately proposes EL(R0) and EH(R0), and

each type θ accepts Eθ(R0).

iv) If R0 is in the H-Rent (L-Rent) configuration, H’s (L’s) expected utility is bounded above

by uH(EH(R0)) (uL(EL(R0))).

From now on, the analysis focuses on R0 in the H-Rent configuration, the L-rent con-

figuration case being symmetrical. The next result plays a crucial role for the analysis: At

any round n, P can propose the contracts EH(Rn) and EL(Rn) and have them accepted by

types H and L, respectively. This deviation puts an upper bound on P’s continuation cost

as a function of the current contract and belief, and will often be referred to as “jumping”

or “giving up” (on screening H). Let βn denote the probability, at the beginning of round

n, that P assigns to type H .

Lemma 1 (Jump) If Rn is in the H-Rent configuration and P proposes the contracts EH(Rn)

and EL(Rn), with EH(Rn) augmented by an arbitrarily small amount ε > 0, then H accepts

EH(Rn) with probability 1 and L accepts EL(Rn) with probability 1. Therefore, P’s continu-

ation cost is bounded above by βnQ(EH(Rn)) + (1− βn)Q(EL(Rn)).

The next result shows that as long as H hasn’t revealed himself, on-path contracts Rn all

lie in H.

Lemma 2 For any R0 ∈ H and PBE, L accepts only contracts in H throughout negotiations.

Thus, any accepted contract Cn /∈ H reveals H and can be replaced by the H-efficient

contract C̃n that gives H the same utility: this reduces P’s cost without affecting anyone’s

incentive. The remainder of the analysis focuses without loss on PBEs in which P only

proposes, in each round, contracts in H and/or the H-efficient contract giving H his con-

tinuation utility. Given any PBE, any contract sequence {Rn} that is accepted by L with
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positive probability will be called a choice sequence. In equilibrium, the agent follows a

choice sequence until, possibly, accepting an H-efficient contract, revealing by that choice

that he is of type H . Choice sequences have several important properties, described next.

Let uH(n) denotes H ’s continuation utility at the beginning of round n and wn =

uH(EH(Rn)) − uH(n). wn is the equilibrium rent that P takes away from H compared

to immediately giving up on screening him: it is a rent reduction index. But, as we shall see,

wn is also closely related to the L-inefficiency of the current contract: the more L-efficient

Rn, the smaller wn has to be and wn = 0 if Rn lies exactly on EL.

Proposition 2 Along any choice sequence {Rn}, i) βn converges to zero, ii) Rn converges

to an L-efficient contract, and iii) wn converges to zero, as n goes to infinity.

Proposition 2 shows that full efficiency and screening obtain asymptotically. However, be-

cause negotiations break down exogenously in finite time, the key is to determine the speed

at which negotiated contracts converge to efficiency relative to the speed at which the exoge-

nous breakdown occurs. In the standard Coase conjecture with two types, one may compute

a uniform upper bound on the time at which the sale takes place, which implies equilibrium

efficiency as the discount rate goes to zero. However, efficiency cannot be reached in finite

time here, as the next result shows (the proof is in Appendix K).

Proposition 3 For any R0 ∈ H, η ∈ (0, 1], n ∈ N, and PBE starting with belief β > 0, Rn

is not L-efficient. Equivalently, wn > 0 for all n.

Intuitively, this result comes from the richness of the contract space, and more particularly

the fact that negotiated contracts can become arbitrarily close to being L-efficient. In the

Coase conjecture with two types, there is a belief threshold β̂ below which the benefit of

screening H becomes negligible relative to the cost of delaying a sale to L, prompting the

seller to immediately set the price at L’s valuation. Here, instead, P can always propose a

contract at a small distance x from the L-efficiency curve, which entails an L-inefficiency of

order x2 but provides a screening benefit of order x forH . For x small enough, this departure

from efficiency is always beneficial.

If type H is very unlikely, however, P’s expected cost cannot be too different from what

he would get if he just ignored H . As a result, P leaves most of the rent to H , which puts

the following bound on wn.
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Lemma 3 There exists Kw > 0 such that wn ≤ Kwβ
1/3
n for all n, η, and PBE.

This bound can be used to prove Theorem 2 for some parameters of the model, but it is too

coarse for a general proof. Intuitively, Lemma 3 exploits only the inefficiency loss that P

incurs conditional on facing L while trying to screen H—a loss which is of second-order if R

is almost L-efficient. The general proof also exploits the loss incurred conditional on facing

H , which is of first order, and shows how these two kinds of losses interact and cause P to

give up on screening H .

5 Proof of Theorem 2

This section proves that the expected rent, w0, which P takes away from H relative to H ’s

utility upper bound uH(EH(R0)), converges to zero as η goes to zero. The other claims of

Theorem 2 are relatively simple corollaries of this result and are proved in Appendix I.

Part I: Block Construction

The proof starts by constructing blocks of rounds such that i) within each block, H is

screened with significant probability and ii) wn shrinks geometrically across blocks. The

construction draws from the dynamic screening literature17 but presents specific challenges.

The first challenge is that the inefficiency caused by a breakdown is endogenous (unlike,

e.g., delaying a sale in the Coase conjecture when the gap is positive). Moreover, contracts

become asymptotically L-efficient conditional on staying in H, which makes the loss con-

ditional on facing L arbitrarily small and thus hard to exploit. These contracts do entail

some non-negligible H-inefficiency, since they are bounded away from EH , but a contract

Rn’s H-inefficiency only translates into a loss for P, relative to jumping to EH(Rn), if the

utility that Rn gives H is sufficiently close to what H gets from EH(Rn). To ensure this, the

proof uses the following observation: as a contract’s L-inefficiency becomes arbitrarily small,

so does the maximum gain from screening H (both quantities are closely related to wn).

Therefore, H-inefficiency must dominate the gain from screening provided that wn is small

17In addition to Gul et al. (1986), see, e.g., Myerson (1991), Abreu and Gul (2000), Abreu and Pearce

(2007), and Atakan and Ekmekci (2012, 2014).
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enough. The next result captures this intuition. Results of Part I are proved in Appendix F.

Lemma 4 There exist ε and D positive such that the following holds: if wm ≤ ε, then

Q(Rn) ≥ Q(EH(Rm)) +D for n ≥ m.

Thus, even if Rm gives H a lower utility than the efficient contracts EH(Rn) arising from

round m onwards, it is uniformly more costly to implement Rm than these contracts. Of

course, the lemma applies to round 0 only if w0 ≤ ε. However, if Theorem 2’s conclusion

holds for this case, the case w0 > ε can be easily ruled out by a discontinuity argument.18

Another challenge is that the inefficiency loss identified above is only incurred when

facing H , but the probability of facing H becomes increasing smaller over time, conditional

on staying in H. This implies, as explained below, that a standard block construction with

a fixed number of rounds in each block will not guarantee a geometric decrease in posteriors

across blocks. To induce this geometric decrease, we need to offset the rather ineffective

loss identified above by a sharper upper bound on P’s gain from screening H . This is

achieved by controlling H ’s continuation utility at the beginning of each block: the higher

H ’s continuation utility at the next block, the lower P’s expected gains from screening H

from that block onwards.

Thus suppose that w0 ≤ ε, and start Block 1 at round n0 = 0. The size of Block 1 is

determined endogenously: Let û0 = uH(n0), ê0 = uH(EH(Rn0
)), and β̂0 = βn0

. Also define

û1 by ê0 − û0 = t(û1 − û0), for a parameter t > 1 to be set shortly, and let n1 = inf{n :

uH(n) ≥ û1} denote the first round19 at which H ’s continuation utility exceeds the threshold

û1. The first round of Block 2—and, hence, the size of Block 1—is set to n1.

The number of rounds in Block 1 must sufficiently large to guarantee that the probability

of a breakdown and, hence, P’s expected loss during the block, is significant. This number

can be bounded below using H ’s continuation utility, which increases by steps of order η

between consecutive rounds. Letting uH(n) denote H ’s continuation utility at the beginning

18Intuitively, wn’s decrements are of order η. If one shows (for any m) that wm ≤ ε ⇒ wm = O(η), it

follows that w0 cannot exceed ε because the sequence wn would otherwise have to drop by an impossibly

large amount when it crosses ε. See Lemma 20 for the proof.
19Lemma 18 guarantees that H ’s continuation utility always reaches û1 in finite time.
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of round n and ∆H = maxC,C′∈C uH(C)−uH(C ′), H ’s Bellman equation implies the following

result.

Lemma 5 uH(n) is nondecreasing in n and satisfies uH(n+ 1)− uH(n) ≤ η∆H .

Therefore, reaching û1 requires at least n
¯
(1) = ⌊(û1 − û0)/η∆H)⌋ rounds.

To guarantee that significant screening takes place during any given block and, hence,

that P’s posterior goes down by a suitable factor, another challenge is to bound P’s gain

conditional on successfully screening the agent. This gain is closely related to the rent wn

that P takes away from H : Lemma 13 shows the existence of a Lipschitz constant a bounding

this gain by awn.
20

These observations deliver a bound on the probability µ̂0 that H rejects all H-efficient

contracts until round n1. Indeed, at round n0, P can always implement the contracts

(EH(Rn0
), EL(Rn0

)), by Lemma 1. For this to be suboptimal, the gain from reducing H ’s

rent through screening must outweigh the inefficiency loss from a negotiation breakdown,

which yields the following condition.

Lemma 6 µ̂0 satisfies

β̂0(1− µ̂0)a(ê0 − û0) + β̂0µ̂0a(ê0 − û1) ≥ β̂0µ̂0D
û1 − û0
∆H

. (2)

The last term on the left is of particular importance: it is an upper bound on P’s expected

gain, relative to jumping at round n0, from reducing H ’s rent after round n1. β̂0µ̂0 is the

probability of facing H and H staying in H until round n1, and û1 is the smallest utility

that P must provide to H at any round following n1. This term is where the particular

construction pays off: it captures the fact that P’s maximal gain from screening H decreases

across blocks.21

20Lipschitz constants are used in the bargaining and reputation literature (see, e.g., Cripps, Dekel, and

Pesendorfer (2005)) where they arise naturally from the polyhedral structure of the utility sets. By contrast,

one challenge of the present analysis is to deal with the nonlinear structure of model.
21Without this decrease, the left-hand side of (2) would reduce to the coarser bound β̂0a(ê0 − û0), which

may fail to provide a useful control on µ̂0. This coarser bound guarantees that µ̂0 ≤ a(ê0−û0)∆H

D(û1−û0)
, but the

right-hand side exceeds a∆H/D which may be greater than 1.
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Defining t by t2 = 1 + D
a∆H

> 1 and rearranging (2) yields

µ̂0 ≤
1

1 +D/a∆H

ê0 − û0
û1 − û0

=
1

t
.

µ̂0 is only an average rejection probability over all choice sequences which may occur during

Block 1, but it implies (Lemma 19) the existence of a “pushdown” choice sequence for which

the posterior β̂1 at round n1 satisfies

β̂1 ≤
µ̂0β̂0

µ̂0β̂0 + (1− β̂0)
≤ β̂0

t−1

β0t−1 + (1− β0)
= gβ̂0.

where g = 1
β0+(1−β0)t

< 1, since t > 1. βn thus drops by a fixed factor along the pushdown

sequence. We will construct pushdown sequences, one for each block, which succeed one

another. The choice sequence obtained from stringing the pushdown sequences together, is

such that the probability of facing H decreases geometrically across blocks.

To initiate the second block, define ê1 = uH(EH(Rn1
)) and û2 ∈ (û1, ê1) by ê1 − û1 =

t(û2 − û1), and let µ̂1 denote the probability, seen from round n1, that H accepts only

contracts in H until û2 is reached. Let n2 denote the first round at which û2 is exceeded.

Repeating the earlier analysis, there exists a pushdown choice sequence for Block 2 such that

the posterior β̂2 after observing this sequence until n2 satisfies

β̂2 ≤
µ̂1β̂1

µ̂1β̂1 + (1− β̂1)
≤ β̂1

t−1

β̂1t−1 + (1− β̂1)
≤ g2β̂0.

By induction, this defines a sequence of blocks k, rounds nk, values ûk, êk, and a pushdown

sequence running through these blocks such that, letting β̂k = βnk
,22

β̂k ≤ gkβ̂0. (3)

As noted earlier, negotiations do not end endogenously in finite time. Instead, the back-

ward induction argument must be constructed from a round at which the agent has not yet

been perfectly screened. This round is obtained by stopping the construction at the end

of the first block, K, for which ŵK = êK − ûK < W̄η, where W̄ = max{ t(1+b̂β0/(1−β0))
t−1

(1 +

22The actual value of uH(nk) may be slightly above ûk, but by no more than ∆Hη, by Lemma 5. This

maximal overshoot is negligible when computing a lower bound on the number of rounds in each block,

because we stop the block construction when ûk+1 − ûk is still large relative to ∆Hη, as explained below.
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∆H),
Ŵ+∆H

t∆H
}. The constants b̂ and Ŵ are chosen to give wnK

= êK − uH(nK) and β̂K

appropriate lower bounds—a key ingredient for the backward induction explained below.23

The utility thresholds {ûk}k≤K guarantee a geometric decrease of wn across blocks, which

will be used to bound w0 by backward induction on k.

Lemma 7 There exists cw > 0 such that

i) w0 = ê0 − û0 ≤ cw
(

t
t−1

)K
η (4)

ii) wnK
≥ η.

To show that w0 converges to zero with η, one must bound the factor (t/(t − 1))K

appearing in (4) and, hence, find an upper bound on K. This is achieved by computing a

lower bound β̂ for β̂K : since β̂k is knocked down by a fixed factor g in each block, any lower

bound β̂ yields a bound on the number K of blocks needed to reach β̂.

One bound for β̂K comes from Lemma 3, which guarantees that βn ≥ β
¯
w3

n for all n, com-

bined with Lemma 7, which implies that wnK
≥ η. This approach, described in Appendix C,

can be used to prove that w0 converges to 0 whenever the parameter t is high enough.

Proposition 4 Let t̂ denote the unique solution of 3 ln(t − 1) = 2 ln(t). If t > t̂, then for

all ε > 0 there exists η̄(ε) such that w0 ≤ ε for all η ≤ η̄(ε) and corresponding PBE.

Since t2 = 1 + D
a∆H

, Proposition 4 applies if a is small enough and/or D is large enough.

These are the “easy” cases: Intuitively, D bounds below the loss incurred by P when he tries

to screen H . The higher this loss, the lower P’s incentive to screen H . Conversely, a bounds

the maximal gain that P can achieve from reducing H ’s informational rent. The lower a,

the weaker P’s incentive to screen H .

This approach has limited power, however, because it builds on Lemma 3, which only

exploits the inefficiency loss on type L to bound β̂K . Its success hinges on the relative speeds

at which βk and wk decrease across consecutive blocks, which depends on parameter values.

23The block K must exist because ŵk converges to zero as a result of the contracts’ asymptotic efficiency

(Proposition 2). The first term defining W̄ guarantees that wnK
≥ η, as shown by Lemma 7. The second

one guarantees that the number of rounds in each block k ≤ K is bounded below by
ûk−ûk−1−∆Hη

∆Hη ≥
1

t∆Hη (êk−1−ûk−1−∆Hη) ≥ W̄η−∆Hη
tη∆H

> Ŵ , which can be made arbitrarily large by choosing Ŵ appropriately.
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Moreover, this limitation cannot be overcome by changing the players’ utility representation,

improving the 1/3 exponent of Lemma 3, or changing the threshold t used in the construction

(cf. Appendix C).

Establishing Theorem 2 for all primitives of the model requires a more sophisticated

analysis, which exploits and combines inefficiency losses on both types to derive a sharper

bound on β̂K . The key is to show the following proposition.

Proposition 5 There exist positive constants η∗ and β∗ such that for any PBE associated

with η < η∗ and any round N , βN ≤ β∗ implies that wN < η.

Since wnK
≥ η, Proposition 5 implies that β∗ ≤ β̂K ≤ gKβ0. This bounds K independently

of η by ln(β0/β∗)
ln(−g)

. Lemma 7 then implies that w0 = O(η), concluding the proof.

Part II: Proving Proposition 5

Proposition 5 provides a much sharper bound on wN than the one guaranteed by Lemma 3.

Its proof is based on a self-reinforcing phenomenon: roughly put, the smaller βn gets, and

the more persistent the inefficiency of the contract Rn becomes—whatever its current level

was—which causes βn to drop faster as more screening is needed to offset the inefficiency,

and makes the inefficiency even more persistent, etc. Since all contract sequences are asymp-

totically efficient, this deceleration is compatible with equilibrium only if the contract RN at

the beginning of the deceleration is sufficiently efficiency and, hence, wN is sufficiently small.

The link between βn and inefficiency persistence at the heart of this spiral will stem

from two analytical results. First, the L-inefficiency of Rn is well captured by the index wn.

Second, while wn must converge to zero, its decrements between consecutive rounds must be

of order at most
√
βn, owing to the geometry of the problem.24

To formalize this phenomenon, the techniques developed in this section require the use

of an “orderly” choice sequence, i.e., one along which βn is decreasing and wn remains

sufficiently small across all rounds. Proving that such a sequence exists is challenging. In

this model, contracts and beliefs are not a priori well behaved: some contract choice may

24The key step is Lemma 15, which uses analytical geometry near the efficiency curve EL and exploits

convexity of the payoff functions to derive a quadratic lower bound on the cost function as one moves away

from EL along L’s isoutility curves.
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create a spike up in βn or dramatically increase, at least temporarily, the inefficiency of

current contracts. Indeed, until one proves that the equilibrium starting from any contract

and belief is essentially unique (which is what Theorem 2 achieves), there may a priori be a

whole range of continuation utilities for all players and types, used to sustain very complex

menu proposals and contract choices.

The formal analysis starts from the round N appearing in Proposition 5. For any round

n ≥ N and Rn+1 ∈ Mn ∪ {Rn}, let µθ
n(Rn+1) denote the probability that θ accepts Rn+1.

Because P can immediately jump to the efficient contracts, his IC constraint implies that

βnawn ≥
∑

Rn+1∈(Mn∪{Rn})∩H

βnµ
H
n (Rn+1)ηD + (1− βn)µ

L
n(Rn+1)η(Q(Rn+1)−Q(EL(Rn))) (5)

=
∑

Rn+1∈(Mn∪{Rn})∩H

µL
n(Rn+1) [βnµn(Rn+1)ηD + (1− βn)η(Q(Rn+1)−Q(EL(Rn)))] (6)

where µn(Rn+1) = µH
n (Rn+1)/µ

L
n(Rn+1).

25 The left-hand side of (5) is an upper bound on P’s

gain, relative to the immediate jump, from reducing H ’s rent by wn. This gain is bounded

above by a(uH(EH(Rn)) − uH(n)) = awn.
26 The first term of the right-hand side captures

the inefficiency loss incurred if the agent is of type H , rejects the H-efficient contract in

round n, and the breakdown occurs in round n. This loss is bounded below by D as long as

wn ≤ ε, which will be true along the choice sequence considered (cf. Lemma 4). The last

term is the net loss if the agent is of type L and the breakdown occurs in round n.

The right-hand side of (6) is a convex combination of terms indexed by Rn+1, so there

must exist some Rn+1 ∈ (Mn ∪ {Rn}) ∩ H such that

wnaβn ≥ βnµn(Rn+1)ηD + (1− βn)η(Q(Rn+1)−Q(EL(Rn))). (7)

25We can assume without loss that µL
n(Rn+1) is strictly positive for all Rn+1 ∈ (Mn ∪ {Rn}) ∩ H: First,

if some contracts in this set are not chosen with positive probability, a payoff equivalent equilibrium may

be constructed without these contracts. Second, if any contract R′
n+1 is chosen only by H , Proposition 1

implies that H gets the H-efficient contract C that gives him the same utility as R′
n+1 in the next round.

The equilibrium can therefore be modified by having P immediately propose C instead of R′
n+1, a change

which reduces P’s cost and does not affect incentives.
26See Lemma 13. The bound is computed using a best-case scenario for P, in which H accepts with

probability 1 the H-efficient contract Cn providing utility uH(n). It is an upper bound on P ’s gain because

Cn is the least costly way of providing H with his continuation utility.
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Therefore, there exists a choice sequence that satisfies (7) for all n ≥ N . The analysis focuses

on this sequence, which will be called an orderly sequence.

Orderly sequences are useful for the following reason. Let µn = µn(Rn+1) denote the

likelihood ratio associated with observing Rn+1. Provided that wn is small enough, (7)

implies that µn ≤ 1 and thus βn+1 ≤ βn. Therefore, βn decreases along any orderly sequence

as long as wn remains small enough. Even if wN is small, however, there is no a priori

guarantee that wn—and, hence βn—remain small in subsequent periods. These problems

are intertwined: from inequality (18) in Appendix A,

wn+1 ≤ wn
1 + αβn
1− βn

for some constant α. Therefore, if βn decreases sufficiently fast, wn cannot increase too much,

which guarantees that βn continues to drop, and so on. This is formalized by the following

result. (All results of Part II are proved in Appendix G.)

Lemma 8 There exist η̂, β̂, and ŵ positive such that for any η < η̂ and associated PBE,

and any round N such that βN ≤ β̂ and wN ≤ Dη
2a
, the following holds for all n ≥ N : i) βn

is decreasing in n, ii) µn ≤ 3/4, and iii) wn ≤ ŵη. Moreover, we have

µn ≤ wna

ηD
, (8)

βnwna ≥ (1− βn)η(Q(Rn+1)−Q(EL(Rn))). (9)

Equation (8) shows that if P’s potential gain from screening H (proportional to wn) is small

enough (of order η), then H must reveal himself in each round with significant probability

for the immediate jump not to be a profitable deviation. This happens when P’s maximum

screening gain over the entire continuation of the game, awn, is of the same order as the

expected loss from a breakdown in a single period. The virtue of orderly sequences is to

convert this ex ante condition into an ex post drop in P’s posterior.

Equation (9) is where the loss on L is exploited: if βn is small, it imposes an upper bound

on the L-inefficiency Q(Rn+1) − Q(EL(Rn)) of any contract Rn+1 in the orderly sequence.

This implies that Rn+1 is very close to EL(Rn), and it follows that H ’s continuation utility

increases extremely slowly, because his “flow utility” (i.e., the utility he gets from Rn+1 if
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a breakdown occurs in the current round) is almost indistinguishable from his continuation

utility. Formally, H ’s Bellman equation implies that

uH(n+ 1)− uH(n) = η(uH(n+ 1)− uH(Rn+1)), (10)

and almost-L-efficiency of Rn+1 implies that the difference on the right is arbitrarily small.

Since wn = uH(EH(Rn))−uH(n), the difference wn+1−wn is closely related to the left-hand

side of (10), which suggests that wn must decrease very slowly along the orderly sequence.

This is formalized by the next result.

Lemma 9 There exists a positive constant Aw such that

wn+1 ≥ wn − ηAw

√

βn+1. (11)

Long-run negotiations are thus dominated by two forces: First, the posterior belief βn must

decrease sufficiently fast for the screening activity to be sufficiently profitable (H-loss force).

Second, wn must decrease very slowly—by an order of
√

βn+1—because the contract must be

almost L-efficient (L-loss force). This leads to the crux of the proof: as βn decreases through

screening, the decrements of wn become smaller in absolute value, which causes L-inefficiency

of the current contracts to persist, and forces to βn decrease faster for screening to offset the

H-inefficiency. This accelerates βn’s drop to zero and decelerates wn’s own drop to 0, which

may cause wn to stall altogether. Since wn must converge to zero along all sequences, this

scenario is only possible if wN was small enough to begin with.

The first part of this intuition is captured by the following lemma, which says that if wN

is too high relative to ηβN , wn’s decreasing factor goes to 1 provided that βN lies below some

threshold. Let c = a
D
Aw and ĉ = 4Dc2

a
.

Lemma 10 (Deceleration) If wN ≥ ĉηβN and βN ≤ c−2/16, then lim infn→+∞
wn+1

wn
≥ 1.

The second part of the intuition is captured by a mathematical lemma which, applied to the

ratio qn = awn

ηD
, implies that wn cannot converge to 0 if its decreasing factor goes to 1.

Lemma 11 (Stalling) Consider a positive sequence {qn} and constants c′ > 0 and N ∈ N

such that i) qn − qn+1 ≤ c′
√

Πn
Nqk for n ≥ N , and ii) lim infn

qn+1

qn
≥ 1. Then, {qn} does

not converge to zero.
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Equation (11) implies that qn = awn/ηD satisfies premise i). A simple contradiction ar-

gument based on the previous lemmas then implies the following proposition. Let β̃ =

min{β̂, c−2/16}.

Proposition 6 There exists η̃ > 0 such that for any η ≤ η̃,

βN ≤ β̃ and wN ≤ ηD

2a
⇒ wN ≤ ĉηβN .

If we could ignore the premise wN ≤ ηD
2a
, this result would prove Proposition 5 with β∗ =

min{ĉ−1, β̃}. Part III, below, constructs a round that satisfies this premise.

Part III: Bridging Argument

Propositions 5 and 6 deliver a lower bound for βN at the end of block K when wN ≤ Dη
2a
.

Intuitively, a similar bound should apply if wN exceeds ηD
2a
: if P is taking more rent away

from H , thus incurring losses on L, it better be the case that the probability of facing H is

non-negligible. To formalize this intuition, starting from wN ≥ ηD
2a
, a natural strategy is to

follow a choice sequence along which wn and βn are both decreasing. When wn crosses ηD
2a
,

Proposition 6 implies that βn is greater than ĉwn

η
, which yields a lower bound for βn and,

since the sequence {βm} was decreasing, for βN . The implementation of this idea raises two

challenges.

First, when wn drops below ηD
2a
, it may jump to an arbitrarily low level, such as η2,

rendering the lower bound ĉwn

η
on βn useless. To avoid this, one must select a choice sequence

along which wn’s decrements are sufficiently small. This will be achieved by exploiting the

loss on L: as noted earlier and developed below, wn+1 − wn is closely related to the L-

inefficiency of the contract Rn+1.

Second, there need not exist a sequence along which βn and wn are both decreasing.

Instead, we will construct a sequence along which these variables cannot increase “too much,”

and break up the sequence into blocks of constant size—unlike those of Part I—across which

βn drops by a constant factor.

A similar point arose in Part II, in which we had to focus on orderly sequences, but

the approach here is different. Methodologically, it is common in the screening literature to

bound a type’s average probability of rejection over all possible choice sequence realizations
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in a block, and then extract from it one sequence which satisfies the appropriate drop in

belief. The challenge here and in Part II is that more properties are required of the sequence

extracted. In Part II, we imposed a low value on wN and used it to directly construct

an orderly sequence. Here, instead, we must first work globally, by showing that the set

of sequences with the desired properties has a high enough probability in each block, and

deduce from this that one may extract a sequence within that set that also satisfies the

standard drop in belief.

To analyze this problem, it suffices to consider the case wN ≤ W̄η, which was used to

determine the last block of Part I.27 To address the first challenge, we introduce the variable

yn = uH(EH(Rn))− uH(Rn+1), represented on Figure 4. yn provides the control required on

the decrements of wn: subtracting uH(EH(Rn)) from H ’s Bellman equation (equation (10)

in Part II) and rearranging it yields

wn+1 = wn − ηyn + ηwn+1 + (1− η)(uH(EH(Rn+1))− uH(EH(Rn))). (12)

The control of wn’s decrements through yn stems from the following lemma (all proofs for

this part are in Appendix F). Fix a positive integer N̄ and a small positive constant ε̄.

Lemma 12 There exist positive constants ky, kw, and kε with the following properties. Con-

sider any round n̄ such that wn̄ ≤ W̄η and βn̄ ≤ ε̄N̄ , and let S denote the event that the

agent chooses in all rounds n ∈ {n̄, . . . , n̄+ N̄ − 1} contracts such that yn ≤ kyε̄
1/4, βn ≤ ε̄,

and wn ≤ kwη. For η small enough, the probability of S is greater than (1− kε
√
ε̄)2N̄ .

Lemma 12 implies, for ε̄ and βn̄ small enough, that choice sequences along which yn is less

than any fixed amount for at least N̄ rounds have probability almost 1. We now construct

blocks of fixed size N̄ , to be set shortly. The first block starts at round N , the second one at

N + N̄ , etc. In the first round, n̄, of any given block, P’s IC constraint implies that, letting

en̄ = uH(EH(Rn̄)),

βn̄a
{

(1− µn̄)(en̄ − uH(n̄)) + µn̄(en̄ − E[uH(n̄+ N̄)])
}

≥ βn̄µn̄DηN̄

27If wN lies above this value, the block construction of Part I can be used to decrease βn block by block

until reaching W̄η. Any lower bound on the posterior β̂K once W̄η is reached also applies to βN at the

beginning of the block construction, since β decreases across blocks.
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Figure 4: Representation of yn and wn.

where µn̄ is the probability, seen from round n̄, that H rejects all H-efficient contracts

between rounds n̄ and n̄ + N̄ . The argument behind this inequality is similar to the one

used in Part I, the main difference being the expectation of uH(n̄ + N̄) at the end of the

block, which is no longer controlled. The loss bound D is valid by virtue of Lemma 4 and

the fact that wn̄ is of order η and hence less than ε, for η small enough, and the probability

of a breakdown during the block is 1− (1− η)N̄ ∼ ηN̄ . This implies that

µn̄ ≤ a(en̄ − uH(n̄))

a(E[uH(n̄ + N̄)]− uH(n̄)) +DηN̄
≤ aW̄

DN̄
, (13)

where the second inequality stems from the inequality EuH(n̄+N̄)−uH(n̄) ≥ 0, which holds

by monotonicity of uH(n), and the fact that wn̄ = en̄ − uH(n̄) ≤ W̄η.28

These blocks are simpler than those of Part I because their size N̄ is fixed and H ’s utility

at the end of each block is “free.” Two reasons motivate this difference: First, H ’s utility

increments are now so small that they no longer provide a useful lower bound on the number

28This inequality holds without loss of generality as explained in Remark 3 of the Online Appendix.
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of rounds in each block. Second, P’s potential gain from screening H is now so small that it

is no longer useful to distinguish how much rent can taken from H across different blocks.29

N̄ is set so that aW̄/DN̄ and, hence, µn̄, be less than 1
4
. As in Part I, µn̄ is an average

probability over possible choice sequences. And as in Part I, we wish to select a pushdown

sequence along which the posterior at the end of the block is pushed down by this probability.

However, here we also wish to select the sequence so that yn remains small. Fortunately,

Lemma 12 guarantees that these sequences have probability almost 1 provided that ε̄ is small

enough, and hence guarantees the dual goal of having small decrements for wn and reducing

the posterior βn across blocks. Formally, starting from N , let M denote the first round at

which wn drops below ηD/2a. The next result guarantees that wM is bounded below and

that βM is bounded above in fixed proportion to βN .

Proposition 7 (Bridge) There exist kβ and β̌ such that if wN ∈ (ηD
2a
, W̄ η) and βN ≤ β̌,

then there is a choice sequence such that 1. wM ≥ ηD
4a

and 2. βM ≤ kββN , where M ≥ N is

the first round such that wM ≤ ηD
2a
.

Proposition 5 follows easily: provided that βN lies below some appropriate threshold related

to kβ and β̌, βM will be small enough to apply Proposition 6 of Part II to round M . Since,

also, wM is bounded below by Part 1 of Proposition 7, this provides an η-independent lower

bound for βM and, hence, for βN . The proof is in Appendix H.

6 Discussion

6.1 Related Literature

Contract renegotiation with private information has traditionally been studied from two

perspectives. The first one is axiomatic and focuses on “renegotiation-proof” contracts.30 It

essentially assumes that renegotiation leads to an efficient contract, ignoring the difficulties

29Also note that the bound computed in (13) uses the fact that wn̄ ≤ W̄η, but if wn̄ only satisfied an

η-independent bound, as in Part I, the right-hand side of (13) would be of order 1/η and thus useless.
30See Dewatripont (1989), Maskin and Tirole (1992), Battaglini (2007), Maestri (2015), and Strulovici

(2011, 2013). A similar approach has been used to study renegotiation in repeated games with complete

information. See, e.g., Bernheim and Ray (1989) and Farrell and Maskin (1989).
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which may arise when some party holds private information. The second one focuses on

simple renegotiation protocols, in which the principal makes a single take-it-or-leave-it offer.

This perspective typically results in inefficient contracts.31 The second perspective seems

incomplete: what, in reality, prevents the principal from proposing a new contract after

learning the inefficiency of the current contract? Such a restriction amounts to a strong

form of commitment for the principal and can even result in full-commitment outcomes.32

This paper shows that, by dropping the restriction on the number of negotiation rounds, one

can reconcile these two perspectives.33

While the model’s main interpretation concerns the implementation of a single contract

arising from a sequence of temporary agreements, it has an alternative interpretation: In

each round, the current contract is implemented and parties receive the corresponding payoff,

and the interruption probability is reinterpreted as the discount rate between periods.34 In

each period, the principal has an opportunity to renegotiate the contract for future periods.

The model is formally equivalent to an infinite-horizon version of Hart and Tirole (1988),

with divisible goods as in Laffont and Tirole (1990), arbitrary utility and cost functions, and

in which the contract is constant until renegotiated. Thus interpreted, this paper shows that

all equilibria become efficient as the discount rate goes to zero.

Maestri (2015) analyzes renegotiation-proof equilibria in a divisible-good, binary-type

version of the Hart-Tirole framework and proposes a renegotiation-proofness refinement of

PBE, formulated recursively: In each period, the contracts offered by the principal maxi-

mize his revenue among all renegotiation-proof continuations, given the current contract and

31See Hart and Tirole (1988) and Fudenberg and Tirole (1990).
32For example, imposing any finite number k of negotiation opportunities results in the full-commitment

outcome: the principal simply passes the first k−1 opportunities to negotiate the contract, and then proposes

the full commitment allocation in the last round. Wang (1998) considers a more flexible protocol, in which

the principal proposes contracts until an agreement is reached. Such protocol leaves a high commitment

power to the principal, since he cannot renegotiate any agreement. Indeed, Wang shows that the principal

achieves the full commitment allocation, which is also ex post inefficient. See also Beaudry and Poitevin

(1993) and Matthews (1995).
33Brennan and Watson (2013) study another friction in the form of explicit renegotiation costs. Another

extension of the model would consider general negotiation protocols, as in Rubinstein and Wolinsky (1992).
34The formal equivalence appears clearly in the payoff formulas of page 8: 1 − η plays the role of the

discount factor, and η is the weight put on the current period.
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beliefs. The principal can propose at most two contracts in each period and the probability

of facing the high type decreases monotonically as long as this type is not fully revealed.

As the discount rate goes to zero, all renegotiation-proof equilibria become efficient. By

contrast, this paper implies that all PBEs become efficient, allowing for arbitrarily large

menus of contracts, general utility and cost functions, and an infinite horizon, and focusing

on contracts which are constant until renegotiated.35

Finally, the paper is related to the literature on bargaining and reputation, in which some

players are trying to determine whether other players have a “commitment” type.36 This

paper presents specific challenges described in Section 5 and differs from reputation models

in other ways: i) the “actions” of the players are endogenous, because the principal sets the

contract menu in each round, ii) the state space includes the current contract, in addition

to the principal’s belief, and iii) all types are strategic.37

6.2 Extensions

The analysis has focused on two types. With more types, it is natural to conjecture that ex

post efficiency still obtains. Appendix L explains how the techniques developed here can be

35Conceptually, the papers’ objectives are complementary: while Maestri studies renegotiation-proof equi-

libria when trade happens over time, the present paper shows—under its main interpretation—that if parties

have frequent opportunities to bargain before a one-time trade decision, all equilibria will be approximately

efficient. It thus provides a non-cooperative foundation for renegotiation-proof contracts. The technical

contributions are also different. For example, an important part of Maestri’s analysis lies in its conceptual

work to define renegotiation-proof contracts. By contrast, this paper analyzes all equilibria, which creates

important challenges described in earlier sections.
36Fudenberg and Levine (1989), Schmidt (1993), Abreu and Gul (2000), Cripps et al. (2005), and Atakan

and Ekmekci (2012, 2014). Abreu and Pearce (2007) consider a repeated game setting in which players

bargain over commitments for the continuation of the game.
37The richer state space and the nonlinear geometry of the problem (the parties’ utility functions are

nonlinear) make the problem particularly difficult to analyze. Some differences can formally be incorporated

into the standard reputation framework. For example, the action space of the agent may be assumed to

be fixed by setting a large negative default value if the agent chooses anything outside of the principal’s

proposed set. This formal equivalence does not resolve the substantive differences between the settings.
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used to make progress in this direction.38

The model featured, under its main interpretation, a single “delivery” time at which

the contract is implemented. To provide a foundation for renegotiation-proof contracts

with multiple deliveries, one should consider a more general model with multiple “physical”

events (payments or efforts are made, exogenous information arrives, etc) and renegotiation

protocols like the one studied here inserted between consecutive physical events. Each rene-

gotiation protocol would then pertain to continuation contracts over the remaining horizon,

and any event arrival would trigger the end of current negotiations.

Appendices

A Inequalities

This appendix presents key inequalities used in other appendices and derived in Appendix E.

Lemma 13 (Regularity Bounds) There exist positive constants a
¯
, a, b

¯
, b such that for

any C, Ĉ ∈ EH such that uH(C) < uH(Ĉ),

a
¯
(uH(Ĉ)− uH(C)) ≤ Q(Ĉ)−Q(C) ≤ a(uH(Ĉ)− uH(C)) (14)

b
¯
(Q(Ê)−Q(E)) ≤ Q(Ĉ)−Q(C) ≤ b(Q(Ê)−Q(E)), (15)

where E (resp. Ê) is the L-efficient contract that gives H the same utility as C (resp. Ĉ).

Let QL denote P’s expected cost, view from round n, conditional on facing L.

Lemma 14 (Incentive Bounds) Given any PBE and choice sequence {Rn}, there exist

positive constants α, γ, b, and b̂ such that, for any n,

QL ≤ Q(EL(Rn)) +
βn

(1− βn)
awn, (16)

uH(EH(Rn+1))− uH(EH(Rn)) ≤
αβn

1− βn
wn, (17)

wn+1 ≤ wn

(

1 +
αβn

1− βn

)

, (18)

uL(Rn)− uL(Rn+1) ≤ γβn+1wn+1, (19)

wn+1(1 + bβn+1) ≥ wn − ηyn, (20)

38With three types H , M , and L, for instance, the contracts {Eθ(R0)}θ∈{H,M,L} would be the least costly

θ-efficient contracts which are incentive compatible and individual rational, starting at R0.
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and, for any n < n′,

uH(EH(Rn′))− uH(EH(Rn)) ≥ − b̂βn′

1− βn′

wn′. (21)

Lemma 15 (Geometric Bound) There exists q
¯
> 0 such that for any C ∈ EL and R ∈ H

such that uL(R) = uL(C),

Q(R)−Q(C) ≥ q
¯
(uH(C)− uH(R))

2.

Lemma 16 There exist positive constants k2 and k3 such that

y2n ≤ k2[Q(Rn+1)−Q(EL(Rn))]+k3(max{(βnwn/(1−βn))2, (βn+1wn+1)
2}+βn+1wn+1) (22)

B Proofs of Section 4

Proof of Proposition 1

Part i) Let ū denote the agent’s supremum over his expected utility, given his type θ,

over all possible continuation PBEs starting from R0 at which P puts probability 1 on type

θ, and let u = uθ(R0). Suppose by contradiction that ū > u. By time homogeneity, ū will be

the same in the next round if the agent rejects new offers from P in round 0 and P continues

to assign probability 1 on facing type θ. In such case, the agent’s continuation payoff is

bounded above by ũ = ηu+(1−η)ū < ū. Consider any PBE that gives θ an expected utility

u0 ∈ (ũ, ū) (such PBE must exist, by definition of ū). Suppose that the principal deviates

by proposing the θ-efficient contract C that give θ a utility level u′ in (ũ, u0). By definition

of a PBE,39 P continues to assign probability 1 to type θ after his own deviation. If the

agent accepts C with probability 1, the deviation is strictly profitable to P since C is the

least costly way of providing utility u′ < u0 to the agent. If the agent rejects the offer with

positive probability, then by Bayes rule, P must continue to assign probability 1 to type θ,

which implies that his continuation utility is bounded above by ū. Therefore, the agent’s

rejection is strictly suboptimal, implying that the agent must accept C with probability 1

and the deviation is profitable.40 Let Q
¯
denote the cost of the θ-efficient contract, C

¯
, that

39See Fudenberg and Tirole (1991), part iii) of the definition.
40The continuation play after P’s deviation must be a PBE of the corresponding continuation game.

Therefore, if θ’s continuation strategy, after P’s deviation, is to reject the proposed deviation with positive

probability, Bayes rule applies. I am grateful to Marcin Peski for proposing the current version of this

argument.

33



provides utility u to θ. Clearly, any PBE must cost exactly Q
¯
, otherwise P has a profitable

deviation which is to propose the θ-efficient contract that gives θ slightly more than u and

costs less than following the PBE. Moreover, the only way of achieving Q
¯
is to propose C

¯
in

the first round and have it accepted with probability one.

Part ii) Suppose without loss that θ = L (the opposite case is treated identically). Let

uL = uL(R0) and uH = uH(R0). Also let ūH(β) denote the supremum utility that H can

achieve over any continuation PBE starting from R0 when P assigns probability β to H ,

and let ūH = supβ∈[0,1] ūH(β). Suppose by contradiction that ūH > uH . Then, for any

small ε > 0, there exists β̄ and an associated PBE for which H ’s continuation utility is

above ūH − ε > uH . For that PBE, because L gets at least uL and R0 is L-efficient, we

have Q̄L ≥ Q where Q = Q(R0) and Q̄L is P’s expected cost in that PBE conditional on

facing θL. Since not proposing any new contract is always feasible for P, and costs Q, the

continuation cost Q̄H conditional on facing H must satisfy Q̄H ≤ Q to offset the weakly

higher cost conditional on facing L. Suppose that P deviates from that PBE by proposing

the H-efficient contract that gives θH utility ūH − ε − ǫ, for arbitrarily small ǫ. Because,

for small enough ε and ǫ, ūH − ε − ǫ > ηuH + (1 − η)ūH , H accepts this proposal with

probability 1. For any strategy that θL chooses and continuation equilibrium, this proposal

strictly reduces P’s expected cost (since Q̄H ≤ Q), yielding a contradiction. This shows that

ūH(β) = uH for all β.41 To conclude, suppose that P proposes the H-efficient contract that

gives H utility uH + ǫ̃, for ǫ̃ arbitrarily small. From the previous observation, H must accept

that contract regardless of L’s strategy. This shows that P can and, hence, does achieve the

full-commitment optimal cost under any PBE. This proves Part ii).

Part iii) Suppose that QL ≥ QH where Qθ = Q(Eθ(R0)) (the opposite case is proved

symmetrically) and let Q̄ denote the maximal expected cost incurred by P over all PBEs

and beliefs β ∈ [0, 1], starting from R0.

We start by showing that Q̄ ≤ QL. Suppose by contradiction that Q̄ > QL and consider

any PBE that achieves Q̄.42 Now suppose that P deviates by proposing the pair C̃L, C̃H of

41If β = 0, P does not propose anything new, from i) and L-efficiency of R0, and the result trivially holds

in that case too.
42If the supremum Q̄ is not achieved, the argument below can easily be adapted by considering a PBE

whose expected cost is arbitrarily close to Q̄.
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contracts such that C̃θ is efficient for θ and costs Q̄−ε for some ε arbitrarily small compared

to η. Those contracts maximize each type’s utility subject to costing P at most Q̄ − ε.

Because these contracts are efficient and incentive compatible, Part ii) guarantees that no

type ever chooses the contract meant for the other type. Moreover, no matter what belief

and continuation PBE follows rejection of these contracts, P’s continuation cost must be less

than Q̄, by definition of Q̄. But this latter bound implies that there must be at least one type

θ of the agent who is getting a lower payoff if he rejects C̃θ than if he accepts it: conditional

on rejection P has to be spending weakly less on at least one type of the agent than under

C̃θ (up to ε, which is negligible compared to η). Moreover, the contract C̃θ maximizes this

type’s utility subject to P spending less than C̃θ. Since rejection leads to a renegotiation

breakdown with probability η, giving this type a strictly lower utility than C̃θ, it is strictly

better for this type to accept C̃θ with probability 1. As a result, a rejection fully reveals that

the agent is of the other type. From Part i), that type agent gets uθ(R0) after the rejection,

which is strictly less than the utility he gets from C̃θ—since this contract maximizes the

agent’s utility subject to a higher cost than what P incurs with R0. Therefore, both types

accept their contract, and this reduces the cost of the principal strictly below Q̄, showing

that this is a profitable deviation. Thus, necessarily, Q̄ ≤ QL.

Since L gets utility at least uL(R0) in any PBE, and QL is the least cost for providing

this utility, in all PBEs starting with β ∈ (0, 1), P must spend weakly less than Q̄ on H

to guarantee that Q̄ ≤ QL. Let ūH denote the supremum expected utility that H gets

over all PBEs and beliefs β > 0. Since P spends less than QL on H , ūH is bounded by

the utility ûH obtained from the H-efficient contract ĈH that costs QL. We will show that

ūH = uH(EH(R0)). Suppose by contradiction that ūH > uH(EH(R0)), and consider a PBE

that achieves ūH .
43 The expected cost Q from that PBE must be above βQ(C̄H)+(1−β)QL

where C̄H is the H-efficient contract that gives utility ūH to H . Suppose that P deviates by

proposing the contracts C̃L, C̃H such that C̃L is L-efficient and gives utility uL(C) + ε2 to L

and C̃H is H-efficient and gives utility ūH−ε to H , for ε small compared to η. H accepts C̃H ,

since rejection leads to a continuation utility bounded above by ūH and to a strictly lower

payoff in case of a breakdown. L then also accepts the contract since rejecting it would reveal

43Again, the proof is easily adapted if the supremum is not achieved, by considering a PBE that gets very

close to providing ūH .
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his type and, by Part i), yield a utility of uL(EL(R0)). The cost reduction facing H is of

order ε relative to Q(C̄H), while the cost increase facing L is of order ε2 relative to QL. This

deviation is thus strictly profitable for ε small enough, which shows that ūH = uH(EH(R0)).

Proceeding as in the end of the proof of Part i), this shows that L’s maximal utility across

all PBEs for β ∈ (0, 1) is uL(EL(R0)).

Part iv) The proof is similar to that of Part iii). Let Q̄ denote P’s maximal expected

cost over all PBEs and beliefs, starting from R0. We will start by showing that Q̄ ≤ Q(EL),

where EL = EL(R0). Suppose by contradiction that Q̄ is strictly greater than Q(EL) and

achieved for some PBE and belief,44 and consider the following deviation: P proposes the

contracts C̃θ that are efficient for each type and cost Q̄ − ε for ε arbitrarily small. It is

easily shown that these contracts are IC, and by a similar argument to the one used in Part

iii), rejecting these contracts is a strictly dominated strategy for one of the two types, and

hence for both types. This is a strictly profitable deviation for P, yielding a contradiction.

Hence, Q̄ ≤ Q(EL). Since L’s expected utility is at least uL(R0) in all PBEs, and providing

this utility costs at least QL = Q(EL) to P, this means that P spends at most QL on H ,

in all PBEs, and for all initial beliefs β > 0. This implies that H ’s expected utility is

bounded above by the utility that he achieves with the H-efficient contract that costs QL.

We now show that H ’s expected utility is bounded above by uH(EL). Suppose not and

consider a PBE that gives H his highest utility across all PBEs and beliefs, which we denote

ūH > uH(EL). The expected cost Q from this PBE must exceed βQ(C̄H) + (1 − β)QL,

where C̄H is the H-efficient contract that gives utility ūH to H . Suppose that P deviates by

proposing the contracts C̃L, C̃H such that C̃L is L-efficient and gives utility uL(R0) + ε2 to

L, and C̃H is H-efficient and gives utility ūH − ε to H , for ε arbitrarily small. Because C̃H

gives strictly more to H than ūH , H accepts C̃H and, hence, L accepts C̃L. As in Part iii),

this deviation is strictly profitable and yields the desired contradiction. Also note that for ε

small enough, ūH > uH(EL), so mimicking L is suboptimal for H .45

Proof of Lemma 1

The result follows from Part iv) of Proposition 1: EH(Rn) plus any small amount gives

44As before, one can use a PBE that yields a cost arbitrarily close to Q̄, in case it is not exactly achieved.
45It is straightforward to show that L does not want to mimic H , since P spends less on H than on L,

and L is already getting his maximal utility given the cost that P incurs conditional on facing L.
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a strictly higher utility to H than his maximal continuation utility and strictly more utility

than EL(Rn). Therefore, H accepts the contract with probability 1. Since L strictly prefers

EL(Rn) to EH(Rn) (Part ii) of Proposition 1) and his type is revealed unless he takes the

strictly suboptimal contract EH(Rn), L accepts EL(Rn). �

Proof of Lemma 2

Consider any PBE starting with R0 ∈ H and, by contradiction, the first round n such

that i) Rn is in H and ii) L accepts with positive probability a contract Rn+1 that is in

a different configuration. Suppose first that Rn+1 is in the No-Rent configuration. Then

uL(n) = uL(Rn+1), by Part iii) of Proposition 1, which implies that uL(Rn) ≤ uL(Rn+1):

Rn+1 is on a weakly higher isoutility curve of uL than Rn. Moreover, because H can always

accept Rn+1, uH(n) ≥ uH(Rn+1) > uH(EH(Rn)), where the strict inequality comes from

the fact that uH is increasing along the isoutility curve of uL in the direction of EH .46 This

implies that the continuation cost for P is strictly above βnQ(EH(Rn))+(1−βn)Q(EL(Rn)),

which contradicts Lemma 1. Now suppose that Rn+1 is in the L-Rent configuration. Part

iv) of Proposition 1 applied to the L-Rent configuration implies that, by choosing Rn+1,

L gets a continuation utility of at most uL(ẼL(Rn+1)) where ẼL(R̃) is defined—when R̃ is

in the L-Rent configuration—similarly to EH(R) when R is in the H-Rent configuration.

Therefore, uL(ẼL(Rn+1)) must be weakly greater than uL(Rn). However, notice that when

ẼL is constructed, we use L’s isoutility curve between the efficiency curves EH and EL, which
is steeper than H ’s isoutility curve at ẼL(Rn+1), from the single-crossing property. As can

be easily checked graphically, this implies that uH(Rn+1) must have been strictly greater

than uH(EH(Rn)), contradicting Part iv) of Proposition 1 applied to H . �

Proof of Proposition 2

i) Observe, first, that negotiation cannot end endogenously at a finite round N with

βn = βN > 0 and Rn = RN ∈ H for all n ≥ N . If this were the case, P could strictly reduce

his cost at round N by proposing the H-efficient contract EH(RN) and have it accepted by H

with probability 1, by Part iv) of Proposition 1. Suppose instead that P keeps proposing new

contracts until renegotiation is exogenously interrupted, and suppose by contradiction that

there is a choice sequence with an associated belief subsequence {βn(k)}k∈N that converges

46More explicitly, we have uH(Rn+1) > uH(EL(Rn+1)) ≥ uH(EL(Rn)) = uH(EH(Rn)).
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to β∗ > 0 (so both types accept each contract in this subsequence with strictly positive

probability). Let u∗H = sup{uH(Rn)} where the supremum is taken over all contracts in the

choice sequence. For H to accept Rn with positive probability infinitely often, uH(Rn) must

converge to u∗H for any subsequence, including along the subsequence {n(k)}.47 However,

this implies that proposing the H-efficient contract CH that gives u∗H to H is a strictly

profitable deviation as βn(k) gets arbitrarily close to β
∗: it does not change P’s cost conditional

on facing L but it strictly reduces P’s expected cost by an amount arbitrarily close to

β∗[Q(CL)−Q(CH)], where Cθ is the θ-efficient contract that provides H with utility u∗H .
48

ii) Suppose that there exists ε > 0 and a subsequence of rounds, indexed by m, for which

Q(Rm) − Q(EL(Rm)) ≥ ε. For m large enough, βm converges to zero, from part i), and is

thus bounded above by ηε
2∆Q

, where ∆Q = maxC∈C Q(C) − minC∈C Q(C). Therefore, P can

deviate by proposing EL(Rm), EH(Rm), which are respectively accepted by L and H . This

deviation yields an immediate gain of ηε on L and a loss of at most ηε
2
on H , given the upper

bound on βm, and is thus strictly profitable. This shows that the limit points of {Rn} are all

L-efficient. Let u∗L = sup{uL(Rn)}. There is a subsequence indexed by m̃ for which uL(Rm̃)

converges to u∗L. Moreover, since L can always hold on to any contract Rn along the choice

sequence, and thus in particular to the contracts occurring along the subsequence {Rm̃},
uL(Rn) must converge to u∗L for all subsequences. Combining these observations, {Rn} must

converge to the L-efficient contract C̄L such that uL(C̄L) = u∗L. �

iii) Parts i) and ii) have shown that βn converges to zero and Rn converges to an L-

efficient contract as n goes to infinity. This implies that EH(Rn) gives asymptotically the

same utility to H as Rn does and, hence, that wn converges to zero.49

Proof of Lemma 3

47Otherwise, there must exist a subsequence of rounds for which uH(Rm+1) is bounded above away from

u∗H by some constant δ > 0. However, H ’s continuation utility, uH(m), is nondecreasing and becomes

arbitrarily close to u∗H . (Monotonicity comes Lemma 5.) When H ’s continuation gets within εη of u∗H for

some ε arbitrarily small, this implies that accepting Rm+1 causes a loss of order ηδ, due to the probability

of an immediate breakdown, and contradicts the fact that uH(m) is within εη of u∗H .
48Since uH(Rn) gets arbitrarily close to u∗H and Rn lies in H, Q(Rn) becomes arbitrarily close to (or

above) Q(CL) as n gets large.
49Put differently, the contract C̄H defined in Part iii) of the proof of Proposition 1 satisfies uH(C̄H) =

uH(C̄L).
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Without loss, set n = 0, β = β0, R = R0, ūL = uL(R0), ūH = uH(R0), and Q̄ =

Q(EL(R0)). It suffices to prove the claim for β ≤ β́ for some small threshold β́ ∈ (0, 1).50

Focusing on this case, (16) implies that P’s expected cost QL conditional on facing L satisfies

QL ≤ Q̄ + q́β where q́ = a∆H

1−β́
. For any small ǫ > 0, to be chosen shortly, let T ǫ = {R ∈ H :

uH(EL(R))− uH(R) ≤ ǫ} and Dǫ = H\ T ǫ. Graphically, T ǫ represents a tube-like region of

H bordering EL, whose (varying) width is of order ǫ.

Let τ denote the index of the round immediately following the exogenous breakdown—the

contract implemented is thus Rτ , recalling that the agent chooses contract Rn+1 in period

n. Let pL denote the probability that Rτ ∈ Dǫ, conditional on facing type L, and uDL and uTL

denote L’s expected utilities conditional on Rτ ∈ Dǫ and Rτ ∈ T ǫ, respectively. Similarly,

let QD
L and QT

L denote P’s expected cost conditional on facing L when Rτ ∈ Dǫ and Rτ ∈ T ǫ,

respectively. We have (1−pL)uTL+pLuDL = uL(0) ≥ ūL and (1−pL)QT
L+pLQ

D
L = QL ≤ Q̄+q́β.

By definition of Dǫ, Lemma 15 implies,51 whenever Rτ ∈ Dǫ, that

Q(Rτ ) ≥ Q(EL(Rτ )) + q
¯
ǫ2. (23)

Taking expectations in (23) conditional on Rτ ∈ Dǫ yields

QD
L ≥ E[Q(EL(Rτ ))|Rτ ∈ Dǫ] + q

¯
ǫ2.

Let EL(u) denote the L-efficient contract that provides L with utility u. By convexity of

Q(·) and concavity of uL(·),

E[Q(EL(Rτ ))|Rτ ∈ Dǫ] ≥ Q(EL(u
D
L ))

since each EL(Rτ ) gives L the same utility as Rτ and, conditional on lying inDǫ, the contracts

Rτ ’s give L a utility of uDL in expectation. Again by convexity of Q(·) and concavity of uL(·),
we have Q̄ ≤ pLQ(EL(u

D
L )) + (1 − pL)Q(EL(u

T
L )) since Q̄ is the smallest cost for providing

50wn is uniformly bounded as a difference of bounded utilities and we can always increase Kw so that

Kwβ́
1/3 exceeds wn’s upper bound.

51Here, as well as later in the proof, we are applying an inequality to round τ . The inequality must hold

because the variable Rτ is determined before the breakdown, by the agent’s contract choice at round τ − 1

before knowing whether the breakdown will occur at the end of that round. More generally, any inequality

satisfied by variables determined before the breakdown must hold regardless of whether the breakdown occurs

immediately after this determination or later.
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L with utility ūL, while the right-hand side is the cost associated with a particular way of

providing L with utility uL(0) = pLu
D
L + (1− pL)u

T
L ≥ ūL. Combining these inequalities,

Q̄ + q́β ≥ QL ≥ pL(Q(EL(u
D
L )) + q

¯
ǫ2) + (1− pL)Q(EL(u

T
L )) ≥ Q̄ + pLq

¯
ǫ2, (24)

which implies that pLq
¯
ǫ2 ≤ q́β. Choosing ǫ = β1/3, we get pL ≤ kpβ

1/3 where kp = q́/q
¯
> 0.

The reason for choosing this value of ǫ comes from (27) below: it optimizes the trade-off

between a higher probability of Rτ being in T ǫ and a tighter bound on w over T ǫ.

Set T = T β1/3
and D = Dβ1/3

and let p denote the unconditional probability that Rτ /∈ T .

We have p = βpH + (1 − β)pL, where pH is the probability that Rτ /∈ T conditional on the

agent being of type H ,52 and thus

p ≤ β + pL ≤ kpβ
1/3 (25)

where the last inequality is obtained by increasing the constant kp derived earlier, whose

precise value is unimportant for the proof.

The breakdown time τ has finite expectation: E[τ ] = 1/η. By the optional sampling the-

orem, this implies that E[βτ ] = β. Moreover, by definition of p we have E[βτ ] = pE[βτ |Rτ /∈
T ] + (1− p)E[βτ |Rτ ∈ T ]. Since p ≤ kpβ

1/3, this implies that

E[βτ |Rτ ∈ T ] ≤ β +O(β4/3). (26)

Suppose βτ ≤ β̄ for some β̄ ∈ (0, 1). Applying (21) to rounds n = 0 and n′ = τ ,

uH(EH(Rτ ))− ūH ≥ − b̂β̄

1− β̄
wτ .

When Rτ ∈ T , we have

wτ = uH(EH(Rτ ))− uH(τ) ≤ uH(EL(Rτ ))− uH(Rτ ) ≤ ǫ = β1/3, (27)

where the first inequality comes from uH(EL(Rτ )) = uH(EH(Rτ )) and uH(τ) ≥ uH(Rτ ).
53

and the second one follows from the definition of T .

52If the agent is of type H , Rτ may also be an H-efficient contract, hence the conditioning Rτ /∈ T rather

than Rτ ∈ D, as these events are only equivalent for type L.
53Recall that uH(Rn) ≤ uH(n) for all n, since holding to Rn forever after round n is always a feasible

strategy for H .
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Moreover, for Rτ ∈ T we have uH(Rτ ) − uH(EH(Rτ )) ≥ −ǫ = −β1/3. Letting k̄ =

1 + b̂ β̄
1−β̄

> 0, these observations imply that for βτ ≤ β̄,

uH(Rτ ) ≥ ūH − k̄β1/3. (28)

Let p̄ denote the probability, conditional on Rτ ∈ T , that βτ ≥ β̄. We have

p̄β̄ ≤ p̄E[βτ |βτ ≥ β̄, Rτ ∈ T ] + (1− p̄)E[βτ |βτ < β̄,Rτ ∈ T ] = E[βτ |Rτ ∈ T ] ≤ β +O(β4/3).

Therefore, p̄ ≤ k̄β for some constant k̄ > 0. Combining this with (25), the unconditional

probability that Rτ ends up in T and that βτ ≤ β̄ is bounded below by

(1− kpβ
1/3)(1− k̄β) = 1− kpβ

1/3 +O(β). (29)

Thus, either H or L has probability at least 1 − kpβ
1/3 of ending up with a contract

in T and a breakdown belief βτ ≤ β̄. If it is H , (28) implies that H has a probability at

least 1 − kpβ
1/3 of getting a utility uH(Rτ ) ≥ ūH − k̄β1/3. If it is L, H can mimic L for

the entire game and guarantee himself the same utility with probability at least 1− kpβ
1/3.

Either way, H ’s expected utility at the beginning of the game satisfies uH(0) = E[uH(Rτ )] ≥
pm(ūH − k̄β1/3) + (1 − pm)minC∈C uH(C) where pm ≥ 1 − kpβ

1/3. The right-hand side is

bounded below by ūH−Kwβ
1/3 for some Kw > 0. Since w0 = ūH−uH(0), the lemma follows.

C Proof of Proposition 4

Lemmas 3 and Lemma 7 imply that β̂K ≥ β
¯
η3 for some β

¯
> 0. The condition β̂K ≤ gKβ0

then implies that gK ≥ β
¯
η3/β0. Defining ρ by g−ρ = t

t−1
, Lemma 7 implies that

w0 ≤ cwg
−ρK ≤ c′wη

1−3ρ.

This shows that w0 converges to 0 with η if ρ < 1/3. By definition of g and ρ, we have

ρ = ln(t/(t− 1))/ ln(β0 + t(1− β0)). For β0 small, ρ is thus close to

ρ0 = 1− ln(t− 1)

ln t

The RHS is decreases in t ∈ (1,+∞) from +∞ to 0. Therefore, there is a threshold t̂ above

which the condition ρ0 < 1/3 is satisfied, provided that β0 is less than some level β0(t) > 0.
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Using the block structure of Part I, starting from any β0 < 1, we reach β0(t) in at most

K0 blocks, where K0 is defined by gK0

0 = β0/β0(t) and g0 = 1/(β0 + t(1 − β0). w0 is thus

bounded above by t
t−1

K0η1−3ρ, which converges to 0 as η goes to zero, proving the result.

The 1/3 exponent coming from Lemma 3 was chosen optimally, as explained in the

lemma’s proof. Moreover, any bound of the form wn ≤ βα
n for some α > 0 would merely

change ρ’s threshold; it would not cover all primitives of the model.

It may be possible to improve the value of t chosen in Part I, so as to obtain a lower value

of ρ0. However, the minimal value of ρ0 over all possible values of t diverges to +∞ as 1+ D
a∆H

goes to 1, as shown in Appendix F.1. Low values of 1+ D
a∆H

create two problems: the factor

g controlling the belief decrease goes to 1, becoming useless, and the factor t/(t− 1) used to

bound w0 above in Lemma 7 becomes arbitrarily large. Using the approach Proposition 4

seems hopeless when screening incentives are high for all values of t.

Finally, players are expected-utility maximizers whose utility functions may, in some ap-

plications, be defined up to an affine transformation. Could one get more from Proposition 4

by changing players’ utility representation? The answer is negative: scaling or translating

the utility and cost functions has no impact on the key parameter t.54
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