
 

 

Probabilistic Prediction for Binary Treatment Choice: with focus on personalized medicine  
 

Charles F. Manskia 

a Department of Economics and Institute for Policy Research, Northwestern University. 2211 Campus 
Drive, Evanston, IL 60208-2600 USA. email: cfmanski@northwestern.edu 

final version, July 2022. forthcoming in the Journal of Econometrics 
 

 
 

Abstract 
 
This paper extends my research applying statistical decision theory to treatment choice with sample data, 
using maximum regret to evaluate the performance of statistical treatment rules. The specific new 
contribution is to study as-if optimization using estimates of illness probabilities in a class of medical 
decisions. Beyond its specifics, the paper sends a broad message. Statisticians and computer scientists have 
addressed conditional prediction for decision making in indirect ways, the former applying classical 
statistical theory and the latter measuring prediction accuracy in test samples. Neither approach is 
satisfactory. Statistical decision theory provides a coherent, generally applicable methodology. 
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1. Introduction 

 

A classic concern of probability theory and statistics has been to predict realizations of a real random 

variable y conditional on realizations of a covariate vector x. A standard formalization of the problem begins 

with a population characterized by a joint distribution P(y, x). A member is drawn at random from the sub-

population with a specified value of x. The problem is to predict y conditional on x. The conditional 

distribution P(y|x) provides the complete probabilistic prediction. 

Rather than study P(y|x) in totality, researchers often focus on a real-valued feature of P(y|x) that is 

interpretable as a best point predictor of y conditional on x. The standard approach has been to minimize 

the conditional expected loss from prediction errors, with respect to a given loss function. Thus, one solves 

a minimization problem min p ∈ (−∞, ∞) E[L(y − p)x], where p is a predictor value, y – p is prediction error, 

and L(∙) is the loss function. Familiar cases include square and absolute loss, yielding the conditional mean 

and median as best predictors. For expositions, see Ferguson (1967) and Manski (2007a). 

A standard formalization of the statistical problem supposes that one does not know P(y, x). Instead, 

one observes (yi, xi, i = 1, . . , N) in a random sample of N persons drawn from a study population that has 

distribution P(y, x). One uses the sample data to estimate P(y|x), or a best point predictor. 

The standard formalization considers probabilistic prediction as a self-contained problem, without 

reference to an external application. Obtaining a best point prediction by minimizing expected loss solves 

a decision problem that may have applications. However, the commonly used loss functions, notably square 

and absolute loss, have usually been motivated by tradition and tractability rather than by losses incurred 

in actual decisions that require choice of point predictions. 

This paper considers probabilistic predictions used to inform decisions in an important class of 

applications, choice between two treatments for members of a heterogeneous population. To flesh out 

abstract ideas, I analyze personalized medical decisions requiring choice between surveillance and 

aggressive treatment. Building on earlier work in Manski (2018, 2019a), I consider a clinician caring for 
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patients with observed covariates x. The setting supposes that there are two care options for a specified 

disease, with A denoting surveillance and B denoting aggressive treatment. Let y = 1 if a patient is ill with 

the disease and y = 0 if not. I pose a model of patient welfare in which surveillance is the better option if y 

= 0 and aggressive treatment if y = 1. 

 The analysis in this paper applies as well to other decision problems that have the same mathematical 

structure. One such is judicial treatment of criminal defendants. Here the choice is to find a defendant guilty 

or not guilty of a crime. A defendant is analogous to a patient. A guilty decision is analogous to aggressive 

treatment, and a not-guilty one is analogous to surveillance. Uncertainty about whether a defendant 

committed the crime is analogous to uncertainty about whether a patient is ill. See Manski (2020) for 

discussion relating judicial and clinical decisions. 

Decision making would be simple if y were observable at the time of treatment choice. However, I 

suppose that a clinician must choose without knowing the illness status of the patient. This generates a 

rationale to predict illness. Given knowledge of x, the most that a clinician can do is to learn P(y = 1|x). 

The model of patient welfare implies that surveillance is the better option if P(y = 1|x) is less than a known 

threshold px
* and aggressive treatment is better if P(y = 1|x) exceeds px

*. Hence, the best point prediction is 

y = 1 if P(y = 1|x) > px
* and y = 0 if P(y = 1|x) < px

*. 

Empirical research on medical risk assessment has used sample data on illness in study populations to 

estimate conditional probabilities of illness or to make point predictions of illness. Risk assessment has 

long been performed by biostatisticians who use frequentist statistical theory to propose inferential methods 

and assess findings. Although the motivation may be to improve patient care, biostatistical analysis has 

commonly viewed prediction as a self-contained inferential problem rather than as a task undertaken to 

inform treatment choice. 

In the 21st century, medical risk assessment is increasingly performed by computer scientists who view 

prediction methods as computational algorithms and who do not use statistical theory to assess the 

algorithms. Whereas frequentist statisticians maintain an ex-ante perspective, studying how methods 
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perform across repetitions of a sampling process, computer scientists perform ex post evaluation, fitting an 

algorithm on a “training” sample and examining the accuracy of the predictions it yields on a “test” sample. 

Breiman (2001) notably argued for this approach, writing (p. 201): “Predictive accuracy on test sets is the 

criterion for how good the model is.” Breiman did not explain why this is or should be the criterion. He just 

stated it. 

 Measuring performance in this ex-post manner may have appeal to clinicians who lack expertise in 

statistical methodology, but who may feel that they can appraise ex post prediction accuracy heuristically. 

However, evaluation on a test sample cannot yield generalizable lessons. Efron (2020), in an article 

contrasting the perspectives of statisticians and computer scientists, wrote (p. S49): “In place of theoretical 

criteria, various prediction competitions have been used to grade algorithms in the so-called ‘Common Task 

Framework.’. . . None of this is a good substitute for a so-far nonexistent theory of optimal prediction.” 

Efron was correct that prediction competitions are not a satisfactory way to evaluate prediction 

methods. However, he was not correct when he stated that a theory of optimal prediction is “so-far 

nonexistent.” Wald (1939, 1945, 1950) considered the general problem of using sample data to make 

decisions. He posed the task as choice of a statistical decision function, which maps potentially available 

data into a choice among the feasible actions. His development of statistical decision theory provides a 

broad framework for decision making with sample data, yielding optimal decisions when these are well-

defined and proposing criteria for reasonable decision making more generally. 

Wald recommended ex ante (frequentist) evaluation of statistical decision functions as procedures 

applied as the sampling process is engaged repeatedly to draw independent data samples. Whereas computer 

scientists measure performance when a prediction method is trained on one sample and used to predict 

outcomes in a test sample, statistical decision theory measures average performance across all possible 

training samples, when the objective is to predict outcomes in a population rather than a test sample. 

The idea of a procedure transforms the inductive problem of evaluating a prediction method based on 

its performance in a single setting into the deductive problem of assessing the performance of a statistical 
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decision function across realizations of the sampling process. It enables coherent study of treatment choice 

using sample data to make probabilistic predictions. 

The findings reported here add to a recent econometric literature using maximum regret to measure 

the performance of statistical treatment rules. See Manski (2004, 2005, 2007b, 2019b, 2021), Manski and 

Tetenov (2007, 2016, 2019, 2021), Hirano and Porter (2009, 2020), Stoye (2009, 2012), Tetenov (2012), 

Kitagawa and Tetenov (2018), Mbakop and Tabord-Meehan (2021), and Athey and Wager (2021). Other 

econometricians have studied treatment choice from the perspective of Bayesian statistical decision theory 

(e.g., Chamberlain, 2011). 

Relative to the precedent work, part of the contribution of the present paper is its consideration of a 

class of treatment-choice problems that differs in some respects from those studied earlier. Part is its new 

application of the theme of as-if optimization, developed abstractly in Manski (2021). Part is its cautionary 

advice to medical researchers and clinicians as they seek to interpret patient risk assessments evaluated 

using traditional biostatistical criteria or prediction competitions.  

Section 2 explains broadly how statistical decision theory enables study of treatment choice using 

sample data to make probabilistic predictions, drawing on and extending the exposition in Manski (2021). 

Section 3 explains use of as-if optimization to choose between surveillance and aggressive treatment, first 

in generality and then when the data are generated by random sampling from P(y|x). Section 4 studies as-if 

optimization using estimates of P(y|x) that combine data on persons with different covariate values. A 

particular innovation is to introduce a new form of analysis of kernel estimation. Section 5 concludes. 
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2. Statistical Decision Theory for Binary Treatment Choice 

 

2.1. Basic Elements of Statistical Decision Theory 

 

Wald began with the standard decision theoretic problem of a planner who must choose an action 

yielding welfare that depends on an unknown state of nature. The planner specifies a state space listing the 

states considered possible. He chooses without knowing the true state. Wald added to this standard problem 

by supposing that the planner observes sample data that may be informative about the true state. 

In the context of this paper, the action is a treatment choice, the unknown state of nature is the 

conditional probability distribution P(y|x), and the sample data are informative about P(y|x). I describe basic 

ideas in abstraction before applying them to this context. 

 

2.1.1. Decisions without Sample Data 

 First consider decisions without sample data. A planner faces a choice set C and believes that the 

true state of nature s* lies in state space S. An objective function w(∙, ∙): C × S ⇾ R1 maps actions and states 

into welfare. The planner ideally would maximize w(∙, s*) over C, but he does not know s*. To choose an 

action, decision theorists have proposed various ways of using w(, ∙) to form functions of actions alone, 

which can be optimized. When posing extremum problems, I use max and min notation, without concern 

for the subtleties that sometimes make it necessary to use sup and inf operations. 

One approach places a subjective probability distribution π on the state space, computes average state-

dependent welfare with respect to π, and maximizes subjective average welfare over C. The criterion solves 

 

(1)      max  ∫w(c, s)dπ. 
           c ∈ C 
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Another approach seeks an action that, in some sense, works uniformly well over all of S. This yields the 

maximin and minimax-regret (MMR) criteria. The maximin criterion solves the problem 

 

(2)           max      min    w(c, s). 
               c ∈ C        s ∈ S 

 

The MMR criterion solves 

 

(3)       min    max    [max w(d, s) − w(c, s)]. 
           c ∈ C     s ∈ S      d ∈ C 
 

Here max d ∊ C w(d, s) − w(c, s) is the regret of action c in state s. The true state being unknown, one 

evaluates c by its maximum regret over all states and selects an action that minimizes maximum regret. The 

maximum regret of an action measures its maximum distance from optimality across states. 

 

2.1.2. Statistical Decision Problems 

 Statistical decision problems suppose that the planner observes data generated by a sampling 

distribution. Knowledge of the sampling distribution is generally incomplete. To express this, one extends 

state space S to list the feasible sampling distributions, denoted (Qs, s ∈ S). Let Ψs denote the sample space 

in state s; Ψs is the set of samples that may be drawn under distribution Qs. The literature typically assumes 

that the sample space does not vary with s and is known. I assume this and denote the sample space as Ψ. 

Then a statistical decision function (SDF), c(): Ψ ⇾  C, maps the sample data into a chosen action. 

 An SDF is a deterministic function after realization of the sample data, but it is a random function ex 

ante. Hence, the welfare achieved is a random variable ex ante. Wald’s theory evaluates the performance 

of SDF c() in state s by Qs{w[c(ψ), s]}, the ex-ante distribution of welfare that it yields across realizations 

ψ of the sampling process. 
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 It remains to ask how a planner might compare the welfare distributions yielded by different SDFs. 

Wald proposed measurement of the performance of c() in state s by its expected welfare across samples; 

that is, Es{w[c(ψ), s]}  ∫w[c(ψ), s]dQs. Not knowing the true state, a planner evaluates c() by the expected 

welfare vector (Es{w[c(ψ), s]}, s ∈ S). 

Statistical decision theory has mainly studied the same decision criteria as has decision theory without 

sample data. Let Γ be a specified set of SDFs, each mapping Ψ ⇾ C. The statistical versions of criteria (1), 

(2), and (3) are 

 

(4)             max   ∫Es{w[c(ψ), s]} dπ, 
                c() ∈ Γ 
 
 
(5)             max       min   Es{w[c(ψ), s]}, 
                c() ∈ Γ      s ∈ S 
 
 
(6)              min       max    ( max w(d, s) − Es{w[c(ψ), s]}). 
                 c() ∈ Γ      s ∈ S        d ∈ C 
 

 

 Manski (2004, 2021) discuss and compare the properties of criteria (4) – (6). To summarize some main 

points, maximization of subjective average welfare (4) may be appealing if one has a credible basis to place 

a subjective probability distribution on the state space, but not otherwise. Concern with specification of 

priors motivated Wald to study the maximin criterion (5). However, I see conceptual reasons to focus 

instead on the MMR criterion (6). 

 The conceptual appeal of using maximum regret to measure performance is that it quantifies how lack 

of knowledge of the true state of nature diminishes the quality of decisions. The term “maximum regret” is 

a shorthand for the maximum sub-optimality of a decision criterion across the feasible states of nature. An 

SDF with small maximum regret is uniformly near-optimal across all states. This is a desirable property. 
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 A venerable, mathematically subtle, topic of study in statistical decision theory has been admissibility. 

An SDF is admissible (undominated) if there exists no other SDF that performs weakly better in all states 

of nature and strictly better in some states. An SDF that uniquely minimizes maximum regret is necessarily 

admissible. From a practical perspective, an easily computed SDF with substantively small maximum regret 

may make it appealing as a decision criterion, whether or not it minimizes maximum regret. Indeed, such 

an SDF may be useful whether or not it is admissible. 

Subject to regularity conditions ensuring that the relevant expectations and extrema exist, problems 

(4) – (6) offer criteria for decision making with sample data that are broadly applicable in principle. The 

primary challenge is computational. Problems (4) − (6) have tractable analytical solutions only in certain 

cases. Computation commonly requires numerical methods to find approximate solutions. 

Expected welfare Es{w[c(ψ), s]} typically does not have an explicit form, but it can be well-

approximated by Monte Carlo integration. One draws repeated values of ψ from distribution Qs, computes 

the average value of w[c(ψ), s] across the values drawn, and uses this to estimate Es{w[c(ψ), s]}. Monte 

Carlo integration can also be used in criterion (4) to approximate the subjective average of expected welfare. 

The main computational challenges are determination of the extrema across actions in problem (6), 

across states in problems (5) − (6), and across SDFs in problems (4) − (6). Solution of max d ∈C w(d, s) in 

(6) is often straightforward but sometimes difficult. Finding extrema over S must cope with the fact that the 

state space commonly is uncountable. In applications where the quantity to be optimized varies smoothly 

over S, a simple approach is to compute the extremum over a suitable finite grid of states. 

The most difficult computational challenge usually is to optimize over the feasible SDFs. No generally 

applicable approach is available. Hence, applications of statistical decision theory necessarily proceed case-

by-case. It may not be tractable to find the best feasible SDF, but one often can evaluate the performance 

of relatively simple SDFs that researchers use in practice. 
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2.2. Binary Choice Problems 

 

 SDFs for binary choice have a simple structure. Manski (2021) shows that they can be viewed as 

hypothesis tests. Yet the Wald perspective on testing differs from the classical perspective of Neyman and 

Pearson (1928, 1933). 

 Let the choice set be C = {A, B}. An SDF c(∙) partitions Ψ into two regions that separate the data 

yielding choice of each action. These are Ψc()A ≡ [ψ  Ψ: c(ψ) = A] and Ψc()B ≡ [ψ  Ψ: c(ψ) = B]. A test 

motivated by the choice problem partitions S into two regions, SA and SB, that separate the states in which 

actions A and B are uniquely optimal. Thus, SA contains the states [s ∈ S: w(A, s) > w(B, s)] and SB contains 

[s ∈ S: w(B, s) > w(A, s)]. The choice problem does not provide a rationale to allocate states where the 

actions yield equal welfare. A standard practice gives one action, say A, a privileged status and places states 

yielding equal welfare in Sa. Then SA ≡ [s ∈ S: w(A, s) ≥ w(B, s)] and SB ≡ [s ∈ S: w(B, s) > w(A, s)]. 

 In the language of testing, SDF c(∙) performs a test with acceptance regions Ψc(∙)A and Ψc(∙)B. When ψ 

∈ Ψc(∙)A, c(∙) accepts hypothesis {s ∈ SA} by setting c(ψ) = A. When ψ ∈ Ψc(∙)B, c(∙) accepts {s ∈ SB} by 

setting c(ψ) = B. A test yields a Type I error when the true state lies in SA but c(ψ) = B. It yields a Type II 

error when the true state lies in SB, but c(ψ) = A.  

 Although SDFs for binary choice are interpretable as tests, Neyman-Pearson testing and statistical 

decision theory evaluate tests differently. Neyman-Pearson testing views states {s ∈ SA} and {s ∈ SB} 

asymmetrically, calling the former the null hypothesis and the latter the alternative. A longstanding 

convention has been to restrict attention to tests in which the probability of a Type I error is no larger than 

a predetermined value, usually 0.05, for all s ∈ Sa. Then one restricts attention to SDFs c(∙) for which 

Qs[c(ψ) = B] ≤ 0.05 for all s ∈ SA. 

 Decision theory does not restrict attention to tests that yield a predetermined upper bound on the 

probability of a Type I error. Wald (1939) proposed evaluation of the performance of an SDF for binary 



10 

 

choice by the expected welfare that it yields across realizations of the sampling process. The welfare 

distribution in state s in a binary choice problem is Bernoulli, with mass points max [w(a, s), w(b, s)] and 

min [w(a, s), w(b, s)]. These coincide if w(a, s) = w(b, s). When w(a, s) ≠ w(b, s), let ρc(∙)s denote the 

probability that c(∙) yields an error, choosing the inferior action over the superior one. That is, 

 

(7)              ρc(∙)s  =  Qs[c(ψ) = b]   if w(a, s) > w(b, s), 

                            =  Qs[c(ψ) = a]   if w(b, s) > w(a, s). 

 

These are the probabilities of Type I and Type II errors. 

The probabilities that welfare equals max [w(a, s), w(b, s)] and min [w(a, s), w(b, s)] are 1 − ρc(∙)s and 

ρc(∙)s. Hence, expected welfare is 

 

(8)          Es{w[c(ψ), s]}  =  ρc(∙)s{min [w(a, s), w(b, s)]} + [1 − ρc(∙)s]{max [w(a, s), w(b, s)]} 

                                        =  max [w(a, s), w(b, s)]  −  ρc(∙)s|w(a, s) − w(b, s)|. 

 

Observe that ρc(∙)s|w(a, s) − w(b, s)| is the expected regret of c(∙). Thus, expected regret, defined in 

abstraction in (6), has a simple form when choice is binary. It is the product of the error probability and the 

magnitude of the welfare loss when an error occurs. 

 

2.3. As-If Optimization 

 

The concept of a statistical decision function embraces all mappings [data → action]. An SDF need 

not perform inference; that is, it need not use data to draw conclusions about the true state of nature. 

Although SDFs need not perform inference, some do. These have the form [data → inference → action], 
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first performing inference and then using the inference to make a decision. There has been no accepted term 

for such SDFs, so Manski (2021) calls them inference-based. 

A common type of inference-based SDF performs as-if optimization, also called plug-in or two-step 

decision making, choosing an action that optimizes welfare as if an estimate of the true state of nature 

actually is the true state. Formally, a point estimate is a function s(): Ψ ⇾ S that maps data into the state 

space. As-if optimization means solving the problem max c ∊ C w[c, s(ψ)]. The result is an SDF c[s()], where  

 

(9)    c[s(ψ)]  ∈  argmax w[c, s(ψ)],     ψ ∈ Ψ. 
                             c ∈ C  
 

Traditionally, researchers have given computational and asymptotic statistical rationales for acting in 

the manner of (9). Computationally, using a point estimate to maximize welfare is easier than solving 

problems (4) to (6). To further motivate as-if optimization, statisticians and econometricians cite limit 

theorems of asymptotic theory. They hypothesize a sequence of sampling processes indexed by sample size 

and a corresponding sequence of estimates. They show that the sequence is consistent when specified 

assumptions hold. They may also derive the rate of convergence and limiting distribution of the estimate. 

 Computational and asymptotic arguments do not prove that as-if optimization provides a well-

performing SDF. Statistical decision theory evaluates as-if optimization in state s by the expected welfare, 

Es{w{c[s(ψ)], s}}, that it yields across samples of specified size, not asymptotically. This is how I proceed 

below when studying treatment choice with sample data. Manski (2021) summarizes literature and provides 

original analysis of as-if optimization applied to other treatment-choice settings and to problems of 

prediction under square loss. 
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3. Choice Between Surveillance and Aggressive Treatment 

 

I now use statistical decision theory to study an instructive version of the medical problem of choice 

between surveillance and aggressive treatment. The broad problem, which arises in many contexts, 

concerns a clinician caring for patients with observed covariates x. There are two care options for a specified 

disease, with A denoting surveillance and B denoting aggressive treatment. The clinician must choose 

without knowing a patient’s illness status; y = 1 if a patient is ill and y = 0 if not. Observing x, the clinician 

can attempt to learn the conditional probability of illness, px  P(y = 1|x). I suppose that the planner performs 

as-if optimization, using sample data to estimate px and acting as if the estimate is correct. 

The version of the decision problem studied here maintains easily interpretable simplifying 

assumptions used in parts of the analysis in Manski (2018, 2019a). I assume that patient welfare with care 

option c ∈ {A, B} has the known form Ux(c, y); thus, welfare may vary with whether the disease occurs 

and with the patient covariates x. In practice, this utility function may be learnable from stated-preference 

data elicited from patients. Aggressive treatment is better if the disease occurs, and surveillance is better 

otherwise. That is, 

 

(10a)     Ux(B, 1) > Ux(A, 1),  

(10b)     Ux(A, 0) > Ux(B, 0). 

 

The specific form of welfare function Ux(∙, ∙) necessarily depends on the clinical context, but inequalities 

(10a) – (10b) are realistic in many settings. 

 I assume that the chosen care option does not affect whether the disease occurs; hence, a patient’s 

illness probability is simply px rather than a function pxI of the care option. With this assumption, treatment 

choice still matters because it may affect the severity of illness and patient experience of side effects. 
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Aggressive treatment is beneficial to the extent that it lessens the severity of illness, but harmful if it yields 

side effects that do not occur with surveillance. 

 

Illustration: A patient presents to a clinician with symptoms of a sore throat. The patient may have a 

streptococcal infection (y = 1) or a throat irritation (y = 0). Treatment A is to counsel the patient to rest and 

monitor body temperature until the result of a throat culture is obtained. Treatment B is immediate 

prescription of an antibiotic. The antibiotic will lessen the severity of illness if y = 1, but it will have no 

beneficial effect if y = 0. Whether or not infection is present, the patient may suffer an adverse side effect 

from receipt of the antibiotic. ∎ 

 

 The central difference between Manski (2018, 2019a) and the present paper is that I earlier supposed 

the clinician may have deterministic partial knowledge of px but has no sample data. Here I study treatment 

choice using sample data to estimate px. In the first part of this section, the estimate is an abstract function 

of sample data. This makes it easy to explain general principles. I subsequently specialize to settings where 

the data are drawn by random sampling of y conditional on x. 

 

3.1. Treatment Choice with Knowledge of px 

 

3.1.1. Optimal Treatment Choice 

 Before considering decision making with sample data, suppose that the clinician knows px and chooses 

a treatment that maximizes expected patient welfare conditional on x. Then an optimal decision is 

 

(11a)     Choose A  if  pxUx(A, 1) + (1  px)Ux(A, 0)    pxUx(B, 1) + (1  px)Ux(B, 0), 

(11b)     Choose B  if  pxUx(B, 1) + (1  px)Ux(B, 0)    pxUx(A, 1) + (1  px)Ux(A, 0). 
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The decision yields optimal expected patient welfare 

 

(12)      max [pxUx(A, 1) + (1  px)Ux(A, 0), pxUx(B, 1) + (1  px)Ux(B, 0)]. 

 

 The optimal decision is easy to characterize when inequalities (10–) − (10b) hold. Let px
* denote the 

threshold value of px that makes options A and B have the same expected utility. This value is 

 

                                                      Ux(A, 0)  Ux(B, 0) 
(13)             px

*  =  CCCCCCCCCCCCCCCCCCCCCCCCC . 
                                [Ux(A, 0)  Ux(B, 0)] + [Ux(B, 1)  Ux(A, 1)] 
 

Observe that 0 < px
* < 1. Option A is optimal if px  px

* and B if px  px
*. Thus, optimal treatment choice 

does not require exact knowledge of px. It only requires knowing whether px is larger or smaller than px
*. 

 

3.1.2. Aggressive Treatment Neutralizes Disease 

  

 An instructive special case occurs when aggressive treatment neutralizes disease, in the sense that 

Ux(B, 0) = Ux(B, 1). For example, aggressive treatment might be surgery to remove a localized tumor that 

may (y = 1) or may not (y = 0) be malignant. Suppose that surgery always eliminates cancer when present. 

Then surgery neutralizes disease. Being invasive and costly, performance of surgery has a negative side 

effect on welfare that is the same regardless of whether cancer is present. 

 Let UxB denote welfare with aggressive treatment. Then (10) – (13) reduce to 

 

(14)     Ux(A, 0) > UxB > Ux(A, 1). 

 

(15a)   Choose A  if  pxUx(A, 1) + (1  px)Ux(A, 0)    UxB, 
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(15b)   Choose B  if  UxB    pxUx(A, 1) + (1  px)Ux(A, 0). 

 

(16)      max [pxUx(A, 1) + (1  px)Ux(A, 0), UxB]. 

 

                                  Ux(A, 0)  UxB 
(17)             px

*  =  CCCCCCCCCCC. 
                               Ux(A, 0)  Ux(A, 1) 
 

 Further simplification occurs when one normalizes the location and scale of welfare by setting Ux(A, 

0) = 1 and Ux(A, 1) = 0. Then (1–) − (17) become 

 

(18)     1 > UxB > 0. 

 

(19a)    Choose A  if  1  px    UxB, 

(19b)    Choose B  if  UxB    1  px. 

 

(20)      max (1  px, UxB). 

                                

(21)       px
*  =   1  UxB. 

 

I henceforth assume that aggressive treatment neutralizes disease and I normalize the welfare of 

surveillance as above. 
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3.2. Maximum Regret of As-If Optimization 

 

Now suppose that the clinician does not know px. The state space lists all feasible values of px. With 

no knowledge, (psx, s ∊ S) = [0, 1]. With partial knowledge, S is a non-singleton proper subset of [0, 1]. The 

objective function w(∙, ∙): C × S ⇾ R1 has this form: w(A, s) = 1  psx and w(B, s) = UxB. 

Let pmx ≡ min s ∈ S psx and pMx ≡ max s ∈ S psx. I assume that pmx < 1  UxB < pMx, Thus, the clinician 

does not know enough to be able to maximize expected patient welfare conditional on x. 

The clinician uses sample data to estimate px and acts as if the estimate is correct. Let Ψ be a sample 

space and let Qs be a sampling distribution with realizations ψ ∊ Ψ. Let φx(ψ) be a point estimate of px. The 

clinician maximizes expected welfare acting as if φx(ψ) = px. Thus, the chosen care option is A if 1  φx(ψ) 

≥ UxB and is B if  UxB > 1  φx(ψ). I analyze treatment choice from the perspective of maximum regret. 

Let e[psx, φx(ψ), UxB] denote the occurrence of an error in state s when φx(ψ) is used to choose 

treatment. That is, e[psx, φx(ψ), UxB] = 1 when psx and φx(ψ) yield different treatments, while e[psx, φx(ψ), 

UxB] = 0 when psx and φx(ψ) yield the same treatment. Regret using estimate φx(ψ) is 

  

(22)     Rsx[φx(ψ)]   =  max (1  psx, UxB)  –  (1  psx)∙1[1  φx(ψ) ≥ UxB] −  UxB∙1[UxB > 1  φx(ψ)] 

                        =  |(1  psx) − UxB|∙1[1  psx ≥ UxB > 1  φx(ψ) or 1  psx < UxB ≤ 1  φx(ψ)] 

                        =  |(1  psx) − UxB|∙e[psx, φx(ψ), UxB].   

 

Expected regret across samples is 

  

(23)   Es{Rsx[φx(ψ)]}  =  |(1  psx) − UxB|∙Qs{e[psx, φx(ψ), UxB] = 1}. 

 

Maximum expected regret across the state space is max s ∊ S Es{Rsx[φx(ψ)]}. 
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 Evaluation of estimate φx(∙) by the maximum regret of the treatment choices it yields is reminiscent 

of, but distinct in various respects from, analysis of plug-in decision making in the statistical-learning 

literature on pattern recognition or classification (e.g., Devroye et al., 1996; Yang, 1999). Interpreted in 

the context of the present paper, researchers in that field have supposed that the welfare function is anti-

symmetric, with [Ux(A, 0) = c, Ux(B, 0) = d] and [Ux(A, 1) = d, Ux(B, 1) = c], for some c > d. Then the 

threshold for decision making is px
* = ½. They have assumed that the data are a random sample of persons 

from a population with heterogeneous covariate values. They have sought to measure the performance of a 

decision criterion by maximum regret when the criterion is applied across a population rather than to 

persons with a specified covariate value. They have studied asymptotic questions of consistency and rates 

of convergence: does maximum regret converge to zero as sample size increases and, if so, how fast?  As 

far as I am aware, they have not studied computation of finite-sample maximum regret, which is the focus 

of this paper. 

Another form of as-if optimization has been studied in econometrics and statistical learning theory. 

Rather than estimate px and then determine whether the estimate exceeds the threshold px
*, one directly 

estimates the indicator function 1[px > px
*] and makes a decision accordingly. When the data are a random 

sample from a population with heterogeneous covariates, this approach yields the maximum score method 

of econometrics (Manski, 1975, 1985; Manski and Thompson, 1989) and the empirical risk minimization 

methods of statistical learning theory (Vapnik, 1999, 2000). Here too, researchers have mainly studied 

asymptotic questions of consistency and rates of convergence. 

Evaluation of φx(∙) by maximum regret differs fundamentally from computer-science evaluation by 

ex-post prediction accuracy. In that paradigm, one uses a training sample ψtr to compute φx(ψtr) and then 

uses this estimate to predict illness in a test sample ψtest. A standard practice is to predict y = 1 if φx(ψtr) 

exceeds a specified threshold, say γ, and y = 0 otherwise. Prediction accuracy is measured by the positive 

predictive value, the fraction of the test sample with y = 1 conditional on φx(ψtr) ≥ γ, and the negative 

predictive value, the fraction of the test sample with y = 0 conditional on φx(ψtr) ≤ γ. These measures of ex 
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post prediction accuracy do not consider performance across samples or over the state space. Nor do they 

consider the patient welfare achieved when an estimate is used to choose a treatment. 

 

3.2.1. Computation of Maximum Regret 

Numerical computation of maximum regret with as-if optimization is generally tractable. The error 

probability Qs{e[psx, φx(ψ), UxB] = 1} can be approximated by Monte Carlo integration. One draws repeated 

values of ψ from distribution Qs. One computes the fraction of cases in which the values drawn generate 

estimates that yield errors in treatment choice. One uses this fraction to estimate the error probability. The 

statistical precision of the estimate of the error probability increases with the number of ψ values drawn. 

Expected regret is easy to compute; it equals the error probability times |(1  psx) − UxB|. Maximizing 

regret must cope with the fact that the set (psx, s ∊ S) commonly is uncountable. Being a subset of [0, 1], 

this set is relatively simple in structure. A pragmatic approach is to maximize over a suitable finite grid of 

feasible probability values. Refining the grid increases the accuracy of the approximate solution. 

Computation is particularly straightforward when the data are illness outcomes (yi, i = 1, . . , Nx) 

observed in a random sample of Nx persons drawn from a study population with illness probability px. The 

ordering of the observations in a random sample is immaterial, so the sample space may be defined to count 

the number of observed illness outcomes; thus, Ψ = {0, 1, 2, . . . . , Nx}. The sampling distribution in state 

s is the Binomial distribution Qs = B(psx, Nx), where 

 

(24)           f(nx; psx, Nx) ≡ Nx![nx!∙(Nx − nx)!]−1psx
nx(1 − psx)Nx − nx  

 

is the probability of observing nx illnesses. 

 In this setting, expected regret has the form 

 

(25a)   Es{Rsx[φx(ψ)]}  =  [(1  psx) − UxB]∙B[UxB > 1  φx(n);psx, Nx]  for s ∈ SA, 
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(25b)   Es{Rsx[φx(ψ)]}  =  [UxB – (1  psx)]∙B[UxB ≤ 1  φx(n); psx, Nx]  for s ∈ SB, 

 

where SA = (s ∈ S: 1  psx ≥ UxB) and SB = (s ∈ S: 1  psx < UxB) were defined in Section 2.2. Computing 

maximum regret when performing as-if optimization with estimate φx(∙) requires maximizing (25a) over s 

∈ SA and maximizing (25b) over s ∈ SB. Maximum regret over S is the larger of these sub-maxima. The 

sub-maximization problems usually do not have explicit solutions. However, the fact that nx has the 

Binomial distribution makes it easy to perform numerical maximization. Illustrative findings are given in 

Section 4. 

While numerical computation of maximum regret must be the norm, cases with no informative sample 

data or with one observation of y drawn at random from px are amenable to simple analysis. Moreover, an 

analytical upper bound on maximum regret is available when multiple observations of y are drawn at 

random from px and the sample illness frequency is used to estimate px. Sections 3.3 through 3.6 present 

these findings. 

 

3.3. Minimax Regret with No Data 

 

 Suppose that one observes no sample data. Then the estimate must be a constant φx rather than a 

random variable φx(ψ). Under the maintained assumption that pmx ≡ min s ∈ S psx < 1  UxB < pMx ≡ max s ∈ 

S psx, the minimax regret estimate is given in Proposition 1. The proofs of this and all subsequent 

propositions are collected in an Appendix. 

 

Proposition 1: Consider as-if optimization with no sample data, using an estimate φx. Estimates such that 

UxB > 1  φx minimize maximum regret if (1  pmx) − UxB ≤ UxB − (1  pMx). Estimates such that UxB ≤ 1  

φx minimize maximum regret if (1  pmx) − UxB ≥ UxB − (1  pMx). The minimum achievable value of 

maximum regret is 



20 

 

 

(26)      min[(1  pmx) − UxB, UxB − (1  pMx)].              ∎ 

 

 These results simplify if the clinician has no prior knowledge, so pmx = 0 and pMx = 1. Then φx such 

that UxB > 1  φx minimize maximum regret if 1  UxB ≤ UxB, whereas φx such that UxB ≤ 1  φx minimize 

maximum regret if 1  UxB ≥ UxB. Thus, φx such that UxB > 1  φx minimize maximum regret if ½ ≤ UxB, 

and φx such that UxB ≤ 1  φx minimize maximum regret if ½ ≥ UxB. The minimum achievable value of 

maximum regret is min (1  UxB, UxB). 

 

3.4. Minimax Regret with Uninformative Sample Data 

 

 Suppose that one does not observe data that are informative about the true state of nature s*. 

Nevertheless, it is always possible to generate random data that are uninformative about s* and use them to 

estimate px. In particular, one may specify a distribution on the interval [0, 1] and estimate px by a realization 

drawn from this distribution. 

As-if optimization with an estimate based on uninformative data may seem pointless, but it opens new 

possibilities for treatment choice relative to the situation with no data at all. Estimates were deterministic 

in that case, so error probabilities could take only the value 0 or 1. Now estimates can be random variables 

and error probabilities can take any value in [0, 1]. I show that this makes it possible to reduce maximum 

regret. The present analysis is broadly similar to my earlier work (Manski, 2009, 2021) showing that 

randomization sometimes improves on deterministic binary treatment choice, but it differs in the details. 

Formally, one specifies a sample space Ψ0, a sampling distribution Q0 on Ψ0, and an estimate φ0x(∙): 

Ψ0 → [0, 1]. One programs a random number generator to draw realizations ψ with distribution Q0, and one 

uses φ0x(ψ) to estimate px. The minimax regret estimate is given in Proposition 2. 
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Proposition 2: Consider as-if optimization with uninformative sample data, using an estimate φ0x(∙). Let q0x 

≡ Q0[UxB > 1  φ0x(ψ)]. Estimates such that 

 

                     UxB – (1  pMx) 
(27)    q0x  =  ───────── 
                          pMx  pmx 
 

minimize maximum regret. The minimum achievable value of maximum regret is 

 

              [(1  pmx) − UxB]∙[UxB – (1  pMx)] 
(28)      ──────────────────── .                                   ∎ 
                                    pMx  pmx 
 

 

Proposition 1 showed that minimum achievable maximum regret using no sample data is (26). 

Expression (28) is smaller than (26) under the maintained assumption that pmx < 1  UxB < pMx. Thus, as-if 

optimization with uninformative sample data reduces minimum achievable maximum regret relative to 

treatment choice with no sample data. 

 

3.5. Minimax Regret with One Illness Observation Drawn at Random from px 

 

 Here and in Section 3.6, I suppose that one observes Nx ≥ 1 illness outcomes drawn at random from 

px. It is then natural to consider as-if optimization with estimate φx(nx) = nx/Nx, which uses the sample rate 

of illness to estimate the illness probability. Proposition 3 gives the exact value of maximum regret when 

Nx = 1 and the state space is (pxs, s ∈ S) = [0, 1]. Section 3.6 derives an analytical upper bound on maximum 

regret that holds for any specified value of Nx. 
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Proposition 3: Let (pxs, s ∈ S) = [0, 1]. Let the sample data be one illness observation drawn at random from 

px. Consider as-if optimization with estimate [φx(0) = 0, φx(1) = 1]. The value of maximum regret is 

 

(29)     ¼ max[(1 – UxB)2, UxB
2].        ∎ 

 

 The proposition shows that as-if optimization with estimate [φx(0) = 0, φx(1) = 1] substantially 

outperforms treatment choice with data-invariant estimates or uninformative data when UxB = ½. Using the 

sample data yields maximum regret 1/16. Using no data or uninformative data yield maximum regret ½ or 

¼ respectively. However, as UxB moves away from ½, performance with estimate [φx(0) = 0, φx(1) = 1] 

deteriorates and performance not using the data improves. Indeed, as-if optimization with the data-invariant 

estimates [φx(0) = 0, φx(1) = 0] and [φx(0) = 1, φx(1) = 1] have smaller maximum regret when UxB < 3 − 

2√2 and UxB > 2(√2 – 1) respectively. 

 

3.6. Upper Bound on Maximum Regret Using the Sample Illness Rate to Estimate px 

 

 Now suppose that one observes Nx ≥ 1 illness outcomes drawn at random from px and performs as-if 

optimization with estimate φx(nx) = nx/Nx. Asymptotic theory suggests this approach to treatment choice. 

The Strong Law of Large Numbers implies that nx/Nx → px
 almost surely as Nx → ∞. 

 An analytical finite-sample justification stems from a large-deviations inequality of Hoeffding (1963) 

for averages of bounded random variables, which shows that Qs(nx/Nx  psx > δ) ≤ exp(−2Nxδ2) and Qs(psx 

− nx/Nx > δ) ≤ exp(−2Nxδ2) for all δ > 0. These inequalities yield an upper bound on maximum regret, whose 

magnitude depends on the known values of (pmx, pMx, UxB). Proposition 4 gives the bound. 

  

Proposition 4: Consider as-if optimization with estimate φx(n) = nx/Nx. Then, for all δ > 0, maximum regret 

is less than or equal to 
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(30)      δ  + {max [(1  pmx) − UxB, UxB − (1  pMx)]}⋅exp(−2Nxδ2).   ∎ 

 

 Minimizing the upper bound (30) over δ > 0 yields a tighter bound that can be determined numerically. 

Given any value of (pmx, pMx, UxB), the bound decreases to zero if δ → 0  and Nxδ2 → ∞. Hence, the maximum 

regret of as-if optimization with estimate φx(n) = nx/Nx converges to zero as Nx → ∞. 

 Bound (30) is simple, but it is not sharp. Numerical computation of maximum regret is straightforward 

and shows that the exact value is sometimes much less than the bound. Hence, exact numerical computation 

is recommended in practice. 

 

 

4. As-If Optimization Using Data on Persons with Different Covariates 

 

Researchers often analyze data on outcomes for persons with heterogeneous covariates. When the 

decision problem is to choose a treatment for someone with a specific covariate value, data on persons with 

other covariates are not informative per se. However, these data may be informative when assumptions hold 

that relate the outcome distributions of persons with different covariates. An important subject for 

methodological research is to learn what is achievable with various combinations of data and assumptions. 

I demonstrate here, continuing to focus on maximum regret. 

I focus on the instructive, simple setting where persons have either of two covariate values, x = 0 and 

x = 1. Persons with x = 0 and x =1 may be similar in some respects, but they differ in some way. State s 

now indexes a possible pair (ps0, ps1) of conditional illness probabilities. Let random samples of N0 
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outcomes be drawn from p0 and N1 outcomes be drawn from p1, these sample sizes being predetermined. 

Then the data are the numbers of ill persons in each sample, n0 and n1 respectively.1 

Let the decision problem be to choose a treatment for a person with x = 0. The question of interest is 

the extent to which observation of (n0, n1) improves treatment choice relative to observation of n0 alone. 

Proposition 2 showed that observation of sample data can improve treatment choice even when the data are 

uninformative about p0, because the data provide a means to randomize treatment choice. I now consider 

settings in which one maintains assumptions that make observation of n1 informative about p0. 

In the absence of assumptions that suitably restrict the state space, observation of n1 is not informative 

about p0. Under random sampling, the joint sampling distribution of (n0, n1) in state s is the Binomial product 

B(ps0, N0) ⤫ B(ps1, N1). The distribution of n1 varies with the value of ps1, but not with the value of ps0. 

Hence, n1 is uninformative about p0. 

Observation of n1 becomes informative when the state space has non-rectangular structure. A 

rectangular state space has the form S = S0 ⤫ S1, where S0 and S1 index the feasible values of p0 and p1 

respectively. Then the feasible values of p0 do not vary with the value of p1. If S is non-rectangular, the 

feasible p0 vary with p1. Hence, observation of n1 may be informative about p0, via p1. Sections 4.1 and 4.2 

examine two settings with non-rectangular state spaces. 

 

4.1. Bounded Variation Between Illness Probabilities 

 

 One may find it credible to assume that p0 and p1 are not too different from one another. Thus, one 

may impose a bounded-variation assumption of the form 

 

1 Considering N0 and N1 to be predetermined simplifies regret analysis relative to a setting where persons are sampled 
at random from the population at large. In that setting, (N0, N1, n0, n1) are jointly random variables. With (N0, N1) 
predetermined, only (n0, n1) are random. Moreover, n0 and n1 are statistically independent of one another. The analysis 
performed here applies with sampling at random from the population at large if one measures performance by expected 
regret conditional on realized values of (N0, N1) rather than by unconditional expected regret. 
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(31)    ps1 + λ− ≤ ps0 ≤ ps1 + λ+,   all s ∊ S, 

 

for specified λ− ≤ λ+. The implications of bounded variation assumptions for identification of conditional 

probabilities have been studied by Manski and Pepper (2000, 2018) and Manski (2018). As far as I am 

aware, the only precedent work studying the implications for decision making with finite-sample data is 

Stoye (2012), who studied a class of treatment choice problems whose structure differs from the problem 

examined here. 

 

Illustration: Manski (2018) examined how life span varies with (age, sex, race, hypertension status). Let x 

= 0 and x = 1 respectively denote black and white males of age 50 who have been diagnosed with 

hypertension. Let px denote the conditional probability of death prior to age 70. The study conjectured that 

black males tend to face health disadvantages relative to white males beyond hypertension and, hence, that 

black males tend to have lower life spans than white males, conditional on current age and hypertension 

status. This yields the bound p1 ≤ p0. Going further, one might find it credible that the probability of death 

prior to age 70 is at most a specified amount greater for blacks than whites, say 0.2. Then (31) holds with 

λ− = 0 and λ+ = 0.2.       ∎ 

 

4.1.1. Estimation Using the Combined Sample Average 

 One might use the combined sample average (n0 + n1)/(N0 + N1) to estimate p0. In the statistical 

literature, estimation by a combined average rather than by n0/N0 is called dimension reduction. Statisticians 

usually analyze dimension reduction as a tradeoff between variance and bias, the objective being to 

minimize the mean square error of prediction. Combining samples increases the total sample size from N0 

to N0 + N1, increasing precision. However, the quantity being estimated is now a weighted average of p0 

and p1, which differs from p0 if p1 ≠ p0. 
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 The intuition of a tradeoff between variance and bias extends to evaluation of maximum regret in 

binary treatment choice. However, maximum regret when using an estimate of p0 in treatment choice differs 

from the maximum mean square error of the estimate. Hence, the mathematical analysis differs. 

 As-if optimization with estimate (n0 + n1)/(N0 + N1) yields smaller maximum regret than using n0/N0 

for some values of the parameters (pm0, pM0, U0B, N0, N1, λ-, λ+), but larger maximum regret for other values. 

Combining samples is obviously preferable when λ− = λ+ = 0, as (31) reduces to ps1 = ps0 for all s. It also 

holds when λ− and λ+ are not too far from zero. In these cases, the benefit of increasing sample size from 

N0 to (N0 + N1) exceeds the imperfection of using data on persons with illness probability p1 to estimate 

illness probability p0. Given specified values of the parameters, maximum regret using the two estimates 

can be computed numerically and compared. See Section 4.1.2. 

 As a prelude, Propositions 5 and 6 present analytical findings indicating when combining samples 

outperforms using n0/N0. To simplify analysis, these propositions assume that pm1 = 0, pM1 = 1, and that the 

bound in (31) is symmetric. 

 The first result concerns the special case where N0 = 0 and N1 = 1. When N0 = 0, disregarding data for 

persons with x = 1 implies treatment choice with a data-invariant estimate. The estimate that uses the data 

is n1. Proposition 5, which extends Proposition 3, gives maximum regret for as-if optimization using this 

estimate, provided that the bound on p0 specified in (31) is symmetric and not too wide. 

 

Proposition 5: Let 0 ≤ λ ≤ min (U0B, 1 – U0B). Let (31) hold, with λ+ = λ and λ- = −λ. Let pm1 = 0 and pM1 = 

1. Let the sample data be one realization drawn at random from p1. Consider as-if optimization with estimate 

n1. The value of maximum regret is 

 

(32)     ¼ max[[(1 – U0B) + λ]2, (U0B + λ)2].                    ∎ 

 

Proposition 6, which extends Proposition 4, gives the second result. 



27 

 

 

Proposition 6: Let 0 ≤ λ. Let (31) hold, with λ+ = λ and λ- = −λ. Let pm1 = 0 and pM1 = 1. Consider as-if 

optimization with the estimate (n0 + n1)/(N0 + N1). Let α1 ≡ N1/(N0 + N1). Then maximum regret is less than 

or equal to 

 

(33)       (δ + α1λ) + {max [(1  pm0) − U0B, U0B − (1  pM0)]}⋅exp[−2(N0 + N1)δ2].       ∎ 

 

Comparison of bounds (33) and (30) shows that the first term of (33) exceeds that in (30), being (δ + α1λ) 

rather than δ. However, the second term of (33) is less than that in (30), as exp[−2(N0 + N1)δ2] is less than 

exp(−2N0δ2). Hence, the upper bound on maximum regret using estimate (n0 + n1)/(N0 + N1) is smaller than 

the one using estimate n0/N0 when α1λ is sufficiently small and N1 is sufficiently large. 

 

4.1.2. Estimation Using a Weighted Sample Average 

 The sample averages (n0 + n1)/(N0 + N1) and n0/N0 provide polar ways to estimate p0. The former acts 

as if p1 = p0, whereas the latter acts as if p1 and p0 may be arbitrarily different from one another. Between 

the two poles, one might consider estimation by a weighted average, data with x = 0 being weighted more 

heavily than data with x = 1. Such an estimate is 

 

(34)   φ0(n0, n1)  =  (w0n0 + w1n1)/(w0N0 + w1N1), 

 

where ½ ≤ w0 ≤ 1 and w1 = 1 – w0 are the weights. Weighted-average estimates perform partial dimension 

reduction, bridging the gap between complete dimension reduction (w0 = ½) and no reduction (w0 = 1).  

Equation (34) is a simple form of the kernel estimate studied in the literature on nonparametric 

regression. However, maximum-regret analysis of the performance of the estimate when used in binary 

treatment choice differs considerably from standard analysis of kernel estimation. To the extent that 
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statisticians have performed finite-sample analysis, the usual concern has been the maximum mean square 

error of an estimate. The literature mainly studies asymptotic properties of estimates---convergence of mean 

square error to zero, convergence in probability, and rates of convergence. Theorems typically assume that 

x is a real vector whose distribution has positive density in a neighborhood of a value of interest. With some 

exceptions, theorems assume that the conditional expectation E(y|x) varies smoothly with x in a local sense, 

such as being differentiable, rather than a global sense such as being Lipschitz or Hölder continuous. Thus, 

they typically do not impose bounded-variation assumptions such as (31), which bound the difference 

between E(y|x = x1) and E(y|x = x0) at specified covariate values. Donoho et al. (1995) reviews many 

findings. 

Given specified values of (pm0, pM0, U0B, N0, N1, λ-, λ+, w0), maximum regret using a weighted-average 

estimate can be computed numerically. Moreover, one can vary w0 and determine the weighting that 

minimizes maximum regret among all weighted averages. To illustrate, I use the problem of treating bleeds 

in patients with immune thrombocytopenia (ITP). 

 

Illustration: ITP is an autoimmune disease characterized by low platelet counts and increased risk of 

bleeding. When a patient with ITP presents in a hospital emergency department, a difficult clinical problem 

is to predict whether the patient is experiencing a critical bleed (y = 1) or not (y = 0).2 A critical bleed 

warrants aggressive treatment, while surveillance is preferable otherwise. 

Assume that aggressive treatment neutralizes disease by stopping a critical bleed, but it may have side 

effects whose implications for patient welfare are measured by UxB. The treatment decision is made with 

knowledge of patient covariates x, but without knowledge of y. Given knowledge of px, the conditional 

 

2 A Panel developing guidelines for emergency management of ITP has defined a critical bleed to be “a bleed in a 
critical anatomical site including intracranial, intraspinal, intraocular, retroperitoneal, pericardial, or intramuscular 
with compartment syndrome; or an ongoing bleed that results in hemodynamic instability or respiratory compromise.” 
See Surotich et al. (2021). 
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probability that a bleed is critical, the optimal decision is surveillance if 1 − px ≥ UxB and aggressive 

treatment if 1 − px ≤ UxB. Suppose that, px not being known, treatment choice will be made by as-if 

optimization with a weighted average estimate. 

 For specificity, let x = 0 and x = 1 respectively denote female and male patients who have the same 

observed attributes other than gender. Suppose that available clinical knowledge and assessment of patient 

welfare makes it credible to set pm0 = 0.2, pM0 = 0.6, λ- = −0.1, λ+ = 0.1, and U0B = 0.6. Table 1 reports 

maximum regret computed for various values of (N0, N1, w0) as well as the value of minimax regret, with 

the optimal weight in parentheses:3 

Table 1: Maximum Regret with Weighted-Average Estimates 

 w0 = 0.5 w0 = 0.6 w0 = 0.7 w0 = 0.8 w0 = 0.9 w0 = 1.0 MMR 
(optimal weight) 

N0 = 10, N1 = 10 0.041 0.033 0.031 0.031 0.030 0.040 0.030  (0.751) 
N0 = 5,   N1 = 15 0.051 0.039 0.039 0.039 0.039 0.065 0.034  (0.863) 
N0 = 15, N1 = 5 0.033 0.026 0.026 0.023 0.026 0.031 0.023  (0.752) 
N0 = 20, N1 = 20 0.033 0.026 0.023 0.022 0.021 0.026 0.021  (0.858) 
N0 = 10, N1 = 30 0.043 0.034 0.032 0.031 0.029 0.040 0.026  (0.911) 
N0 = 30, N1 = 10 0.023 0.019 0.018 0.016 0.017 0.020 0.016  (0.800) 

 

Several features of the findings are noteworthy. First, holding w0 fixed, increasing sample size reduces 

maximum regret. Doubling both N0 and N1 roughly reduces maximum regret by a factor of √2. Second, 

holding w0 and the total sample size N0 + N1 fixed, re-allocating sample from x = 1 to x = 0 always reduces 

maximum regret. Third, holding (N0, N1) fixed, maximum regret is minimized when the weight lies between 

the polar cases w0 = 0.5 and w0 = 1. The optimal weight is closer to w0 = 1 when sample size is larger.  

 

3 The findings in the table were computed as described in Section 3.2.1. At each specified value of (N0, N1, w0), the 
error probability in a particular state of nature (ps0, ps1) was approximated by Monte Carlo integration across 20,000 
simulated samples. In each pseudo-sample, it was determined whether as-if optimization with the simulated estimate 
yields an error in treatment choice. The fraction of errors across the 20,000 simulations was used to estimate the error 
probability and, hence, expected regret. Maximum regret over the state space was approximated by computation of 
expected regret on a uniform 50 by 50 grid of feasible values for (p0, p1). 

At each specified value of (N0, N1), the optimal weight was approximated by computing maximum regret over 
the uniform grid w0 ∊ [0.50, 0.51, 0.52, . . , 0.98, 0.99, 1]. 
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4.1.3. Estimation by Weighted Averages across Patients with Multiple Covariate Values 

 

 Estimation of p0 by a weighted average of outcomes extends easily from the case of a binary covariate 

to ones where patients have multiple observed covariate values. Let k = 0, . . . , K index distinct covariate 

values, with pk denoting the conditional probability of illness for persons with value xk. For each k, let Nk 

be the number of sampled such patients, which I take to be predetermined, and let nk be the number observed 

to be ill.4 

 Let the weights satisfy 0 ≤ wk for all k and ∑k = 0, . . . , K wk = 1. Let wkNk > 0 for at least one value of k. 

Then a weighted average estimate has the form 

 

                                                           ∑   wknk 
                                                               k = 0, . . . , K 
(35)   φ0(nk, k = 0, , . . , K)  =  ─────────── . 
                                                           ∑ wkNk 
                                                         k = 0, . . . , K 
 

Given a specification of the state space, the maximum regret of as-if optimization with estimates of form 

(35) can be computed numerically and optimal weights determined. For example, one might specify S to 

satisfy this bounded-variation assumption: 

 

(36)    psk + λk− ≤ ps0 ≤ psk + λk+, k = 1, . . . , K,  all s ∊ S. 

 

 

4 To expand on a point made earlier, considering the sample sizes (Nk, k = 0, . . . , K) to be predetermined simplifies 
regret analysis relative to a setting where persons are sampled at random from the population at large. In that setting, 
(Nk, nk, k = 0, . . . , K) are jointly random. With the Nk predetermined, the only random variables are (nk, k = 0, . . . , 
K), which are statistically independent of one another. The present analysis applies with sampling at random from the 
population at large if performance is measured by expected regret conditional on the realized sample sizes rather than 
by unconditional expected regret. 
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 When the objective is binary treatment choice, analysis of the type sketched here has considerable 

appeal relative to conventional asymptotic statistical study of kernel estimates. Performance is measured 

by maximum regret in decision making rather than by maximum mean square error, a concept distant from 

the decision problem. Exact numerical findings are obtainable for relevant finite sample sizes. In principle, 

analysis of maximum regret is possible for any specification of the state space. One need not maintain local 

smoothness assumptions of the types usually imposed in research on kernel estimation of regressions. 

 

4.1.4. Bounded Variation Assumptions and the Curse of Dimensionality 

Estimation with bounded-variation assumptions is not systematically subject to the curse of 

dimensionality. Traditionally, study of the curse of dimensionality has considered estimation of a regression 

when the covariates are a finite-dimensional real vector, under a maintained assumption of local smoothness 

of the regression function. Increasing dimensionality means extending the length of the covariate vector. 

The problem is often described by considering a random sample of specified size, each of whose 

members has an observed J-dimensional real covariate vector x and an observed outcome y. Under usual 

local smoothness assumptions, the sampling probability with which the covariate value xi of each 

observation i lies within a specified Euclidean distance ε > 0 of a covariate value of interest, say x0, is of 

order εJ when ε is small. Hence, increasing the dimensionality of the covariate space lessens the information 

that the data yield about the conditional expectation E(y|x = x0). 

In this paper, covariates may lie in a general space, not necessarily a real vector space. To maintain 

comparability with the traditional setup, let x be a real vector and consider increasing dimensionality. Thus, 

the extended covariate vector is (x, w), where w is a real vector. Let (x = x0, w = w0) be the extended 

covariate vector of a patient to be treated. Now the objective is to learn P(y = 1|x = x0, w = w0) rather than 

P(y = 1|x = x0). Whereas the data originally were [(yki, xki), i = 1, . . , Nk, k = 0, . . , K], they now are [(yki, 

xki, wki), i = 1, . . , Nk, k = 0, . . , K]. 

How does dimensional refinement affect estimation with bounded variation assumptions? The answer 
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depends on the applied setting. Whereas inequalities (36) bounded the difference between P(y = 1|x = x0) 

and [P(y = 1|x = xk), k = 1, . . , K], a clinician might now seek to credibly bound the difference between P(y 

= 1|x = x0, w = w0) and [P(y = 1|x = xk, w = wk), k = 1, . . . , K]. Some of the latter bounds may be tighter 

than the former ones and others may be looser, depending on the illness and the covariates. Overall, 

refinement of dimensionality may improve estimation in some applications and weaken it in others. 

 

4.2. Ecological Inference 

 

 Return to the setting with two covariate values. A bounded-variation assumption directly connects the 

illness probabilities p0 and p1. A different way to connect p0 and p1 materializes if one has empirical 

knowledge of the marginal probability of illness in the patient population, say p, and the fractions of the 

population who have each covariate value, say r0 and r1. For example, suppose that x is a binary measure 

of obesity and the illness of concern is liver cirrhosis. Public data sources may record the overall rates of 

obesity and cirrhosis in a population, but not the rate of cirrhosis conditional on obesity status. Then the 

public data reveal (p, r0, r1), but not (p0, p1). 

 Research on the ecological inference problem studies inference on (p0, p1) given knowledge of (p, r0, 

r1). The connection among these quantities is shown by the Law of Total Probability 

 

(37)   p  =  p0r0 + p1r1. 

 

Duncan and Davis (1953) observed that (37) implies a computable bound on p0, namely 

 

(38)   max[0, (p – r1)/r0]  ≤  p0  ≤  min(1, p/r0). 
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The subsequent literature generalizes this finding to settings with general real-valued outcomes. Manski 

(2018) reviews this work and gives an application to medical decision making. 

 When evaluating the performance of treatment-choice rules, one may use equation (37) to shrink the 

state space relative to what it would be in the absence of knowledge of (p, r0, r1). Consider any initial state 

space S, embodying the available restrictions on the true state without knowledge of (p, r0, r1). The state 

space using this knowledge is the non-rectangular set (s ∈ S: p = ps0r0 + ps1r1). 

 To date, analysis of ecological inference has assumed empirical knowledge only of (p, r0, r1), with no 

sample data on outcomes conditional on covariates. Suppose that one can combine knowledge of (p, r0, r1) 

with observation of outcomes (n0, n1) in random samples of sizes (N0, N1). Beyond shrinking the state space, 

one can use (37) when estimating p0. A simple idea emerges by rewriting (37) as p0 = (p − p1r1)/r0. Thus, if 

p1 were known, p0 would be known as well. Sample data (n0, n1) do not reveal p1 but, when N1 > 0, one 

may use n1/N1 to estimate p1. This yields [p – (n1/N1)r1]/r0 as an estimate of p0. This estimate is well-behaved  

in the sense of being consistent as N1 → ∞. However, it is inefficient because it does not use the data n0. 

 To achieve greater precision in estimation, classical statistical thinking suggests minimization of total 

sample prediction error under square loss, subject to constraint (37). The mean of a probability distribution 

is the best predictor of a random draw under square loss; hence, p0 and p1 are the best population predictors 

of illness conditional on x = 0 and x =1 respectively. When (p, r0, r1) are unknown, this motivates 

unconstrained least squares estimation, yielding n0/N0 and n1/N1 as estimates. When (p, r0, r1) are known, it 

suggests constrained least squares estimation, namely 

 

(39)                                min                          ∑ (y0i  − θ0)2   +    ∑ (y1i  − θ1)2 . 
                   (θ0, θ1) ∊ [0, 1]2: p = θ0r0 + θ1r1          i = 1, . . . , N0               i = 1, . . . , N1 
 

This constrained minimization problem has an explicit solution, which may be interior to or on the 

boundary of the state space; I am grateful to Michel Gmeiner for the derivation. Solving (37) for θ1 as a 



34 

 

function of θ0 yields 𝜃𝜃1 = 𝑝𝑝−𝜃𝜃0𝑟𝑟0
𝑟𝑟1

. Inserting this into (39) and solving the first-order condition in θ0 yields 

the tentative solution 

 

(40)                                  𝜃𝜃0
∗ =

∑ i = 1,...,𝑁𝑁0 (𝑌𝑌0𝑖𝑖) − 𝑟𝑟0
𝑟𝑟1 ∑ i = 1,...,𝑁𝑁1 (𝑌𝑌1𝑖𝑖) + 𝑝𝑝𝑟𝑟𝑜𝑜𝑁𝑁1

𝑟𝑟1
2

�𝑁𝑁0+𝑁𝑁1𝑟𝑟0
2

𝑟𝑟1
2 �

 . 

 

This is the solution if max �0, 𝑝𝑝−𝑟𝑟1
𝑟𝑟0

� ≤ 𝜃𝜃0
∗ ≤ min �1, 𝑝𝑝

𝑟𝑟0
� . If 𝜃𝜃0

∗ < max �0, 𝑝𝑝−𝑟𝑟1
𝑟𝑟0

�, there is a corner solution at 

𝜃𝜃0 = max �0, 𝑝𝑝−𝑟𝑟1
𝑟𝑟0

�. If 𝜃𝜃0
∗ > min �1, 𝑝𝑝

𝑟𝑟0
�, there is a corner solution at 𝜃𝜃0 = min �1, 𝑝𝑝

𝑟𝑟0
�. 

Given specified values of (pm0, pM0, U0B, N0, N1, p, r0, r1), the approximate maximum regret of as-if 

optimization using the constrained least squares estimate can be computed numerically. To illustrate, let 

(pm0 = 0, pM0 = 1, U0B = ½, p = ½, r0 = 0.7, r1 = 0.3) and consider the two sample-size pairs (N0, N1) = (10, 

10) and (20, 20). Approximating the state space by a grid of 100 values for p0 and maximizing over this 

grid, the resulting values of maximum regret are 0.011 and 0.008 respectively. 

 

 

5. Conclusion 

 

This paper carries further my research applying statistical decision theory to treatment choice with 

sample data, using maximum regret to evaluate the performance of treatment rules. The methodological 

innovation relative to past work is to study as-if optimization with alternative estimates of illness 

probabilities, when choosing between surveillance and aggressive treatment. To render the analysis 

transparent and informative, I studied a relatively simple but decidedly nontrivial formalization of the 

decision problem. Extending the analysis to more complex and realistic forms of the problem offers much 

scope for future research. 
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Beyond the specific analysis performed here, the paper sends a broad message. It is always important 

to address decision making with care but particularly so in medical settings, where the stakes are often high. 

Biostatisticians and computer scientists have addressed medical risk assessment in indirect ways, the former 

applying classical statistical theory and the latter measuring prediction accuracy in test samples. Neither 

approach is satisfactory. Statistical decision theory provides a coherent, generally applicable methodology. 

 

 

Appendix: Proofs of Propositions 

 

Proof of Proposition 1: The error probability in state s takes the value 0 or 1, with 

 

(A1a)   Qs[e(psx, φx, UxB) = 1] = 0  if  min(1  psx, 1  φx) ≥ UxB  or  max (1  psx, 1  φx) < UxB, 

(A1b)   Qs[e(psx, φx, UxB) = 1] = 1  if  1  psx ≥ UxB > 1  φx  or  1  psx < UxB ≤ 1  φx. 

 

Expected regret in state s is 

 

(A2a)     Rsx(φx)  =  max [0, (1  psx) − UxB]  if  UxB > 1  φx, 

(A2b)     Rsx(φx)  =  max [0, UxB − (1  psx)]  if  UxB ≤ 1  φx. 

 

To compute maximum regret across S, recall the maintained assumption that pmx ≡ min s ∈ S psx < 1  UxB 

< pMx ≡ max s ∈ S psx. It follows from (A2a)−(A2b) that 

 

(A3a)    max Rsx(φx)  =  max [0, (1  pmx) − UxB] = (1  pmx) − UxB  if  UxB > 1  φx, 
              s ∈ S 
 
(A3b)   max Rsx(φx)  =  max [0, UxB − (1  pMx)] = UxB − (1  pMx)  if  UxB ≤ 1  φx. 
             s ∈ S 
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These findings yield the estimates that minimize maximum regret. 

                                                                                                                                             Q. E. D. 

 

Proof of Proposition 2: The error probability in state s with estimate φ0x(∙) is 

 

(A4)   Qo{e[psx, φ0x(ψ), UxB] = 1}  =  Q0[1  psx ≥ UxB > 1  φ0x(ψ)  or  1  psx < UxB ≤ 1  φ0x(ψ)]. 

 

Expected regret is 

 

(A5)   Es{Rsx[φx(ψ)]}  =  |(1  psx) − UxB|∙Q0{e[psx, φ0x(ψ), UxB] = 1}. 

 

This expression differs from (23) in that the sampling distribution is the known Q0 rather than a state-

dependent Qs. 

 To study maximum regret, partition S into the regions SA = (s ∈ S: 1  psx ≥ UxB) and SB = (s ∈ S: 1  

psx < UxB). It follows from (A4) and (A5) that 

 

(A6a)   Es{Rsx[φx(ψ)]}  =  [(1  psx) − UxB]∙Q0[UxB > 1  φ0x(ψ)] = [(1  psx) − UxB]∙q0x for s ∈ SA, 

(A6b)   Es{Rsx[φx(ψ)]}  =  [UxB – (1  psx)]∙Q0[UxB ≤ 1  φ0x(ψ)] = [UxB – (1  psx)]∙(1 − q0x) for s ∈ SB. 

 

Maximum regret across s ∈ SA and s ∈ SB are [(1  pmx) − UxB]∙q0x and [UxB – (1  pMx)]∙(1 − q0x) 

respectively. Hence, maximum regret over the entire state space is  

 

(A7)    max  Es{Rsx[φx(ψ)]}  =  max{[(1  pmx) − UxB]∙q0x, [UxB – (1  pMx)]∙(1 − q0x)}. 
            s ∈ S 
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To minimize maximum regret, consider the right-hand side of (A7) as a function of q0x. The expression 

[(1  pmx) − UxB]∙q0x increases linearly from 0 to (1  pmx) − UxB as q0x increases from 0 to 1. The expression 

[UxB – (1  pMx)]∙(1 − q0x) decreases linearly from UxB – (1  pMx) to 0 as q0x increases from 0 to 1. Hence, 

estimates that minimize maximum regret over q0x ∈ [0, 1] are those for which q0x solves the equation 

 

(A8)    [(1  pmx) − Ux(B)]∙q0x  =  [UxB – (1  pMx)]∙(1 − q0x). 

 

The unique solution is 

 

                                           UxB – (1  pMx)                   UxB – (1  pMx) 
(A9)    q0x  =  ────────────────────  =  ────────── . 
                       UxB – (1  pMx) + [(1  pmx) − UxB]             pMx  pmx 
 

Inserting this into (A7) gives the minimum achievable value of maximum regret, stated in (28). 

                                                                                                                                                  Q. E. D. 

 

Proof of Proposition 3: The sampling probabilities in state s are Qs(0) = 1 – psx and Qs(1) = psx. Consider 

the estimate [φx(0) = 0, φx(1) = 1]. By (25a) – (25b), regret is 

 

(A10a)   Es{Rsx[φx(ψ)]}  =  [(1  psx) − UxB]∙psx  for s ∈ SA, 

(A10b)   Es{Rsx[φx(ψ)]}  =  [UxB – (1  psx)]∙(1 – psx) for s ∈ SB. 

 

These expressions are quadratic functions of psx. Examination of first and second-order conditions shows 

that (A10a) is globally maximized at (1 – UxB)/2 and (A10b) is globally maximized at 1 – UxB/2. These 

maxima lie within SA and SB respectively. Hence, 
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(A11a)     max  Es{Rsx[φx(ψ)]}  =  [(1  (1 – UxB)/2 − UxB]∙ (1 – UxB)/2  =  (1 – UxB)2/4,   
                s ∈ SA 
 
 
(A11b)     max Es{Rsx[φx(ψ)]}  =  (UxB – UxB/2)∙(UxB/2)  =  UxB

2/4. 
                 s ∈ SB 
 

Combining (A11a) and (A11b) yields maximum regret over S. 

                                                                                                                                              Q. E. D. 

 

Proof of Proposition 4: The derivation begins by applying the Law of Iterated Expectations to expected 

regret in state s. Consider states in SA = (s ∈ S: 1  psx ≥ UxB).  

 

(A12)   Es[Rsx(nx/Nx)]  =  Es[Rsx(nx/Nx)│nx/Nx  psx ≤ δ]∙Qs(nx/Nx  psx ≤ δ) 

                                         +  Es[Rsx(nx/Nx)│nx/Nx  psx > δ]∙Qs(nx/Nx  psx > δ). 

 

Observe that Qs(nx/Nx  psx ≤ δ) ≤ 1 and that Qs(nx/Nx  ps > δ) ≤ exp(−2Nxδ2) by the Hoeffding large-

deviation inequality. Also observe that Rsx(nx/Nx) ≤ (1  psx) − UxB. Combining these results with (A12) 

gives this upper bound on expected regret: 

 

(A13)   Es[Rsx(nx/Nx)]  ≤  Es[Rsx(nx/Nx)│nx/Nx  psx ≤ δ] + [(1  psx) − UxB]∙exp(−2Nxδ2). 

 

 It remains to consider Es[Rsx(nx/Nx)│nx/Nx  psx ≤ δ]. When (1  psx) − UxB > δ, the condition nx/Nx  

psx ≤ δ implies that (1  nx/Nx) − UxB > 0. Hence, e(psx, nx/Nx, UxB) = 0 and Rsx(nx/Nx) = 0. When (1  psx) 

− UxB ≤ δ, then Rsx(nx/Nx) ≤ δ. Hence, Es[Rsx(nx/Nx)│nx/Nx  psx ≤ δ] ≤ δ. Combining this inequality with 

(A13) yields 

 

(A14)   Es[Rsx(nx/Nx)]  ≤  δ  +  [(1  psx) − UxB]∙exp(−2Nxδ2). 
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Finally, maximizing expected regret over SA yields 

 

(A15)              max   Es[Rsx(nx/Nx)]  ≤  δ  + [(1  pmx) − UxB]⋅exp(−2Nxδ2). 
                        s ∈ SA 
 

 Now consider states in SB = (s ∈ S: 1  psx < UxB). An analogous derivation yields 

 

(A16)              max   Es[Rsx(nx/Nx)  ≤  δ  + [UxB − (1  pMx)]⋅exp(−2Nxδ2). 
                        s ∈ SB 
 

Combining (A15) and (A16) yields result (30). 

                                                                                                                                               Q. E. D. 

 

Proof of Proposition 5: The sampling probabilities in state s are Qs(n1 = 0) = 1 – ps1 and Qs(n1 = 1) = ps1.  

Regret is 

 

(A17a)   Es[Rs0(n1)]  =  [(1  ps0) − U0B]∙ps1  for s ∈ SA, 

(A17b)   Es[Rs0(n1)]  =  [U0B – (1  ps0)]∙(1 − ps1) for s ∈ SB. 

 

 Consider s ∊ S0A; thus, ps0 ≤ 1 – U0B. By assumption, λ ≤ min (U0B, 1 – U0B). Hence, ps0 + λ ≤ 1. 

Holding ps0 fixed, maximum expected regret in (A17a) over ps1, subject to (31), occurs when ps1 = ps0 + λ. 

This yields maximum regret (1  ps0 − U0B)∙(ps0 + λ), a quadratic function of ps0 alone. Examination of first 

and second-order conditions shows that (A17a) is globally maximized at (1 – U0B − λ)/2. This maximum 

lies within S0A. The value of the maximum across SA is [(1 – U0B) + λ]2/4. 

 Consider s ∊ S0B; thus, ps0 > 1 – U0B. By assumption, λ ≤ min (U0B, 1 – U0B). Hence, ps0 − λ > 0. 

Holding ps0 fixed, maximum expected regret in (A17b) over ps1, subject to (31), occurs when ps1 = ps0 − λ. 
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This yields maximum regret [U0B − (1  ps0)]∙(1 − ps0 + λ), a quadratic function of ps0 alone. Examination 

of first and second-order conditions shows that (A17b) is globally maximized at 1 – U0B/2 + λ/2. This 

maximum lies within S0B. The value of the maximum across SB is (U0B + λ)2/4. 

 Combining the findings for S0A and S0B yields maximum regret over S. 

                                                                                                                                                        Q. E. D. 

 

Proof of Proposition 6: In state s, the estimate (n0 + n1)/(N0 + N1) has mean α0ps0 + α1ps1, where α0 ≡ N0/(N0 

+ N1) and α1 ≡ N1/(N0 + N1). Hence, by (31), 

 

(A18)   |ps0 – (α0ps0 + α1ps1)|  =  α1|ps0 − ps1|  ≤  α1λ. 

 

The large-deviations inequality of Hoeffding (1963) shows that, for all δ ∊ (0, 1) and s ∊S, 

 

(A19a)    Qs[(n0 + n1)/(N0 + N1)  (α0ps0 + α1ps1) > δ]  ≤  exp[−2(N0 + N1)δ2], 

(A19b)    Qs[(α0ps0 + α1ps1) − (n0 + n1)/(N0 + N1) > δ]  ≤  exp[−2(N0 + N1)δ2]. 

 

Combining this with (A18) yields 

 

(A20a)    Qs[(n0 + n1)/(N0 + N1)  ps0 > δ + α1λ]  ≤  exp[−2(N0 + N1)δ2], 

(A20b)    Qs[ps0 − (n0 + n1)/(N0 + N1) > δ + α1λ]  ≤  exp[−2(N0 + N1)δ2]. 

 

 The rest of the proof is similar to the proof to Proposition 4, with δ + α1λ replacing δ when the Law of 

Iterated Expectations is used to decomposed expected regret. Consider s ∊ S0A = (s ∈ S: 1  ps0 ≥ U0B). 

 

(A21)   Es{Rs0[(n0 + n1)/(N0 + N1)]}  = 
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Es{Rs0[(n0 + n1)/(N0 + N1)]│(n0 + n1)/(N0 + N1)  ps0 ≤ δ + α1λ}∙Qs[(n0 + n1)/(N0 + N1)  ps0 ≤ δ + α1λ] 

+  Es{Rs0[(n0 + n1)/(N0 + N1)]│(n0 + n1)/(N0 + N1)  ps0 > δ + α1λ}∙Qs[(n0 + n1)/(N0 + N1)  ps0 > δ + α1λ]. 

 

Qs[(n0 + n1)/(N0 + N1)  ps0 ≤ δ + α1λ] ≤ 1. Rs0[(n0 + n1)/(N0 + N1)] ≤ (1  ps0) − U0B for all values of (n0 + 

n1)/(N0 + N1). Combining these results with (A20a) gives this upper bound on expected regret: 

 

(A22)   Es{Rs0[(n0 + n1)/(N0 + N1)]}  ≤  Es{Rs0[(n0 + n1)/(N0 + N1)]│(n0 + n1)/(N0 + N1)  ps0 ≤ δ + α1λ} 

                                                                 + [(1  ps0) − U0B]∙exp[−2(N0 + N1)δ2]. 

 

 Now consider Es{Rs0[(n0 + n1)/(N0 + N1)]│(n0 + n1)/(N0 + N1)  ps0 ≤ δ + α1λ}. When (1  ps0) − U0B 

> δ + α1λ, the condition (n0 + n1)/(N0 + N1)  ps0 ≤ δ + α1λ implies that [1  (n0 + n1)/(N0 + N1)] − U0B > 0. 

Hence, e[ps0, (n0 + n1)/(N0 + N1), U0B] = 0 and Rs0[(n0 + n1)/(N0 + N1)] = 0. When (1  ps0) − U0B ≤ δ + α1λ, 

then Rs0[(n0 + n1)/(N0 + N1)] ≤ δ + α1λ. Hence, Es{Rs0[(n0 + n1)/(N0 + N1)]│(n0 + n1)/(N0 + N1)  ps0 ≤ δ + 

α1λ} ≤ δ + α1λ. Combining this inequality with (A22) yields 

 

(A23)   Es{Rs0[(n0 + n1)/(N0 + N1)]}  ≤  (δ  + α1λ) +  [(1  ps0) − U0B]∙ exp[−2(N0 + N1)δ2]. 

 

Maximizing expected regret over SA yields 

 

(A24)           max   Es{Rs0[(n0 + n1)/(N0 + N1)]} ≤  (δ  + α1λ) + [(1  pm0) − U0B]⋅exp[−2(N0 + N1)δ2]. 
                     s ∈ SA 
 

 For states in SB = (s ∈ S: 1  ps0 < U0B), an analogous derivation yields 
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(A25)              max   Es{Rs0[(n0 + n1)/(N0 + N1)]} ≤  (δ  + α1λ) + [U0B − (1  pM0)]⋅ exp[−2(N0 + N1)δ2]. 
                        s ∈ SB 
 

Combining (A24) and (A25) yields (33). 

                                                                                                                                               Q. E. D. 
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