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Abstract

Forecasting the evolution of the U.S. economy following the outbreak of COVID-19 re-

quires unusually strong assumptions. We propose a possible set of such assumptions. The

main features of the resulting projections are that employment continues to fall for a few

months even after the epidemic is in retreat, and that consumption does not recover to its

pre-pandemic trend.

1 Introduction

The COVID-19 pandemic has been ravaging the world and its economies since March 2020. In

April, the U.S. unemployment rate shot up to 14.7 percent, while personal consumption expen-

ditures were almost 20 percent lower than at their peak in February, with entire sectors—such

as entertainment and air transportation—grinding to a halt in large swaths of the country. Fore-

casting the macroeconomic effects of the pandemic over the next few years is crucial to direct

the appropriate policy response, as well as to guide business and household decisions, but it is

extremely challenging since this kind of economic shock is unprecedented in its type and scale.

This is the task that we tackle in this paper, focusing more on the strong assumptions that are

necessary to make some progress on the problem, than on the forecasts that we produce. Even if

those forecasts turn out to be wildly off the mark, being explicit about the set of assumptions that
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produce them will result in helpful insights on the underlying sources of economic fluctuations

and their propagation.

There are at least two approaches to the problem of forecasting the macroeconomic effects of

the Covid shock. One is to model the dynamics of the epidemic and its impact using explicit eco-

nomic assumptions, as an exploding literature has done (e.g. Eichenbaum et al., 2020a, Eichen-

baum et al., 2020b, Acemoglu et al., 2020, Baqaee and Farhi, 2020, Baqaee et al., 2020, Favero

et al., 2020). The other approach is to use time-series data and techniques to learn from history

about the dynamic effects of the Covid shock on the economy. Taken at face value, this approach

might seem hopeless, since there is clearly no event in recent history that is directly comparable

to the COVID-19 pandemic, with the possible exception of the Spanish influenza of 1918 and

1919 (e.g. Barro et al., 2020, Barro, 2020, Velde, 2020). This consideration might explain why the

work that follows this approach is much sparser than the one based on more structural models.

In this respect, the closest paper to ours is Ludvigson et al. (2020), who project the economic

impact of COVID-19 based on that of deadly disasters in recent U.S. history.

In this paper, we show that it is possible to make some progress on the problem of pre-

dicting the economic effects of the Covid shock based on the historical dynamics of macroeco-

nomic variables, without any behavioral assumptions. However, this progress requires unusu-

ally strong assumptions for the standards of reduced-form, time-series modeling. But since the

assumptions of more structural models are even stronger, our approach is a viable complement

to the augmented SIR models that many economists have recently developed.

Intuitively, our methodology is based on the idea of “synthesizing” a Coronavirus shock from

the more typical disturbances that have historically driven macroeconomic fluctuations. This

synthesis requires three key ingredients. First, we assume that the Covid “shock” was the dom-

inant source of variation in macroeconomic variables in March and April 2020. This is the

same assumption underlying event studies and narrative identification strategies in SVARS (e.g.

Gurkaynak and Wright, 2013, Ben Zeev, 2018 and Antolin-Diaz and Rubio-Ramirez, 2018). This

assumption never holds exactly in any event study, but it is an especially compelling approxima-

tion for the recent months, given the unprecedented effects of the COVID-19 pandemic on the

economy since March 2020.

The second ingredient in the procedure is the assumption that the Covid shock will propa-

gate over the next few months like a combination of more typical macroeconomic disturbances,

whose transmission has been observed in the past. We choose this combination of historical

shocks as the one that produces the same forecast error in the variables of interest as the one

2



MACROECONOMIC FORECASTING IN THE TIME OF COVID-19

generated by the Covid shock in the early months of the epidemic. For example, suppose that a

typical (negative) demand shock drives unemployment up by 5 and inflation down by 1. In con-

trast, a (negative) supply shock raises both unemployment and inflation by 1. If unemployment

in March 2020 went up by 11, while inflation went down by 1 (to use very round numbers), we

can reproduce the effect of the Covid shock with a combination of a demand shock of size 2 and

a supply shock of size 1.

The two steps above produce a candidate synthetic Covid shock. However, if we simply

projected its effects forward, the result would be a Great Depression, or worse. The reason is

that these historical shocks are associated with persistent, often hump-shaped dynamics, which

would imply a further deterioration in the economy over the coming months, rather than the

fast improvement that most forecasters expect, and that some early data also seem to suggest.

To address this issue, the third step in our procedure consists of “tilting” the propagation of the

synthetic Covid shock to take into account that the diffusion path of the disease will likely dif-

fer from that of the macroeconomic disturbances responsible for conventional recessions. We

implement this dynamic tilting by postulating some possible scenarios about the future evolu-

tion of the epidemic, and comparing them with the approximate persistence of the exogenous

processes that dominate the fluctuations in estimated DSGE models.

In particular, we formulate three alternative scenarios on the development of the pandemic

through the end of 2020 and beyond. Under the baseline scenario, the epidemic is gone by the

end of 2020. In a more pessimistic scenario, a second wave of infections develops in the fall,

while in the more optimistic one contagion ends in the fall. Under each of these scenarios, we

project the implied behavior of the U.S. economy over the next three years. The main features of

these projections are that employment continues to fall for a few months even as the epidemic

retreats, and that consumption does not recover to its pre-pandemic trend. These recession pat-

terns are more severe and prolonged under the second-wave scenario, but they remain present

even under the optimistic scenario.

The rest of the paper proceeds as follows. Section 2 lays out the econometric framework

for our forecasting exercise, and the necessary assumptions to synthetize the Covid shock and

project its economic impact. Section 3 illustrates the VAR used to model historical macroeco-

nomic dynamics, and presents the forecasting results based on various epidemic scenarios. Sec-

tion 4 concludes.
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2 The Problem of Prediction in the Time of COVID-19

Predicting the macroeconomic impact of the COVID-19 epidemic with reduced-form time-series

models is challenging, because a pandemic of this scale was never directly observed in the avail-

able sample. To make some progress on this difficult prediction problem, we propose to “synthe-

size” the Covid shock through a combination of the macroeconomic disturbances that have been

observed in the past, augmented with assumptions on the future dynamics of the pandemic.

This section describes this approach formally, focusing on the strong assumptions needed to

translate statements about the evolution of the epidemic over the next few months into a plau-

sible account of its impact on the evolution of the US economy. We frame the discussion in the

context of the problem of shock identification in state-space models, but subsequently focus on

vector autoregressions to obtain our empirical results.

Consider the following two equations, describing the dynamics of an n× 1 vector of macroe-

conomic variables yt:

yt = G (L) ξt (1)

ξt = F (L) εt. (2)

The first expression relates the evolution of yt to a vector of exogenous variables ξt and their

lags. The second equation states that ξt is a moving average of an n×1 vector of shocks εt, whose

covariance matrix is normalized to In. The vector εt contains a set of orthogonal structural dis-

turbances with an economic interpretation: they might represent taste, technology and policy

shocks. BothG (L) ≡ G0 +
∑∞

i=1GiL
i and F (L) ≡ In +

∑∞
i=1 FiL

i are lag polynomial matrices of

suitable dimensions and of potentially infinite order. We refer to the dynamics induced byG (L)

and F (L) as the internal and external—or endogenous and exogenous—propagation of εt, be-

ing aware that their neat separation is typically only possible within a fully specified structural

model. For instance, DSGE models usually include a number of exogenous disturbances that are

often assumed to follow independent AR or ARMA processes (e.g. Smets and Wouters, 2007). In

that case, F (L) represents those AR or ARMA structures, while G (L) captures the endogenous

propagation of the exogenous processes due to the presence of persistent state variables, such as

capital, and of forward looking expectations. We assume that yt and εt have the same dimension

because our empirical results are based on a VAR with the same number of shocks and observ-

ables. For the same reason, we assume thatG (L) and F (L) imply a fundamental representation

of yt as a moving average of εt.
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Under these assumptions, the combination of (1) and (2) yields the Wold representation

yt = Θ (L)G0εt, (3)

where ut ≡ G0εt is the vector of forecast errors and Θ (L) ≡ G (L)F (L)G−10 , with Θ0 = In. Ac-

cording to (3), the effect of εt on yt+h is given by ΘhG0. Therefore, we must know {Θi}∞i=1 and G0

to infer the dynamic impact of a structural shock on the endogenous variables. The coefficients

{Θi}∞i=1 can typically be estimated from the data. In contrast, the identification of G0 requires

additional assumptions, since the data are only informative about the covariance matrix of the

forecast errors, G0G
′
0, but not about the impact matrix G0. Therefore, inference about the dy-

namic effects of any one structural shock requires disentangling its impact on the endogenous

variables from that of other disturbances.1 Producing credible restrictions that yield the desired

interpretation of (some of) the elements εt is among the most controversial steps in time-series

analysis. This is the well-known identification problem in structural VARs.

In the case of the Covid shock, the problem is the opposite. On the one hand, the pandemic’s

short-term impact is straightforward to identify because the Covid shock is the overwhelming

source of variation in the data around the time of the outbreak. Most standard macroeconomic

variables have undergone record changes in and right after March 2020, which are clearly at-

tributable to the effects of the virus and related shut-downs. These effects are easy to disentan-

gle from those of other disturbances, since the latter are at least an order of magnitude smaller.

On the other hand, the historical novelty of the Covid pandemic makes it difficult to estimate its

future propagation from historical data, even conditional on a path for the pandemic itself. As

a consequence, producing reasonable macroeconomic forecasts with time-series tools requires

making some unusually strong assumptions. The need for these assumptions is the first message

of this paper. In what follows, we describe a possible set of such assumptions and the forecasts

that they produce.

We modify equation (3) to account for the effects of the pandemic by including a virus shock

vt as follows:

yt = Θ (L)G0εt + θ (L) r (L) ◦ r0vt, (4)

where the symbol “◦” denotes the element-wise product of two vectors, θ (L) ≡ In×n +
∑∞

i=1 θiL
i

1For instance, a popular assumption for the identification of monetary policy shocks is that they move the policy
rate, but not the other macroeconomic variables on impact (e.g. Christiano et al., 1999). This triangular assumption is
imposed directly on the object of interest, G. However, G can also be identified through assumptions on the delayed
response of the endogenous variables to some shocks (e.g. Blanchard and Quah, 1989, Gali, 1999, Mountford and
Uhlig, 2009).
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is an n×n lag-polynomial matrix, r (L) ≡ 1n×1 +
∑∞

i=1 riL
i is an n×1 lag-polynomial vector, r0 is

an n× 1 vector, and vt represents the Covid shock. This shock is equal to zero in all time periods

except for the month in which the Coronavirus started to affect the U.S. economy, namely March

2020. We denote it by t∗. Therefore, r0 represents the initial impact of the virus on yt. Following

t∗, we model the economic effects of the epidemic as unfolding deterministically, according to

the lag polynomial θ (L) r (L) ◦ r0, with no more “surprises”. Of course, we are currently far from

certain about those effects. In fact, they are what we want to estimate! But conceptually, the

fact that the Coronavirus is spreading through the population and affecting the economy is now

known. We capture the significant uncertainty on how that spread will occur —for instance

regarding a potential second wave in the fall—through alternative scenarios, which we translate

into coefficients of r (L) according to a procedure described below.2

This procedure is based on the following three assumptions.

Assumption 1: vt accounts for all the unexpected variation of yt∗ , yt∗+1, ..., yt∗+j∗ , where

t∗ + j∗ is the last period for which yt is observable.

All event studies make a similar assumption, which is often valid only in a restricted window of

time after the event (Gurkaynak and Wright, 2013). In the case of the Covid shock, its macroeco-

nomic effects have been so large that the assumption is likely to remain valid for several months

after March 2020.

Assumption 2: θ (L) = Θ (L).

This assumption states that, if r (L) was a lag polynomial of order zero, the pandemic shock vt

would propagate like the specific combination of structural disturbances εt that produces the

same forecast error for the observables. Absent r (L), this assumption would thus allow to pre-

dict the effects of the Covid shock as in a standard forecasting exercise, starting from the current

value of the observable variables, and projecting them into the future using their historical dy-

namics. The lag polynomial r (L) then tilts this propagation mechanism.

But where does r (L) come from? {rj}j
∗

j=0 can actually be easily estimated. To see how, rewrite

(4) as

Θ (L)−1 yt∗ = G0εt∗ + r (L) ◦ r0 ≈ r (L) ◦ r0 (5)

where Θ0 ≡ I. This expression uses θ (L) = Θ (L) from assumption 2, vt∗ = 1 as a normalization,

2There are two alternative approaches that could be adopted to model the effects of Covid. One strategy would
be to capture the unfolding of the pandemic in future months as a sequence of shocks, as opposed to a single shock
that hits in March 2020 and then propagates. Another method would be to explicitly model the uncertainty faced by
economic agents about the possible dynamics of the virus following the initial shock in March 2020. Our approach
based on the analysis of several pandemic scenarios should be interpreted as a simple and viable version of the latter.
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and the approximate equality follows from assumption 1. Given an estimate of {Θ}∞j=1 , which is

easy to obtain, (5) implies that {rj}j
∗

j=0 can be inferred from the forecast errors at time {t∗ + j}j
∗

j=0,

without additional restrictions. In contrast, the data are not informative about {rj}j>j∗ , which

motivates a third assumption.

Assumption 3: {rj}j>j∗ = {r̂j}j>j∗ , where {r̂j}j>j∗ must be specified a priori.

To choose {r̂j}j>j∗ , it is useful to clarify the interpretation of r (L). Use assumption 2 and the

definition of Θ (L) to write (4) as

yt = G (L)
[
F (L)G−10 G0εt + F (L)G−10 r (L) ◦ r0vt

]
.

In this expression, F (L)G−10 captures the exogenous propagation of the forecast error G0εt.

Along similar lines, f (L) ≡ F (L)G−10 r (L) characterizes the external propagation of r0vt. It

follows that r (L) should be interpreted as capturing the exogenous dynamics of the forecast

errors generated by the Covid shock, relative to those associated to the forecast errors gener-

ated by the standard macroeconomic shocks. The next section shows how to use this insight to

calibrate{rj}j>j∗ based on alternative pandemic scenarios.

The ability to consider different scenarios about the unfolding of the pandemic represents

an advantage of our approach. One important limitation is that we are implicitly assuming

that agents form expectations about the future as if the external propagation of the Covid shock

were similar to that of standard forecast errors. Sizable deviations from this benchmark, as cap-

tured by the complexity of the lag polynomial r (L) ,would violate the Lucas’ critique. In this re-

spect, our approach is similar to the analysis of “modest policy interventions,” which are defined

as having a modest impact on agents’ beliefs about the prevalence of a certain policy regime

(Leeper and Zha, 2003). Another recent example of an approach in this spirit is the approxima-

tion of macroeconomic dynamics at the zero lower bound based on the assumption that inter-

est rates will predictably remain at zero for a pre-specified period of time. This strategy, which

is usually implemented through the addition of anticipated shocks in the interest rate rule, has

been widely adopted in the DSGE literature (e.g. Laseen and Svensson, 2011, Campbell et al.,

2012, Cocci et al., 2013).

A final note of caution concerns the linearity of the model. This assumption is arguably more

problematic now then in normal times, given the exceptionally large macroeconomic volatility

induced by the Covid shock, relative to historical standards.
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3 A Monthly Time-Series Model of the U.S. Economy

This section levers the two assumptions discussed above to forecast the evolution of the U.S.

economy following the Covid outbreak. To obtain the parameters of the vector moving-average

process in (3), we invert the vector autoregression (VAR)

yt = c+B1yt−1 + ...+Bpyt−p + ut,

where c is a vector of constant terms. This VAR is estimated with six key U.S. macroeconomic

indicators observed at monthly frequency: (i) employment, measured by the logarithm of the to-

tal number of nonfarm employees (ii) unemployment, measured by the civilian unemployment

rate; (iii) consumption, measured by the logarithm of real personal consumption expenditures;

(iv) industrial production, measured by the logarithm of the industrial production index; (v) CPI,

measured by the logarithm of the consumer price index; and (vi) core PCE, measured by the log-

arithm of the price index of personal consumption expenditures excluding food and energy.

The VAR includes 13 lags and it is estimated on the sample 1988:12 to 2020:2. The analysis

starts in 1988:12 and not earlier to capture the muted reaction of inflation to economic fluctua-

tions that characterizes the last three decades, as documented in Del Negro et al. (2020b). The

estimation stops in 2020:2 to prevent the massive movements in the variables observed starting

in March 2020 from affecting the parameter estimates. The model is estimated with Bayesian

methods and a standard Minnesota prior, whose tightness is chosen based on the data-driven

approach of Giannone et al. (2015).

3.1 Scenarios

The crucial element of our procedure to forecast the economic impact of Covid-19 is the choice

of r (L). This choice consists of two parts. First, we infer {rj}j
∗

j=0 using data through April 2020.

Second, we calibrate {rj}j>1 by designing scenarios for f (L), which captures the exogenous

dynamics of the epidemic, and translating f (L) into r (L) as described below.

At the time of writing, we have data for March 2020—the month in which the Covid shock first

hit the U.S. economy—and April 2020. As a result, j∗ = 1 and we can easily estimate r0 and r1

using the VAR forecast errors in March and April, as described in section 2. As for the parameters

{rj}j>1, we select them by considering three alternative choices of f (L), corresponding to three

possible scenarios about the evolution of the pandemic.
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1. A baseline scenario, in which the pandemic gradually disappears by the end of 2020, fol-

lowing the path

fj =
1

1 + ej−5.5
f1, ∀j ≥ 2.

2. An optimistic scenario, in which the pandemic gradually disappears by September 2020,

following the path

[f2, f3, f4, f5] = [.9, .6, .3, .1] f1 and fj = 0n×1, ∀j ≥ 6.

3. A pessimistic scenario that starts like the baseline, but exhibits a second wave of infections

starting in November 2020 and peaking in February 2021, according to the path

fj =

[
1

1 + ej−5.5
f1 + e−

1
4
(j−11)2

]
f1, ∀j ≥ 2.

Figure 3.1 depicts the three pandemic scenarios, by plotting the coefficients that relate fj to

f1. These scenarios should be interpreted as statements about the “intensity” of the epidemic,

relative to its intensity in April 2020. For now, we choose these scenarios a priori, but one could

generate them by running an epidemiological model and looking at a summary statistic of its

outcomes, such as the number of infections. In this sense, the fact that the second wave under

the pessimistic scenario eventually reaches a peak of one can be loosely interpreted as implying

that the pandemic will be as “bad” in February 2021 as it was in April 2020, without being very

precise on how “bad” should be measured.

The final step in the procedure consists in transforming {fj}j>1 into the corresponding {rj}j>1,

using the relation r (L) = G0F (L)−1 f (L). This translation is challenging because computing

G0F (L)−1 would require identifying the structural macroeconomic shocks (i.e. knowledge of

G0), as well as taking a stance on their exogenous transmission (i.e. knowledge of F (L)). This is

only possible within a fully specified structural model. As a less restricted alternative, we approx-

imate the exogenous dynamics of the forecast errors in normal times with those of the dominant

exogenous process in a benchmark DSGE model. This approximation is motivated by the fact

that most estimated DSGE models typically attribute the bulk of variation in the data to a single

exogenous process (e.g. Smets and Wouters, 2007, Justiniano et al., 2010, Justiniano et al., 2011).

If these models are correct on the sources of business cycle fluctuations, the dynamics implied

by G0F (L)−1 should be similar to those of this dominant exogenous process. For example, Jus-

tiniano et al. (2010) find that the dominant business cycle shock is an investment shock, which

9



MACROECONOMIC FORECASTING IN THE TIME OF COVID-19
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Figure 1: Pandemic scenarios, relative to April 2020.

follows an AR(1) process with coefficient 0.72 when estimated on quarterly data. In monthly

data, this estimate implies a persistence coefficient of 0.9, which we use as reference for the cal-

culations below. Therefore, we setG0F (L)−1 = G0 (1− 0.9L), so that rj = G0 (fj − 0.9fj−1). The

last expression can be rewritten as rj = G0f1 (sj − 0.9sj−1), where sj are the coefficients used to

link fj to f1 in the scenarios of section 3.1. Finally, since f1 = G−10 (r1 + 0.9 · 1n×1), it follows that

rj = (r1 + 0.9 · 1n×1) (sj − 0.9sj−1).

3.2 Forecasting results

Figure 2 plots the projected impact of the Covid shock on the six variables included in our VAR

under the baseline scenario. The most notable feature of these responses is that the perfor-

mance of the economy continues to deteriorate for a few months after April 2020, when the

epidemic starts to unwind, according to our assumptions. Employment falls by more than 20

percent, reaching a through in August 2020 and the unemployment rate shoots above 20 per-

cent before declining steadily, reaching 5 percent at the beginning of 2023. Consumption also

declines by almost 20 percent and industrial production by 40 percent. Inflation reacts less than

the real variables, consistent with the evidence presented in Del Negro et al. (2020b) and Del

Negro et al. (2020a). Core PCE inflation does become negative, but it returns to 2 percent in mid

2021. Another feature of these forecasts is that consumption starts growing after July 2020, but it
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Figure 2: Baseline scenario: Forecasts of the impact of the Covid shock. The solid lines represent actual data until

April 2020, and posterior medians of the predictive density afterwards. The shaded areas correspond to 68- and 95-

percent posterior credible regions.

never fully return to its pre-Covid trend. This pattern is similar to that followed by consumption

during the recovery from the Great Recession. As a complement to the figure, table 3.2 translates

the projected path of consumption into (annualized) quarterly and annual growth rates for the

period 2020-2021, in a format similar to the Survey of Professional Forecasters (SPF).

Figures 3 and 4 present the outcome of our forecasting exercise under the more optimistic

and pessimistic scenarios of figure 3.1. As expected, the economy recovers at a faster pace when

the pandemic dissipates more quickly. Relative to the baseline scenario, all the variables reach

their trough two months earlier, in May 2020. In addition, the fall in employment and industrial

production are less pronounced and unemployment peaks near 15 percent. In comparison, the

forecasts under the scenario that includes a second wave of infections in the fall are considerably
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2020 2021 2022

scenario Q2 Q3 Q4

baseline
−67.2

[−72.4 − 61.7]
7.3

[−5.3 19.4]
22.2

[10.8 33.0]
3.1

[−1.8 7.5]
4.7

[1.7 7.9]

optimistic
−57.2

[−62.5 − 51.6]
40.8

[31.4 51.8]
2.9

[−5.3 11.5]
3.9

[1.1 6.4]
3.9

[2.1 5.8]

pessimistic
−67.2

[−72.4 − 61.7]
7.3

[−5.3 19.4]
7.4

[−3.4 17.8]
−8.1

[−14.4 − 1.7]
8.6

[3.1 13.3]

Table 1: Projected annualized quarterly growth rate (in percentage points) of real personal consumption expendi-

tures. Medians and 68-percent credible intervals of the predictive density.

gloomier, both in terms of duration and severity of the recession.

The translation of the various epidemic scenarios into the dynamic impact of the virus on

the economy is conditional on the assumed approximation of F (L)−1, which we based on a

simple back-of-the-envelope calculation. However, the relative responses across scenarios and

across variables are less dependent on the choice of this matrix, which is mostly relevant to de-

termine the overall dynamic profile of the responses. We exploit this fact in one of the robustness

exercises below, in which we approximate F (L)−1 so that the VAR forecast for unemployment

resembles the consensus in the SPF. In that exercise, the overall dynamics of the economy in re-

sponse to the pandemic are pinned down by the views embedded in the SPF consensus for un-

employment, but the VAR is left to determine the implications of those dynamics for the other

variables.

3.3 Robustness

This subsection studies the sensitivity of our forecasts to some modeling choices. Figure 5 dis-

plays some robustness to the approximation of F (L)−1. The blue lines correspond to the ap-

proximation F (L)−1 ≈ In (1− 0.9L), which underlies the forecasts in the previous subsection.

The grey and red lines correspond to forecasts obtained with coefficients of 0.85 and 0.95 respec-

tively. The latter implies a path of unemployment that is closer to the consensus SPF forecast,

as mentioned above. The duration and severity of the recession varies somewhat across calibra-

tions, but the relative response of the different variables is more similar.

Figure 6 presents forecasts under the baseline scenario, based on a VAR estimated with data
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Figure 3: Optimistic scenario: Forecasts of the impact of the Covid shock. The solid lines represent actual data

until April 2020, and posterior medians of the predictive density afterwards. The shaded areas correspond to 68- and

95-percent posterior credible regions.
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Figure 4: Pessimistic scenario: Forecasts of the impact of the Covid shock. The solid lines represent actual data

until April 2020, and posterior medians of the predictive density afterwards. The shaded areas correspond to 68- and

95-percent posterior credible regions.
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Figure 5: Baseline scenario: Forecasts of the impact of the Covid shock under three different assumptions about

the external dynamics of shocks in normal times. The solid lines represent actual data until April 2020, and posterior

medians of the predictive density afterwards. The shaded areas correspond to 68- and 95-percent posterior credible

regions.
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Figure 6: Baseline scenario: Forecasts of the impact of the Covid shock when the VAR is estimated using data

from 1959:1. The solid lines represent actual data until April 2020, and posterior medians of the predictive density

afterwards. The shaded areas correspond to 68- and 95-percent posterior credible regions.

starting in 1959. These projections have two notable features. First, deflation is deeper and more

entrenched than under the post-1990 dynamics, persisting through 2023. Second, consumption

recovers faster, eventually returning to its pre-Covid trend. Nonetheless, the effects on employ-

ment and unemployment are similar to those in the baseline forecasts.

Figure 7 is based on a VAR that includes Real Disposable Personal Income and the number of

Job Losers on Layoff from the Employment Report. This information should help to capture the

effects of the massive intervention to sustain incomes by the fiscal authority, as well as the possi-

ble change in business cycle dynamics associated with the unusually large number of temporary

layoffs during the pandemic, relative to more conventional recessions. However, including these

variables does not change the projections much. This is also the case when the baseline VAR is
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Figure 7: Baseline scenario: Forecasts of the impact of the Covid shock when the VAR is augmented with data on

the logarithm of Real Disposable Personal Income and the number of Job Losers on Layoff. The solid lines represent

actual data until April 2020, and posterior medians of the predictive density afterwards. The shaded areas correspond

to 68- and 95-percent posterior credible regions.

augmented to include the corporate bond spread of Gilchrist and Zakrajsek (2012), a popular

measure of financial stress, as shown in figure 8.

The final set of additional results is motivated by the fact that the pandemic has had a markedly

different impact across sectors, with those producing “social” goods hit much harder than the

rest. . To capture the effects of the asymmetric sectoral distribution of the shock , we estimated

a large-scale VAR that includes employment data for eleven major industry sectors. Given its

relatively large number of variables, we estimate this model on data from 1959. The forecasts

it produces are in figures 9 and 10. Perhaps surprisingly, the projections for the aggregate vari-

ables are similar to those in the baseline, although they are noisier due to the large number of
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Figure 8: Baseline scenario: Forecasts of the impact of the Covid shock when the VAR is augmented with data on the

Gilchrist and Zakrajšek (2012) spread. The solid lines represent actual data until April 2020, and posterior medians of

the predictive density afterwards. The shaded areas correspond to 68- and 95-percent posterior credible regions.
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Figure 9: Baseline scenario: Forecasts of the impact of the Covid shock when the VAR is augmented with employ-

ment sectoral data. The solid lines represent actual data until April 2020, and posterior medians of the predictive

density afterwards. The shaded areas correspond to 68- and 95-percent posterior credible regions.

estimated parameters.

4 Concluding remarks

Forecasting the evolution of the U.S. economy in response to the COVID-19 pandemic is crucial,

but challenging, since an economic shock of this kind was never observed in the recorded past.

This paper has articulated a set of assumptions that allow to build a forecast distribution for

a vector of monthly macroeconomic variables based on their historical evolution. Given the

uncertainty on the future of the epidemic, as well as the difficulties in translating a path for the

disease into its implications for the economy, the forecasts presented above are not more than a
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Figure 10: Baseline scenario: Forecasts of the impact of the Covid shock when the VAR is augmented with employ-

ment sectoral data. The solid lines represent actual data until April 2020, and posterior medians of the predictive

density afterwards. The shaded areas correspond to 68- and 95-percent posterior credible regions.
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rough guide to what might happen to the U.S. economy over the next year or two, conditional on

the assumptions on which they are built. Even if those assumptions and the resulting forecasts

are not borne out by the data, this exercise should produce valuable insights into the origins of

economic fluctuations and their propagation across sectors of the economy and over time.
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