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Abstract

This paper introduces a new approach to model renegotiation in contractual relationships

and applies it to study how renegotiation shapes long-term contracts in principal-agent relation-

ships with persistent states. The structure of players’ payoff and state dynamics generates an

algebraic structure over contractual equilibria and determines the set of alternatives considered

through renegotiation. Using recent advances in functional stochastic differential equations, the

paper derives an Observability Theorem and a Revelation Principle to address asymmetric infor-

mation over persistent variables in diffusion models. Truthful renegotiation-proof contracts are

characterized by a single number—their sensitivity to the agent’s report—and are self-correcting

off the equilibrium path. The sensitivity of the optimal contract is increasing in information

persistence and decreasing in players’ patience.

1 Introduction

Financial bailouts, fiscal policies, and corporate pay cuts during recessions are instances in which

regulators, firms, and other economic agents have the possibility to renegotiate explicit or implicit

contracts in reaction to shocks in their environment. In these instances, moreover, state variables

such as agents’ revenue or productivity are often privately observed and correlated over time.

Despite its relevance for economics, renegotiation has proved challenging to model and analyze.

Even for repeated games, there is no universally accepted concept of “renegotiation-proof” equilib-

rium. One concept, internal consistency, is often perceived as a minimal requirement, and defined

as follows: an equilibrium is internally consistent if there do not exist two histories such that the

continuation equilibrium following the first history is Pareto dominated by a continuation equi-

librium following the second history. Presumably, players facing the first continuation equilibrium
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could think of moving to the second, Pareto superior continuation equilibrium, which would destroy

the initial equilibrium.1 Internal consistency is weak because it does not impose any comparison

with any other equilibrium. For example, indefinitely playing a bad Nash equilibrium is internally

consistent.

At the opposite extreme, strongly renegotiation-proof equilibria (Farrell and Maskin (1989)) must

sustain comparisons with all internally consistent equilibria and may fail to exist. Other concepts

involve a fixed point problem determining the set of equilibria that are renegotiation proof (see

Asheim (1991)) and are subject to existence and multiplicity issues.

State Consistency: These problems would seem even more severe in environments, pervasive

in economics, with persistent shocks. In these environments, however, a strengthening of internal

consistency can prove powerful enough to drastically reduce the set of renegotiation-proof equilibria

and yield sharp predictions about their properties. The idea is to compare continuation payoffs

of a given equilibrium not only across histories leading to the same state, but also across histories

leading to distinct states, thus creating a concept of state consistency.

For example, if a state variable describes the current productivity of a firm, one cannot directly

compare continuation equilibria starting from different productivity levels (or “states”) since the

production frontier and, more generally, the physical environment is different across states. How-

ever, one may be able to transform a continuation equilibrium starting from a given state into

another continuation equilibrium starting from a different state, for example by using some homo-

theticity argument. One may then compare the continuation payoffs of various transformations that

generate equilibria starting from the same state, and use Pareto dominance to determine whether an

equilibrium is vulnerable to renegotiation. State consistency is weaker than strongly renegotiation-

proofness because it does not require that players envision radically different equilibria, but only

that they think by analogy with the equilibrium that they are playing.

State consistency imposes an algebraic structure on renegotiation-proof equilibria. By transforming

an equilibrium starting from one state into equilibria starting from other states, one generates an

orbit within the set of equilibria, in a group-theoretic sense that the paper makes precise. This

orbit has a structure that reflects the nature of the transformation. State consistency imposes a

comparison between continuations of an equilibrium and the orbit that it generates. As a result, a

state-consistent equilibrium inherits many properties of its orbit. For example, in the simple model

of Section 2, the structure of the principal’s payoff inherits many properties from the structure of the

1Internal consistency is due to Bernheim and Ray (1989) and closely related to Farrell and Maskin’s (1989) weakly

renegotiation-proof equilibria. Although internal consistency is a concept mild, Abreu and Pearce (1991) and Asheim

(1991) point out that it does assume time invariance.

2



output dynamics and of the agent’s utility and effort cost functions, and the class of renegotiation-

proof contracts is reduced to a one-parameter family.

Private Information and Renegotiation: An additional complication arises if some persistent

state variables are observed only by some party. Even if parties can communicate, they may

misreport private information, and parties could have to renegotiate under asymmetric information.

One approach is to restrict attention to equilibria in which parties truthfully reveal their informa-

tion. In a truthful equilibrium, all parties know the state variables at all times and state consistency

can be used to study truthful, renegotiation-proof equilibria.

With renegotiation, however, focusing on truthful equilibria may a priori be restrictive since the

absence of commitment precludes the use of the standard Revelation Principle. However, renego-

tiation also incites parties to try and erase any inefficiency in ongoing agreements, which requires

some exchange of information. When parties can communicate frequently, parties can renegotiate

away any inefficiency stemming from information asymmetries and cannot commit not to do so. If

efficiency requires full information disclosure, focusing on truthful equilibrium may thus be without

loss of generality when parties can continually communicate.2

Observability and Revelation Principle in a Diffusion Model: This paper takes a different

approach to address private information. It studies a continuous-time model, in which communi-

cation continually takes place. In the model, which is due to Williams (2011), an agent privately

observes a stochastic cash flow process, which he reports to a principal. The agent can lie: if

the true cash flow process is {Xt}t≥0, the agent reports a cash flow process {Yt}t≥0 where Yt is a

function of {Xs}s≤t and of the agent’s reporting strategy L. Mathematically, the lying process L is

adapted3 to the filtration generated by X and is assumed to enter the reporting process Y through

its drift: dYt = dXt + Ltdt until Section 9, which considers reporting jumps.

The agent’s equilibrium strategy, L, is known to the principal. Therefore, given a reporting history

2The main theorem of Strulovici (2017) formalizes this intuition: it shows in a principal-agent model with asymmet-

ric information that when (i) allocation efficiency requires full information disclosure and (ii) parties can communicate

with arbitrarily high frequency before the allocation takes place, information is fully revealed and the transaction is

efficient. Maestri (2017) shows a similar result when parties transact in each period: information is revealed arbi-

trarily quickly relative to the parties’ discount rate as parties become arbitrarily patient. These papers consider an

explicit game of renegotiation—with offer and acceptance decisions—whereas renegotiation in the present paper is

modeled using a set-theoretic approach.
3The requirement that the agent’s strategy is adapted to what the agent observes is standard in continuous-time

models, including in Williams (2011). This assumption often plays a crucial role in the analysis, e.g., to apply the

Martingale Representation Theorem (see, e.g., Sannikov (2008) and a large subsequent literature), but it is a priori

with loss of generality. See Section ??.
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{Ys}s≤t the principal’s belief about Xt need not coincide with Yt. For example, if the agent often

underreports his cash flow in equilibrium, the principal’s belief about Xt will be higher than the

report Yt. The question, then, is to determine how much information the principal can back out

about X from observing the process Y and knowing the reporting strategy L. Since L can depend

arbitrarily on history, the question would seem a priori hard to answer.

Using recent advances in the analysis of functional stochastic differential equations,4 this paper

provides the following Observability Theorem: (i) Under very mild5 regularity conditions on L,

the principal can infer the true process X, (ii) Even without such conditions, there always exists a

belief equation based on the principal’s information, which, whenever it has a well-defined solution,

reveals the true cash flow X.

The Observability Theorem implies that the principal knows the agent’s cash flow and continuation

utility at all times and that parties have symmetric information at all times. This addresses the

difficulty raised by private information and validates the state consistency approach.

Building on this result, the paper provides the following Revelation Principle: any state-consistent

equilibrium is outcome equivalent to a truthful state-consistent equilibrium, as long as the trans-

formation group used to define state consistency satisfies a simple monotonicity condition.

Renegotiation-Proof Contracts with Persistent Private Information: The main applica-

tion studied in this paper revisits a central question in macroeconomics:6 the agent who generates

the cash flow is risk averse and the principal is risk neutral. The agent reports and transfers his

cash flow to the principal and receives in exchange a transfer from the principal (equivalently, the

agent is subsidized or taxed depending on his cash flow report). The principal proposes a contract

(a transfer process adapted to the agent’s report process) to the agent, and an equilibrium consists

of a contract and a reporting strategy for the agent. The principal wishes to give the agent some

expected lifetime utility at the smallest possible cost. The basic tension is that, in order to properly

insure the agent, the principal must know the agent’s cash flow, but the agent may benefit from

underreporting cash flow to get a higher subsidy (or lower tax) or, conversely, overreport his cash

flow to get rewarded by a higher continuation utility.

From the principal’s perspective there are two state variables: the current cash flow and the agent’s

continuation utility. When the agent has exponential utility, a natural class of equilibrium trans-

4A functional SDE is an SDE whose drift and volatility at time t depend on the path of the solution until t.
5The theorem provides two independent sufficient conditions: a local Lipschitz condition and an “arbitrarily small

delay” condition, which means that the agent’s lying strategy cannot depend on what he observed in the last ε units

of time, where ε is arbitrarily small. This condition is particularly mild because the process X is continuous. The

theorem also requires a local boundedness condition.
6See Thomas and Worrall (1990), Williams (2011), Bloedel, Krishna, and Leukhina (2020) and references therein.
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formations from one state to another emerges, which creates a rich and well structured class of

challengers for the equilibrium and its continuations.

Together with an additional comparison (to convex combinations of equilibria), state consistency

pins down the structure of all renegotiation-proof equilibria and reduces the family of renegotiation-

proof equilibria to a simple, low-dimensional family, which may be viewed as the quotient of the

set of renegotiation-proof equilibria with respect to their orbits.

Any truthful renegotiation-proof contract (i.e., a contract with which truth-telling forms an equilib-

rium) is characterized by a single “sensitivity” parameter, which determines the agent’s incentive to

truthfully report his cash flows. For such a contract, all contractual variables have exact formulas

as a function of the sensitivity parameter and the continuation utility of the agent. The sensitivity

parameter describes how the agent’s continuation utility varies with his reports, and can take any

value between 0 and the coefficient of absolute risk aversion of the agent.

The class of renegotiation-proof contracts contains the contract studied by Williams (2011) and is

equivalent to the class of stationary contracts studied by Bloedel, Krishna, and Strulovici (2020),

who provide a self-insurance implementation of these contracts. The optimal renegotiation-proof

contract is obtained by maximizing a closed-form objective with respect to the sensitivity parameter,

which makes it easy to derive comparative statics of the optimal sensitivity parameter with respect

to information persistence, discounting, and risk. The agent’s flow utility optimally has a negative

drift for all parameters of the model, but the occurrence of immiserisation depends on the strength

of cash flow persistence and volatility (Bloedel, Krishna, and Strulovici).

Reporting Incentives and Reporting Jumps: Reporting incentives are linear for any arbi-

trary contract, which implies that the agent either is indifferent between telling the truth and

lying, or wishes to lie at maximal (infinite) rate, either upwards or downwards. To account for

this, the agent’s strategy space is enlarged to allow jumps in the agent’s reports. For the contracts

characterized in this paper, there is a natural way to specify how such jumps affect the agent’s

continuation utility. The agent’s incentives are characterized by a Hamilton-Jacobi-Bellman equa-

tion with an impulse response component, which provides a new (in the contracting literature, to

the author’s knowledge) and simple way of dealing with the possibility of unbounded drift of the

reporting process. This technique is used to derive in closed form the agent’s value function not

only on the equilibrium path, but also after any possible deviation.7

With truthful renegotiation-proof contracts, the agent wants to report cash flows truthfully not

7Another approach, which does not use jumps is to allow the agent’s optimal strategy to be ill defined off the

equilibrium path. In this case, the agent’s value function is only a viscosity supersolution of the agent’s HJB equation.

This approach is explained in Bloedel, Krishna, and Strulovici (2020).
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only on the equilibrium path, but also after any possible deviation. If, there was any mistake in

the report, it is strictly optimal for the agent to immediately correct this mistake.8

Literature Review: This paper proposes a way to analyze renegotiation in contractual relation-

ships with persistent state variables, and applies it to study environments with persistent private

information.9 The concept may be viewed as an adaptation and strengthening of the concepts of

internal consistency introduced by Bernheim and Ray (1989) and Farrell and Maskin (1989) to

settings with persistent states.10 Gromb (1994) studies a binary-state model of debt contracts and

compares payoffs across the two states, similarly to the approach of this paper. Bassetto, Huo, and

Rios-Rull (2020) study “organizational equilibria” in a dynamic game played a succession of time

inconsistent agents, in which capital is a state variable. They impose a weak separability condition

on agents’ preferences, which stipulates that an agent’s preference over sequences of actions is in-

dependent of the current level of capital. This weak separability condition allows comparisons of

continuation equilibria across different levels of capitals. When comparing continuation equilibria,

they impose a “no-restarting” condition, which means that there is no time t such that agents’

would prefer to adopt an earlier continuation equilibrium over the current one. This condition may

be viewed as a one-sided notion of internal consistency.11 Ray (1994) proposes a reinforcement of

internal consistency, which may be interpreted as follows: if parties are aware of all continuations

of an equilibrium (as they should under internal consistency), they could build new equilibria re-

cursively by using the set of continuation payoffs to incentivize current-period actions (see also Van

Damme (1991)). Maestri (2017) studies explicit, dynamic renegotiation between a principal and

an agent with a private type.12

The paper also builds on the literature on dynamic contracting with persistent private information

initiated by Fernandes and Phelan (2000). Most modeling features of this paper are based on

Williams (2011) who focuses on full commitment.13 The model is related to optimal insurance and

8This feature is interesting, for instance, if the agent is a newly-arrived CEO who discovers, upon taking the job,

that the financial situation of his firm is worse than what outsiders think. The contracts characterized here give the

agent the incentive to correctly book a nonrecurring loss on the firm’s accounts.
9Hart and Tirole (1988), Laffont and Tirole (1990) Dewatripont (1989), Fudenberg and Tirole (1990), and

Battaglini (2007) study contract renegotiation with private information in finite period models, which impose de

facto constraints on the frequency of communication. Maestri (2017) studies an infinite horizon version of Hart and

Tirole (1988) and finds that information is revealed arbitrarily quickly relative to the discount rate as parties become

arbitrarily patient.
10See also Pearce (1987), Abreu and Pearce (1991), and Abreu et al. (1993).
11They also impose a no-delay condition, which has no equivalent in the present paper, and a notion of optimality

which is similar to external stability in Bernheim and Ray (1989).
12Kranz and Ohlendorf (2013), Miller and Watson (2013), and Safronov and Strulovici (2018) consider explicit

renegotiation in repeated games.
13See also Tchistyi (2006), Zhang (2009), and Kapička (2013). Doepke and Townsend (2006) and Fukushima and
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taxation models studied by Green (1987), Thomas and Worrall (1990), Golosov et al. (2003), Farhi

and Werning (2013). Golosov and Iovino (2020) study optimal insurance without commitment.

Pavan, Segal, and Toikka (2014) study persistence in discrete time through “impulse response

functions.” Contracting with persistent private information also arises in delegated experimentation

models (Bergemann and Hege (2005), Garfagnini (2011), Hörner and Samuelson (2013)), as an

agent’s private effort to learn about some technology may result in persistent superior information.14

The paper is organized as follows. Section 2 introduces illustrates the concept and implications

of state consistency in a simple setting with discrete time and with a persistent but publicly

observable state. Section 3 presents the contractual setting with persistent private information.

Section 4 proposes a general formalization of state consistency. Section 6 characterizes truthful,

renegotiation-proof contracts in the setting of Section 3. Section 7 studies how the sensitivity of

the optimal contract to the agent’s reports varies with persistence, discounting, and risk. Section 8

establishes an Observability Theorem and a Revelation Principle to address private information.

Section 9 provides a necessary and sufficient condition for truthfulness on and off the equilibrium

path. Section 10 discusses several extensions.

2 Discrete-Time Example with Persistent Public Information

2.1 Setting

An agent generates an output process {Xt}t∈N such that

Xt+1 = Xt +D(At, Zt)

where {Zt}t∈N is a sequence of i.i.d. shocks, At ∈ A is the agent’s effort at time t, D is a real-valued

function, and X0 = x ∈ R is given.15 The agent incurs a cost of effort h(At) at time t where h is

some arbitrary function h : A → R. A contract C maps each history {X0, . . . , Xt} to a consumption

level Ct ∈ R. The principal and the agent have the same discount factor ρ ∈ (0, 1). Given a contract

C, the agent chooses an effort process A mapping histories into effort levels. Formally, an effort

Waki (2009) provide novel numerical methods and analysis.
14See also Guo (2016) and Halac, Kartik, and Liu (2016). Similarly in DeMarzo and Sannikov (2016), principal and

agent both learn the agent’s skill but the agent privately observes his effort. Sannikov (2014) considers a moral hazard

problem in which the agent’s action have long-term consequences. Garrett and Pavan (2012, 2015) study managerial

compensation contracts when the type of the manager is persistent. These papers do not consider renegotiation.
15 The example can be generalized to Xt+1 = λXt + D(At, Zt) where λ ∈ (0, 1]. In this case, the transformation

Φδ defined by equation (1) must be changed to Φδ(C)(X ′0, . . . , X
′
t) = C(X ′0− δ,X ′1− δλ . . . ,X ′t− δλt), with a similar

change for the transformation of the agent’s effort strategy, and the term x/(1− ρ) in the payoff formulas appearing

in Propositions 2 and 3 must be replaced by x/(1− ρλ). For expositional simplicity, we focus here on λ = 1.

7



process A is admissible if it is adapted to the filtration generated by the output process X. We let

A denote the set of admissible effort processes.

Given a contract C and an admissible strategy A, the agent’s expected discounted utility is

V (C,A;x) = E

[∑
t∈N

ρt(u(Ct)− h(At))|X0 = x

]

for some real-valued utility function u and the principal’s expected discounted payoff is

Π(C,A;x) = E

[∑
t∈N

ρt(Xt − Ct)|X0 = x

]

A pair (C,A) is a contractual equilibrium if A maximizes V (C, Ã;x) over all admissible effort

processes Ã ∈ A. A contractual equilibrium (C,A) starts from (x,w) if X0 = x and V (C,A;x) = w.

2.2 Internal Consistency

In the context repeated games, two well-known and essentially identical concepts of renegotiation

are internal consistency (Bernheim and Ray (1989)) and weakly renegotiation-proofness (Farrell and

Maskin (1989)). According to these concepts, an equilibrium is renegotiation-proof if it does not

have any continuation equilibrium that is Pareto dominated by another continuation equilibrium.

Although the concept internal consistency was originally introduced in the context of repeated

games, it can be embedded into dynamic games with non-trivial state variables: say that an

equilibrium is internally consistent if there do not exist two histories leading to the same state such

that the players’ continuation payoffs following the first history Pareto dominate those following

the second history.

In the context of Section 2.1, a contractual equilibrium (C,A) is internally consistent if there do not

exist two histories {Xs : s ≤ t} and {X ′s : s ≤ t′} leading to the same output level Xt = X ′t′ = x and

the same continuation utility w for the agent such that principal gets a strictly higher continuation

payoff after history {X ′s : s ≤ t′} than after {Xs : s ≤ t}.

Intuitively, if a contractual equilibrium violates internal consistency and the dominated history

{Xs : s ≤ t} is realized, the principal would strictly benefit from switching to the equilibrium

continuation following {X ′s : s ≤ t′} and the agent would accept this switch, with a strict incentive to

do so if the principal shares even an arbitrarily small fraction of the surplus gained from the switch.

Internal consistency implies the following result, whose proof is straightforward and omitted. Given

a contractual equilibrium (C,A) and history up to time t, let Wt denote the agent’s continuation

utility at time t.
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Proposition 1 If (C,A) is internally consistent, there exists a function Π : R2 → R such that the

principal’s continuation payoff process satisfies Πt = Π(Xt,Wt) for all t.

2.3 State Consistency

Beyond Internal Consistency: To see how internal consistency may be strengthened, it is

useful to revisit about its rationale. Internal consistency presumes that, after observing some

history, the principal is able to recognize that she could use the continuation equilibrium following

another history to achieve a higher payoff. This cognitive ability should extend to other natural

comparisons.

One such comparison, often used in economics, is convexification: if two distinct continuation

equilibria give the same expected utility to the agent, and the agent has a concave utility, it is

natural for the principal to consider convex combinations of these continuation equilibria, as they

may achieve the same expected utility for the agent at a lower cost for the principal. This idea will

be exploited in Section 6.2 to narrow down the set of renegotiation-proof equilibria. For now, we

focus on comparisons across states, which constitute the main conceptual innovation of the paper.

Transformations Across Outputs: Fix a contractual equilibrium (C,A) starting from (x,w)

and another output level x′ ∈ R, and let δ = x′ − x ∈ R.

We define a new contract Φδ(C) by

Φδ(C)(X ′0, . . . , X
′
t) = C(X ′0 − δ, . . . , X ′t − δ). (1)

We also define a new effort strategy Φδ(A) by

Φδ(A)(X ′0, . . . , X
′
t) = A(X ′0 − δ, . . . , X ′t − δ) (2)

for any history {X ′0, . . . X ′t}.

The pair (Φδ(C),Φδ(A)) forms a contractual equilibrium starting from (x′, w), which may be see as

follows. Consider any strategy A′ starting from x′. Given the contract Φδ(C) and initial condition

x′, A′ generates a stochastic output path X ′0, X
′
1, . . . with X ′0 = x′ and results in a consumption

path given by (1).

Consider now the effort strategy Φ−δ(A
′) obtained by applying transformation (2) to strategy A′

and shift parameter −δ rather than δ: for any history (X0, . . . Xt), we have Φ−δ(A
′)t = A′(X0 +

δ, . . . , Xt + δ). Notice that for any strategy A and δ ∈ R, we have Φ−δ(Φδ(A)) = A.
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For any realization of the exogenous uncertainty (Z0, Z1, . . .), a simple forward induction on time t,

starting from t = 0, shows the following: the strategies A′ and Φ−δ(A
′), starting respectively from

x′ and x are such that A′t = Φ−δ(A
′)t and X ′t = Xt + δ for all t.

From (1), this implies that the agent receives the same consumption for all t in both of these cases.

Since the agent’s effort and consumption is the same across both contracts for each realization of

the shocks Z = (Z0, . . .), we conclude that

V (Φδ(C), A′|x+ δ) = V (C,Φ−δ(A
′);x)

for all A′. Equivalently,

V (Φδ(C),Φδ(A)|x+ δ) = Vx(C,A|x)

for all A. Therefore, we conclude that A is optimal given C and x if and only if Φδ(A) is optimal

given Φ(C) and x′.

Continuation of a Contractual Equilibrium: In order to compare continuations of contractual

equilibria, it is useful to treat formally each such continuation as a contractual equilibrium with

time reset to 0.

Formally, given any contractual equilibrium (C,A) and any history {X0, . . . , Xt} leading to some

continuation utility Wt = w and output Xt = x, the continuation (Ĉ, Â) of (C,A) following history

{X0, . . . , Xt} is a contractual equilibrium starting from X̂0 = x and Ŵ0 = w, and such that for any

τ ≥ 0 and (X̂0, . . . .X̂τ ), we have

Ĉ(X̂0, . . . , X̂τ ) = C(X0, . . . , Xt−1, Xt = X̂0, X̂1, X̂2, . . . X̂τ )

and

Â(X̂0, . . . , X̂τ ) = A(X0, . . . , Xt−1, Xt = X̂0, X̂1, X̂2, . . . X̂τ ),

where we indicated for clarity that Xt = X̂0 to emphasize that the end of history {X0, . . . , Xt} is

the beginning of (Ĉ, Â)’s history.

Consistency Across Outputs:

A contractual equilibrium (C,A) is consistent across outputs if the following holds for any two

histories {X0, . . . , Xt} and {X ′0, . . . , X ′t′} leading to the same continuation promised utility Wt for

the agent. Denoting by Xt = x and X ′t′ = x+δ the output levels after these respective histories, and

letting (Ĉ, Â) denote continuation of (C,A) after {X0, . . . , Xt}, the principal’s continuation payoff

after {X ′0, . . . , X ′t′} is weakly greater than her payoff under the transformation (Φδ(Ĉ),Φδ(Â)) of

the continuation contract (Ĉ, Â).

Intuitively, consistency across outputs means that the principal can think, after history {X ′0, . . . , X ′t′},
of using the transformation of the continuation following {X0, . . . , Xt} that makes this continuation
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compatible with output level x+δ, and switch to this transformation if it is profitable. Consistency

across outputs implies internal consistency, as can be seen by setting δ = 0 in the definition.

Proposition 2 If (C,A) is consistent across outputs, then (i) the principal’s payoff function Π is

additively separable: there exist functions f and g such that Π(x,w) = f(x) − g(w) and (ii) f is

linear in x: f(x) = x
1−ρ .

Proof. Fix w ∈ R and consider any x 6= x′ such that the states (x,w) and (x′, w) can both be

reached by some histories. Given a continuation (C,A) starting from (x,w), the transformation

of (C,A) constructed above for δ = x′ − x starts from (x′, w) and gives the principal an expected

payoff equal to Π(x,w) + x′−x
1−ρ , because the expected output level at all future periods is uniformly

translated by x′ − x. Consistency across outputs then implies that Π(x′, w) ≥ Π(x,w) + x′−x
1−ρ .

The reverse transformation implies the reverse inequality. Hence, Π(x′, w) = Π(x,w) + x′−x
1−ρ for

all (x,w) and (x′, w) reachable by some histories. This implies that there exists some real number

g(w) such that Π(x,w) = x
1−ρ − g(w) for all x such that (x,w) can be reached. For x′′ such that

(x′′, w) is not reached by any history, we can define the function Π(x′′, w) using the same formula.

Since this transformation works for each w, we get the desired result.

Transformation Across Promised Utilities: We now specialize the setting further, to create

transformations across promised utilities of the agent. We now assume that consumption and effort

levels are nonnegative at all times, that the agent’s utility and cost functions are given by u(c) = cγ1

and h(a) = aγ2 for some parameters 0 < γ1 < 1 < γ2, and that the output shocks take the following

multiplicative form:16

Xt+1 = Xt +AtZt.

Under these assumptions, the agent’s utility in any continuation of any contractual equilibrium

must be nonnegative, because the agent can always abstain from putting any effort and receive at

least zero utility from consumption in each period.

Given any contractual equilibrium (C,A) starting from state (x,w) and any β > 0, we now construct

a contractual equilibrium (C ′, A′) starting from (x, βw).

We start with the following observation: since the initial condition x is fixed and known to the

principal, observing the output process (X0, X1, . . .) is equivalent to observing the increments (D0 =

A0Z0, D1 = A1Z1, . . .). We can therefore express C and A as functions

Ct(D0, . . . , Dt−1)

16The example extends easily to the dynamics Xt+1 = Xt + dAtZt where d is a positive constant. See also

footnote 15.
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and

At(D0, . . . , Dt−1)

for all t.

We define a new contract starting from (x, βw) as follows. Given observed incrementsD′0, D
′
1, . . . D

′
t−1,

let

φβ(C)t(D
′
0, D

′
1, . . . , D

′
t−1) = β1/γ1Ct(D

′
0β
−1/γ2 , . . . , D′t−1β

−1/γ2).

We also define a new strategy φβ(A) for the agent, by

φβ(A)t(D
′
0, D

′
1, . . . , D

′
t−1) = β1/γ2At(D

′
0β
−1/γ2 , . . . , D′t−1β

−1/γ2).

We now show that (φβ(C), φβ(A)) is a contractual equilibrium starting from (x, βw) if and only if

(C,A) is a contractual equilibrium starting from (x,w).

Consider any strategy A′ starting from initial condition (x, βw) and any realization of the exogenous

uncertainty (Z0, Z1, . . .), the strategy A′ defines an increment process D′ = (D′0 = A′0Z0, D
′
1 =

A′1Z1, . . .). Consider the strategy φ1/β(A′) defined by

φ1/β(A′)t(D0, . . . Dt−1) = β−1/γ2A′t(D0β
1/γ2 , . . . , Dt−1β

1/γ2) (3)

for all t. Notice that for all A and β > 0, we have φ1/β(φβ(A)) = A.17

By construction, the strategies A′ and φ1/β(A′) generate increment processes D′ and D such that

D′t = β1/γ2Dt.

for all t ≥ 0. Moreover, by definition of the contract φβ(C), the agent’s consumptions at time t

under (C, φ1/β)(A)) and (φβ(C), A′) are related by

φβ(C)t = Ctβ
1/γ1 (4)

for all t. This implies that the agent’s utility from consumption and cost of effort satisfy u(φβ(C)t) =

βu(Ct) by (4) and h(A′t) = βh(φ1/β(A′)t) by (3) at all times. Since these equalities hold for all

realizations of the exogenous shocks, we conclude that

V (φβ(C), A′;x) = βV (C, φ1/β(A′);x)

for all A′. Equivalently,

V (φβ(C), φβ(A);x) = βV (C,A);x).

17Formally, this means that the map φ : (β,A) 7→ φβ(A) defines an action of the group ((0,+∞),×) over the set

A of admissible strategies. This point is developed in Section 4.
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for all A. This shows that (C,A) is a contractual equilibrium starting from (x,w) if and only if

(φβ(C), φβ(A)) is contractual equilibrium starting from (x, βw).

State Consistency: We define state consistency in two steps. First, say that a contractual

equilibrium (C,A) is consistent across promised utilities if the following holds for any two histories

{X0, . . . , Xt} and {X ′0, . . . , X ′t′} leading to the same output level Xt = X ′t′ = x: denoting by

w and βw the continuation utility levels right after these histories, the principal’s continuation

payoff after {X ′0, . . . , X ′t′} is weakly greater than her continuation payoff under the transformation

(φβ(Ĉ), φβ(Â)) of the continuation (Ĉ, Â) of (C,A) after {X0, . . . , Xt}.

Second, say that a contractual equilibrium is state consistent if it is consistent across outputs and

across promised utilities.

Proposition 3 Suppose that the contractual equilibrium (C,A) is state consistent. Then, there

exist positive constants α1, α2 such that the principal’s payoff function Π satisfies

Π(x,w) =
x

1− ρ
+ α2w

1/γ2 − α1w
1/γ1 .

The next proposition shows that state-consistent contractual equilibria and can be constructed

explicitly.

Proposition 4 There exists a continuum of state-consistent equilibria, which have the following

form:18 letting Wt denote the agent’s continuation utility at time t, we have

At = a1/γ2W
1/γ2
t

Ct = c1/γ1W
1/γ1
t

where a and c are positive constants related by

(γ2 − 1)a = 1− c. (5)

In these equilibria, the effort and consumption levels at any time are only a function of the agent’s

continuation utility at that time, and these functions are pinned down by a one dimensional pa-

rameter (c, say), which fully determines, together with (5), each contract. To fully characterize the

contract, one has to determine how the promised utility Wt depends on observed output. This is

done in the proof of Proposition 4 and this dependence is also pinned down by c.

18The statement concerns a specific class of state consistent equilibria. It does not rule out the existence of other

state consistent equilibria.
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3 Persistent Private Information

We now turn to the main analysis of this paper, which includes persistent private information and

formalizes the construction of transformation groups introduced in the example.

An agent generates cash flow Xt ∈ R at time t ≥ 0, which evolves according to the dynamic

equation19

dXt = [(ξ − λXt)] dt+ σdBt (6)

where B is the standard Brownian motion and X0 = x is given and commonly known. The cash

flow has a mean-reversion component with speed λ and long run average ξ/λ. A low (high) mean-

reversion speed λ results in high (low) persistence of the cash flows and, hence, of the agent’s private

information. λ is the rate at which a shock in the current cash flow decays over time. Uncertainty

is modeled with a probability space (Ω,F , P ) satisfying the usual conditions and whose outcomes ω

are identified with the paths of B.

The agent reports and transfers to the principal a cash flow Yt that obeys the dynamic equation

dYt = dXt + Ltdt = [(ξ − λXt) + Lt] dt+ σdBt (7)

where Lt is the rate at which the agent lies about the increment dXt of the true cash flow.20

The gap Gt = Yt −Xt between reported and actual cash flows satisfies21

Gt =

∫ t

0
Lsds.

The agent’s initial cash flow is assumed to be known by the principal.

Assumption 1 (i) The principal observes the report process {Yt}t>0 but not the actual cash flow

process {Xt}t>0. (ii) Y0 = X0.

Contract: A contract is a stochastic process C = {Ct}t≥0 that is adapted to the filtration FY =

{FY }t≥0 generated by the report process Y . The process C, discounted at rate r, is assumed to be

integrable when the agent tells the truth: E[
∫∞

0 e−rt|Ct|dt |L ≡ 0] <∞.

19The model is due to Williams (2011). An earlier version of this paper (Strulovici (2011)) includes moral hazard:

the agent privately chooses some effort level At ∈ R that affects the cash flow dynamics according to dXt = (At +

ξ − λXt)dt+ σdBt. This addition does not affect the main results, as explained in Section 10.2.
20The rate at which the agent lies may be unbounded. To address this, Section 9 allows jumps in the agent’s report

process and proposes a natural extension of the contract to this case.
21One could impose constraints on the lies that the agent can make, e.g., by requiring that Yt ≤ Xt (the agent

cannot transfer more than he earns) or that Gt ≤ ḡ for some arbitrary ḡ > 0 (the agent cannot overreport more than

a fixed amount). The contracts derived in this paper remain truthful in the presence of such constraints and for any

ḡ > 0, no matter how small, the necessary conditions for truth-telling are the same as if G is unconstrained.
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A contract C requires the principal to make a transfer Ct ∈ R to the agent at time t: the agent

gives Yt to the principal and the principal gives Ct to the agent. An alternative interpretation is

that the agent reports and keeps Yt and the principal gives a (possibly negative) subsidy Ct − Yt
to the agent. These interpretations are formally equivalent and the former is used throughout the

paper for consistency.

We rule out private savings and assume that the agent immediately consumes the transfer that he

receives from the principal, as well as any difference between his real and reported cash flows:22

Assumption 2 The agent’s consumption at time t is equal to Ct + (Xt − Yt) = Ct −Gt.

The agent’s strategy consists of a lying process L adapted to the agent’s information, which corre-

sponds to the filtration FX = {FXt }t≥0 generated by X.23

Given an initial condition x, a contract C, and a strategy L, the agent’s expected discounted utility

is24

V0(C,L;x) = E

[∫ ∞
0

e−rt (u(Ct +Xt − Yt)) dt
]

(8)

where u is strictly concave and X,Y evolve according to (6) and (7) and the initial conditions

X0 = Y0 = x. In computations to follow, the agent will be assumed to have exponential utility

u(c) = − exp(−θc) for some risk-aversion coefficient θ > 0.

A strategy L is admissible if the following transversality or “No-Ponzi” condition is satisfied. Let

VT (L) denote the agent’s continuation utility at time T when control L is applied until time T and

truthtelling is used thereafter.25

lim
T→+∞

E
[
e−rT |VT (L)|

]
= 0 a.s. (9)

Definition 1 Given an initial condition x, a contractual equilibrium (C,L) consists of a contract

C and a strategy L for the agent that solves

sup
L′

V0(C,L′;x)

over all admissible strategies.

22See Bloedel, Krishna, and Strulovici (2020) for the case of hidden savings.
23The agent also observes Y . However, since X determines Y , given the agent’s strategy, X is a sufficient statistic

for the agent’s information.
24The strategy L affects the probability measure over the paths of Y , which affects the expectation.
25Admissibility rules out, for instance, strategies in which the agent continually underreports his cash flow, which

permits him to get a higher immediate transfer from the principal but leads to an ever-decreasing continuation utility,

with a decrease rate that exceeds r. Condition (9) is standard. It is used to take limits in verification arguments, to

check that the solution of an HJB equation is equal to the value function of the agent’s optimization problem.
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A contractual equilibrium requires that the strategy L be incentive compatible given the contract

C and initial condition x. The contract C is not required to satisfy any incentive compatibility

condition for the principal.

Objective of the Principal: Given an initial condition x and a contractual equilibrium (C,L),

the principal’s expected payoff is

E

[∫ ∞
0

e−rt(Yt − Ct)dt
]

where Y is given by (7), X follows the dynamic equation (6), and X0 = Y0 = x. The objective of

the principal is to maximize her expected payoff subject to giving the agent some minimal expected

lifetime utility w (i.e., V0 ≥ w) and to renegotiation-proofness constraints that are the focus of the

next section.

4 Concept of Renegotiation

Any model of renegotiation entails a comparison between some current agreement and alternative

agreements. The key is to determine the set of challengers that parties may consider as valid

alternatives to the current agreement. This section proposes an approach to do this when there are

persistent state variables.

4.1 Cash Flow and Continuation Utility as State Variables

In our setting, one of the state variables is the current cash flow Xt generated by the agent. Since

this cash flow is persistent, it affects the set of achievable payoffs for the players at any given time.

In addition, it is useful to treat the agent’s continuation utility Vt as a state. We take the perspective

of the principal and consider whether there exist contractual equilibria that give the agent the same

utility Vt as the current equilibrium but increase the principal’s payoff Πt given the current cash

flow Xt.

4.2 Transformation Groups

We formalize state-consistency using the language of group theory. This formalization makes it

easy to envision the application of the concept of state consistency beyond the specific applications

considered in the present paper.

Let
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� S denote the state space. In our application, S consists of all pairs (v, x) of continuation

utility and cash flow over the relevant domain.

� G denote a group—in the algebraic sense—that exerts a left action on S. This means that

for any g ∈ G and any (v, x) ∈ S, one can associate an element (ṽ, x̃) = g ◦ (v, x) ∈ S that

respects the group’s structure, as follows:26

– e ◦ (v, x) = (v, x) for the identity element e of G

– (gg′) ◦ (v, x) = g ◦ (g′ ◦ (v, x)) for any g, g′ ∈ G.

Now consider the set E of all contractual equilibria (C,L). Each contractual equilibrium is associ-

ated with an initial state (v, x).

To define a left action group on E , we associate for each g ∈ G and (C,L) ∈ E , a new contractual

equilibrium Φg(C,L) that respects the structure of the group, as follows:

Definition 2 The mapping from Φ : G × E → E defined by (g, (C,L)) 7→ Φg(C,L) is a transfor-

mation group if it satisfies the following axioms:

Axiom 1. For any (C,L) ∈ E, Φe(C,L) = (C,L).

Axiom 2. For all g, g′ ∈ G and (C,L) ∈ E, Φg′(Φg(C,L)) = Φg′g(C,L).

Axiom 3. For any g ∈ G and (C,L) ∈ E starting from state (v, x), the contractual equilib-

rium Φg(C,L) starts in state (ṽ, x̃) = g ◦ (v, x).

Intuitively, a transformation group describes analogies that a principal can use to compare equilibria

across states. The definition applies equally well to equilibria to discrete-time and continuous-time

settings.

Axioms 1 and 2 are the defining properties of a left group action: Axiom 1 says that if the state is

unchanged (i.e., the group identity e is applied), then the transformation is the identity mapping

over E , and Axiom 2 is an associativity axiom that will be used shortly, applied to group elements

that are inverse of each other. Axiom 3 requires that the transformed contractual equilibria be

consistent with the effect that the group has on the state: in the translation example above, for

instance, it means that if g transforms the state v into ṽ when g operates on the state space S,

then g should also transform any contractual equilibrium that gives expected utility v to the agent

into one that gives him expected utility ṽ.

26These two conditions define the left action. The group G must satisfy the standard definition of a group, which

include the existence of an identity element and an inverse for each element of the group.

17



4.3 State Consistency for Truthful Contracts

We begin the analysis by studying state consistency for truthful equilibria, defined as follows.

Definition 3 A contractual equilibrium (C,L) is truthful if L ≡ 0. A contract C is truthful if

(C,L ≡ 0) is a contractual equilibrium.

Truthful contracts are a good starting point for the analysis of renegotiation because the principal

unambiguously knows the current cash-flow level and the agent’s continuation utility, and can use

this information to renegotiate the contract. Section 8 shows that the focus on truthful contracts

is without loss of generality as long as the strategy of the agent satisfies one of the following

regularity properties: it is either locally Lipschitz with respect to the true cash-flow process (a

property satisfied, e.g., by truthtelling), or it responds with an arbitrarily small lag to news arrival.

We define a concept of state consistency, according to which challengers are obtained through

the transformation group Φ. Given any contractual equilibrium (C,L), let Π(C,L) denote the

principal’s expected payoff. Although we focus for now on truthful equilibria, we emphasize that

the concepts in this section apply to all contractual equilibria.

Definition 4 A contractual equilibrium (C,L) starting from state (v, x) is state consistent with

respect to Φ if, after any history leading to some state (ṽ, x̃) = g◦(v, x) and continuation contractual

equilibrium (C̃, L̃), we have

Π(C̃, L̃) ≥ Π (Φg(C,L)) ,

and, reciprocally,

Π(C,L) ≥ Π
(

Φg−1(C̃, L̃)
)
.

State consistency entails two requirements: first, each continuation of (C,L) must sustain the

comparison with the transformation of (C,L) to the state corresponding to this continuation.27

Second, the initial contractual equilibrium must sustain the comparison with each continuation

equilibrium transformed back to the initial state, i.e., corresponding to the group element g−1,

since g−1 ◦ (g ◦ (v, x)) = e ◦ (v, x) = (v, x).

A first observation is that a state-consistent contractual equilibrium is internally consistent as long

as Φ satisfies the following monotonicity condition.

Definition 5 The transformation group Φ is monotone if for any two contractual equilibria (C,L)

and (C ′, L′) starting from some common state (v, x) and giving payoffs Π(C,L) ≤ (<)Π(C ′, L′) to

27This definition does not distinguish between on-path and off-path continuations. This distinction is irrelevant for

the setting of Section 3 since the agent’s lies are absolutely continuous and the report process is always on path.
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the principal, and any g ∈ G, the principal’s payoffs in the transformed contractual equilibria

(C̃, L̃) = Φg(C,L) and (C̃ ′, L̃′) = Φg(C
′, L′) satisfy Π(C̃, L̃) ≤ (<)Π(C̃ ′, L̃′).

Monotonicity means that the ranking of the principal’s payoffs is preserved under transformations

to a different state.

Proposition 5 Suppose that Φ is monotone and that the contractual equilibrium (C,L) starting

from state (v, x) is state consistent with respect to Φ. Then, after any finite history leading to

state (ṽ, x̃) = g ◦ (v, x), the continuation payoff for the principal is equal to her initial payoff in the

contractual equilibrium Φg(C,L).

This proposition, proved in the Appendix, implies the following result.

Corollary 1 If Φ is monotone, any state-consistent equilibrium is internally consistent.

The proof is immediate: if (C,L) is state consistent, Proposition 5 implies that any two histories

leading to the same state (ṽ, x̃) = g ◦ (v, x) give the same continuation payoff π̃ to the principal

and, hence that the players’ continuation payoffs (ṽ, π̃) of both parties are not Pareto ranked.

Strength, Stability, and Uniqueness of the State-Consistency Concept: In principle, there

may be several transformations groups to consider. The group G operating on the state space is

transitive (in the group theoretic sense) if for any states (v, x) and (v′, x′) there exists some g ∈ G

such that (v′, x′) = g ◦ (v, x). This property is satisfied by the group constructed in our main

application (Section 5). If Φ is defined with respect to a transitive group G, it means that we can

compare contractual equilibria across any two states.

The theory of state consistency does not rely on transitivity: it is well defined for any group G.

This observation is useful if, for instance, in settings for which it is hard to establish comparisons

across all pairs. The next proposition establishes two results pertaining to non-transitive groups.

Given a group G operating on S and a transformation group Φ defined with respect to G, we can

consider, for any subgroup G′ of G the transformation group Φ′ that is the restriction of Φ with

respect to G′. A particular subgroup is the trivial group that contains only the identity element

e. With respect to the trivial group, Φ reduces to the identity transformation over contractual

equilibria. We have the following result.

Proposition 6 (i) Suppose that Φ is a transformation group with respect to G and that G′ is a

subgroup of G. A contractual equilibrium is state consistent with respect to Φ only if it is state

consistent with respect to Φ′. (ii) If G′ is the trivial group, a contractual equilibrium is state

consistent with respect to Φ′ if and only if it is internally consistent.

19



Part (i), whose proof is straightforward, establishes a nestedness condition for concepts of state-

consistency. Regarding Part (ii), we note that the identity transformation group is clearly mono-

tonic, so internal consistency follows from Corollary 1. The reverse direction follows immediately

from the definition of state consistency.

From Proposition 6, the stronger concepts of state consistency are obtained for transitive groups.

Fixing a group G, there may a priori exists multiple transformation groups with respect to G,

which could potentially lead to different solution concepts for state consistency. However, the next

result shows that, for a contractual equilibrium to sustain comparisons with respect to several

monotone transformation groups, these groups must, taken individually, yield the same concept of

state consistency. Consider two monotone transformation groups Φ and Φ̃. Given a contractual

equilibrium (C,L) starting from (v, x), suppose that there is a state (v′, x′) = g ◦ (v, x) for which

the groups yield different payoffs: Π(Φg(C,L)) > Π(Φ̃g(C,L)). Applying the transformations again

from (v′, x′) to (v, x) = g−1(v′, x′) and using monotonicity, we get

Π(Φ̃g−1(Φg(C,L))) > Π(C,L).

Therefore, (C,L) is dominated (from the principal’s perspective) by a simple composition of ele-

ments in the two groups. In such a case, we will say that (C,L) is unstable with respect to (Φ, Φ̃),

otherwise, (C,L) is called stable with respect to (Φ, Φ̃). Intuitively, instability implies that the prin-

cipal’s ability to consider transformations that yield different payoffs after a given history prevents

the existence of a state-consistent contractual equilibrium.28

Proposition 7 (Concept Equivalence for Stable Contractual Equilibria) Let Φ and

Φ̃ be two monotone transformation groups with respect G and (C,L) be a contract equilibrium

starting from state (v, x) that is stable with respect to (Φ, Φ̃). Then, (C,L) is state consistent with

respect to Φ if and only if it is state consistent with respect to Φ̃. Moreover, the principal’s payoffs

under the Φ and Φ̃ transformations of (C,L) to any other state (v′, x′) are identical.

5 Transformation Group: Explicit Construction

This section constructs a transitive transformation group Φ explicitly for the setting of Section 3.

28For the setting of Section 3, it is possible to build somewhat “pathological” transformation groups different from

those constructed in Section 5, for which state consistent contracts (according to the original transformation group

of that section) is not stable. However, unlike the original transformation group of Section 5, these transformation

groups have two potential issues: (i) they are not in the spirit of internal consistency, because they transform a given

contract into contracts that are not easily obtained from the original contract, and (ii) there need exist any truthful

contract that is state consistent with respect to these other transformation groups.
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5.1 Transforming Contracts Across Cash Flow Levels

Given a contactual equilibrium (C,L) starting from state (v, x), and any x̂ 6= x, we construct a

new contractual equilibrium that starts from (v, x̂). Since C is adapted to the filtration FY of the

agent’s report process Y , it can be expressed as Ct = C(Ys : s ≤ t) for some functional C (for

notational simplicity, C is defined on paths of Y of varying time lengths, which implicitly allows C
to depend t).

Now suppose that the initial cash flow level is x̂ and that the agent uses strategy L. This strategy

generates a report process Ŷ , which is given by equation (7) and initial condition Ŷ0 = x̂ and the

true cash flow process X̂ satisfies (6) subject to initial condition X̂0 = x̂. In this situation, the

principal can choose to give the agent the consumption process Ĉt = C(Ỹs : s ≤ t), where Ỹ is

constructed from Ŷ as follows: Ỹ0 = x and

dỸt = dŶt − (ξ − λŶt)dt+ (ξ − λỸt)dt. (10)

Intuitively, the process Ỹ is the report process that the agent would have produced if the initial cash

flow had been x instead of x̂ and the agent had followed the same strategy L that generates Ŷ when

starting from x̂. We call Ỹ the virtual report process. Notice that the principal can always compute

the virtual report process Ỹ from observing the report process Ŷ , thanks to equation (10).

Proposing contract Ĉ, which is based on Ỹ , allows the principal to make the consumption process

independent of the initial cash flow level x̂. By insulating the agent’s compensation process from

the initial cash flow, the principal separates the agent’s lying incentives from the initial cash flow.

This separation works when the report process Y has a linear dynamic, as shown the next result.

Proposition 8 Suppose that the contract C defined by Ct = C(Ys : s ≤ t) together with strategy L

forms a contractual equilibrium starting from (v, x). Then, the contract Ĉ defined by Ĉt = C(Ỹs :

s ≤ t) together with strategy L forms a contractual equilibrium starting from (v, x̂).

Proposition 8 allows us define the first part of the transformation Φ: we set for any x̂ ∈ R

Φ(1,x̂−x)(C,L) = (Ĉ, L).

The reason for the “1” subscript has to do with how the group G operating on the state space will

be defined and will become clear in the next subsection.

We emphasize that this transformation applies for general utility functions of the agent, as was in

the case in Proposition 2. Nothing in the proof of Proposition 8 requires that the agent have an

exponential utility function. The key to providing Proposition 8 is that the cash flow has a linear

dynamic equation (specifically, the drift of the cash flow is affine in its current value).
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5.2 Transforming Contracts Across Promised-Utility Levels

From now on, we assume that the agent’s utility function is given by u(c) = − exp(−θc) for some

risk aversion parameter θ > 0. In particular, the agent’s flow utility u(Ct −Gt) is always negative

and, hence, so are his promised and continuation utilities at all times.

Consider a contractual equilibrium (C,L) starting from state (v0, x), with v0 < 0, and consider any

alternative utility level v1 = βv0 for some β ∈ (0,∞). We define a new contract Ĉ as follows:

Ĉt = Ct −
log(β)

θ

for all t. We have the following result:

Proposition 9 (C,L) is a contractual equilibrium starting from (v0, x) if and only if (Ĉ, L) is a

contractual equilibrium starting from (v1, x).

Proof. Let V (C,L) denote the agent’s expected utility when he follows strategy L given contract

C. Since L is optimal for the agent, we have

V (C,L) = v0 ≥ v(C,L′)

for all L′. For any L̂′, let L′ = L̂′. Then, it is straightforward to check from (8) that

V (C, L̂′) = βV (C,L′) ≤ βV (C,L) = βv0 = v1

and the inequality is tight if L̂′ ≡ L, which shows that L is optimal given Ĉ and provides utility

βv0 to the agent . �

For any contractual equilibrium (C,L) and β > 0, we set

Φ(β,0)(C,L) = (Ĉ, L).

5.3 Action Group

Since the agent’s flow utility is negative, the relevant state space for the agent is S = (−∞, 0)×R:

it consists of all possible pairs (v, x) of expected utility and cash flows.

Let G = (0,+∞) × R denote the algebraic group defined by the binary operation (β, δ)(β′, δ′) =

(ββ′, δ + δ′) for all (β, δ), (β′, δ′) ∈ G. It is straightforward to check that G is an Abelian group

with identity element (1, 0).

Moreover, the operation (β, δ) ◦ (v, x) = (βv, x+ δ) defines a left action of G on the state space S:

the associativity and identity axioms are straightforward to check.
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Finally, the group G defines a left action on the set of contractual equilibria, as follows:

1. Sections 5.1 and 5.2 define Φ(β,0)(C,L) and Φ(1,δ)(C,L) for all β > 0, δ ∈ R and contractual

equilibrium (C,L).

2. For any (β, δ) ∈ G, we define Φ(β,δ)(C,L) by

Φ(β,δ)(C,L) = Φ(β,0)(Φ(1,δ)(C,L))

3. It is straightforward to check that this definition is consistent with 1. and that Φ satisfies

Axioms 1,2,3 of Definition 2. Hence, Φ is a transformation group.29

4. Finally, it is also straightforward to check that Φ is monotone: if Π(C,L) ≥ Π(C ′, L′) for any

two contractual equilibria starting from the same state, then the constructions of Sections 5.1

and 5.2 preserve this payoff relation.

These observations are summarized by the following proposition.

Proposition 10 The mapping Φ : G× E → E is a monotone transformation group.

6 Characterization of Truthful Renegotiation-Proof Contracts

This section derives a functional form for the payoff of the principal in any truthful state-consistent

contract. It then introduces a mild strengthening of state consistency, in which the set of chal-

lengers is convexified. Renegotiation-proof contracts are those that sustain the comparison with

this convexified set of challengers. The convexification, together with the strict concavity of the

agent’s utility function, implies that the contractual variables themselves, and not just the contin-

uation payoff of the principal, are Markovian, and leads to a complete characterization of truthful,

renegotiation-proof contracts. The class of truthful, renegotiation-proof contracts is parametrized

by a single real number, which may be interpreted as the sensitivity of the agent’s continuation

utility to his reports.

Truthful Contracts and Promised Utility:

Given a truthful contract C, the filtrations FX and FY are identical and the agent’s continuation

utility at time t is

Wt = E

[∫ ∞
t

e−r(τ−t) (u(Cτ )) dτ

∣∣∣∣FYt ] .
29To prove associativity, one must show that consumption translation commutes with the virtual cash flow con-

struction of Section 5.1, which is immediate from the construction.
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The quantity Wt is the agent’s promised utility at time t : it is the agent’s expected discounted

utility if he truthfully reports his cash flows. Since the promised utility process W = {Wt}t≥0 is

adapted to the filtration FY , the Martingale Representation Theorem implies that W satisfies the

dynamic equation30

dWt = (rWt − u(Ct))dt+ σStdB̃t (11)

where the process St is FY -adapted and B̃t is an FY -adapted Brownian motion under the probability

measure in which the agent reports truthfully, i.e.,

dB̃t =
dYt − (ξ − λYt)dt

σ
.

If the agent does not report his cash flow truthfully, B̃ is no longer a martingale: plugging Equa-

tion (7) into the previous equation yields

dB̃t =
λ(Yt −Xt)dt+ Ltdt+ σdBt

σ
. (12)

Intuitively, the cash flow shocks reported by the agent’s are biased upward if (i) the agent over-

reports his cash flow (Lt > 0) or (ii) the actual cash flow is lower than the reported cash flow

(Xt < Yt). Effect (i) is straightforward. Effect (ii) comes from mean-reversion: if Xt < Yt, then

Xt has a higher mean than what the principal expects based on Yt. Even if the agent does not

produce any additional lie (Lt = 0), reported increments are positively biased.

It follows from (12) that when the agent lies, his promised utility evolves as

dWt = (rWt − u(Ct))dt+ St(Ltdt+ λGtdt+ σdBt), (13)

where {Bt}t≥0 is the standard Brownian motion. The coefficient St is the sensitivity of the agent’s

promised utility to the agent’s report increment at time t. It will be treated as a choice variable of

the principal in the recursive formulation of the problem.

Agent’s Incentives: Persistence of the agent’s private information implies that past lies can have

a long term impact on incentives: if the agent has lied even for a short period before time t, he has

affected the report history Y t = {Ys}s≤t and therefore also affected his future consumption flow C

and his future incentives to report the truth. Intuitively, if the agent underreports his cash flow

increment dXt at time t, he affects his utility through two channels. First, this reduces his promised

utility, which depends on the report dYt by a sensitivity factor St, and thus reduces the consumption

stream that the principal aims to give the agent. Second, to deliver a given level of promised utility,

the principal must provide higher transfers to the agent if the agent generates lower cash flows. The

first channel incentivizes the agent to report higher cash flows and the second channel incentivizes

30See, e.g., Karatzas and Shreve (1991).
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him to report lower cash flows. For the contract to be truthful, these two incentives must balance

each other, at least on the equilibrium path. The agent’s reporting incentives are the subject of

Section 9.

6.1 Structure of the Principal’s Payoff

Consider a truthful, state-consistent contract C for the transformation group Φ constructed in

Section 5. Since the contract is truthful, there is no difference on the equilibrium path between Xt

and Yt, or between Vt and Wt.

We will use (w, y) instead of (v, x) to denote the state, to make these equalities clear. For any state

(w, y) ∈ (−∞, 0) × R, let Π(w, y) denote the principal’s expected payoff for the transformation

of (C, 0) that corresponds to state (w, y). From Proposition 5, Π(w, y) is also the principal’s

continuation payoff after any history leading to state (w, y). We now derive the functional form of

Π(w, y).

First, consider the dependence on the cash flow level y. As noted in Section 5.1, the only difference

in continuation payoffs for the principal between histories starting from state (w, y) and (w, y′)

concerns the expected discounted transfer from the agent Υ(y) = E[
∫∞

0 e−rtYtdt|w, y], because the

processes C have the same distribution independently of y.

To compute Υ(y), note that since the contract is truthful, we have Yt ≡ Xt. Moreover, the cash

flow process Xt has an explicit formula, which is computed in the Appendix (Equation (50)), the

expected discounted transfer from the agent satisfies

Υ(y) =

∫ ∞
0

e−rt
(
e−λty + E

[∫ t

0
eλ(s−t)ξds

])
dt.

After simplification, this yields

Υ(y) =
y

r + λ
+

ξ

r(r + λ)
. (14)

This yields the following result:

Π(w, y) = Π(w, 0) +
y

r + λ
. (15)

Next, consider two different promised utility levels w0 and w1 = βw0 for the agent, where β > 0.

The translation performed in Section 5.2 implies that

Π(βw0, y) =
log(β)

θr
+ Π(w0, y).

The previous analysis yields the following result.
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Proposition 11 For any truthful, state consistent contract C, the principal’s payoff satisfies the

following relation:

Π(w′, y′) =
(y′ − y)

r + λ
+

log(w′/w)

rθ
+ Π(w, y).

In particular, the principal’s continuation payoff in state (w, y) satisfies

Π(w, y) =
y

r + λ
+

log(−w)

θr
+ Π(−1, 0). (16)

Proposition 11 has an immediate but important corollary:

Corollary 2 If C is truthful and state consistent, the principal’s continuation payoff takes the

form Πt = Π(Wt, Yt) where Π(·, ·) is twice continuously differentiable.

6.2 Convexification and Renegotiation-Proof Contracts

Proposition 11 established that the continuation payoff of the principal in any truthful, state-

consistent contract is Markov in the state variables (Wt, Yt). In principle, the contract itself need

not be Markov: there could be multiple continuation contracts starting from a given state (w, y)

that give the principal the same payoff, and all of these continuations could in principle be used

after various histories.

In order to guarantee the contract is Markov, we impose a mild strengthening of state consistency,

in which the set of challengers to a given continuation is the convex hull of the relevant set of

contract transformations.

When the agent’s utility is concave and a contractual equilibrium has multiple continuations giving

the agent the same expected utility, it is natural for the principal to consider convexifications of

these continuations, as they may be cheaper.

Specifically, consider two truthful contracts C1, C2 starting from the same cash flow x and giving

the same utility v to the agent. For any λ ∈ [0, 1], consider the contract Cλ defined as follows: for

any t and report history {Ys : s ≤ t},

u(Cλt ) = λu(C1
t ) + (1− λ)u(C2

t ). (17)

The consumption level Cλt is uniquely defined if u is strictly increasing and continuous, which is the

case for exponential utility functions. In words, for any t and report history {Ys}s≤t, Cλt provides

a flow utility to the agent that is a fixed convex combination of the flow utilities that he gets under

C1
t and C2

t . If Cλ is truthful, this implies that it provides expected utility v to the agent because

(i) C1 and C2 both give expected utility v to the agent, and (ii) all three contracts generate the
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same distribution for the report process Y . The next result shows that Cλ is indeed truthful and

formalizes this result.

Proposition 12 Suppose that u(c) = − exp(−θc) for some parameter θ > 0. For any λ ∈ [0, 1]

and initial cash flow x, the contract Cλ is truthful and gives the agent expected utility v.

Given a truthful contract C and state (v, x), let K(C) denote the set of all continuation contracts

of C, and let

K(v, x) =
{

Φg(C̃) : (g, C̃) ∈ G×K(C) s.t. g ◦ (vC̃ , xC̃) = (v, x)
}

where (vC̃ , xC̃) denotes the starting state of contract C̃. In words, K(v, x) consists of all contracts

starting from state (v, x) that are transformations of continuation contracts of C.

Finally, let

Conv(K(v, x)) = {Cλ : λ ∈ [0, 1], C1, C2 ∈ K(v, x)}

denote the set of convex combinations of contracts in K(v, x).

The set Conv(K(v, x)) defines the class of all challengers that the principal can consider, after any

history leading up to state (v, x), to replace the current continuation contract.

Definition 6 A truthful contract C is renegotiation-proof if (i) the pair (C,L ≡ 0) forms a state-

consistent contractual equilibrium and (ii) for any history leading to state (v, x), the continuation

contract C̃ satisfies

Π(C̃) ≥ Π(C ′) (18)

for all C ′ ∈ Conv(K(v, x)).

This definition captures the following intuition: if the principal can come up with some challengers of

a contract, possibly by comparing contract continuations across states, then she can also consider

the convex combination of these challengers. Convexification is used in Lemma 1 to pin down

contractual variables as a function of the state (Proposition 13).

6.3 Contractual Variables

We now derive the functional form of contractual variables Ct, St for all renegotiation-proof con-

tracts.

Proposition 13 For any truthful, renegotiation-proof contract, there exist constants c1, s̄ such that

Ct = c1 −
log(−Wt)

θ
a.s. (19)
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St = −Wts̄ a.s. (20)

for all t ≥ 0.

The parameters c1 and s̄ are the consumption and sensitivity levels provided at time 0 by the

transformation of the contract that starts with promised utility −1 (any cash flow level).

From Proposition 13, the parameters c1 and s̄ fully characterize contract C. We will see in Section 9

that a contract to be truthful, c1 and s̄ must satisfy an additional equation, which will further reduce

the set of renegotiation-proof contracts to a single parameter family.

Proof. From (11), the statement of Proposition 13 is equivalent to W being a geometric Brownian

motion or, equivalently, to the Itô process Z given by Zt = log(−Wt) having constant drift and

volatility.

To prove that the drift and volatility of Z are constant, we will use an intermediate result. Let (w, y)

denote the initial state of the truthful renegotiation-proof contract C. Fix a time T and history up

to time T and let C̃ and (w̃, ỹ) denote the continuation contract and state following this history.

Let Ĉ denote the transformation of C̃ that starts in state (w, y): letting g denote the element of G

such that (w̃, ỹ) = g ◦ (w, y) (which is always possible since G is transitive) we let Ĉ = Φg−1(C̃).

The contract C̃ is truthful as a continuation of C, which is truthful. Therefore, Ĉ is also truthful

because Φ preserves truthfulness (Propositions 8 and 9). The contract Ĉ may be proposed by the

principal at time 0, instead of contract C, as it starts from the same state (w, y). We now show that

the stochastic processes C = (Ct)t≥0 and Ĉ = (Ĉt)t≥0 must be identical functions of the realized

cash-flow process Y = (Ys)s≥0. This result, which is proved in Appendix B, is formalized as follows.

Let L denote the vector space of processes Z such that E[
∫∞

0 e−rt|Zt|dt] < ∞ endowed with the

norm ‖Z‖L = E[
∫∞

0 e−rt|Zt|dt]. By assumption, any contract C belongs to L under truth-telling.

Lemma 1 The processes C and Ĉ are identical in L: ‖C − Ĉ‖L = 0.

Let {Ŵt}t≥0 denote the agent’s promised utility under contract Ĉ. Ŵ is an FY -adapted Itô process

given by

Ŵt = E

[∫ ∞
t

e−r(s−t)u(Ĉs)ds

∣∣∣∣Yz : z ≤ t
]
. (21)

Lemma 1 implies that Ŵ is identical to W and that the process Ẑ : {Ẑt = log(−Ŵt)}t≥0 is identical

to the process Z : {Zt = log(−Wt)}t≥0.

Let µt and σt denote the drift and volatility of Z at time t. Our objective is to show that µt and

σt are constant. Since Ẑ and Z are identical, we have:

dẐt = dZt = µtdt+ σtdBt.
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By definition of Φ, the contract Ĉ = Φg−1(C̃) is obtained by translating the process C̃ = {CT+t}t≥0

by the constant 1
θ (log(−WT ) − log(−w)) (setting β = log(−Wt/ − w) in Section 5.2) and making

it independent of the initial condition YT , as explained in Section 5.1. The latter condition is

equivalent to the requirement that Ĉ depends on the Brownian path {Bt}t≥0 in the same way that

C̃ depends on the Brownian path {BT+t −BT }t≥0.31

From (21) and the fact that u(c) = − exp(−θc), this implies that the process {Ẑt}t≥0 is identical

in law to the process Z̄ = {ZT+t − ZT + Z0}t≥0 conditioned on FYT . The latter process has drift

{µT+t}t≥0 and volatility {σT+t}t≥0. Equality in law of Ẑ and Z̄ implies that the drift and volatility

of Ẑ at time zero is equal to the drift and volatility of Z̄ at time t = 0, i.e.,

µ0 = µT σ0 = σT .

Since the time T and history up to time T were arbitrary, this shows that µT and σT are constant

and proves the proposition.

�

Proposition 13 immediately implies the following corollary:

Corollary 3 Any truthful, renegotiation-proof contract is Markovian: there exist functions c(·)
and s(·) such that Ct = c(Wt, Yt) and St = s(Wt, Yt) for all t.

In fact, Proposition 13 shows a stronger result: the functions c(·, ·) and s(·, ·) are independent of

Yt: the agent’s consumption at any time depends only on his current promised utility, and so does

the sensitivity St.
32

Proposition 13 provides a necessary condition for the form of truthful renegotiation-proof contracts.

This necessary condition is strong, as it reduces the family of such contracts to a two-parameter

family with parameters c1 and s̄. This reduction to two parameters is essentially due to state

consistency and convexification.33

31With a truthful contract starting from cash flow y, the reported cash flow process Y has an explicit formula,

given by Yt = e−λty+
∫ t
0
eλ(s−t)ξds+

∫ t
0
eλ(s−t)σdBs (see Equation (50)). Therefore, the path of Y is entirely pinned

down by the initial condition y and the path of B. Independence of the contract with respect to the initial condition

y then shows the claim. Remark: although easier to understand with the closed form of Y , the claim holds as long

as the cash flow process Y solves an SDE with noise B that has a unique solution (see, e.g., Cherny (2002, Theorem

3.2)).
32For readers familiar with the concept of symmetry in physics and Noether’s theorem, this property may be viewed

as a conservation law of the contract that stems from state consistency: state consistency with respect to Yt may be

viewed as a symmetry of the contract expressed in terms of the left group action C 7→ Φ(1,δy)(C) and invariance of

the contract with respect to Yt is a consequence of this symmetry.
33From an algebraic perspective, each truthful Markovian contract generates an orbit in the set T of all truthful
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In fact, the requirement that truthtelling be incentive compatible for the agent imposes a relation-

ship between the variables c1 and s̄, as follows. Let u1 = u(c1). The following result is shown in

Section 9.

Theorem 1 The set of truthful renegotiation-proof contracts is characterized by Equations (11),

(19), and (20), and u1 and s̄ ∈ (0, θ) satisfy the following relation:

u1 = − s̄λ

θ − s̄
. (22)

Theorem 1 shows that each truthful renegotiation-proof contract can be reduced to a single pa-

rameter, s̄. To optimize the principal’s payoff with respect to s̄, the next proposition computes the

payoff explicitly.

Proposition 14 The principal’s payoff is given by:

1

θr

[
log(−u1(s̄)) +

1

r

(
r + u1(s̄)− 1

2
σ2s̄2

)
+D(w, y)

]
(23)

where u1(s̄) = − s̄λ
θ−s̄ and

D(w, y) = log(−w) +
θ

r + λ
(ry + ξ).

7 Comparative Statics

The following comparative statics obtain by maximizing (23) with respect to s̄.

7.1 Persistence

The first result is to show that the sensitivity of the contract, s̄ is increasing in the persistence of

the agent’s type.

Proposition 15 The optimal sensitivity s̄ is decreasing in λ.

Intuitively, when the cash flow is more persistent (λ is lower), the agent’s current report has more

bearing on expected future cash flows. This raises the magnitude of the agency problem and

requires a higher a sensitivity to induce truthful reporting.

Markovian contracts through the left action of group Φ. Proposition 13 says that the quotient of T with respect to

these orbits (or equivalence classes) is two-dimensional.
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The proof of Proposition 15 is straightforward. Ignoring terms and factors in the principal’s objec-

tive (23) that do not influence the choice of s̄, the optimal choice of s̄ is the solution to

log(−u1(s̄)) +
1

r

(
u1(s̄)− 1

2
σ2s̄2

)
, (24)

where

u1(s̄) =
−s̄λ
θ − s̄

.

The function s̄ 7→ u1(s̄) is submodular in (s̄, λ), as is easily checked. Therefore, the second term

of (24) is submodular. The logarithmic term breaks up into separate functions of s̄ and λ, and is

therefore modular in (s̄, λ). Submodularity of the objective implies that s̄ is decreasing in λ (see

Topkis 1978). The intuition here can be back traced to the incentive compatibility condition (32):

s̄ =
θ(−u1)

λ− u1
.

A lower λ (higher persistence) implies a higher sensitivity s̄.

7.2 Impact of Volatility and Discount Rate

It is easy to check from (23) that the principal’s payoff is decreasing in the volatility of the agent’s

cash flow. The next result shows that the optimal sensitivity coefficient is also decreasing in cash

flow volatility.

Proposition 16 The optimal sensitivity s̄ is decreasing in σ.

Proof. Expression (23) is submodular in σ and s̄. The result follows from Topkis (1978).

This result is intuitive: A higher volatility exposes the agent to more risk, other things equal. Since

the agent is risk averse, it is optimal for the principal to offset this by reducing the agent’s exposure

to exogenous cash flow fluctuations, by reducing s̄. Perhaps more surprisingly, the sensitivity is

decreasing in the patience of the players, as shown in the Appendix.

Proposition 17 The optimal sensitivity s̄ is increasing in r.

A possible intuition is that a less patient agent is more concerned about getting an immediate

subsidy (or tax reduction) than about his future utility. Inducing truth-telling thus requires a

higher sensitivity of the agent’s future utility to his current report.
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7.3 Long-Run Properties

Bloedel, Krishna, and Strulovici (2020) show that the agent’s utility always has a negative drift

under the optimal contract, but that the long-run properties of consumption and promised utility

depend on the parameters of the agent’s cash flow process. Fixing the volatility parameter, the

optimal contract induces immiserisation when persistence is low, but sends the agent to bliss when

persistence is high. Fixing the degree of persistence, the optimal contract induces immiserisation

when volatility is high, but sends the agent to bliss when volatility is low.

8 Observability Theorem and Revelation Principle

Reconstructing the Agent’s True Cash Flow: An Observability Theorem

We focused up to now on truthful equilibria. Consider instead a contractual equilibrium in which

the agent lies on path about his cash flow. We will see that, given an equilibrium strategy L that

is FX adapted, the principal can under mild regularity conditions on L reconstruct the true cash

flow Xt and the agent’s true continuation utility Vt from the agent’s report process Y . To this end,

notice that the agent’s lying process is FX -adapted and may thus be expressed as a functional

Lt = L(t,Xs : s ≤ t), (25)

which depends, at each time t on the path of X until time t. Given the functionals {L(t, ·)}t≥0—

which the principal knows in equilibrium—and the report process Y , we can construct a process

X̃t defined by the equation

dX̃t = dYt − L(t, X̃s : s ≤ t)dt (26)

and the initial condition X̃0 = Y0 = X0. Equation (26) is a functional stochastic differential

equation in which the unknown is the process X̃ and the primitive is the process Y . From (7),

the true cash flow process X is a weak solution of (26). Moreover, any strong solution of (26) is,

by definition, adapted to Y . If (26) has a unique solution, the principal can back out the process

X by observing Y and using her knowledge of the agent’s equilibrium strategy. This intuition is

formalized by Theorem 2, which is proved in Appendix C.34

Theorem 2 (Observability Theorem) Consider a contractual equilibrium (C,L) such that L

is locally bounded: for each T > 0, there exists M(T ) > 0 such that supt≤T |Lt| ≤M(T ) a.s. Then,

the following holds:

34While the model’s horizon is infinite, Theorem 2 provides conditions under which, for each T > 0, the agent’s

reports up to time T reveal the agent’s continuation value and the current-cash flow at time T . Thus, to prove

Theorem 2, it suffices to show that it holds for any finite horizon [0, T ], where T > 0 is arbitrary.
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1. If Equation (26) has a strong solution, then this solution is unique, and X is FY -adapted.

2. If L is locally Lipschitz continuous,35 then Equation (26) has a unique strong solution and X

is FY -adapted.

3. If there exists some ε > 0 such that for each t > 0, the functional L(t, ·) is independent of

{Xs}s∈[t−ε,t], then Equation (26) has a unique strong solution and X is FY -adapted.

Conditions given in 2. and 3. both include truthtelling as a feasible strategy. In particular, the

truthful strategy L ≡ 0 is constant and thus clearly Lipschitz. The lag ε appearing in 3. may be

viewed as small behavioral constraint or frictions which requires that agent’s response time to new

information is no exactly zero, but bounded below by some arbitrarily small constant.36

To interpret Theorem 2, notice that the principal’s belief about the agent’s cash flow may be quite

different from the report made by the agent. Given some contract C, the agent can affect his

transfers by overreporting or underreporting his cash flows: these reports mechanically feed into

the transfer specified by C, regardless of their effect on the principal’s belief. Theorem 2 says that

the principal’s belief process matches the true cash flow as long as the principal’s belief equation (26)

has a strong solution (Part 1), which is guaranteed if the agent’s strategy exhibits some arbitrarily

small lag (Part 3) or if it is Lipschitz for some arbitrary Lipschitz constant (Part 2).

This distinction is conceptually important in the context of renegotiation: it means that in equi-

librium the principal knows the agent’s continuation utility under the current contract when rene-

gotiating with the agent, even if the agent has fed inaccurate reports into the contract C. Thus,

it is legitimate to treat the actual cash flow, Xt, and agent continuation value Vt as state variables

for the purpose of analyzing renegotiation, as long as the agent’s strategy satisfies the assumptions

of Theorem 2, which we impose as part of the admissibility requirement for L.

Focus on Adapted Strategies

The assumption that the agent’s lying process is adapted to FX plays a key role in Theorem 2.

While the focus on adapted strategies is quasi-universal in economic models with diffusion pro-

cesses, this focus is generally not innocuous. In particular, it rules out mixed strategies and it is a

priori with loss of generality. In diffusion models, there have been very few attempts to model mixed

35This means that for each T > 0, there exists L̄(T ) > 0 such that all functionals {L(t, ·)}t≤T are L̄(T )-Lipschitz

continuous over their respective domain.
36The truthful renegotiation-proof contracts characterized by Theorem 1 are truthful even when the agent’s strategy

is allowed to violate both conditions 2. and 3. of Theorem 2, since none of these conditions is imposed in the

verification that truthful behavior is optimal in Section 9.2. Imposing condition 2. or 3. is useful only to guarantee

that the focus on truthful contracts is without loss of generality, by Theorem 3.
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strategies in general as this raises difficult technical problems.37 Focusing on adapted strategies is

a priori restrictive, but for diffusion models there are compelling reasons for this focus, that are

independent of any concern for renegotiation or private information. For example, the Martingale

Representation Theorem, which is used by DeMarzo and Sannikov (2006), Sannikov (2008) and

numerous subsequent papers, relies on this assumption. Williams (2011), on which the main ap-

plication of the present paper is based, assumes that agent’s reporting strategy is adapted to the

observed process (cf. last paragraph of p. 1239 in that paper).

There are separate reasons to think that mixing would be of little help in the present setting. In

continuous-time models, the principal has infinitely many opportunities to extract information from

the agent, and one may expect any uncertainty caused by mixing would be quickly resolved as the

principal would renegotiate contracts with arbitrarily high frequency. For example, Maestri (2017)

and Strulovici (2017) study related protocols in discrete time and found that as the frequency of

renegotiation becomes arbitrarily large, the private information of the agent is revealed arbitrarily

quickly. This justification lies outside the scope of the present paper as there is no explicit protocol

of negotiation in the present paper.

8.1 Revelation Principle

From Theorem 2, the principal knows the agent’s true output and continuation value even in

contractual equilibria that are not truthful. Therefore, it is legitimate for the principal to consider

challengers based on the true continuation state (Vt, Xt), even if the contractual equilibrium is not

truthful.

As noted in Section 4, the transformation group and the concept of state consistency defined in that

section applies equally well to contractual equilibria as it does to truthful contractual equilibria,

and the comparisons are legitimate due to Theorem 2.

Since the concept of a state-consistent contractual equilibrium is well defined, we can ask whether

such equilibrium is outcome equivalent to a truthful contractual equilibrium, i.e., whether a version

of the Revelation Principle holds in this setting.

In the absence of commitment, it is well known that the Revelation Principle need not hold.38

However, a version of this principle holds in our setting, as described next.

Say that two contractual equilibria starting from the same state are outcome equivalent if they

induce the same net transfer after any history {Xs}s≤t of the real output.

37One such attempt is due to Bernard (2016)’s PhD thesis, which focuses on this question.
38See, e.g., Bester and Strausz (2001).
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Theorem 3 Suppose that Φ is monotone. Then, any state-consistent contractual equilibrium is

outcome-equivalent to a truthful state-consistent contractual equilibrium.

Proof. Consider any contractual equilibrium (C,L). As with the standard Revelation Principle,

we can replace the contract C by a contract Ĉ in which the agent truthfully reports his cash flow,

and the principal simulates the lies that the agent would have made in the initial equilibrium and

makes the same net transfer to the agent that she would have made in the initial equilibrium. By

construction, the truthful contractual equilibrium (Ĉ, L̂ ≡ 0) is outcome-equivalent to the initial

contractual equilibrium.

We must show that if (C,L) is state consistent with respect to Φ, then so is (Ĉ, 0). Let (v, x)

denote the initial state (which is the same for both contractual equilibria) and consider any real

output history {Xs}s≤t leading to some state (v′, x′) = g◦(v, x). Let (Ĉ ′, 0) denote the continuation

equilibrium of (Ĉ, 0) following this history and (C ′, L′) denote the continuation equilibrium of (C,L)

following this corresponding history.

By outcome equivalence, we have

Π(Ĉ ′, 0) = Π(C ′, L′) (27)

and

Π(C,L) = Π(Ĉ, 0).

Since Φ is monotone, the previous equality implies that

Π(Φg(C,L)) = Π(Φg(Ĉ, 0)). (28)

Comparing (27) and (28) and using the fact that (C,L) is state consistent then shows that (Ĉ ′, 0)

also satisfies the definition of state consistency (Definition 4). �

9 Necessary and Sufficient Conditions for Incentive Compatibility

This section proves Theorem 1: it shows that (22) is necessary and sufficient for the contracts of

Proposition 13 to be incentive compatible (i.e., truthful). The argument used to prove sufficiency

illustrates a strategy, potentially useful in other problems, to deal with an unbounded reporting

domain by expending the strategy space of the agent.

9.1 Necessity

Consider any contract that has the form of Proposition 13, which is characterized by parameters

c1 ∈ R and s̄ ≥ 0, such that Ct = c(Wt) and St = s(Wt) for all t, where the functions c(·) and s(·)
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are given by c(w) = c1 − log(−w)/θ and s(w) = s̄(−w). The promised utility of the agent evolves

as

dWt = (r + u1)Wtdt+ s(Wt)(dGt + λGtdt+ σdBt) (29)

where Gt = Yt − Xt where u1 = u(c1). Moreover, the agent’s actual consumption is c(Wt) −
Gt. Therefore, the agent cares about Yt and Xt only through their difference Gt. The agent’s

optimization problem reduces to

v(w, g) = sup
L
E

[∫ ∞
0

e−rt (u(c(Wt)−Gt)) dt
]

subject to dGt = Ltdt, G0 = g, and (29). The HJB equation for this problem is

0 = sup
l
{u(c(w)− g)− rv(w, g)

+vw (rw − u(c(w)) + s(w)(l + λg)) + vgl +
1

2
(s(w))2σ2vww

}
. (30)

It is easy to show by applying the same controls starting from different values of w that the value

function has the form v(w, g) = wf(g) for some function f to determine. Incentive compatibility

obtains if one finds a solution f such that f(0) = 1, which means that the agent cannot do better

than get his promised utility w. The Bellman equation becomes, after simplification and dividing

throughout by (−w),

0 = sup
`

{
u1 exp(θg) + f(g)(−u1 + s̄(`+ λg))− f ′(g)`

}
. (31)

A priori, the function f defining the agent’s value function need not be everywhere differentiable,

but it is a viscosity supersolution of (31) (see, e.g., Øksendal and Sulem (2004)), which means in

this context that the supremum in (31) must be less than or equal to 0. Moreover, v(w, g) is clearly

decreasing in the gap g, which implies that f is increasing. This implies that f is left and right

differentiable at 0. Incentive compatibility implies, for g = 0, that it is optimal for the agent not

to increase the gap above zero, which requires that

s̄− fr(0) ≤ 0,

and it is optimal not to decrease it below zero, which requires that

s̄− fl(0) ≥ 0.

Therefore, incentive compatibility implies that fl(0) ≤ s̄ ≤ fr(0).

We now prove that these inequalities are tight. Suppose by contradiction that one of these inequal-

ities is strict, for example, s̄ < fr(0). This implies that there exists a right neighborhood of 0 such
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that for g ∈ (0, η) it is strictly optimal for the agent to reduce the gap to zero, at an infinitely

negative rate. We approximate the agent’s optimal strategy by considering an arbitrarily negative

lying rate −K over some small time window, and taking the limit as K → +∞. Specifically, sup-

pose that at time t the state is (w, g) for some fixed g ∈ (0, η), so that the agent expected utility at

time t is v(w, g) = wf(g), and suppose that the agent lies at an arbitrarily large rate −K between

times t and tK = t+ g/K, which brings the gap to 0 at time tK . The agent’s promised utility over

this time interval obeys the dynamic equation39

dWt = Wt(r + u1 +Ks̄)dt+ s̄(−Wt)σdBt,

which integrates to WtK = ŴtK exp(s̄K), where ŴtK is the agent’s promised utility at time tK if he

doesn’t lie during this period. The agent’s expected utility at time tK is therefore v(WtK , GtK ) =

ŴtK exp(s̄g)f(0) since we chose tK so that GtK = 0. As K → +∞, we have tK → t, ŴtK → w,

and v(WtK , GtK ) ≤ v(w, g) since lying at the arbitrarily large rate −K is only one of many possible

strategies for the agent. Moreover, incentive compatibility requires that f(0) = 1. Taken together,

these observations yield wf(g) ≥ w exp(s̄g). Dividing by w < 0 and noting that the argument

works for all g ∈ (0, η), we get

f(g) ≤ exp(s̄g)

for all g ∈ (0, η). Since the functions on both sides of the equation are equal to 1 for g = 0, we get

f ′r(0) ≤ d[exp(s̄g)]

dg

∣∣∣∣
g=0

= s̄,

which yields the desired contradiction. By a similar argument, fl(0) = s̄.

In conclusion, f is differentiable at 0, with derivative s̄. This implies that the value function

v̄(w, x, y) = v(w, y − x) of the agent is differentiable with respect to x and to y whenever x = y.

In Appendix D (Lemma 2), this differentiability is used in an envelope argument to show that,

necessarily,

s̄(−w) = f ′(0)(−w) = vx(w, x, x) = −vy(w, x, x) = E

[∫ ∞
0

e−(r+λ)tu′(Ct +Xt − Yt)dt
]
.

The right-hand side is computed explicitly in Appendix D (Lemma 3), yielding

s̄ =
θ(−u1)

λ− u1
∈ (0, θ). (32)

Notice that s̄ < θ for all u1 < 0 and λ > 0. Intuitively, if s̄ were higher than θ, the agent would

want to exaggerate the cash flow in order to artificially increase his promised utility. The effect

of earning less than the reported cash flow would reduce the agent’s flow utility at rate θ, which

would be dominated by the increase in promised utility governed by the sensitivity parameter s̄.

Incentive compatibility rules this case out.

39The equation is exact up to a second-order term, which becomes negligible as K → +∞.
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9.2 Sufficiency

We have established that (22) is necessary for incentive compatibility. We now show that it is

sufficient. The objective (31) is linear in `, which has unbounded domain. If the contract is not

truthful, the agent therefore wants to lie at an infinite rate. To account for this, we now allow the

agent to report jumps in his cash flows, which expands the agent’s strategy space.40

Let Wt+(∆L) denote the agent’s promised utility if he reports a jump ∆L in his cash flow at

time t. For contracts with a fixed sensitivity parameter, as considered here, a natural closure of

the contract to report jumps is to stipulate that

Wt+(∆L) = exp(−s̄∆L)Wt. (33)

To see this, notice that if the agent lies at an arbitrarily large rate K between times t and t+ ε, his

promised utility satisfies, ignoring second-order effects (see the analysis of the necessary condition

in Section 9.1 for a formal argument), the dynamic equation dWt = s̄(−Wt)Kdt. This yields

Wt+ε = exp(−Ks̄ε)Wt, and results in a gap change Gt+ε = Gt + Kε. Combining the last two

equations yields Wt+ε = exp(−s̄(Gt+ε −Gt))Wt, which explains (33).

Report jumps amount to impulse controls on the part of the agent (see for example, Øksendal and

Sulem (2004)). The HJB equation (31) becomes

0 = max

{
sup
`∈R

{
u1 exp(θg) + f(g)(−u1 + s̄(`+ λg))− f ′(g)`

}
,

sup
∆L∈R\{0}

{exp(−s̄∆L)f(g + ∆L)− f(g)}

}
. (34)

We now show that the function f(g) = exp(s̄g) solves this equation. With this value for f , the

second term of the equation is always equal to zero. Therefore, it suffices to show that

sup
`
{u1 exp(θg) + exp(s̄g) (−u1 + s̄ (`+ λg))− s̄ exp(s̄g)`} ≤ 0 (35)

for all g. The terms involving ` cancel out and (35) reduces to

u1 exp(θg) + exp(s̄g) (−u1 + s̄λg)

Convexity of the exponential function implies that for all g 6= 0,

exp(θg) > exp(s̄g) + exp(s̄g)(θ − s̄)g.
40Admissibility is unchanged: it requires that the transversality condition (9) holds. This condition is used to check

in a standard verification argument that the solution of the HJB equation must be equal to the value function.

38



Since u1 < 0, this implies that (35) is satisfied if

exp(s̄g) (u1(θ − s̄)g + s̄λg) ≤ 0.

The second factor is zero, from (22), which concludes the proof.

An optimal control associated with the Bellman equation is to set ∆L = −g if g 6= 0 and ∆L = 0

otherwise, and ` always equal to zero. It is therefore optimal for the agent to (i) always report

truthfully if he has been truthful in the past, and (ii) immediately correct any existing gap between

real and reported cash flows. It means, in particular, that if the principal did not know the initial

cash flow, the contract is still incentive compatible. This optimal control is essentially unique.

Indeed, between two impulse controls, the first term of the Bellman equation must equal zero,

which holds only if g = 0.

10 Discussion

10.1 Summary: Concept of Renegotiation

This paper introduces a concept of renegotiation that strengthens internal consistency by exploit-

ing comparisons across states. These comparisons are weaker than those imposed by strongly

renegotiation-proof equilibria (Farrell and Maskin (1989)) and could be applied to study stable

“social norms” (Asheim (1991)), with the following cognitive interpretation: players may recog-

nize relations between equilibria across different states, just as they recognize, in a repeated game,

whether continuation payoffs across different histories are Pareto ranked. This requires players to

think by analogy rather than come up with radically new equilibria. From a modeling perspec-

tive, economic analysis often relies on specific payoff or dynamic structures (e.g., CARA or CRRA

preferences, linear or geometric growth). For such models, the present approach provides a natural

way to model renegotiation.

The concept is well-defined in any of the following situations: (i) there is no private information

(time could be discrete or continuous), (ii) there is private information but we focus on truthful

contracts, or (iii) there is private information, and the setting is a diffusion model and strategies

are adapted to the underlying Brownian process, as in the main application of this paper. In this

last setting, the paper provides an Observability Theorem and a Revelation Principle that address

informational asymmetries.
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10.2 Robustness and Extensions

State Consistency in Games: The concept of state consistency developed in this paper has

focused on bilateral contractual relationships. State consistency could in principle be extended to

dynamic games with an infinite horizon. The idea is as follows. Consider a dynamic game with

n agents, whose environment at time t is described by some state variable Xt ∈ X . Suppose that

given (i) any subgame-perfect equilibrium (SPE) E starting from state X0 = x and (ii) any other

state x′ 6= x in X , it is possible to construct another SPE E′ = Φx,x′(E) starting from x′. Let

V ′ = (V ′1 , . . . , V
′
n) denote the vector of payoffs of all players from equilibrium E′. Suppose that,

under the original SPE E, the game reaches a history at which the state is x′, and the continuation

equilibrium is Ē′. Let V̄ ′ = (V̄ ′1 , . . . , V̄
′
n) denote players’ continuation payoffs following this history.

Then, if V ′ > V , players could leave Ē′ and agree to move to E′ instead. State consistency would

generalize internal consistency by allowing comparisons in such dynamic games.

One may envision many such games. For example, the stage game could entail players taking actions

that determine how they split a pie, whose size evolves dynamically, either as an exogenous Markov

process, or a controlled process that is affected by players’ actions in the last period. The state

variable Xt would then specify the size of the pie at time t, and one could imagine scenarios in which

any continuation equilibrium starting from state x could be scaled into a different continuation

equilibrium starting from another pie size x′ 6= x.

This extension of state consistency to dynamic games, possibly including privately observed states

is a major direction to develop the ideas put forth in this paper.

Effort to Improve Real Cash Flow: The agent could affect the real cash flow by putting

some privately observed effort. This extension is realistic in many settings (e.g., to study labor

incentives and taxation) and connects the model with numerous paper on dynamic moral hazard.

An earlier version of this paper (Strulovici (2011)) studies this extension: the agent produces

privately observed effort to affect his cash flow: dXt = (ξ−λXt+At)dt+σdBt, where A = {At}t≥0

is the agent’s effort process, adapted to FX , and the agent incurs an additively separable cost φ(At)

at time t from effort At. Although they are more complicated, all the arguments and results of

this paper continue to go through:41 assuming that φ takes the exponential form φ(a) = φ̄ exp(χa)

for some positive parameters φ̄, χ, the definition of state consistency and the form of renegotiation-

proof contacts (consumption and sensitivity) are unchanged and the agent’s cost of effort is now

41The only significant change concerns the convexification argument. Convexifying the cost of effort across two

contracts leads to different paths for the cash flow process and affects consumption under each path. This issue

can be addressed by backing out the underlying Brownian path from the agent’s report process and expressing the

contracts in these terms.
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proportional to the negative of the agent’s utility: φ(At) = φ1(−Wt) where φ1 = s̄/χ > 0 and the

incentive compatibility condition (22) is replaced by the condition: u1(s̄) = s̄(χλ + s̄)/(χ(θ − s̄).
The comparative statics also go through (some are harder to prove—see Strulovici (2011)) and new

comparative statics with respect to the cost of effort obtain.

Reporting Constraints Truthful renegotiation-proof contracts clearly remain truthful if the agent

faces additional constraints on cash flow reports and transfers. For example, the agent could be

unable from over-reporting his cash flows beyond some upper bound. Such constraints reduce the

set of possible deviations and facilitate truth-telling.

Self-Insurance and Hidden Savings Bloedel, Krishna, and Strulovici (2020) consider an al-

ternative implementation of the model, in which the principal allows the agent to self insure by

investing in some asset whose return is predetermined by the principal. They show that equilibria

of the self-insurance problem are equivalent to the renegotiation-proof equilibria studied here. They

also study the possibility of hidden savings and show that this addition pins down the sensitivity

parameter of the contract and yields the contract studied by Williams (2011).

Appendix A: Proofs for Section 2

Proof of Proposition 3

Fix any x ∈ R and consider any w0, w positive such that (x,w0) and (x,w) can both be reached by

some histories. Take some history (X0, . . . , Xt) leading to state (Xt = x,Wt = w0). Also let, for

τ ≥ 1, ∆τ =
∑t+τ−1

s=t AsZs denote the (random) output increment between time t and t + τ . The

continuation payoff of the principal following that history has the form

Π(x,w0) =
x

1− ρ
+ ᾱ2 − ᾱ1

where ᾱ2 = Et[
∑

τ≥1 ρ
τ∆τ ] and ᾱ1 = Et[

∑
τ≥0 ρ

τCτ ] and Et[·] is the expectation conditional on

history (X0, . . . , Xt).

Let (Ĉ, Â) denote the continuation of (C,A) following history (X0, . . . , Xt). Letting β = w/w0, the

transformation (φβ(Ĉ), φβ(Â)) constructed in Section 2 is a contractual equilibrium starting from

(x,w). Compared to (Ĉ, Â) it has the effect of scaling the effort process {Âτ = At+τ}τ≥0 uniformly

by the factor β1/γ2 and the consumption process {Ĉτ = Ct+τ}τ≥0 uniformly by the factor β1/γ1 ,

and thus give the principal an expected payoff of

x

1− ρ
+ β1/γ2ᾱ2 − β1/γ1ᾱ1.
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Consistency across promised utilities then implies that Π(x, βw0) ≥ x
1−ρ + β1/γ2ᾱ2 − β1/γ1ᾱ1. The

reverse transformation implies the reverse inequality. Hence,

Π(x,w) =
x

1− ρ
+ α2w

1/γ2 − α1w
1/γ1 (36)

where

α1 = ᾱ1/w
1/γ1
0 α2 = ᾱ2/w

1/γ2
0 .

Equation (36) shows that the conclusion of Proposition 3 holds for all w such that (x,w) can be

reached by some history. For w such that (x,w) is not reached by any history, we can complete

the function Π(x,w) using the same formula. Moreover, notice that by consistency across outputs,

Proposition 2 implies that the coefficients α1 and α2 are independent of x, which shows that the

conclusion of Proposition 3 holds for all histories. �

Proof of Proposition 4

In any equilibrium, the agent’s promised utility w = W0 at time 0 satisfies:

w = u(C0)− h(A0) + ρE[W1]. (37)

We construct contractual equilibria of the following form:

At = a1/γ2W
1/γ2
t (38)

Ct = c1/γ1W
1/γ1
t (39)

where a and c are positive constants. In such equilibria, (38) and (39) imply that u(C0) = cw and

h(A0) = aw. Combining this with (37) yields

E[W1] =
1 + a− c

ρ
w.

To analyze incentive compatibility of the agent’s strategy, we must specify how the agent’s contin-

uation utility evolves as a function of the observed increment D0 = A0Z0. Since A0 is proportional

to w1/γ2 and E[W1] is proportional to w, we conjecture that

W1 = w1−1/γ2dD0 (40)

for some positive constant d. Under this conjecture, we have

E[W1] = wdza1/γ2

where z = E[Z0] is a primitive of the model. This yields the relation

dza1/γ2 =
1 + a− c

ρ
. (41)
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Now consider the agent’s incentive to put effort at time 0: for any effort level A, the cost of effort

is Aγ2 and the expected benefit in terms of promised utility is, from (40) discounted to time 0,

ρw1−1/γ2Azd. Therefore, the optimal effort level A0 solves

max
A

ρw1−1/γ2Azd−Aγ2 .

Since γ2 > 1, the objective is strictly concave in A and the maximizer A0 is determined by the

first-order condition

ρzdw1−1/γ2 = γ2A
γ2−1
0 ,

which yields

A0 =

(
zdρ

γ2

) 1
γ2−1

w1/γ2 . (42)

Comparing (38) and (42) yields

γγ22 aγ2−1 = (zdρ)γ2 . (43)

Rearranging (41) we have

zdρ = (1 + a− c)a−1/γ2

or

(zdρ)γ2 = (1 + a− c)γ2a−1. (44)

Comparing (43) and (44) then yields

(1 + a− c)γ2a−1 = aγ2−1γγ22 ,

which simplifies to

a(γ2 − 1) = 1− c. (45)

This shows that there exists a one-dimensional family of state-consistent contractual equilibria,

characterized by (38), (39), the dynamic equation Wt+1 = W
1−1/γ2
t Dtd, and the relation (45)

between the parameters.

Equation (45) implies that c ≤ 1. This is expected, because cw is the consumption utility given

to the agent in period 0. If cw exceeded the promised utility w, the agent could just shirk and

received in one period more than what is promised over his entire lifetime.

Also notice that for any give consumption parameter c, the agent’s effort parameter a is decreasing

in γ2, which is consistent with the fact that γ2 determines the agent’s marginal cost of effort.

Finally, fixing γ2, notice that a and c are inversely related. This may be interpreted as follows:

(1 − c)w is the amount of promised utility that is given to the agent in the form of expected

continuation utility as opposed to immediate consumption utility cw. The higher this amount, the

easier it is to incentivize the agent to work.
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Appendix B: Proofs for Sections 4–7

Proof of Proposition 5

State consistency implies that, after any history leading up to some state (ṽ, x̃) = g ◦ (v, x) and

continuation equilibrium (C̃, L̃), we have

Π(C̃, L̃) ≥ Π(Φg(C,L)).

Suppose by contradiction that this inequality is strict. Monotonicity of Φ applied to g−1 implies

that

Π(Φg−1(C̃, L̃)) > Π(Φg−1(Φg(C,L))) = Π(Φg−1g(C,L)) = Π(C,L),

which contradicts the state consistency of C. �

Proof of Proposition 8

We prove that if a strategy L gives a higher expected utility to the agent than another strategy

L′ under the initial contract, then it also does so under the new contract Ĉ. Suppose that L gives

higher expected utility than L′ under C. This means that

E

[∫ ∞
0

e−rt
(
u

(
C(Ys : s ≤ t)−

∫ t

0
Lsds

))
dt

]
≥ E

[∫ ∞
0

e−rt
(
u

(
C(Y ′s : s ≤ t)−

∫ t

0
L′sds

))
dt

]
(46)

where Y and Y ′ satisfy the dynamic equations

dYt =

[
Lt +

(
ξ − λ

(
Yt −

∫ t

0
Lsds

))]
dt+ σdBt

and

dY ′t =

[
L′t +

(
ξ − λ

(
Y ′t −

∫ t

0
L′sds

))]
dt+ σdBt

and the initial conditions Y0 = Y ′0 = x.

Now consider another initial condition x̂. The reporting processes under strategies L and L′ are

respectively

dŶt =

[
Lt +

(
ξ − λ

(
Ŷt −

∫ t

0
Lsds

))]
dt+ σdBt

and

dŶ ′t =

[
L′t +

(
ξ − λ

(
Ŷ ′t −

∫ t

0
L′sds

))]
dt+ σdBt

subject to the initial condition Ŷ0 = Ŷ ′0 = x̂.
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By construction, the virtual cash flow processes follow the equations

dỸt = dŶt − (ξ − λŶt)dt+ (ξ − λỸt)dt

dỸ ′t = dŶ ′t − (ξ − λŶ ′t )dt+ (ξ − λỸ ′t )dt

subject to Ỹ0 = Ỹ ′0 = x. Combining the last four equations pairwise yields

dỸt =

[
Lt +

(
ξ − λ

(
Ỹt −

∫ t

0
Lsds

))]
dt+ σdBt

dỸ ′t =

[
L′t +

(
ξ − λ

(
Ỹ ′t −

∫ t

0
L′sds

))]
dt+ σdBt

subject to the conditions Ỹ0 = Ỹ ′0 = x. By definition of the contract Ĉ, the agent’s expected utilities

using strategies L and L′ when facing contract Ĉ are identical to the expected utilities appearing

in (46) and we have just shown that Ỹ and Ỹ ′ are subject to the same dynamic equations and

initial condition as Y and Y ′. This prove that strategy L also dominates L′ under contract Ĉ. �

Proof of Proposition 12

Consider any reporting strategy L and let V λ(L) denote the agent’s expected utility when using

strategy L and facing contract Cλ. Since the agent consumes Cλt −Gt at time t and the agent has

utility u(c) = − exp(−θc), we have

V λ(L) = E

[∫ ∞
0

e−rtUλt e
θGLt dt|L

]
where Uλt = u(Cλt ) and GLt =

∫ t
0 Lsds is the gap. By construction of Cλ, we have

Uλt = λU1
t + (1− λ)U2

t

for all t and report histories {Ys : s ≤ t}, where U it = u(Cit) for i ∈ {1, 2}. This implies that

V λ(L) = λV 1(L) + (1− λ)V 2(L) (47)

where V i(L) is the agent’s expected utility with strategy L under contract Ci. By assumption, the

contracts C1 and C2 are truthful, so for i ∈ {1, 2}, we have V i(L) ≤ v for all L and V i(L ≡ 0) = v.

Combining these observations with (47) yields V λ(L) ≤ v, and the inequality is tight if L ≡ 0. �

Proof of Lemma 1

Since C is truthful and state consistent, Ĉ is also truthful and we have Π(C) = Π(Ĉ) = Π(w, y)

by Proposition 11. Fix any λ ∈ (0, 1). From Proposition 12, the convexification Cλ of C and

Ĉ is also truthful and gives the same promised utility w to the agent given y. Moreover, strict

concavity of the utility function u together with the definition of Cλ (Equation (17)) implies that
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Cλt ≤ λCt+(1−λ)Ĉt) for all t with a strict inequality whenever Ct 6= Ĉt. This implies that Π(Cλ) <

λΠ(C1) + (1−λ)Π(C2) = Π(w, y) and violates renegotiation-proofness of C (Equation (18)) unless

‖C − Ĉ‖L = 0. �

Proof of Proposition 14

The principal’s objective is to maximize Π(w, x) with respect to u1. From (14), and neglecting for

now terms that are not affected by the contract choice, this is equivalent to solving

max
u1

∫ ∞
0

e−rt
(

αt
r + λ

− E[Ct]

)
dt

where

αt =
E[log(−Wt)]

χ
and E[Ct] = c1 −

E[log(−Wt)]

θ
.

Letting Zt = log(−Wt), Itô’s formula implies that

dZt = (r + u1)dt− 1

2
σ2s̄2dt− s̄σdBt.

Therefore,

E log(−Wt) = log(−w) + (r + u1)t− 1

2
σ2s̄2t.

The principal’s objective is to maximize

−c1

r
+

1

θ

∫ ∞
0

e−rtE log(−Wt)dt.

Replacing c1 and E log(−Wt) by their formulas in terms of u1, t, and the parameters of the model,

and integrating the last term proves the proposition. �

Proof of Proposition 17

The optimal value of s̄ is unchanged if we multiply (23) by r and get rid of the term r in the factor

(r + u1 − 1/2σ2s̄2). The resulting objective function is equal to

r log(−u1(s̄)) +

(
u1(s̄)− 1

2
σ2s̄2

)
.

The function u1(−s̄) is increasing in s̄. Therefore, the objective is supermodular in (s̄, r) and the

result follows (see, e.g., Topkis (1978)). �

Appendix C: Proof of Theorem 2

To prove strong uniqueness, we can analyze the problem under any probability measure that is

absolutely continuous with respect to P. Consider the probability measure QY under which 1
σY
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is the standard Brownian motion. This measure is absolutely continuous because Y has constant

quadratic variation equal to σ, and the drift of Y satisfies the standard integrability conditions.42

Equation (26) is an SDE with constant volatility coefficient and functional drift −L(t, ·).

Part 1. The boundedness assumed in the premise of Theorem 2 implies that condition (4.169) in

Liptser and Shiryaev (2001) is satisfied. Theorem 4.13 of Liptser and Shiryaev (2001) then implies

that (26) has a unique (in law) weak solution. This, together with Theorem 3.2 in Cherny (2002)

implies pathwise uniqueness, which implies that X is adapted to Y and the existence of a unique

strong solution, by the Yamada-Watanabe principle.43

Part 2. Equation (26) satisfies assumptions (a1)–(a4) of Huang (2018): Assumption (a1) and (a2)

trivially hold because volatility is constant, assumption (a4) holds because the term b in Huang’s

paper is identically equal to 0, and assumption (a3) is explicitly imposed in the premise of Theorem 2

and the premise of Part 2. Theorem 1.1 of Huang (2018) then implies pathwise uniqueness—which

implies that X is adapted to Y—and the existence of a unique strong solution.44

Part 3. Equation (26) satisfies conditions (C1)–(C3) of Bachmann (2020): Condition (C1) comes

from the boundedness assumed in the premise of Theorem 2. Condition (C2) holds trivially because

the volatility coefficient is constant and positive, and Condition (C3) is explicitly imposed in the

premise of Part 2. Bachmann’s Theorem 1.5 then implies that pathwise uniqueness holds. This

implies that X is adapted to Y and the existence of a strong solution. �

Appendix D: Proofs for Section 9 – Necessary Conditions for In-

centive Compatibility

Lemma 2 For any truthful, renegotiation-proof contract, we have

v̄y(w, x, x) = −v̄x(w, x, x) = −
∫ ∞

0
e−(r+λ)tu′(Ct +Xt − Yt)dt. (48)

Proof. The value function of the agent satisfies the optimization problem

v̄(w, y, x) = sup
L
E

[∫ ∞
0

e−rt (u(Ct(Ys : s ≤ t) +Xt − Yt)) dt
]
,

42The drift of Y depends on two components: the drift of X, which is linear in X, and the lying process L which

is assumed to be locally bounded.
43This principle was stated and proved by Yamada and Watanabe (1971) for standard (as opposed to functional)

SDEs. However, their proof extends without any change to functional SDEs, a fact that is well-known and widely

used in the literature on functional SDEs. See, e.g., Cherny (2002, Figure 1) and Huang (2018, Theorem 2.8). I am

grateful to Nikolai Krylov and Stefan Bachmann for pointing this out.
44See Theorem 2.8 in Huang (2018).
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where Ct(·) is, for each t, a functional that determines the consumption provided to the agent at

time t given past reports {Ys : s ≤ t}. If the initial cash flow is increased by ε, this affects the

distribution of future cash flows and, keeping the lying process fixed, of future reports. However,

by a change of variable, one can control the path of the report process Yt, and make it independent

from the initial cash flow change. Recall that

dYt = [(ξ − λXt) + Lt]dt+ σdBt.

Making the change of variable L̄t = Lt + (ξ − λXt)− (ξ − λYt), we get

dYt = [(ξ − λYt) + L̄t]dt+ σdBt. (49)

The agent’s strategy can be restated as choosing L̄, rather than L:

v̄(w, y, x) = sup
L̄

E

[∫ ∞
0

e−rt (u(Ct(Ys : s ≤ t) +Xt − Yt)) dt
]
.

subject to Y0 = y, X0 = x, (49), and

dXt = (ξ − λXt)dt+ σdBt.

dWt = (rWt − u(Ct(Ys : s ≤ t)))dt+ St (dYt − (ξ − λYt)dt) .

If the contract is incentive compatible, it is optimal to set L̄t = 0 whenever initial conditions are

such that y = x. Section 9 established that the value function is differentiable with respect to x and

y whenever x = y. An application of the Envelope Theorem (Milgrom and Segal, 2002, Theorem

1) then implies that v̄x(w, x, x) can be computed by evaluating the objective function at L̄t ≡ 0 or,

equivalently, under the report process Yt starting from y0 = x0. Under this approach, W , Y , and

C are independent of the initial condition x, and

v̄x(w, x, x) =

∫ ∞
0

e−rt
d

dx
E [u(Xt − Yt + Ct(Ys : s ≤ t))] dt.

Since the distribution of {Ys}s≤t is independent from the initial condition x, the inner derivative is

equal to

E

[
u′ (Xt − Yt + Ct(Ys : s ≤ t)) dXt

dx

]
.

The process X defined by the dynamic equation (6) is a generalization of Ornstein-Uhlenbeck

processes, which can be explicitly integrated:

Xt = e−λtx+

∫ t

0
eλ(s−t)ξds+

∫ t

0
eλ(s−t)σdBs (50)

This implies that dXt
dx = e−λt and yields the formula of Lemma 2. �
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Lemma 3 The following equality holds for any truthful renegotiation-proof contract:

E

[∫ ∞
0

e−(r+λ)tu′(Ct)dt

]
= (−w)

(−u1)θ

λ− u1
.

Proof. Since u′(Ct) = −θu(Ct),

E

[∫ ∞
0

e−(r+λ)tu′(Ct)dt

]
= E

[∫ ∞
0

e−(r+λ)tθu(Ct)dt

]
= θu1

∫ ∞
0

e−(r+λ)tE[Wt]dt.

Moreover,

dWt = [rWt − u(Ct)]dt+ StσdBt.

With the exponential utility specification, we have u(Ct) = (−Wt)u1. Letting ϑ(t) = E[Wt] (ϑ(0) =

w), this implies that
dϑ

dt
(t) = (r + u1)ϑ(t),

and hence that

E[Wt] = e(r+u1)tw. (51)

Integrating this expression over time yields the result. �

References

Abreu D., Pearce, D. (1991) “A Perspective on Renegotiation in Repeated Games,” in Game

Equilibrium Models II, (Reinhard Selten Ed.), Springer-Verlag, Berlin.

Abreu D., Pearce, D., and E. Stacchetti (1993) “Renegotiation and Symmetry in Repeated

Games,” Journal of Economic Theory, Vol. 60, pp. 217–240.

Asheim, G. (1991) “Extending Renegotiation-Proofness to Infinite Horizon Games,” Games and

Economic Behavior, Vol. 3, pp. 278–294.

Bachmann, S. (2020) “On the Strong Feller Property and Well-Posedness for SDEs with Func-

tional, Locally Unbounded Drift,” Working Paper, https://arxiv.org/abs/1808.05629.
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