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is the condition for procompetitive vs. anticompetitive entry related to that for excessive vs.
insufficient entry? To investigate this question, we extend the Dixit-Stiglitz monopolistic
competition model to three classes of homothetic demand systems, which are mutually exclusive
except that each of them contains CES as a knife-edge case. In all three classes, we show, among
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Abstract 

The Dixit-Stiglitz model of monopolistic competition with symmetric CES 
demand system with gross substitutes is widely used as a building block across 
many applied general equilibrium fields.  Two of its remarkable features are the 
invariance of the markup rate and the optimality of the free-entry equilibrium. Of 
course, neither of these two features is robust.  Departure from CES makes entry 
either procompetitive or anticompetitive (i.e., the markup rate either goes down or 
goes up as more firms enter).  Departure from CES also makes entry either 
excessive or insufficient.  But how is the condition for procompetitive vs. 
anticompetitive entry related to that for excessive vs. insufficient entry? To 
investigate this question, we extend the Dixit-Stiglitz monopolistic competition 
model to three classes of homothetic demand systems, which are mutually 
exclusive except that each of them contains CES as a knife-edge case.  In all three 
classes, we show, among others, that entry is excessive (insufficient) when it is 
globally procompetitive (anticompetitive) and that, in the presence of the choke 
price, entry is procompetitive and excessive at least for a sufficiently large market 
size. 
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substitutes 

JEL Classification: D43, D61, D62, L13 
 
 
 
___________________ 
*We thank Greg Mankiw for his comment on an earlier version. This paper was written during Matsuyama’s visit as 
a Resident Scholar to the Research Department at Federal Reserve Bank of Chicago, whose hospitality he gratefully 
acknowledges. 



 
 

Page 2 of 51 
 

1. Introduction 

The monopolistic competition model with symmetric CES demand system with gross 

substitutes, developed in Dixit-Stiglitz (1977, Section I), is widely used as a building block 

across many applied general equilibrium fields, most notably in macroeconomics and 

international trade.  Among its remarkable features are the invariance of the markup rate and the 

optimality of the free-entry equilibrium.1  Of course, neither of these two features is robust.  

Once we depart from the knife-edge case of CES, the markup rate charged by each firm would 

change, as more firms enter in response to a market size increase.  The markup rate may either 

go down (the case of procompetitive entry) or go up (the case of anticompetitive entry). 

Departure from CES would also lead to the inefficiency of the free-entry equilibrium. There may 

be either too many firms operating and hence too much product variety being offered (the case of 

excessive entry), or too few firms operating and too little product variety being offered (the case 

of insufficient entry). 

But how is the condition for procompetitive vs. anticompetitive entry related to that for 

excessive vs. insufficient entry?  One might think that all four combinations (procompetitive-

excessive, procompetitive-insufficient, anticompetitive-excessive, and anticompetitive-

insufficient) are feasible. After all, CES leads to the markup rate invariance and the optimality of 

the free-entry equilibrium for different reasons.  The markup rate is invariant under CES, 

because each firm faces demand curve whose price elasticity is exogenously constant.  It 

depends entirely on the local property of the demand curve, that is, it continues to hold as long as 

the price elasticity is constant around the point chosen by each firm.  In contrast, the optimality 

of the free-entry equilibrium depends on the global property of the demand system.  To 

understand this, recall that there are two sources of externalities in monopolistic competition 

with entry, as discussed in Tirole (1988, Chapter 7), Matsuyama (1995; Section 3E) and Dhingra 

and Morrow (2019) among many others.  They are the inability of a firm to fully appropriate its 

social surplus its entry generates, which creates positive externalities, and its failure to account 

for business stealing from other firms, which creates negative externalities2.  It turns out that 

 
1To be precise, there exists an outside competitive sector in Dixit and Stiglitz (1977). Due to intersectoral distortion, 
there may be too little entry to the monopolistically competitive sector.  Yet, they showed that the resource 
allocation within the monopolistically competitive sector is optimal at the free-entry equilibrium under CES. 
2Mankiw and Whinston (1986) pointed out that such a business stealing effect causes excessive entry in a 
homogenous goods industry in partial equilibrium setting. 
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these two sources of externalities, one positive and one negative, exactly cancel out each other 

under CES. 

We argue, however, that there is a tight connection between the condition for 

procompetitive vs. anticompetitive entry and that for excessive vs. insufficient entry.  Starting 

from the knife-edge case of CES, where the equilibrium entry is optimal, making entry 

procompetitive exacerbates negative externalities to other firms by reducing their profit margin, 

which leads to excessive entry.  Likewise, starting from the knife-edge case of CES, making 

entry anticompetitive mitigates negative externalities to other firms by increasing their profit-

margin, which leads to insufficient entry.  This suggests that procompetitive entry tends to be 

excessive, while anticompetitive entry tends to be insufficient. 

So, the question to ask is: “when does procompetitive entry imply excessive entry? and 

when does anticompetitive entry imply insufficient entry?”  To investigate this question, we 

extend the Dixit-Stiglitz monopolistic competition model with symmetric CES with gross 

substitutes to three classes of symmetric homothetic demand systems with gross substitutes, each 

named for its defining properties, Homotheticity with a Single Aggregator (H.S.A.), 

Homotheticity with Direct Implicit Additivity (H.D.I.A.), and Homotheticity with Indirect Implicit 

Additivity (H.I.I.A.). We have chosen these three classes for several reasons. 

 First of all, they are all homothetic. Although there have been many attempts to develop 

monopolistic competition models without CES, they have typically done so by making the 

demand system nonhomothetic.3  However, in order to isolate the efficiency implications of the 

markup rate being responsive to entry caused by a market size change, we need to avoid 

introducing the scale effect of a market size change operating through nonhomotheticity.  In 

addition, we need to maintain homotheticity to keep our departure from CES useful for most 

applications in macroeconomics, where monopolistic competition is used to model an 

intermediate inputs industry, which sells differentiated inputs to the competitive final goods 

industry, whose constant returns to scale (CRS) technology generates homothetic demand for 

those inputs. 

 
3Indeed, Dixit and Stiglitz (1977, Section II) already considered such an extension. Although they called this 
extension, “Variable Elasticity Case,” the well-known Bergson’s Law states that, within the class of demand 
systems they considered, they are homothetic if and only if they are CES. In other words, any departure from CES 
within this class introduces nonhomotheticity. 
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Second, these three classes are mutually exclusive except that they all contain CES as a 

knife-edge case; see Figure 1, adopted from Matsuyama and Ushchev (2017)4.  Thus, they offer 

three alternative ways of departing from CES, while respecting the homotheticity requirement.   

Third, they are all tractable and yet flexible.  With some additional restrictions, there 

exists a unique symmetric free-entry equilibrium for any level of market size, which is 

analytically solvable, thereby facilitating the comparative statics and welfare analysis.  Most 

importantly for our purpose, both the condition for procompetitive vs, anticompetitive entry and 

the condition for excessive vs. insufficient entry can be obtained explicitly and compared with 

each other. 

Here are our main findings.  In all three classes, entry is excessive when it is globally 

procompetitive.  By “globally” procompetitive, we mean that the markup rate goes down 

whenever more firms enter, which occurs if and only if Marshall’s second law of demand holds 

(i.e., the price elasticity increases with the price) everywhere along the demand curve. Likewise, 

in all three classes, entry is  insufficient when it is globally anticompetitive, that is, when the 

markup rate goes up whenever more firms enter.5  Between these two cases lies the borderline 

case of CES, where entry is always efficient because the markup rate is globally independent of 

market size. One important implication of these findings, as visualized in Figure 2, is that, for 

those who believe that procompetitive entry is the empirically relevant case, entry is excessive, 

which suggests that (small) regulation of entry is welfare-improving, at least in the absence of 

any other distortions. 

We also show that entry is procompetitive and excessive for a sufficiently large market 

size in the presence of the choke price.6  This is because the price elasticity goes to infinity at the 

choke price.  This means that, as market size increases and more firms enter, each firm is forced 

to operate close to the choke price, that is, in the range where the price elasticity is increasing 

and the markup rate is decreasing in market size. 

 
4Matsuyama and Ushchev (2017, Proposition 4) proved that these classes are pairwise-disjoint with the sole 
exception of CES, even without restricting to be symmetric with gross substitutes. However, in this paper, we 
impose these restrictions to make them applicable to the Dixit-Stiglitz environment. 
5The qualification that the markup rate responds to entry monotonically is important.  In all three classes, we show 
by means of counter examples that, if the markup rate responds nonmonotonically, entry can be procompetitive and 
yet insufficient or anticompetitive and yet excessive in some range of parameter values. 
6A choke price exists if demand for a product goes to zero at a finite price.  There exists no choke price under CES.  
There exist choke prices under translog. 
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As already indicated, there have been many attempts to extend the Dixit-Stiglitz 

monopolistic competition models under CES to non-CES demand systems, starting from Dixit 

and Stiglitz (1977, Section II): see the survey by Thisse and Ushchev (2018) for an extensive 

reference.   However, virtually all of them have done so by making the demand system 

nonhomothetic.  Feenstra (2003) is an exception.  He used symmetric homothetic translog as an 

alternative to CES and showed how it exhibits the procompetitive effect with a choke-price.  

However, he did not investigate how the equilibrium and optimal allocations differ from each 

other. Since symmetric homothetic translog is a special case of H.S.A., our analysis suggests 

excessive entry and hence a welfare-improving entry regulation under translog.  Kimball (1995) 

considered the class of demand systems identical to H.D.I.A., except that he assumed an 

exogenous set of firms producing an exogenous set of products.  By ruling out entry by 

assumption, he did not need to worry about ensuring the existence and uniqueness of the free-

entry equilibrium, as we do, and he did not address any of the issues we are interested in.  To the 

best of our knowledge, this is the first paper to offer a full characterization of the free-entry 

equilibrium of monopolistic competition models under H.S.A., H.D.I.A., and H.I.I.A. 

Indeed, very few have ever investigated the question of excessive vs. insufficient entry in 

monopolistic competition under non-CES demand systems, whether homothetic or not.  Two 

exceptions are Dixit and Stiglitz (1977, Section II) under nonhomothetic, non-CES demand 

systems, and Dhingra and Morrow (2019), which further extended their analysis to the case of 

heterogeneous firms a la Melitz.  However, the class of demand systems they used makes it 

difficult to see to what extent their results are due to the endogeneity of the markup rate or due to 

nonhomotheticity of the demand systems. 

The rest of the paper is organized as follows.  In Section 2, we present what we call the 

Dixit-Stiglitz environment, the common setting across all three classes.  Then, Sections 3, 4, and 

5 deal with H.S.A., H.D.I.A., and H.I.I.A., respectively.  These three sections are written in such  

a way that they can be read independently and in any order.  And they are structured in the same 

way.  In each section, we first define the class of homothetic demand systems, and explain its 

key properties.  Then, we address the firm’s behavior, identify the conditions that ensure the 

existence and uniqueness of symmetric free-entry equilibrium, and solve for it explicitly 

(Propositions 1, 4, and 7, respectively).  Then, we conduct the comparative statics to identify the 

condition for procompetitive vs. anticompetitive entry (Propositions 2, 5, and 8, respectively), 
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and perform the welfare analysis to identify the condition for excessive vs. insufficient entry 

(Propositions 3, 6, and 9, respectively).  Then, we investigate the connection between the two 

conditions (Theorems 1,2, and 3), followed by three examples (one with global monotonicity, 

one with a choke price, and one without global monotonicity) to illustrate the theorems.  Section 

6 concludes.  Technical proofs for some lemmas are gathered in the two appendices. 

 

2.  The Dixit-Stiglitz Environment 

Consider the economy endowed with 𝐿𝐿 units of the single factor of production, which we 

shall call labor and take as the numeraire.  Labor is used to produce a continuum of varieties of 

differentiated intermediate inputs, which are in turn assembled to produce the single final good. 

2.1.  Competitive Final Goods Producers and Their Demand for Intermediate Inputs 

The final good is produced competitively by using CRS technology, given by 𝑋𝑋 = 𝑋𝑋(𝐱𝐱), 

where 𝐱𝐱 = {𝑥𝑥(𝜔𝜔);  𝜔𝜔 ∈ Ω} is a quantity vector of intermediate inputs, with 𝜔𝜔 being the index of 

a particular input variety, and Ω being the set of input varieties available.  It is assumed that 𝑋𝑋(𝐱𝐱) 

satisfies linear homogeneity, strict monotonicity, quasi-concavity, and symmetry, for each Ω.  

The unit cost function corresponding to 𝑋𝑋 = 𝑋𝑋(𝐱𝐱) can be obtained by: 

 𝑃𝑃 =  𝑃𝑃(𝐩𝐩) ≡ 𝑚𝑚𝑚𝑚𝑚𝑚
𝐱𝐱
�𝐩𝐩𝐩𝐩 = ∫ 𝑝𝑝(𝜔𝜔)𝑥𝑥(𝜔𝜔)𝑑𝑑𝑑𝑑Ω �𝑋𝑋(𝐱𝐱) ≥ 1� , (1) 

where 𝐩𝐩 = {𝑝𝑝(𝜔𝜔);  𝜔𝜔 ∈ Ω} is a price vector of intermediate inputs, and 𝑃𝑃(𝐩𝐩) also satisfies linear 

homogeneity, strict monotonicity, quasi-concavity, and symmetry, for each Ω.  Conversely, 

starting from any linear homogeneous, strictly monotonic, quasi-concave and symmetric 𝑃𝑃(𝐩𝐩), 

one could recover the underlying linear homogenous, strictly monotonic, quasi-concave and 

symmetric production function as follows: 

 𝑋𝑋 =  𝑋𝑋(𝐱𝐱) ≡ 𝑚𝑚𝑚𝑚𝑚𝑚
𝐩𝐩

�𝐩𝐩𝐩𝐩 = ∫ 𝑝𝑝(𝜔𝜔)𝑥𝑥(𝜔𝜔)𝑑𝑑𝑑𝑑Ω �𝑃𝑃(𝐩𝐩) ≥ 1�. (2) 

Thus, either 𝑋𝑋 = 𝑋𝑋(𝐱𝐱) or 𝑃𝑃 = 𝑃𝑃(𝐩𝐩)  can be used as a primitive of this CRS technology.   

 As is well-known from the duality theory, the cost minimization by competitive 

producers generates the demand curve and the inverse demand curve for each input, 

𝑥𝑥(𝜔𝜔) = 𝑋𝑋(𝐱𝐱)
𝜕𝜕𝜕𝜕(𝐩𝐩)
𝜕𝜕𝜕𝜕(𝜔𝜔)

;  𝑝𝑝(𝜔𝜔) = 𝑃𝑃(𝐩𝐩)
𝜕𝜕𝜕𝜕(𝐱𝐱)
𝜕𝜕𝜕𝜕(𝜔𝜔), 

from either of which one could show, using Euler’s theorem on linear homogeneous functions,  

𝐩𝐩𝐩𝐩 = � 𝑝𝑝(𝜔𝜔)𝑥𝑥(𝜔𝜔)𝑑𝑑𝑑𝑑
Ω

= 𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱). 
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Furthermore, the market share of each input can be expressed as  

𝑝𝑝(𝜔𝜔)𝑥𝑥(𝜔𝜔)
𝐩𝐩𝐩𝐩

=
𝑝𝑝(𝜔𝜔)𝑥𝑥(𝜔𝜔)
𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) =  

𝜕𝜕 log𝑃𝑃(𝐩𝐩)
𝜕𝜕 log𝑝𝑝(𝜔𝜔)

 =  
𝜕𝜕 log𝑋𝑋(𝐱𝐱)
𝜕𝜕 log 𝑥𝑥(𝜔𝜔)

, 

and the condition for a pair of inputs to be gross substitutes (i.e., the Hicks-Allen elasticity of 

substitution between the two is greater than one) can be written as: 

−
𝜕𝜕 log �𝑥𝑥(𝜔𝜔1)

𝑥𝑥(𝜔𝜔2)�

𝜕𝜕 log �𝑝𝑝(𝜔𝜔1)
𝑝𝑝(𝜔𝜔2)�

= −
𝜕𝜕 log �𝜕𝜕𝜕𝜕(𝐩𝐩) 𝜕𝜕𝜕𝜕(𝜔𝜔1)⁄

𝜕𝜕𝜕𝜕(𝐩𝐩) 𝜕𝜕𝜕𝜕(𝜔𝜔2)⁄ �

𝜕𝜕 log �𝑝𝑝(𝜔𝜔1)
𝑝𝑝(𝜔𝜔2)�

= −
𝜕𝜕 log �𝑥𝑥(𝜔𝜔1)

𝑥𝑥(𝜔𝜔2)�

𝜕𝜕 log �𝜕𝜕𝜕𝜕(𝐱𝐱) 𝜕𝜕𝜕𝜕(𝜔𝜔1)⁄
𝜕𝜕𝜕𝜕(𝐱𝐱) 𝜕𝜕𝜕𝜕(𝜔𝜔2)⁄ �

 > 1. 

2.2.Monopolistically Competitive Differentiated Intermediate Inputs Producers 

There is a continuum of intermediate input producing firms, also indexed by 𝜔𝜔 ∈ Ω, each 

producing a single variety of its own.  They share the same IRS technology: producing 𝑥𝑥 > 0 

units of input requires 𝜓𝜓𝜓𝜓 + 𝐹𝐹 units of labor, where 𝐹𝐹 > 0 is the fixed cost of entry, and 𝜓𝜓 > 0 

the marginal cost of production. (Recall that labor is taken as the numeraire.)  Being 

monopolistically competitive, each firm sets its price and/or its quantity to maximize profit, 

subject to the downward-sloping demand curve it faces with the aggregate variables taken as 

given.  There is free entry/exit, so that the maximized profit is equal to the fixed cost of entry, 𝐹𝐹, 

and hence the net profit is equal to zero in equilibrium.   Thus, for each active firm 𝜔𝜔 ∈ Ω, 

𝑝𝑝(𝜔𝜔)𝑥𝑥(𝜔𝜔) = 𝜓𝜓𝑥𝑥(𝜔𝜔) + 𝐹𝐹 holds, and hence 

𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) = 𝐩𝐩𝐩𝐩 = � 𝑝𝑝(𝜔𝜔)𝑥𝑥(𝜔𝜔)𝑑𝑑𝑑𝑑
Ω

= � (𝜓𝜓𝑥𝑥(𝜔𝜔) + 𝐹𝐹)𝑑𝑑𝑑𝑑
Ω

 = 𝜓𝜓� 𝑥𝑥(𝜔𝜔)𝑑𝑑𝑑𝑑
Ω

+ 𝑉𝑉𝑉𝑉 = 𝐿𝐿, 

where 𝑉𝑉 ≡ |Ω| is the Lebesgue measure of Ω.  Thus, the aggregate market size is given by the 

total labor supply, 𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) = 𝐿𝐿. 

 

2.3.CES Benchmark 

The above setup is ubiquitous as a building block in many applied general equilibrium 

fields, particularly in international trade and macroeconomics (both in business cycles and 

economic growth).  In addition, the vast majority of studies in these literatures assumes the 

assembly technology of the final good to be symmetric CES with gross substitutes: 

𝑋𝑋 = 𝑋𝑋(𝐱𝐱) = 𝑍𝑍 �� [𝑥𝑥(𝜔𝜔)]1−
1
𝜎𝜎𝑑𝑑𝑑𝑑

Ω
�

𝜎𝜎
𝜎𝜎−1

⟺ 𝑃𝑃 = 𝑃𝑃(𝐩𝐩) =
1
𝑍𝑍
�� [𝑝𝑝(𝜔𝜔)]1−𝜎𝜎𝑑𝑑𝑑𝑑
Ω

�

1
1−𝜎𝜎

, 

which implies 
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𝑝𝑝(𝜔𝜔)𝑥𝑥(𝜔𝜔)
𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) = �

𝑥𝑥(𝜔𝜔)
𝑋𝑋(𝐱𝐱)/𝑍𝑍

�
1−1𝜎𝜎

 = �
𝑝𝑝(𝜔𝜔)
𝑍𝑍𝑍𝑍(𝐩𝐩)

�
1−𝜎𝜎

 , 

where 𝜎𝜎 > 1 is the (exogenous and constant) elasticity of substitution between each pair of 

inputs, and 𝑍𝑍 > 0 a productivity parameter. 

It is well-known (and will be demonstrated later in this paper) that the CES assumption 

has some strong implications in this setup.  First, it guarantees the equilibrium is unique and 

symmetric, 𝑝𝑝(𝜔𝜔) = 𝑝𝑝 and 𝑥𝑥(𝜔𝜔) = 𝑥𝑥 for all 𝜔𝜔 ∈ Ω. Second, at this unique equilibrium,  

• each firm sells its own variety at the (common) exogenous markup rate; in particular, it is 

independent of market size, 𝐿𝐿;  

• the equilibrium allocation is optimal; in particular, the equilibrium mass of firms that enter 

(and that of input varieties offered) is optimal. 

Of course, neither of these two results, the market size neutrality on the markup rate, and the 

optimality of equilibrium entry, is robust.  Depending on how we depart from the knife-edge 

CES assumption, we could have either the case of procompetitive entry or the case of 

anticompetitive entry, in which the markup rate goes either down or up in response to entry 

caused by a market size increase, as well as the case of excessive entry or the case of insufficient 

entry.  But how are the cases of procompetitive or anticompetitive entry related to the cases of 

excessive or insufficient entry?  We explore this question, using three alternative classes of CRS 

technologies, which are pairwise disjoint except that each contains CES as a knife-edge case. 

 

3.  Dixit-Stiglitz under H.S.A. 

3.1.H.S.A. Demand System 

We call CRS technology, 𝑋𝑋 = 𝑋𝑋(𝐱𝐱) or 𝑃𝑃 = 𝑃𝑃(𝐩𝐩), homothetic with a single aggregator 

(H.S.A.) if the market share of any input 𝜔𝜔, as a function of  𝐩𝐩, can be written as: 

 𝑝𝑝(𝜔𝜔)𝑥𝑥(𝜔𝜔)
𝐩𝐩𝐩𝐩

=
𝑝𝑝(𝜔𝜔)𝑥𝑥(𝜔𝜔)
𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱)

=  
𝜕𝜕 log𝑃𝑃(𝐩𝐩)
𝜕𝜕 log𝑝𝑝(𝜔𝜔)

= 𝑠𝑠 �
𝑝𝑝(𝜔𝜔)
𝐴𝐴(𝐩𝐩)

�. 
(3) 

Here, 𝑠𝑠:ℝ++ → ℝ+ is the market share function, and it is assumed to be twice continuously 

differentiable and strictly decreasing as long as 𝑠𝑠(𝑧𝑧) > 0, with lim𝑧𝑧→0𝑠𝑠(𝑧𝑧) = ∞ and 

 lim𝑧𝑧→𝑧̅𝑧𝑠𝑠(𝑧𝑧) = 0, where 𝑧𝑧̅ ≡ inf{𝑧𝑧 > 0|𝑠𝑠(𝑧𝑧) = 0}, and 𝐴𝐴(𝐩𝐩) is linear homogenous in 𝐩𝐩, defined 

implicitly and uniquely by 
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� 𝑠𝑠 �

𝑝𝑝(𝜔𝜔)
𝐴𝐴(𝐩𝐩)

� 𝑑𝑑𝑑𝑑
Ω

 = 1, 
 (4) 

which ensures, by construction, that the market shares of all inputs are added up to one. 

Eqs.(3)-(4) state that the market share of any input 𝜔𝜔 is decreasing in its relative price, 

which is defined as its own price, 𝑝𝑝(𝜔𝜔), divided by the common price aggregator, 𝐴𝐴(𝐩𝐩).  Notice 

that 𝐴𝐴(𝐩𝐩) is independent of 𝜔𝜔; it is “the average price” against which the relative prices of all 

inputs are measured. In other words, one could keep track of  all the cross-price effects in the 

demand system by looking at a single aggregator, 𝐴𝐴(𝐩𝐩), which is the key feature of H.S.A.7   

The monotonicity of 𝑠𝑠(∙), combined with the assumptions, lim𝑧𝑧→0𝑠𝑠(𝑧𝑧) = ∞ and  lim𝑧𝑧→𝑧̅𝑧𝑠𝑠(𝑧𝑧) =

0, ensures that 𝐴𝐴(𝐩𝐩) is defined uniquely by eq.(4), no matter what 𝑉𝑉 (the measure of Ω) is.  

The assumption that 𝑠𝑠(∙) is strictly decreasing means that inputs are gross substitutes.  To 

see this, one could show from eq.(3) that the elasticity of substitution between a pair of inputs, 

𝜔𝜔1 and 𝜔𝜔2, evaluated at the same price, is  

−
𝜕𝜕 ln(𝑥𝑥(𝜔𝜔1) 𝑥𝑥(𝜔𝜔2)⁄ )
𝜕𝜕 ln(𝑝𝑝(𝜔𝜔1) 𝑝𝑝(𝜔𝜔2)⁄ )�

𝑝𝑝(𝜔𝜔1)=𝑝𝑝(𝜔𝜔2)=𝑝𝑝
= 𝜁𝜁 �

𝑝𝑝
𝐴𝐴(𝐩𝐩)

� > 1 

where 𝜁𝜁: (0, 𝑧𝑧̅) → (1,∞) is defined by: 

 
𝜁𝜁(𝑧𝑧) ≡ 1 −

𝑧𝑧𝑠𝑠′(𝑧𝑧)
𝑠𝑠(𝑧𝑧) > 1. 

 

Note that 𝜁𝜁(∙) is continuously differentiable for 𝑧𝑧 ∈ (0, 𝑧𝑧̅), and lim
𝑧𝑧→𝑧̅𝑧

𝜁𝜁(𝑧𝑧) = ∞ if 𝑧𝑧̅ < ∞.  

Conversely, from any continuously differentiable 𝜁𝜁: (0, 𝑧𝑧̅) → (1,∞), satisfying lim
𝑧𝑧→𝑧̅𝑧

𝜁𝜁(𝑧𝑧) = ∞ if 

𝑧𝑧̅ < ∞, one could recover the market share function as follows:  

𝑠𝑠(𝑧𝑧) = exp ��
1 − 𝜁𝜁(𝜉𝜉)

𝜉𝜉
𝑑𝑑𝑑𝑑

𝑧𝑧

𝑧𝑧0
�, 

where 𝑧𝑧0 ∈ (0, 𝑧𝑧̅) is a constant. 8  Hence, we could also use 𝜁𝜁(∙) as a primitive of symmetric 

H.S.A. with gross substitutes, instead of the market share function, 𝑠𝑠(∙).  

 
7On the other hand, the assumption that 𝑠𝑠(∙), is independent of 𝜔𝜔 is not a defining feature of H.S.A.; this is due to 
the symmetry of the production technology. For asymmetric H.S.A., 𝑠𝑠(∙) could depend on 𝜔𝜔.  
8This constant implies that 𝑠𝑠(∙) is determined up to a positive scalar multiplier.  However, 𝛾𝛾𝑠𝑠(𝑧𝑧) with 𝛾𝛾 > 0 
generate the same H.S.A. technology. All we need is to renormalize the indexation of varieties, as 
∫  𝛾𝛾𝛾𝛾(𝑝𝑝(𝜔𝜔) 𝐴𝐴⁄ )𝑑𝑑𝑑𝑑Ω  = ∫  𝛾𝛾𝛾𝛾(𝑝𝑝(𝜔𝜔′) 𝐴𝐴⁄ )𝑑𝑑𝜔𝜔′

Ω = 1, with 𝜔𝜔′ = 𝛾𝛾𝛾𝛾. 
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Note also that we allow for the possibility of 𝑧𝑧̅ < ∞, that is, the existence of the choke 

(relative) price; if 𝑧𝑧̅ = ∞, the choke price does not exist and demand for each input always 

remains positive for any positive price vector. 

Symmetric CES with gross substitutes is a special case of H.S.A., generated by 𝑠𝑠(𝑧𝑧) =

𝛾𝛾𝑧𝑧1−𝜎𝜎 (𝜎𝜎 > 1).  In this case, 𝑃𝑃(𝐩𝐩) = 𝑐𝑐𝑐𝑐(𝐩𝐩), where 𝑐𝑐 > 0 is a constant. Symmetric translog is 

another special case, generated by 𝑠𝑠(𝑧𝑧) = max{−𝛾𝛾 log(𝑧𝑧) , 0}.  In this case, 𝑃𝑃(𝐩𝐩) ≠ 𝑐𝑐𝑐𝑐(𝐩𝐩) for 

any constant 𝑐𝑐.  More generally, one can show, by integrating eq.(3), that the common price 

aggregator, 𝐴𝐴(𝐩𝐩), is related to the unit cost function, 𝑃𝑃(𝐩𝐩), as follows: 

 
log �

𝑃𝑃(𝐩𝐩)
𝐴𝐴(𝐩𝐩)� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.−� � �

𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝑑𝑑
𝑧̅𝑧

𝑝𝑝(𝜔𝜔) 𝐴𝐴(𝐩𝐩)⁄

� 𝑑𝑑𝑑𝑑
Ω

. 
(5) 

In the case of CES, the RHS of eq.(5) is independent of 𝐩𝐩,  hence 𝑃𝑃(𝐩𝐩) = 𝑐𝑐𝑐𝑐(𝐩𝐩), where 𝑐𝑐 > 0 is 

a constant.  However, CES is unique in this regard.  It turns out that, with the sole exception of 

CES, the RHS of eq.(5) depends on 𝐩𝐩, and hence 𝑃𝑃(𝐩𝐩) ≠ 𝑐𝑐𝑐𝑐(𝐩𝐩) for any constant 𝑐𝑐, as will be 

shown in the Corollary 2 of Lemma 2.9 This should not come as a total surprise. After all, 𝐴𝐴(𝐩𝐩) 

captures the cross-price effects in the demand system, while 𝑃𝑃(𝐩𝐩) captures the productivity (or 

welfare) effects of price changes; there is no reason to think that they should move together in 

general. 

Remark 1: Eqs.(3)-(4) define H.S.A. by restricting the properties of the implied demand system. 

The natural question is then: do CRS production functions that generate such a demand system 

exist? The answer is yes.  For each demand system satisfying these properties, there exist strictly 

increasing, CRS production functions, which is strictly quasi-concave in the interior, uniquely 

determined up to a positive scalar.10  

Remark 2: For any market share function, 𝑠𝑠:ℝ++ → ℝ+, satisfying the above conditions,  

a class of the market share functions, 𝑠𝑠𝜆𝜆(𝑧𝑧) ≡ 𝑠𝑠(𝜆𝜆𝜆𝜆) for 𝜆𝜆 > 0, generate the same demand system, 

with 𝐴𝐴𝜆𝜆(𝐩𝐩) = 𝜆𝜆𝜆𝜆(𝐩𝐩), because  𝑠𝑠𝜆𝜆 �
𝑝𝑝(𝜔𝜔)
𝐴𝐴𝜆𝜆(𝐩𝐩)

� =  𝑠𝑠 �𝜆𝜆𝜆𝜆(𝜔𝜔)
𝐴𝐴𝜆𝜆(𝐩𝐩)

� = 𝑠𝑠 �𝑝𝑝(𝜔𝜔)
𝐴𝐴(𝐩𝐩)

�.  In this sense, 𝑠𝑠𝜆𝜆(𝑧𝑧) ≡ 𝑠𝑠(𝜆𝜆𝜆𝜆) 

for 𝜆𝜆 > 0 are all equivalent. This equivalence gives us freedom to select 𝜆𝜆 to simplify the notation 

when discussing parameteric examples.  

 
9This holds also for asymmetric H.S.A., as well as H.S.A. with gross complements.  See Matsuyama and Ushchev 
(2017; Proposition 1-iii))  
10See Matsuyama and Ushchev (2017; Proposition 1-i)), which proved the existence of the underlying CRS 
production functions for more general cases, including the cases of asymmetry and gross complementarity.  
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3.2.Profit Maximization By Input Producing Firms under H.S.A.  

The profit of firm 𝜔𝜔 ∈ Ω is given by 𝜋𝜋(𝜔𝜔) = (𝑝𝑝(𝜔𝜔) − 𝜓𝜓)𝑥𝑥(𝜔𝜔) − 𝐹𝐹, which can be 

written, using eq.(3), as:  

 
𝜋𝜋(𝜔𝜔) = �1 −

𝜓𝜓 𝐴𝐴(𝐩𝐩)⁄
𝑧𝑧(𝜔𝜔) � 𝑠𝑠�𝑧𝑧(𝜔𝜔)�𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) − 𝐹𝐹, 

 

where 𝑧𝑧(𝜔𝜔) ≡ 𝑝𝑝(𝜔𝜔) 𝐴𝐴(𝐩𝐩)⁄  is its relative price.  Firm 𝜔𝜔 chooses its relative price 𝑧𝑧(𝜔𝜔) to 

maximize 𝜋𝜋(𝜔𝜔), taking the aggregate variables, 𝐴𝐴(𝐩𝐩),𝑃𝑃(𝐩𝐩), and 𝑋𝑋(𝐱𝐱) as given.  The FOC is  

 
𝑧𝑧(𝜔𝜔)�1 −

1
𝜁𝜁�𝑧𝑧(𝜔𝜔)�

� =
𝑝𝑝(𝜔𝜔)
𝐴𝐴(𝐩𝐩) �1 −

1
𝜁𝜁�𝑧𝑧(𝜔𝜔)�

� =
𝜓𝜓

𝐴𝐴(𝐩𝐩), 
(6) 

and the SOC is 

𝜁𝜁�𝑧𝑧(𝜔𝜔)� − 1 + 𝑧𝑧(𝜔𝜔)
𝜁𝜁′�𝑧𝑧(𝜔𝜔)�
𝜁𝜁�𝑧𝑧(𝜔𝜔)�

> 0. 

In what follows, we keep it simple by imposing the following assumption to ensure that the FOC 

is sufficient for the global optimum. 

 

Assumption S1:  For all 𝑧𝑧 ∈ (0, 𝑧𝑧), 

𝑑𝑑 log(𝑠𝑠(𝑧𝑧) 𝜁𝜁(𝑧𝑧)⁄ )
𝑑𝑑 log 𝑧𝑧

= 1 − 𝜁𝜁(𝑧𝑧) −
𝑧𝑧𝜁𝜁′(𝑧𝑧)
𝜁𝜁(𝑧𝑧) < 0. 

Under S1, the LHS of eq.(6) is strictly decreasing in 𝑧𝑧(𝜔𝜔).  Hence, eq.(6) gives the unique profit-

maximizing price for each firm.  Thus, all firms set the same price, 𝑝𝑝(𝜔𝜔) = 𝑝𝑝, or 𝑧𝑧(𝜔𝜔) = 𝑧𝑧, and 

produce the same amount, 𝑥𝑥(𝜔𝜔) = 𝑥𝑥.   Hence, under S1, asymmetric equilibria do not exist.  

Note also S1 means that 𝑠𝑠(𝑧𝑧) 𝜁𝜁(𝑧𝑧)⁄  is strictly decreasing; this ensures the uniqueness of the 

symmetric equilibrium, as will be seen below. 

 

3.3.Symmetric Free-Entry Equilibrium under H.S.A. 

A symmetric free-entry equilibrium under H.S.A. satisfies the following conditions: 

H.S.A. integral condition, given by eq. (4) under symmetry: 

 𝑠𝑠(𝑧𝑧)𝑉𝑉 = 1. (7) 

Firm’s pricing formula, given by FOC, eq.(6) under symmetry: 
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 1 −
𝜓𝜓
𝑝𝑝

=
1

𝜁𝜁(𝑧𝑧) (8) 

Zero-profit (free-entry) condition: 

 (𝑝𝑝 − 𝜓𝜓)𝑥𝑥 = 𝐹𝐹 (9) 

Resource constraint: 

 (𝜓𝜓𝜓𝜓 + 𝐹𝐹)𝑉𝑉 = 𝐿𝐿. (10) 

Note that, from eq.(9) and eq.(10),  

 𝑝𝑝𝑥𝑥𝑥𝑥 = 𝑃𝑃𝑃𝑃 = 𝐿𝐿. (11) 

By combining eqs.(7), (8), (9) and (11), 

𝐹𝐹
𝐿𝐿

=
(𝑝𝑝 − 𝜓𝜓)𝑥𝑥

𝐿𝐿
= �1 −

𝜓𝜓
𝑝𝑝
�
𝑝𝑝𝑝𝑝
𝐿𝐿

=
1

𝜁𝜁(𝑧𝑧)
1
𝑉𝑉

=
𝑠𝑠(𝑧𝑧)
𝜁𝜁(𝑧𝑧). 

Under S1, RHS of this equation is strictly decreasing in 𝑧𝑧 ∈ (0, 𝑧𝑧̅).  Furthermore, 

lim𝑧𝑧→0 𝑠𝑠(𝑧𝑧) 𝜁𝜁(𝑧𝑧)⁄ = ∞ and  lim𝑧𝑧→𝑧̅𝑧 𝑠𝑠(𝑧𝑧) 𝜁𝜁(𝑧𝑧)⁄ = 0. Hence, for each 𝐿𝐿 𝐹𝐹⁄ > 0, the equilibrium 

value of 𝑧𝑧, 𝑧𝑧𝐸𝐸 , is uniquely pinned down by 

 𝑠𝑠(𝑧𝑧𝐸𝐸)
𝜁𝜁(𝑧𝑧𝐸𝐸) =

𝐹𝐹
𝐿𝐿

, 
(12) 

and 𝑧𝑧𝐸𝐸 is increasing in 𝐿𝐿 𝐹𝐹⁄ , with the range (0, 𝑧𝑧̅).  By inserting this value into eqs.(7), (8), and 

(9),  

 𝑉𝑉𝐸𝐸 =
1

𝑠𝑠(𝑧𝑧𝐸𝐸) =
1

𝜁𝜁(𝑧𝑧𝐸𝐸)
𝐿𝐿
𝐹𝐹

,  

 
𝑝𝑝𝐸𝐸 =

𝜁𝜁(𝑧𝑧𝐸𝐸)𝜓𝜓
𝜁𝜁(𝑧𝑧𝐸𝐸) − 1

> 0, 
(13) 

 
𝑥𝑥𝐸𝐸 =

[𝜁𝜁(𝑧𝑧𝐸𝐸) − 1]
𝜓𝜓

𝐹𝐹 > 0, 
 

from which one could also show 

 1
𝐴𝐴𝐸𝐸

=
𝑧𝑧𝐸𝐸

𝑝𝑝𝐸𝐸
=
𝑧𝑧𝐸𝐸

𝜓𝜓
�1 −  

1
𝜁𝜁(𝑧𝑧𝐸𝐸)� =

𝑧𝑧𝐸𝐸

𝜓𝜓
�1 −  

𝐹𝐹 𝐿𝐿⁄
𝑠𝑠(𝑧𝑧𝐸𝐸)�, 

 

and, using eq.(5), 
 

log
𝑋𝑋𝐸𝐸

𝐿𝐿
=  log

1
𝑃𝑃𝐸𝐸

= log
𝑧𝑧𝐸𝐸

𝜓𝜓
�1 −  

𝐹𝐹 𝐿𝐿⁄
𝑠𝑠(𝑧𝑧𝐸𝐸)� +

1
𝑠𝑠(𝑧𝑧𝐸𝐸) �

𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝑑𝑑
𝑧𝑧

𝑧𝑧𝐸𝐸

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 
 

Thus, we have shown: 
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Proposition 1.  Under S1, no asymmetric equilibria exist.  Furthermore, there exists a unique 

symmetric free-entry equilibrium under H.S.A. for each 𝐿𝐿 𝐹𝐹⁄ > 0, given by eq.(12) and eq.(13).  

 

3.4.Comparative Statics under H.S.A.: Procompetitive versus Anticompetitive 

We now turn to the comparative statics.  

Proposition 2. Assume S1.  At the unique symmetric equilibrium in monopolistic competition 

under H.S.A., given by eq.(12) and eq.(13),  

Procompetitive: 
𝜁𝜁′(𝑧𝑧𝐸𝐸) > 0 ⟹  

𝜕𝜕𝑝𝑝𝐸𝐸

𝜕𝜕𝜕𝜕
< 0; 

𝜕𝜕 log𝑉𝑉𝐸𝐸

𝜕𝜕 log 𝐿𝐿
< 1; 

𝜕𝜕𝑥𝑥𝐸𝐸

𝜕𝜕𝜕𝜕
> 0; 

 

Neutral (CES): 
𝜁𝜁′(𝑧𝑧𝐸𝐸) = 0 ⟹  

𝜕𝜕𝑝𝑝𝐸𝐸

𝜕𝜕𝜕𝜕
= 0; 

𝜕𝜕 log𝑉𝑉𝐸𝐸

𝜕𝜕 log 𝐿𝐿
= 1; 

𝜕𝜕𝑥𝑥𝐸𝐸

𝜕𝜕𝜕𝜕
= 0; 

 

Anticompetitive: 
𝜁𝜁′(𝑧𝑧𝐸𝐸) < 0 ⟹  

𝜕𝜕𝑝𝑝𝐸𝐸

𝜕𝜕𝜕𝜕
> 0; 

𝜕𝜕 log𝑉𝑉𝐸𝐸

𝜕𝜕 log 𝐿𝐿
> 1; 

𝜕𝜕𝑥𝑥𝐸𝐸

𝜕𝜕𝜕𝜕
< 0. 

 

Proof:  Since eq.(12) implies 𝜕𝜕𝑧𝑧𝐸𝐸 𝜕𝜕𝜕𝜕⁄ > 0 under S1, this follows from eq.(13).∎ 

 

It is well-known that, in the knife-edge case of CES, the market size effect is neutral on the 

markup rate (𝜕𝜕𝑝𝑝𝐸𝐸 𝜕𝜕𝜕𝜕⁄ = 0) and the mass of firms increases proportionally (𝜕𝜕 log𝑉𝑉𝐸𝐸 𝜕𝜕 log 𝐿𝐿⁄ =

1) without any effect on the firm size (𝜕𝜕𝑥𝑥𝐸𝐸 𝜕𝜕𝜕𝜕⁄ = 0). Thus, the expansion takes place only at the 

extensive margin.  In the case of 𝜁𝜁′(𝑧𝑧𝐸𝐸) > 0, the market size effect is procompetitive, 

(𝜕𝜕𝑝𝑝𝐸𝐸 𝜕𝜕𝜕𝜕⁄ < 0) i.e., an increase in 𝐿𝐿 reduces the markup rate.  This forces each firm to operate at 

a larger scale in order to break even (𝜕𝜕𝑥𝑥𝐸𝐸 𝜕𝜕𝜕𝜕⁄ = 0), and hence some expansion also takes place 

at the intensive margin(𝜕𝜕 log𝑉𝑉𝐸𝐸 𝜕𝜕 log 𝐿𝐿⁄ < 1).  In the opposite case of 𝜁𝜁′(𝑧𝑧𝐸𝐸) < 0, the market 

size effect is anticompetitive, i.e., the markup rate increases in response to an increase in 𝐿𝐿, 

which causes a more-than-proportionate increase in the mass of firms and forces each firm to 

operate at a smaller scale.   

It should be also pointed out that, when the condition for the procompetitive effect holds 

globally, 𝜁𝜁′(∙) > 0, it automatically implies S1.  However, the opposite does not hold.  Hence, 

S1 does not rule out the anticompetitive case, 𝜁𝜁′(∙) < 0. 
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3.5.Welfare Analysis under H.S.A.: Excessive versus Insufficient 

We now turn to the welfare analysis under H.S.A..  Because 𝑋𝑋 = 𝑋𝑋(𝐱𝐱) is strictly quasi-

concave in the interior and symmetric, the optimal allocation that maximizes 𝑋𝑋 = 𝑋𝑋(𝐱𝐱) must be 

symmetric, 𝑥𝑥(𝜔𝜔) = 𝑥𝑥 for all 𝜔𝜔 ∈ Ω.  Or equivalently, the optimal allocation that minimizes 𝑃𝑃 =

𝑃𝑃(𝐩𝐩) must be symmetric, 𝑝𝑝(𝜔𝜔) = 𝑝𝑝 for all 𝜔𝜔 ∈ Ω.   Hence, from eq.(5), the optimal allocation 

can be obtained by choosing 𝑧𝑧 = 𝑝𝑝/𝐴𝐴 to maximize  

log
𝑋𝑋
𝐿𝐿

=  log
1
𝑃𝑃

= log
1
𝐴𝐴

+ 𝑉𝑉�
𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝑑𝑑
𝑧𝑧

𝑧𝑧

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

subject to the constraints, eq.(7), eq.(10), and eq.(11) which can be combined to yield: 

 1
𝐴𝐴

=
𝑧𝑧
𝜓𝜓
�1 −  

𝐹𝐹 𝐿𝐿⁄
𝑠𝑠(𝑧𝑧)� 

(14) 

Hence, the optimal allocation can be obtained by choosing 𝑧𝑧 to maximize:  

 
 log

𝑋𝑋
𝐿𝐿

= log
1
𝑃𝑃

= 𝑊𝑊(𝑧𝑧) ≡ log
𝑧𝑧
𝜓𝜓
�1 −  

𝐹𝐹 𝐿𝐿⁄
𝑠𝑠(𝑧𝑧)�+ Φ(𝑧𝑧)  + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

(15) 

where 𝑊𝑊(𝑧𝑧) is the objective function and  

 
Φ(𝑧𝑧) ≡

1
𝑠𝑠(𝑧𝑧)�

𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑧𝑧

𝑧𝑧

𝑑𝑑𝑑𝑑. 
(16) 

The following lemma shows that 𝑧𝑧𝐸𝐸 , the equilibrium value of 𝑧𝑧, given by eq.(12) 

generally fails to maximize the RHS of eq.(15).  Indeed, it maximizes the RHS of eq.(14) 

instead.  In other words, the unique symmetric equilibrium minimizes 𝐴𝐴 = 𝐴𝐴(𝐩𝐩), not 𝑃𝑃 = 𝑃𝑃(𝐩𝐩).  

Lemma 1. Under S1, eq.(14) is unimodal, and reaches the maximum at 𝑧𝑧 = 𝑧𝑧𝐸𝐸 . 

Proof.  Differentiating the RHS of eq.(14) yields  

1 −  
𝐹𝐹 𝐿𝐿⁄
𝑠𝑠(𝑧𝑧) + 𝑧𝑧

𝐹𝐹 𝐿𝐿⁄

�𝑠𝑠(𝑧𝑧)�
2 𝑠𝑠

′(𝑧𝑧) = 1 −
𝐹𝐹 𝐿𝐿⁄
𝑠𝑠(𝑧𝑧)�1 −

𝑧𝑧𝑠𝑠′(𝑧𝑧)
𝑠𝑠(𝑧𝑧) � =  1 −

𝐹𝐹
𝐿𝐿
𝜁𝜁(𝑧𝑧)
𝑠𝑠(𝑧𝑧). 

From S1, this is strictly decreasing in 𝑧𝑧, and hence the RHS of eq.(14) is strictly concave and 

reaches its maximum with respect to 𝑧𝑧 when  

1 −
𝐹𝐹
𝐿𝐿
𝜁𝜁(𝑧𝑧)
𝑠𝑠(𝑧𝑧) = 0 

which is equivalent to eq.(12), satisfied if and only if 𝑧𝑧 = 𝑧𝑧𝐸𝐸 .  This completes the proof. ∎ 
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Lemma 1 states that the equilibrium allocation maximizes only the first term of 𝑊𝑊(𝑧𝑧) in eq. (15).  

The second term, Φ(𝑧𝑧), given in eq.(16), represents externalities that are ignored in a 

decentralized equilibrium.  To understand the property of this externality term, notice that it can 

be rewritten as: 

1 +
1

Φ(𝑧𝑧) ≡ 1 +
𝑠𝑠(𝑧𝑧)

∫ 𝑠𝑠(𝜉𝜉) 𝜉𝜉⁄𝑧𝑧
𝑧𝑧 𝑑𝑑𝑑𝑑

= 1 +
−∫ 𝑠𝑠′(𝜉𝜉)𝑧𝑧

𝑧𝑧 𝑑𝑑𝑑𝑑

∫ 𝑠𝑠(𝜉𝜉) 𝜉𝜉⁄𝑧𝑧
𝑧𝑧 𝑑𝑑𝑑𝑑

=
∫ 𝜁𝜁(𝜉𝜉) 𝑠𝑠(𝜉𝜉)

𝜉𝜉 𝑑𝑑𝑑𝑑𝑧𝑧
𝑧𝑧

∫ 𝑠𝑠(𝜉𝜉) 𝜉𝜉⁄𝑧𝑧
𝑧𝑧 𝑑𝑑𝑑𝑑

= �𝜁𝜁(𝜉𝜉)𝑤𝑤(𝜉𝜉)
𝑧𝑧

𝑧𝑧

𝑑𝑑𝑑𝑑, 

where 𝑤𝑤(𝜉𝜉) ≡ 𝑠𝑠(𝜉𝜉) 𝜉𝜉⁄

∫ 𝑠𝑠(𝜉𝜉′) 𝜉𝜉′⁄𝑧𝑧
𝑧𝑧 𝑑𝑑𝜉𝜉′

, satisfying ∫ 𝑤𝑤(𝜉𝜉)𝑧𝑧
𝑧𝑧 𝑑𝑑𝑑𝑑 = 1.  Hence, log-differentiating eq.(16) yields 

𝑧𝑧Φ′(𝑧𝑧)
Φ(𝑧𝑧) = −

𝑧𝑧𝑠𝑠′(𝑧𝑧)
𝑠𝑠(𝑧𝑧) −

1
Φ(𝑧𝑧) = 𝜁𝜁(𝑧𝑧) − 1 −

1
Φ(𝑧𝑧) = 𝜁𝜁(𝑧𝑧) −�𝜁𝜁(𝜉𝜉)𝑤𝑤(𝜉𝜉)

𝑧𝑧

𝑧𝑧

𝑑𝑑𝑑𝑑, 

from which the next lemma and its two corollaries follow: 

Lemma 2. 

Φ′(𝑧𝑧) ⋚ 0 ⟺ 𝜁𝜁(𝑧𝑧) ⋚ �𝜁𝜁(𝜉𝜉)𝑤𝑤(𝜉𝜉)
𝑧𝑧

𝑧𝑧

𝑑𝑑𝑑𝑑. 

Corollary 1: Assume that 𝜁𝜁′(⋅) does not change sign over (𝑧𝑧0, 𝑧𝑧), where 0 < 𝑧𝑧0 < 𝑧𝑧. Then, for 

all 𝑧𝑧 ∈ (𝑧𝑧0, 𝑧𝑧) 

 𝜁𝜁′(⋅) ⋛ 0 ⟹Φ′(⋅) ⋚ 0. 

Corollary 2. 𝑃𝑃(𝐩𝐩) = 𝑐𝑐𝑐𝑐(𝐩𝐩) with 𝑐𝑐 > 0 is a constant, only in the case of CES.  

Proof. 11  Using eqs.(14)-(15), we obtain log𝐴𝐴(𝐩𝐩) 𝑃𝑃(𝐩𝐩)⁄ = Φ(𝑧𝑧) + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  Hence, 𝑃𝑃(𝐩𝐩) =

𝑐𝑐𝑐𝑐(𝐩𝐩) ⟺Φ′(𝑧𝑧) = 0 for all 𝑧𝑧 ∈ (0, 𝑧𝑧) ⟺ 𝜁𝜁′(𝑧𝑧) = 0 for all 𝑧𝑧 ∈ (0, 𝑧𝑧) ⟺ CES. ∎ 

Lemma 3.  𝑊𝑊(𝑧𝑧) is unimodal, and reaches its peak at  𝑧𝑧𝑂𝑂 , given by the unique solution to 

  𝐿𝐿
𝐹𝐹

=  
1

𝑠𝑠(𝑧𝑧) +
1

∫ 𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑧𝑧
𝑧𝑧 𝑑𝑑𝑑𝑑

=
1

𝑠𝑠(𝑧𝑧) �1 +
1

Φ(𝑧𝑧)� =
1

𝑠𝑠(𝑧𝑧)�𝜁𝜁(𝜉𝜉)𝑤𝑤(𝜉𝜉)
𝑧𝑧

𝑧𝑧

𝑑𝑑𝑑𝑑. 
(17) 

and 𝑧𝑧𝑂𝑂 is increasing in 𝐿𝐿 𝐹𝐹⁄ . 

Proof: Differentiating 𝑊𝑊(𝑧𝑧), defined in eq.(15), yields 

 
11As already discussed, Corollary 2 is a special case of Matsuyama and Ushchev (2017; Proposition 1-iii)).  
Nevertheless, we offer this proof, because it is much simpler due to the symmetry and gross substitutability.  
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𝑊𝑊′(𝑧𝑧) =
1
𝑧𝑧

+

𝑠𝑠′(𝑧𝑧)
𝑠𝑠(𝑧𝑧)2

𝐿𝐿
𝐹𝐹 −  1

𝑠𝑠(𝑧𝑧)
+ Φ′(𝑧𝑧). 

Differentiating Φ(𝑧𝑧), eq.(16), yields 

Φ′(𝑧𝑧) = −
𝑠𝑠′(𝑧𝑧)
𝑠𝑠(𝑧𝑧)2 �

𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑧𝑧

𝑧𝑧

𝑑𝑑𝑑𝑑 −
1
𝑧𝑧

. 

By combining these two expressions,  

𝑊𝑊′(𝑧𝑧) =
𝑠𝑠′(𝑧𝑧)
𝑠𝑠(𝑧𝑧)2 �

1
𝐿𝐿
𝐹𝐹 −  1

𝑠𝑠(𝑧𝑧)
−�

𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑧𝑧

𝑧𝑧

𝑑𝑑𝑑𝑑�. 

Because the term in the square bracket is strictly increasing, 𝑊𝑊(𝑧𝑧) is unimodal with  

𝑊𝑊′(𝑧𝑧) ⋛ 0 ⟺ 𝑧𝑧 ⋚  𝑧𝑧𝑂𝑂 , 

where 𝑧𝑧𝑂𝑂 is given by  
𝐿𝐿
𝐹𝐹

=  
1

𝑠𝑠(𝑧𝑧) +
1

∫ 𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑧𝑧
𝑧𝑧 𝑑𝑑𝑑𝑑

, 

whose RHS is increasing in 𝑧𝑧, because 𝑠𝑠(𝑧𝑧) and ∫ 𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑧𝑧
𝑧𝑧 𝑑𝑑𝑑𝑑  are both decreasing in 𝑧𝑧.  Hence, 𝑧𝑧𝑂𝑂 

is uniquely defined and is increasing in 𝐿𝐿 𝐹𝐹⁄ . ∎ 

We are now ready to state the welfare property of the equilibrium entry under H.S.A.. 

Proposition 3. Assume S1. Then, at the unique symmetric equilibrium in monopolistic 

competition under H.S.A., given by eq.(12) and eq.(13),  𝑉𝑉𝐸𝐸 , the equilibrium mass of firms that 

enter = the equilibrium mass of varieties produced, and 𝑉𝑉𝑂𝑂 , the mass of the optimal mass of 

firms that enter = the optimal mass of varieties produced, satisfy 

𝑉𝑉𝐸𝐸 ⋛ 𝑉𝑉𝑂𝑂 ⟺ 𝜁𝜁(𝑧𝑧𝐸𝐸) ⋚ �𝜁𝜁(𝜉𝜉)𝑤𝑤(𝜉𝜉)
𝑧𝑧

𝑧𝑧𝐸𝐸

𝑑𝑑𝑑𝑑. 

In particular,  

Excessive Entry: 𝜁𝜁′(𝑧𝑧) > 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧 ∈ (𝑧𝑧𝐸𝐸 , 𝑧𝑧) ⟹ 𝑉𝑉𝐸𝐸 > 𝑉𝑉𝑂𝑂  

Optimal Entry (CES): 𝜁𝜁′(𝑧𝑧) = 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧 ∈ (𝑧𝑧𝐸𝐸 , 𝑧𝑧) ⟹ 𝑉𝑉𝐸𝐸 = 𝑉𝑉𝑂𝑂  

Insufficient Entry: 𝜁𝜁′(𝑧𝑧) < 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧 ∈ (𝑧𝑧𝐸𝐸 , 𝑧𝑧) ⟹ 𝑉𝑉𝐸𝐸 < 𝑉𝑉𝑂𝑂  

Proof. By combining eq.(12) and eq.(17), 



 
 

Page 17 of 51 
 

𝜁𝜁(𝑧𝑧𝐸𝐸)
𝑠𝑠(𝑧𝑧𝐸𝐸) =

𝐿𝐿
𝐹𝐹

=
1

𝑠𝑠(𝑧𝑧𝑂𝑂) +
1

∫ 𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑧𝑧
𝑧𝑧𝑂𝑂 𝑑𝑑𝑑𝑑

. 

Since 𝑠𝑠(𝑧𝑧) and ∫ 𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑧𝑧
𝑧𝑧 𝑑𝑑𝑑𝑑  are both decreasing in 𝑧𝑧, 

𝑧𝑧𝐸𝐸 ⋛ 𝑧𝑧𝑂𝑂 ⟺
𝜁𝜁(𝑧𝑧𝐸𝐸)
𝑠𝑠(𝑧𝑧𝐸𝐸) =

1
𝑠𝑠(𝑧𝑧𝑂𝑂) +

1

∫ 𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑧𝑧
𝑧𝑧𝑂𝑂 𝑑𝑑𝑑𝑑

⋚
1

𝑠𝑠(𝑧𝑧𝐸𝐸) +
1

∫ 𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑧𝑧
𝑧𝑧𝐸𝐸 𝑑𝑑𝑑𝑑

=
1

𝑠𝑠(𝑧𝑧𝐸𝐸) �𝜁𝜁(𝜉𝜉)𝑤𝑤(𝜉𝜉)
𝑧𝑧

𝑧𝑧𝐸𝐸

𝑑𝑑𝑑𝑑. 

 Hence, 

𝑉𝑉𝐸𝐸 =
1

𝑠𝑠(𝑧𝑧𝑂𝑂) ⋛ 𝑉𝑉𝑂𝑂 =
1

𝑠𝑠(𝑧𝑧𝑂𝑂) ⟺ 𝑧𝑧𝐸𝐸 ⋛ 𝑧𝑧𝑂𝑂 ⟺ 𝜁𝜁(𝑧𝑧𝐸𝐸) ⋚ �𝜁𝜁(𝜉𝜉)𝑤𝑤(𝜉𝜉)
𝑧𝑧

𝑧𝑧𝐸𝐸

𝑑𝑑𝑑𝑑, 

which completes the proof. ∎ 

 

3.6. Main H.S.A. Theorem and Some Examples  

We are now ready to state the main properties of H.S.A. in the following theorem, by 

consolidating Propositions 1, 2, and 3.  In doing so, we take into account that 𝑧𝑧𝐸𝐸 is 

monotonically increasing in 𝐿𝐿 𝐹𝐹⁄  and takes any value in (0, 𝑧𝑧), as 𝐿𝐿 𝐹𝐹⁄  varies from zero to 

infinity, and that the existence of the choke price, 𝑧𝑧 < ∞, implies lim
𝑧𝑧→𝑧̅𝑧

𝜁𝜁(𝑧𝑧) = ∞, and hence 

𝜁𝜁′(𝑧𝑧) > 0 for 𝑧𝑧 sufficiently close to 𝑧𝑧, which means that entry is procompetitive and excessive for 

a sufficiently large 𝐿𝐿 𝐹𝐹⁄ > 0. 

 

Theorem 1: Consider monopolistic competition under symmetric H.S.A. with gross substitutes. 

Assume S1 to ensure that there exists a unique equilibrium, which is symmetric and given by 

eq.(12) and eq.(13).  At this unique symmetric equilibrium, entry is, 

• procompetitive and excessive for any 𝐿𝐿 𝐹𝐹⁄ > 0, if 𝜁𝜁′(𝑧𝑧) > 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧 ∈ (0, 𝑧𝑧); 

• neutral and optimal for any 𝐿𝐿 𝐹𝐹⁄ > 0, if 𝜁𝜁′(𝑧𝑧) = 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧 ∈ (0,∞), that is, under CES; 

• anticompetitive and insufficient for any 𝐿𝐿 𝐹𝐹⁄ > 0, if  𝜁𝜁′(𝑧𝑧) < 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧 ∈ (0,∞). 

Furthermore, in the presence of the choke price, 𝑧𝑧 < ∞, entry is procompetitive and excessive 

for a sufficiently large 𝐿𝐿 𝐹𝐹⁄ > 0. 

 



 
 

Page 18 of 51 
 

One important implication of this theorem is that, for those who believe in the empirical 

Marshall’s second law of demand, i.e., the price elasticity of demand goes up as its price goes 

up, holding the aggregates fixed, entry is not only procompetitive but also excessive under 

H.S.A. 

 We now turn to some examples to illustrate Theorem 1. 

 

Example 1: Perturbed CES, H.S.A. with global monotonicity  

𝑠𝑠(𝑧𝑧) = 𝑧𝑧1−𝜎𝜎 exp �−𝛿𝛿(𝜎𝜎 − 1)�
𝑔𝑔(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝑑𝑑
𝑧𝑧

𝑐𝑐
� ⟺ 𝜁𝜁(𝑧𝑧) = 𝜎𝜎 + 𝛿𝛿(𝜎𝜎 − 1)𝑔𝑔(𝑧𝑧), 

where 𝑔𝑔(𝑧𝑧) satisfies 𝑔𝑔′(𝑧𝑧) > 0  for all 𝑧𝑧 > 0 with 𝑔𝑔(0) = 0 and 𝑔𝑔(∞) = 1 and 𝜅𝜅 ≡

sup{𝑧𝑧𝑔𝑔′(𝑧𝑧)|𝑧𝑧 > 0} < ∞.  For example,  

𝑔𝑔(𝑧𝑧) =
𝑧𝑧

𝜂𝜂 + 𝑧𝑧
, 𝜂𝜂 > 0 ⟹  𝜅𝜅 =

1
4

 ; 

𝑔𝑔(𝑧𝑧) = 1 − 𝑒𝑒−𝜇𝜇𝜇𝜇 , 𝜇𝜇 > 0 ⟹ 𝜅𝜅 = 𝑒𝑒−1. 

We also impose the restrictions that 𝜎𝜎 > 1 and 𝛿𝛿 > −𝜎𝜎 (𝜅𝜅 + 2𝜎𝜎 − 1)⁄ > −1 to ensure the gross 

substitutability, i.e., 𝜁𝜁(𝑧𝑧) > 1 for all 𝑧𝑧 ∈ (0,∞) as well as S1.12  Clearly, 𝛿𝛿 = 0 corresponds to 

the knife-edge case of CES, where entry is neutral and optimal.  If 𝛿𝛿 > 0, entry is procompetitive 

and excessive.  And, if −𝜎𝜎 (𝜅𝜅 + 2𝜎𝜎 − 1)⁄ <  𝛿𝛿 < 0, entry is anticompetitive and insufficient. 

 

Example 2: Homothetic Translog, H.S.A. with a choke price 

Homothetic symmetric translog is a special case of symmetric H.S.A. To see this, look at 

eq. (19’) of Feenstra (2003), which gives the expression for the market share for each product 

under homothetic translog as 

𝑝𝑝(𝜔𝜔)
𝑃𝑃(𝐩𝐩)

𝜕𝜕𝜕𝜕(𝐩𝐩)
𝜕𝜕𝜕𝜕(𝜔𝜔) =

1
𝑉𝑉
− 𝛾𝛾 �log𝑝𝑝(𝜔𝜔) −

1
𝑉𝑉
� log 𝑝𝑝(𝜔𝜔′)𝑑𝑑𝜔𝜔′

Ω
� , (𝛾𝛾 > 0) 

in our notation.  This can be rewritten as  

𝑝𝑝(𝜔𝜔)
𝑃𝑃(𝐩𝐩)

𝜕𝜕𝜕𝜕(𝐩𝐩)
𝜕𝜕𝜕𝜕(𝜔𝜔) = −𝛾𝛾 log�

𝑝𝑝(𝜔𝜔)
𝐴𝐴(𝐩𝐩)� , where log𝐴𝐴(𝐩𝐩) ≡

1
𝛾𝛾𝛾𝛾

+
1
𝑁𝑁
� log𝑝𝑝(𝜔𝜔′)𝑑𝑑𝜔𝜔′

Ω
, 

 
12For S1, note that it can be rewritten as [𝜁𝜁(𝑧𝑧) − 1]𝜁𝜁(𝑧𝑧) + 𝑧𝑧𝜁𝜁′(𝑧𝑧) = [𝜁𝜁(𝑧𝑧) − 1]𝜁𝜁(𝑧𝑧) + 𝛿𝛿𝛿𝛿𝑔𝑔′(𝑧𝑧) > 0.  Clearly, this 
holds for 𝛿𝛿 ≥ 0. For 𝛿𝛿 < 0, 𝜁𝜁(𝑧𝑧) > 𝜎𝜎 + 𝛿𝛿 and 𝛿𝛿𝛿𝛿𝑔𝑔′(𝑧𝑧) ≥  𝛿𝛿𝛿𝛿 for all 𝑧𝑧, and hence [𝜁𝜁(𝑧𝑧) − 1]𝜁𝜁(𝑧𝑧) + 𝑧𝑧𝜁𝜁′(𝑧𝑧) >
(𝜎𝜎 + 𝛿𝛿 − 1)(𝜎𝜎 + 𝛿𝛿) + 𝛿𝛿𝛿𝛿 = 𝛿𝛿2 + (2𝜎𝜎 − 1 + 𝜅𝜅)𝛿𝛿 + (𝜎𝜎 − 1)𝜎𝜎 > (2𝜎𝜎 − 1 + 𝜅𝜅)𝛿𝛿 + (𝜎𝜎 − 1)𝜎𝜎 > 0. 
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 which shows that it is a H.S.A. with 𝑠𝑠(𝑧𝑧) ≡ −𝛾𝛾 log(𝑧𝑧) for 𝑧𝑧 ∈ (0,1), with the choke price, 𝑧𝑧 =

1.  Hence,  

𝜁𝜁(𝑧𝑧) = 1 +
𝛾𝛾

𝑠𝑠(𝑧𝑧) = 1 −
1

log(𝑧𝑧) > 1, for 𝑧𝑧 ∈ (0,1).  

which is strictly increasing in 𝑧𝑧 ∈ (0,1), which also implies S1.  Hence, in the case of translog, 

entry is always procompetitive and excessive. 

 The assumption of the global monotonicity of 𝜁𝜁(∙) in Theorem 1 is important.  Otherwise, 

entry could be procompetitive and yet insufficient, or anticompetitive and yet excessive, as the 

next example illustrates. 

Example 3: Perturbed CES, H.S.A. without global monotonicity  

Consider the following family of H.S.A technologies:  

𝜁𝜁(𝑧𝑧) ≡ 1 −
𝑧𝑧𝑠𝑠′(𝑧𝑧)
𝑠𝑠(𝑧𝑧) = 1 + (𝜎𝜎 − 1)

𝛿𝛿𝛿𝛿𝑔𝑔′(𝑧𝑧) + 1
1 + 𝛿𝛿(𝜎𝜎 − 1)𝑔𝑔(𝑧𝑧), 

where 𝜎𝜎 > 1, 𝛿𝛿 can be either positive or negative (but sufficiently small in absolute value to 

ensure that 𝜁𝜁(𝑧𝑧) satisfies S1), while 𝑔𝑔(𝑧𝑧) is twice continuously differentiable, single-peaked, and 

satisfies 𝑔𝑔(0) = 𝑔𝑔(∞) = 0,  and sup|𝑔𝑔′(𝑧𝑧)| < ∞.  Let 𝑧̃𝑧 > 0 be the maximizer of 𝑔𝑔(𝑧𝑧), with 

𝑔𝑔′(𝑧̃𝑧) = 0 > 𝑔𝑔′′(𝑧̃𝑧).  For example, 

𝑔𝑔(𝑧𝑧) = 𝑧𝑧 (𝜆𝜆 + 𝑧𝑧2)⁄ , 𝜆𝜆 > 0 ⟹ 𝑧̃𝑧 = √𝜆𝜆; 

𝑔𝑔(𝑧𝑧) = 𝑧𝑧𝑒𝑒−𝜇𝜇𝜇𝜇,𝜇𝜇 > 0 ⟹  𝑧̃𝑧 = 1 𝜇𝜇⁄ . 

It is readily verified that the externality term in the welfare function is given by 

Φ(𝑧𝑧) ≡
1

𝑠𝑠(𝑧𝑧)�
𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝑑𝑑
∞

𝑧𝑧
=

1
𝜎𝜎 − 1

+ 𝛿𝛿𝛿𝛿(𝑧𝑧). 

From Lemma 1, 𝑊𝑊′(𝑧𝑧𝐸𝐸) = Φ′(𝑧𝑧𝐸𝐸) = 𝛿𝛿𝑔𝑔′(𝑧𝑧𝐸𝐸), and from Lemma 3, 𝑊𝑊′(𝑧𝑧𝐸𝐸) ⋛ 0 ⟺

𝑧𝑧𝐸𝐸 ⋚ 𝑧𝑧𝑂𝑂 ⟺ 𝑉𝑉𝐸𝐸 ⋚ 𝑉𝑉𝑂𝑂.  Hence, 𝛿𝛿𝑔𝑔′(𝑧𝑧𝐸𝐸) ⋛ 0 ⟺ 𝑉𝑉𝐸𝐸 ⋚ 𝑉𝑉𝑂𝑂.  Thus, entry is insufficient for 𝑧𝑧𝐸𝐸 < 𝑧̃𝑧 

and excessive for 𝑧𝑧𝐸𝐸 > 𝑧̃𝑧 for 𝛿𝛿 > 0, while entry is excessive for 𝑧𝑧𝐸𝐸 < 𝑧̃𝑧 and insufficient for 𝑧𝑧𝐸𝐸 >

𝑧̃𝑧 for 𝛿𝛿 < 0.   On the other hand, evaluating 𝜁𝜁′(𝑧𝑧) at 𝑧𝑧 = 𝑧̃𝑧 yields: 

𝜁𝜁′(𝑧̃𝑧) = 𝛿𝛿
𝑧̃𝑧𝑔𝑔′′(𝑧̃𝑧)
Φ(𝑧̃𝑧) ⋛ 0 ⟺ 𝛿𝛿 ⋚ 0. 

Thus, entry is anticompetitive in the vicinity of 𝑧̃𝑧 for 𝛿𝛿 > 0, while entry is procompetitive in the 

vicinity of 𝑧̃𝑧 for 𝛿𝛿 < 0. 
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By combining these two observations, we conclude that entry is procompetitive and yet 

insufficient for 𝛿𝛿 < 0 and 𝑧𝑧𝐸𝐸 slightly higher than 𝑧̃𝑧, or equivalently, 𝐿𝐿 𝐹𝐹⁄  slightly higher than 

𝜁𝜁(𝑧̃𝑧) 𝑠𝑠(𝑧̃𝑧)⁄ , while it is anticompetitive and yet excessive for 𝛿𝛿 > 0 and  𝑧𝑧𝐸𝐸slightly lower than 𝑧̃𝑧, 

or equivalently, 𝐿𝐿 𝐹𝐹⁄  slightly lower than 𝜁𝜁(𝑧̃𝑧) 𝑠𝑠(𝑧̃𝑧)⁄ . 

 

3.7.H.S.A. Demand System: An Alternative Formulation 

Before proceeding, it should be pointed out that there exists an alternative (but 

equivalent) definition of H.S.A..  That is, 𝑋𝑋 = 𝑋𝑋(𝐱𝐱) or 𝑃𝑃 = 𝑃𝑃(𝐩𝐩) is called homothetic with a 

single aggregator (H.S.A.) if the market share of input 𝜔𝜔, as a function of 𝐱𝐱, can be written as: 

 𝑝𝑝(𝜔𝜔)𝑥𝑥(𝜔𝜔)
𝐩𝐩𝐩𝐩

=
𝑝𝑝(𝜔𝜔)𝑥𝑥(𝜔𝜔)
𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱)

=  
𝜕𝜕 log𝑋𝑋(𝐱𝐱)
𝜕𝜕 log 𝑥𝑥(𝜔𝜔)

= 𝑠𝑠∗ �
𝑥𝑥(𝜔𝜔)
𝐴𝐴∗(𝐱𝐱)

�. 
 

Here, 𝑠𝑠∗:ℝ++ → ℝ+ is the market share function, and it is assumed to be twice continuously 

differentiable with 0 < 𝑦𝑦𝑠𝑠∗′(𝑦𝑦) 𝑠𝑠∗(𝑦𝑦)⁄ < 1, 𝑠𝑠∗(0) = 0 and  𝑠𝑠∗(∞) = ∞, and 𝐴𝐴∗(𝐱𝐱) is linear 

homogenous in 𝐱𝐱, defined implicitly and uniquely by 

 
� 𝑠𝑠∗ �

𝑥𝑥(𝜔𝜔)
𝐴𝐴∗(𝐱𝐱)

�𝑑𝑑𝑑𝑑
Ω

 = 1, 
  

which ensures that the market shares of all inputs are added up to one. Thus, the market share of 

input 𝜔𝜔 is a function of its relative quantity, defined as its own quantity 𝑥𝑥(𝜔𝜔) divided by the 

common quantity aggregator 𝐴𝐴∗(𝐱𝐱), which is strictly increasing with the elasticity less than one.  

This common quantity aggregator, 𝐴𝐴∗(𝐱𝐱), is related to the production function, 𝑋𝑋(𝐱𝐱), as follows: 

 
log �

𝑋𝑋(𝐱𝐱)
𝐴𝐴∗(𝐱𝐱)� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. + � � �

𝑠𝑠∗(𝜉𝜉)
𝜉𝜉

𝑥𝑥(𝜔𝜔) 𝐴𝐴∗(𝐱𝐱)⁄

0

𝑑𝑑𝑑𝑑�
Ω

𝑑𝑑𝑑𝑑, 
 

and 𝑋𝑋(𝐱𝐱) = 𝑐𝑐𝐴𝐴∗(𝐱𝐱), with a positive constant 𝑐𝑐 > 0, if and only if 𝑠𝑠∗(𝑦𝑦) = 𝛾𝛾𝑦𝑦1−1/𝜎𝜎, which is the 

case of CES. 

 These two alternative definitions of H.S.A. are isomorphic to each other via the one-to-

one mapping between 𝑠𝑠(𝑧𝑧) ⟷ 𝑠𝑠∗(𝑦𝑦), defined by:  

𝑠𝑠∗(𝑦𝑦) = 𝑠𝑠 �
𝑠𝑠∗(𝑦𝑦)
𝑦𝑦

� ;  𝑠𝑠(𝑧𝑧) = 𝑠𝑠∗ �
𝑠𝑠(𝑧𝑧)
𝑧𝑧
�. 

With this mapping, the relative quantity, 𝑦𝑦(𝜔𝜔) ≡ 𝑥𝑥(𝜔𝜔) 𝐴𝐴∗(𝐱𝐱)⁄ , and the relative price, 𝑧𝑧(𝜔𝜔) ≡

𝑝𝑝(𝜔𝜔) 𝐴𝐴(𝐩𝐩)⁄ , are negatively related as 𝑧𝑧(𝜔𝜔) = 𝑠𝑠∗(𝑦𝑦(𝜔𝜔)) 𝑦𝑦(𝜔𝜔)⁄  and 𝑦𝑦(𝜔𝜔) = 𝑠𝑠(𝑧𝑧(𝜔𝜔)) 𝑧𝑧(𝜔𝜔)⁄ , with 
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lim
𝑦𝑦→0

𝑠𝑠∗(𝑦𝑦) 𝑦𝑦⁄ = 𝑠𝑠∗′(0) = 𝑧𝑧̅.  Furthermore, by differentiating either of the two equalities above, 

one could obtain the identity, 

�1 −
𝑦𝑦𝑠𝑠∗′(𝑦𝑦)
𝑠𝑠∗(𝑦𝑦) ��1 −

𝑧𝑧𝑠𝑠′(𝑧𝑧)
𝑠𝑠(𝑧𝑧) � = 1, 

which shows that the condition, 0 < 𝑦𝑦𝑠𝑠∗′(𝑦𝑦) 𝑠𝑠∗(𝑦𝑦)⁄ < 1, is equivalent to 𝑠𝑠′(𝑧𝑧) < 0, the 

condition for gross substitutability.13   

  Under this alternative (but equivalent) formulation of H.S.A., the price elasticity function 

can be expressed as a function of the relative quantity, 𝑦𝑦(𝜔𝜔) ≡ 𝑥𝑥(𝜔𝜔) 𝐴𝐴∗(𝐱𝐱)⁄ , given by 

𝜁𝜁∗(𝑦𝑦) ≡ �1 −
𝑦𝑦𝑠𝑠∗′(𝑦𝑦)
𝑠𝑠∗(𝑦𝑦) �

−1

= 𝜁𝜁(𝑧𝑧) ≡ 1 −
𝑧𝑧𝑠𝑠′(𝑧𝑧)
𝑠𝑠(𝑧𝑧) > 1, 

and, under the following assumption, which is equivalent to S1, 

𝑑𝑑 log(𝑠𝑠∗(𝑦𝑦) 𝜁𝜁∗(𝑦𝑦)⁄ )  
𝑑𝑑 log𝑦𝑦

= 1 −
1

𝜁𝜁∗(𝑦𝑦) −
𝑦𝑦𝜁𝜁∗′(𝑦𝑦)
𝜁𝜁∗(𝑦𝑦) > 0, 

there exists a unique symmetric equilibrium, in which all firms choose 𝑦𝑦(𝜔𝜔) ≡ 𝑦𝑦𝐸𝐸 , given by the 

condition, 

𝑠𝑠∗(𝑦𝑦𝐸𝐸)
𝜁𝜁∗(𝑦𝑦𝐸𝐸) =

𝐹𝐹
𝐿𝐿

, 

where 𝑦𝑦𝐸𝐸 is decreasing in 𝐿𝐿 𝐹𝐹⁄ .  Furthermore, entry is procompetitive and excessive for any 

𝐿𝐿 𝐹𝐹⁄ > 0, if 𝜁𝜁∗′(𝑦𝑦) < 0 for all 𝑦𝑦 ∈ (0,∞); neutral and optimal for any 𝐿𝐿 𝐹𝐹⁄ > 0, if 𝜁𝜁∗′(𝑦𝑦) = 0 for 

all 𝑦𝑦 ∈ (0,∞), (i.e., under CES) and anticompetitive and insufficient for any 𝐿𝐿 𝐹𝐹⁄ > 0, if 

𝜁𝜁∗′(𝑦𝑦) > 0 for all 𝑦𝑦 ∈ (0,∞).  Furthermore, in the presence of the choke price, 𝑠𝑠∗′(0) = 𝑧𝑧 < ∞, 

𝜁𝜁∗′(0) = ∞, and hence 𝜁𝜁∗′(𝑦𝑦) < 0 for a sufficiently small 𝑦𝑦, which means that entry is 

procompetitive and excessive for a sufficiently large 𝐿𝐿 𝐹𝐹⁄ > 0. 

4.  Dixit-Stiglitz under H.D.I.A. (Homothetic Direct Implicit Additivity) 

4.1.H.D.I.A. Demand System  

We call a symmetric CRS technology, 𝑋𝑋 = 𝑋𝑋(𝐱𝐱) or 𝑃𝑃 = 𝑃𝑃(𝐩𝐩), homothetic with direct 

implicit additivity (H.D.I.A.)14 if 𝑋𝑋 = 𝑋𝑋(𝐱𝐱) can be defined implicitly by: 

 
13This isomorphism has been shown for the broader class of H.S.A., which allows for asymmetry as well as gross 
complements; see Matsuyama and Ushchev (2017, Section 3, Remark 3).  
14 More generally, 𝑋𝑋 = 𝑋𝑋(𝐱𝐱) satisfies direct implicit additivity (D.I.A.) if it is defined implicitly by  
∫ 𝜙𝜙�(𝑥𝑥(𝜔𝜔),𝑋𝑋)𝑑𝑑𝑑𝑑Ω = 1. See Hanoch (1975; Section 2). Clearly, H.D.I.A. is a subclass of D.I.A., where 
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� 𝜙𝜙 �

𝑥𝑥(𝜔𝜔)
𝑋𝑋

�𝑑𝑑𝑑𝑑
Ω

= 1, 
(18) 

where 𝜙𝜙(⋅): ℝ+ → ℝ+ is strictly increasing, strictly concave, and at least thrice continuously 

differentiable with 𝜙𝜙(0) = 0 and 𝜙𝜙(∞) = ∞.    

In the following analysis, both the elasticity of 𝜙𝜙(⋅),  

 
0 < ℰ𝜙𝜙(𝓎𝓎) ≡

𝓎𝓎𝜙𝜙′(𝓎𝓎)
𝜙𝜙(𝓎𝓎) < 1, 

(19) 

and the elasticity of 𝜙𝜙′(∙) in its absolute value, 

 
0 < 𝑟𝑟𝜙𝜙(𝓎𝓎) ≡ −

𝓎𝓎𝜙𝜙′′(𝓎𝓎)
𝜙𝜙′(𝓎𝓎) < 1, 

(20) 

play important roles.  The monotonicity of 𝜙𝜙(𝓎𝓎) and 𝜙𝜙(0) = 0 jointly ensure ℰ𝜙𝜙(𝓎𝓎) > 0 and 
the concavity of 𝜙𝜙(𝓎𝓎) ensures ℰ𝜙𝜙(𝓎𝓎) < 1.  The monotonicity and concavity of 𝜙𝜙(𝓎𝓎) jointly 
ensure 𝑟𝑟𝜙𝜙(𝓎𝓎) > 0.  In addition, it is necessary to assume that 𝑟𝑟𝜙𝜙(𝓎𝓎) < 1 to ensure that inputs are 
gross substitutes, as will be seen below.  Note that one could recover 𝜙𝜙(⋅) either from any ℰ𝜙𝜙(∙) 
or any 𝑟𝑟𝜙𝜙(∙) satisfying the bounds in eq. (19) and eq.(20) as follows: 

𝜙𝜙(𝓎𝓎) = 𝑒𝑒𝑒𝑒𝑒𝑒 �� ℰ𝜙𝜙(𝜉𝜉)
𝑑𝑑𝑑𝑑
𝜉𝜉

𝓎𝓎

𝓎𝓎0
� ; 

𝜙𝜙(𝓎𝓎) = � 𝑒𝑒𝑒𝑒𝑒𝑒 �−� 𝑟𝑟𝜙𝜙(𝜉𝜉′)
𝑑𝑑𝜉𝜉′

𝜉𝜉′
𝜉𝜉

𝓎𝓎0′
� 𝑑𝑑𝑑𝑑

𝓎𝓎

0
, 

where 𝓎𝓎0 > 0 and 𝓎𝓎0
′ > 0 are both constants.15  One could also verify from eq. (19) and eq.(20) 

that ℰ𝜙𝜙(𝓎𝓎) and 𝑟𝑟𝜙𝜙(𝓎𝓎) are related as follows: 
  

𝓎𝓎ℰ𝜙𝜙′(𝓎𝓎)
ℰ𝜙𝜙(𝓎𝓎) = 1 − 𝑟𝑟𝜙𝜙(𝓎𝓎) − ℰ𝜙𝜙(𝓎𝓎). 

Clearly, CES with gross substitutes is a special case with 𝜙𝜙(𝓎𝓎) = 𝐴𝐴𝓎𝓎1−1𝜎𝜎, and 0 < 𝑟𝑟𝜙𝜙(𝓎𝓎) = 1 −
ℰ𝜙𝜙(𝓎𝓎) = 1 𝜎𝜎⁄ < 1.   

 
𝜙𝜙�(𝑥𝑥(𝜔𝜔),𝑋𝑋) = 𝜙𝜙(𝑥𝑥(𝜔𝜔) 𝑋𝑋⁄ ).  In contrast, 𝑋𝑋 = 𝑋𝑋(𝐱𝐱) satisfies direct explicit additivity (D.E.A.) if it can be written as 
𝑋𝑋 = ℳ�∫ 𝜙𝜙�𝑥𝑥(𝜔𝜔)�𝑑𝑑𝑑𝑑Ω �, where ℳ(∙) is a monotone transformation. This is the class of demand systems used by 
Dixit and Stiglitz (1977, Section II) and Dhingra and Morrow (2019).  Although D.E.A. is another subclass of 
D.I.A., it cannot be homothetic unless it is CES. 
15These constants imply that 𝜙𝜙(𝓎𝓎) is determined up to a positive scalar multiplier.  However, 𝛾𝛾𝜙𝜙(𝓎𝓎) with 𝛾𝛾 > 0 
generate the same CRS technology. All we need is to renormalize the indices of varieties, as ∫  𝛾𝛾𝛾𝛾(𝑥𝑥(𝜔𝜔) 𝑋𝑋⁄ )𝑑𝑑𝑑𝑑Ω  =

∫  𝛾𝛾𝛾𝛾(𝑥𝑥(𝜔𝜔′) 𝑋𝑋⁄ )𝑑𝑑𝜔𝜔′
Ω = 1, with 𝜔𝜔′ = 𝛾𝛾𝛾𝛾. 
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The cost minimization problem, eq.(1) subject to eq.(18) implies that the inverse demand 

curve for each 𝜔𝜔 ∈ Ω can be written as: 

 
 𝑝𝑝(𝜔𝜔) = 𝐵𝐵(𝐩𝐩)𝜙𝜙′ �

𝑥𝑥(𝜔𝜔)
𝑋𝑋(𝐱𝐱)�, 

(21) 

where 𝐵𝐵(𝐩𝐩) is the Lagrange multiplier associated with eq. (18), and it is the linear homogenous 

function in 𝐩𝐩, given by 

� 𝜙𝜙�(𝜙𝜙′)−1 �
𝑝𝑝(𝜔𝜔)
𝐵𝐵(𝐩𝐩)

��𝑑𝑑𝑑𝑑
Ω

≡ 1. 

From eq.(21), the market share of each input can be expressed either as a function of 𝐩𝐩, or as a 

function of 𝐱𝐱, as follows: 

𝑝𝑝(𝜔𝜔)
𝑃𝑃(𝐩𝐩)

𝑥𝑥(𝜔𝜔)
𝑋𝑋(𝐱𝐱)

=
𝑝𝑝(𝜔𝜔)
𝑃𝑃(𝐩𝐩)

(𝜙𝜙′)−1 �
𝑝𝑝(𝜔𝜔)
𝐵𝐵(𝐩𝐩)

� =
𝑥𝑥(𝜔𝜔)
𝐶𝐶∗(𝐱𝐱)𝜙𝜙

′ �
𝑥𝑥(𝜔𝜔)
𝑋𝑋(𝐱𝐱)�, 

where the unit cost function is given by:  

𝑃𝑃(𝐩𝐩) = � 𝑝𝑝(𝜔𝜔)(𝜙𝜙′)−1 �
𝑝𝑝(𝜔𝜔)
𝐵𝐵(𝐩𝐩)�𝑑𝑑𝑑𝑑,

Ω
 

and 𝐶𝐶∗(𝐱𝐱) is a linear homogenous function of 𝐱𝐱, given by 

𝐶𝐶∗(𝐱𝐱) ≡ � 𝑥𝑥(𝜔𝜔)𝜙𝜙′ �
𝑥𝑥(𝜔𝜔)
𝑋𝑋(𝐱𝐱)�𝑑𝑑𝑑𝑑Ω

, 

and it satisfies 

𝑃𝑃(𝐩𝐩)
𝐵𝐵(𝐩𝐩)

= �
𝑝𝑝(𝜔𝜔)
𝐵𝐵(𝐩𝐩)

(𝜙𝜙′)−1 �
𝑝𝑝(𝜔𝜔)
𝐵𝐵(𝐩𝐩)

� 𝑑𝑑𝑑𝑑
Ω

= � 𝜙𝜙′ �
𝑥𝑥(𝜔𝜔)
𝑋𝑋(𝐱𝐱)�

𝑥𝑥(𝜔𝜔)
𝑋𝑋(𝐱𝐱) 𝑑𝑑𝑑𝑑Ω

=
𝐶𝐶∗(𝐱𝐱)
𝑋𝑋(𝐱𝐱)

. 

These two expressions for the market share under H.D.I.A. show that it is a function of the two 

relative prices,  𝑝𝑝(𝜔𝜔) 𝑃𝑃(𝐩𝐩)⁄  and  𝑝𝑝(𝜔𝜔) 𝐵𝐵(𝐩𝐩)⁄ , or a function of the two relative quantities, 

𝑥𝑥(𝜔𝜔) 𝑋𝑋(𝐱𝐱)⁄  and 𝑥𝑥(𝜔𝜔) 𝐶𝐶∗(𝐱𝐱)⁄ , unless 𝑃𝑃(𝐩𝐩) 𝐵𝐵(𝐩𝐩) = 𝐶𝐶∗(𝐱𝐱) 𝑋𝑋(𝐱𝐱) = 𝑐𝑐 > 0⁄⁄  for a constant 𝑐𝑐, 

which occurs if and only if it is CES. Thus, H.D.I.A. and H.S.A. do not overlap with the sole 

exception of CES. 16 

From the inverse demand curve, eq.(21), the elasticity of substitution between a pair of 

inputs, 𝜔𝜔1 and 𝜔𝜔2, evaluated at the same quantity (hence at the same price) can be expressed as:  

 
16See Proposition 2-(ii) in Matsuyama and Ushchev (2017).  
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−
𝜕𝜕 ln(𝑥𝑥(𝜔𝜔1) 𝑥𝑥(𝜔𝜔2)⁄ )
𝜕𝜕 ln(𝑝𝑝(𝜔𝜔1) 𝑝𝑝(𝜔𝜔2)⁄ )�

𝑥𝑥(𝜔𝜔1)=𝑥𝑥(𝜔𝜔2)=𝑥𝑥
 =

1
𝑟𝑟𝜙𝜙(𝑥𝑥 𝑋𝑋⁄ ) > 1, 

hence 𝑟𝑟𝜙𝜙(𝓎𝓎) < 1 ensures that inputs are gross substitutes.  It should be also clear from eq.(21) 

that the choke price exists if and only if  

𝜙𝜙′(0) = lim
𝓎𝓎→0

 𝑒𝑒𝑒𝑒𝑒𝑒 ��
𝑟𝑟𝜙𝜙(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝑑𝑑
𝓎𝓎0′

𝓎𝓎
� < ∞, 

which implies lim
𝓎𝓎→0

𝑟𝑟𝜙𝜙(𝓎𝓎) = 0, as well as lim
𝓎𝓎→0

 ℰ𝜙𝜙(𝓎𝓎) = lim
𝓎𝓎→0

𝜙𝜙′(𝓎𝓎)
𝜙𝜙(𝓎𝓎) 𝓎𝓎⁄

= 𝜙𝜙′(0)
𝜙𝜙′(0) = 1.  

4.2.Profit Maximization by Input Producing Firms under H.D.I.A. 
From the inverse demand curve, eq.(21), the profit of firm 𝜔𝜔 ∈ Ω is given by: 

 
𝜋𝜋(𝜔𝜔) = �𝐵𝐵(𝐩𝐩)𝜙𝜙′ �

𝑥𝑥(𝜔𝜔)
𝑋𝑋

� − 𝜓𝜓� 𝑥𝑥(𝜔𝜔) − 𝐹𝐹. 
 

Firm 𝜔𝜔  chooses its output, 𝑥𝑥(𝜔𝜔), to maximize its profit 𝜋𝜋(𝜔𝜔), taking the aggregate variables, 
𝐵𝐵(𝐩𝐩) and 𝑌𝑌 as given.   Or equivalently, it chooses 𝓎𝓎(𝜔𝜔) ≡ 𝑥𝑥(𝜔𝜔) 𝑌𝑌⁄  to maximize 

(𝐵𝐵(𝐩𝐩)𝜙𝜙′(𝓎𝓎(𝜔𝜔)) − 𝜓𝜓)𝓎𝓎(𝜔𝜔). 

The FOC is: 

 𝐵𝐵(𝐩𝐩)[𝜙𝜙′(𝓎𝓎(𝜔𝜔)) + 𝓎𝓎(𝜔𝜔)𝜙𝜙′′(𝓎𝓎(𝜔𝜔))] = 𝐵𝐵(𝐩𝐩)𝜙𝜙′(𝓎𝓎(𝜔𝜔))�1 − 𝑟𝑟𝜙𝜙(𝓎𝓎(𝜔𝜔))�

= 𝑝𝑝(𝜔𝜔)�1 − 𝑟𝑟𝜙𝜙(𝓎𝓎(𝜔𝜔))� = 𝜓𝜓. 

(22) 

 In what follows, we keep it simple by imposing the following assumption to ensure that the 

FOC is sufficient for the global optimum. 

 

Assumption D1:  For all 𝓎𝓎 > 0, 

  𝓎𝓎𝜙𝜙′′′(𝓎𝓎)
𝜙𝜙′′(𝓎𝓎) + 2 > 0 ⟺

𝓎𝓎𝑟𝑟𝜙𝜙′(𝓎𝓎)
𝑟𝑟𝜙𝜙(𝓎𝓎) + 1 − 𝑟𝑟𝜙𝜙(𝓎𝓎) > 0. 

 

 

Under D1, the LHS of eq.(22) is strictly decreasing in 𝓎𝓎(𝜔𝜔).  Hence, eq.(22) gives the unique 

profit-maximizing output for each firm.  Thus, all firms set the same price, 𝑝𝑝(𝜔𝜔) = 𝑝𝑝, and 

produce the same amount, 𝑥𝑥(𝜔𝜔) = 𝑥𝑥.   Hence, under D1, asymmetric equilibria do not exist.  

Unlike in the case of H.S.A., the condition that rules out asymmetric equilibria does not ensure 

the uniqueness of a symmetric equilibrium under H.D.I.A., which needs to be introduced 

separately; see D2 below.     
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4.3.Symmetric Free-Entry Equilibrium under H.D.I.A. 

A symmetric free-entry equilibrium under H.D.I.A. satisfies the following conditions: 

H.D.I.A. integral condition, eq.(18) under symmetry: 

 𝑉𝑉𝑉𝑉 �
𝑥𝑥
𝑋𝑋
� = 1; 
 

(23) 

Firm’s pricing formula, given by FOC, eq.(22) under symmetry: 
 1 −

𝜓𝜓
𝑝𝑝

= 𝑟𝑟𝜙𝜙 �
𝑥𝑥
𝑋𝑋
�, 

 

(24) 

in addition to the zero-profit (free-entry) condition, eq.(9) and the resource constraint, eq.(10).  

For the uniqueness of a symmetric equilibrium, we introduce the following condition: 

Assumption D2: For all 𝓎𝓎 > 0,  

  𝓎𝓎𝜙𝜙′′′(𝓎𝓎)
𝜙𝜙′′(𝓎𝓎) + 1 + 𝑟𝑟𝜙𝜙(𝓎𝓎) + ℰ𝜙𝜙(𝓎𝓎) > 0 ⟺

𝓎𝓎𝑟𝑟𝜙𝜙′(𝓎𝓎)
𝑟𝑟𝜙𝜙(𝓎𝓎) + ℰ𝜙𝜙(𝓎𝓎) > 0.  

 

 
Clearly, D1 implies D2 if  

𝓎𝓎ℰ𝜙𝜙′(𝓎𝓎)
ℰ𝜙𝜙(𝓎𝓎) = 1 − 𝑟𝑟𝜙𝜙(𝓎𝓎)− ℰ𝜙𝜙(𝓎𝓎) < 0, 

and D2 implies D1, if  

𝓎𝓎ℰ𝜙𝜙′(𝓎𝓎)
ℰ𝜙𝜙(𝓎𝓎) = 1 − 𝑟𝑟𝜙𝜙(𝓎𝓎)− ℰ𝜙𝜙(𝓎𝓎) > 0. 

And, D1 and D2 are equivalent if and only if    

𝓎𝓎ℰ𝜙𝜙′(𝓎𝓎)
ℰ𝜙𝜙(𝓎𝓎) = 1 − 𝑟𝑟𝜙𝜙(𝓎𝓎)− ℰ𝜙𝜙(𝓎𝓎) = 0, 

that is, under and only under CES.  

 To see why D2 ensures the existence and the uniqueness of a symmetric free-entry 

equilibrium, note first that the pricing formula, eq.(24), and the free entry condition, eq.(9), can 

be combined to yield: 

 𝑟𝑟𝜙𝜙(𝑥𝑥 𝑋𝑋⁄ )𝑝𝑝𝑝𝑝 = 𝐹𝐹. (25) 

From eq.(9) and eq.(10), 𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐿𝐿, which can be combined with eq.(25) to obtain: 
𝐿𝐿
𝑉𝑉

= 𝑝𝑝𝑝𝑝 =
𝐹𝐹

𝑟𝑟𝜙𝜙(𝑥𝑥 𝑋𝑋⁄ ), 
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which becomes after using the H.D.I.A. condition, eq.(23):  

𝑟𝑟𝜙𝜙(𝑥𝑥 𝑋𝑋⁄ )𝜙𝜙(𝑥𝑥 𝑋𝑋⁄ ) = 𝐹𝐹 𝐿𝐿⁄ . 

The LHS of this equation is increasing in 𝑥𝑥 𝑋𝑋⁄ , because D2 implies 

𝑑𝑑 log�𝜙𝜙(𝓎𝓎)𝑟𝑟𝜙𝜙(𝓎𝓎)� 
𝑑𝑑 log𝓎𝓎

=
𝓎𝓎𝜙𝜙′′′(𝓎𝓎)
𝜙𝜙′′(𝓎𝓎) + 1 + 𝑟𝑟𝜙𝜙(𝓎𝓎) + ℰ𝜙𝜙(𝓎𝓎) > 0  for all 𝓎𝓎 > 0. 

Furthermore, lim𝓎𝓎→0𝑟𝑟𝜙𝜙(𝓎𝓎)𝜙𝜙(𝓎𝓎) = 0 and  lim𝓎𝓎→∞𝑟𝑟𝜙𝜙(𝓎𝓎)𝜙𝜙(𝓎𝓎) = ∞. Hence, for each 𝐿𝐿 𝐹𝐹⁄ >

0, the equilibrium value of 𝓎𝓎, 𝓎𝓎𝐸𝐸 , is pinned down uniquely by,  

 𝑟𝑟𝜙𝜙(𝓎𝓎𝐸𝐸)𝜙𝜙(𝓎𝓎𝐸𝐸) = 𝐹𝐹 𝐿𝐿⁄ , (26) 

and 𝓎𝓎𝐸𝐸is decreasing in 𝐿𝐿 𝐹𝐹⁄ , with the range, (0,∞). By inserting this value into eq.(23), eq.(24), 

and eq.(9),   

 𝑉𝑉𝐸𝐸 =
1

𝜙𝜙(𝓎𝓎𝐸𝐸) ;  

 𝑝𝑝𝐸𝐸 =
𝜓𝜓

1 − 𝑟𝑟𝜙𝜙(𝓎𝓎𝐸𝐸) ;  (27) 

 
𝑋𝑋𝐸𝐸 =

𝑥𝑥𝐸𝐸

𝓎𝓎𝐸𝐸 =
𝐿𝐿

𝓎𝓎𝐸𝐸𝑝𝑝𝐸𝐸𝑉𝑉𝐸𝐸
=

[1 − 𝑟𝑟𝜙𝜙(𝓎𝓎𝐸𝐸)]𝜙𝜙(𝓎𝓎𝐸𝐸)
𝜓𝜓𝓎𝓎𝐸𝐸 𝐿𝐿 =

𝜙𝜙(𝓎𝓎𝐸𝐸)𝐿𝐿 − 𝐹𝐹
𝜓𝜓𝓎𝓎𝐸𝐸 > 0. 

 

Thus, we have shown: 

Proposition 4. Under D1, no asymmetric equilibria exist.  Furthermore, under D1 and D2, there 

exists a unique symmetric free-entry equilibrium under H.D.I.A. for each 𝐿𝐿 𝐹𝐹⁄ > 0, given by 

eq.(26) and eq.(27). 

 

4.4.Comparative Statics under H.D.I.A.: Procompetitive versus Anticompetitive 

We now turn to the comparative statics. 

Proposition 5. Assume D1 and D2.  At the unique symmetric equilibrium in monopolistic 

competition under H.D.I.A., given by eq.(26) and eq.(27), 

Procompetitive: 
𝑟𝑟𝜙𝜙′ (𝓎𝓎𝐸𝐸) > 0 ⟹  

𝜕𝜕𝑝𝑝𝐸𝐸

𝜕𝜕𝜕𝜕
< 0; 

𝜕𝜕 log𝑉𝑉𝐸𝐸

𝜕𝜕 log 𝐿𝐿
< 1; 

𝜕𝜕𝑥𝑥𝐸𝐸

𝜕𝜕𝜕𝜕
> 0 

 

Neutral (CES): 
𝑟𝑟𝜙𝜙′ (𝓎𝓎𝐸𝐸) = 0 ⟹  

𝜕𝜕𝑝𝑝𝐸𝐸

𝜕𝜕𝜕𝜕
= 0; 

𝜕𝜕 log𝑉𝑉𝐸𝐸

𝜕𝜕 log 𝐿𝐿
= 1; 

𝜕𝜕𝑥𝑥𝐸𝐸

𝜕𝜕𝜕𝜕
= 0 

 

Anticompetitive: 
𝑟𝑟𝜙𝜙′ (𝓎𝓎𝐸𝐸) < 0 ⟹  

𝜕𝜕𝑝𝑝𝐸𝐸

𝜕𝜕𝜕𝜕
> 0; 

𝜕𝜕 log𝑉𝑉𝐸𝐸

𝜕𝜕 log 𝐿𝐿
> 1; 

𝜕𝜕𝑥𝑥𝐸𝐸

𝜕𝜕𝜕𝜕
< 0. 
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Proof:  Since eq.(26) implies 𝜕𝜕𝓎𝓎𝐸𝐸 𝜕𝜕𝜕𝜕⁄ < 0 under D2, this follows from eq.(27).∎ 

 

The conditions for the procompetitive vs. anticompetitive cases under H.D.I.A. are analogous to 

those under H.S.A.  For example, recall that the condition for the procompetitive case under 

H.S.A. is 𝜁𝜁′(𝑧𝑧𝐸𝐸) = 𝜁𝜁′(𝑝𝑝𝐸𝐸 𝐴𝐴𝐸𝐸⁄ ) > 0,  that is, the price elasticity of demand goes up as its price 

goes up, holding the aggregates fixed. This is nothing but Marshall’s 2nd law of demand.  Here, 

under H.D.I.A., the condition is 𝑟𝑟𝜙𝜙′ (𝓎𝓎𝐸𝐸) = 𝑟𝑟𝜙𝜙′ (𝑥𝑥𝐸𝐸 𝑋𝑋𝐸𝐸⁄ ) > 0; that is, the price elasticity of 

demand for an input goes down as its quantity goes up, holding the aggregate fixed. This is 

another way of stating Marshall’s 2nd law of demand.    Note also that, if the condition for the 

procompetitive case holds globally, 𝑟𝑟𝜙𝜙′ (∙) > 0, D1 and D2 hold automatically.  However, neither 

D1 nor D2 necessarily implies 𝑟𝑟𝜙𝜙′ (𝓎𝓎) > 0.  This means that D1 and D2 do not rule out the 

anticompetitive case, 𝑟𝑟𝜙𝜙′ (𝓎𝓎) < 0. 

 

4.5.Welfare Analysis under H.D.I.A.: Excessive versus Insufficient 

We now turn to the welfare analysis under H.D.I.A.  The social planner’s problem is to 

maximize social welfare subject to the resource constraint. From the symmetry and strict quasi-

concavity of 𝑋𝑋 = 𝑋𝑋(𝐱𝐱), defined by eq.(18), the solution is clearly symmetric. The problem can 

be thus stated as: 

max
(𝑥𝑥,𝑉𝑉)

 𝑋𝑋           𝑠𝑠. 𝑡𝑡.   (𝜓𝜓𝜓𝜓 + 𝐹𝐹)𝑉𝑉 = 𝐿𝐿;   𝑉𝑉𝑉𝑉(𝑥𝑥 𝑋𝑋⁄ ) = 1 

Using 𝓎𝓎 = 𝑥𝑥 𝑋𝑋⁄ , this can be written as 

max
(𝑥𝑥,𝓎𝓎)

𝑥𝑥
𝓎𝓎

          𝑠𝑠. 𝑡𝑡.       𝜓𝜓𝜓𝜓 =  
𝐿𝐿
𝑉𝑉
− 𝐹𝐹 = 𝜙𝜙(𝓎𝓎)𝐿𝐿 − 𝐹𝐹 ≥ 0 

or, equivalently, as 

max
𝓎𝓎≥𝓎𝓎

𝑊𝑊(𝓎𝓎) ≡
𝜙𝜙(𝓎𝓎) − 𝐹𝐹 𝐿𝐿⁄

𝓎𝓎
,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝓎𝓎 ≡ 𝜙𝜙−1(𝐹𝐹 𝐿𝐿⁄ ) > 0. 

To make this social planner’s problem well-defined, we need to introduce: 

Assumption D3:  lim
𝓎𝓎→∞

ℰ𝜙𝜙(𝓎𝓎) < 1.17 

 
17 Assumption D3 rules out the pathological case, where the social planner can produce an unbounded output, 𝑋𝑋, by 
letting 𝑉𝑉 ⟶ 0 and 𝑥𝑥 ⟶ ∞.  Note that D3 does not rule out the choke price, which would imply lim

𝓎𝓎→0
ℰ𝜙𝜙(𝓎𝓎) = 1. 
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Lemma 4.  Under D3, 𝑊𝑊(𝓎𝓎) is unimodal, with  

𝑊𝑊′(𝓎𝓎) ⋛ 0 ⟺
𝐹𝐹
𝐿𝐿
⋛ 𝜙𝜙(𝓎𝓎) − 𝜙𝜙′(𝓎𝓎)𝓎𝓎 = 𝜙𝜙(𝓎𝓎)�1− ℰ𝜙𝜙(𝓎𝓎)� ⟺ 𝓎𝓎 ⋚ 𝓎𝓎𝑂𝑂 

where 𝓎𝓎𝑂𝑂 is the socially optimal value of 𝓎𝓎, uniquely given by 

𝜙𝜙(𝓎𝓎𝑂𝑂) − 𝜙𝜙′(𝓎𝓎𝑂𝑂)𝓎𝓎𝑂𝑂 = 𝜙𝜙(𝓎𝓎𝑂𝑂)�1 − ℰ𝜙𝜙(𝓎𝓎𝑂𝑂)� =
𝐹𝐹
𝐿𝐿

 

and 𝓎𝓎𝑂𝑂 is strictly decreasing in 𝐿𝐿 𝐹𝐹⁄ .  

Proof:   By differentiating 𝑊𝑊(𝓎𝓎), it is easily verified that 

𝓎𝓎2𝑊𝑊′(𝓎𝓎) =
𝐹𝐹
𝐿𝐿
− [𝜙𝜙(𝓎𝓎) − 𝜙𝜙′(𝓎𝓎)𝓎𝓎] =

𝐹𝐹
𝐿𝐿
− 𝜙𝜙(𝓎𝓎)�1 − ℰ𝜙𝜙(𝓎𝓎)�, 

which is strictly decreasing, because 

𝑑𝑑[𝜙𝜙(𝓎𝓎) − 𝜙𝜙′(𝓎𝓎)𝓎𝓎]
𝑑𝑑𝓎𝓎

= −𝜙𝜙′′ (𝓎𝓎)𝓎𝓎 > 0. 

Furthermore, 𝓎𝓎2𝑊𝑊′(𝓎𝓎) = 𝓎𝓎𝜙𝜙′(𝓎𝓎) > 0 and 𝓎𝓎2𝑊𝑊′(𝓎𝓎) < 0 for a sufficiently large 𝓎𝓎, because 

D3 implies 𝜙𝜙(𝓎𝓎)�1− ℰ𝜙𝜙(𝓎𝓎)� ⟶ ∞ as 𝓎𝓎 ⟶ ∞. Hence, 𝑊𝑊(𝓎𝓎) reaches its global maximum at 

𝓎𝓎𝑂𝑂 ∈ (𝓎𝓎,∞), given by 𝑊𝑊′(𝓎𝓎𝑂𝑂) = 0 ⟺𝜙𝜙(𝓎𝓎𝑂𝑂) − 𝜙𝜙′(𝓎𝓎𝑂𝑂)𝓎𝓎𝑂𝑂 = 𝐹𝐹 𝐿𝐿⁄ , which is strictly 

decreasing in 𝐿𝐿 𝐹𝐹⁄ , and 𝑊𝑊′(𝓎𝓎) ⋛ 0 ⟺𝓎𝓎 ⋚ 𝓎𝓎𝑂𝑂. ∎ 

 We are now ready to state the welfare property of the equilibrium allocation. 

Proposition 6. Assume D1, D2 and D3.  Then, at the unique symmetric equilibrium in 

monopolistic competition under H.D.I.A.,given by eq.(26) and eq.(27), 𝑉𝑉𝐸𝐸 , the equilibrium mass 

of firms that enter = the equilibrium mass of varieties produced and 𝑉𝑉𝑂𝑂 , the mass of the optimal 

mass of firms that enter = the optimal mass of varieties produced,, satisfy 

Excessive Entry: 𝓎𝓎𝐸𝐸ℰ𝜙𝜙′(𝓎𝓎𝐸𝐸)
ℰ𝜙𝜙(𝓎𝓎𝐸𝐸) = 1 − 𝑟𝑟𝜙𝜙(𝓎𝓎𝐸𝐸) − ℰ𝜙𝜙(𝓎𝓎𝐸𝐸) < 0 ⟺  𝑉𝑉𝐸𝐸 >  𝑉𝑉𝑂𝑂 

Optimal Entry (CES): 𝓎𝓎𝐸𝐸ℰ𝜙𝜙′(𝓎𝓎𝐸𝐸)
ℰ𝜙𝜙(𝓎𝓎𝐸𝐸) = 1 − 𝑟𝑟𝜙𝜙(𝓎𝓎𝐸𝐸)− ℰ𝜙𝜙(𝓎𝓎𝐸𝐸) = 0 ⟺  𝑉𝑉𝐸𝐸 =  𝑉𝑉𝑂𝑂 

Insufficient Entry: 𝓎𝓎𝐸𝐸ℰ𝜙𝜙′(𝓎𝓎𝐸𝐸)
ℰ𝜙𝜙(𝓎𝓎𝐸𝐸) = 1 − 𝑟𝑟𝜙𝜙(𝓎𝓎𝐸𝐸) − ℰ𝜙𝜙(𝓎𝓎𝐸𝐸) > 0 ⟺  𝑉𝑉𝐸𝐸 <  𝑉𝑉𝑂𝑂 

Proof:  From eq.(26) and Lemma 4,   

𝓎𝓎𝐸𝐸 ⋚ 𝓎𝓎𝑂𝑂 ⟺ 𝑟𝑟𝜙𝜙(𝓎𝓎𝐸𝐸)𝜙𝜙(𝓎𝓎𝐸𝐸) =
𝐹𝐹
𝐿𝐿
⋛ 𝜙𝜙(𝓎𝓎𝐸𝐸)�1 − ℰ𝜙𝜙(𝓎𝓎𝐸𝐸)� ⟺ 𝑟𝑟𝜙𝜙(𝓎𝓎𝐸𝐸) ⋛ 1 − ℰ𝜙𝜙(𝓎𝓎𝐸𝐸) 

Since 𝑉𝑉𝐸𝐸𝜙𝜙(𝓎𝓎𝐸𝐸) = 1 = 𝑉𝑉𝑂𝑂𝜙𝜙(𝓎𝓎𝑂𝑂),𝓎𝓎𝐸𝐸 ⋚ 𝓎𝓎𝑂𝑂 ⟺ 𝑉𝑉𝐸𝐸 ⋛ 𝑉𝑉𝑂𝑂 , this completes the proof. ∎ 
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Note that, in order for the equilibrium entry to be optimal for a range of the parameter values 

under H.D.I.A.,  𝓎𝓎ℰ𝜙𝜙′(𝓎𝓎)

ℰ𝜙𝜙(𝓎𝓎) = 1 − 𝑟𝑟𝜙𝜙(𝓎𝓎) − ℰ𝜙𝜙(𝓎𝓎) = 0 must hold for the relevant range of 𝓎𝓎, that 

is, under and only under CES. Thus, CES offers the borderline case between the cases of 

excessive entry and insufficient entry within H.D.I.A.. 

 

4.6.Main H.D.I.A. Theorem and Some Examples 

Proposition 5 states that the sign of 𝑟𝑟𝜙𝜙′ (𝓎𝓎𝐸𝐸) determines whether entry is procompetitive 

or anticompetitive, while Proposition 6 states the sign of ℰ𝜙𝜙′ (𝓎𝓎𝐸𝐸) determines whether entry is 

excessive or insufficient.  Hence, one might think, unlike under H.S.A, that these conditions are 

unrelated to each other, and that both procompetitive entry and anticompetitive entry can be 

either excessive or insufficient under H.D.I.A.. However, the next lemma shows that there exists 

a tight connection between the two conditions. 

 

Lemma 5:  Assume that 𝑟𝑟𝜙𝜙′ (⋅) does not change sign over (0,𝓎𝓎0), where 0 < 𝓎𝓎0 ≤ ∞. Then, for 

all 𝓎𝓎 ∈ (0,𝓎𝓎0), 

𝑟𝑟𝜙𝜙′ (⋅) ⋛ 0 ⟹  ℰ𝜙𝜙′ (⋅) ⋚ 0. 

Proof: See Appendix A. ∎ 

Here is the implication of Lemma 5. Suppose that, for all 𝐿𝐿 𝐹𝐹⁄ > (𝐿𝐿 𝐹𝐹⁄ )0, entry is procompetitive 

at the unique symmetric equilibrium given by eq.(26) and eq.(27). That means that 𝑟𝑟𝜙𝜙′ (𝓎𝓎) > 0 

for all 𝓎𝓎 < 𝓎𝓎0, where 𝓎𝓎0 satisfies 𝑟𝑟𝜙𝜙(𝓎𝓎0)𝜙𝜙(𝓎𝓎0)(𝐿𝐿 𝐹𝐹⁄ )0 = 1.  Then, Lemma 5 tells us ℰ𝜙𝜙′ (𝓎𝓎) <

0 for all 𝓎𝓎 < 𝓎𝓎0. Hence, for all 𝐿𝐿 𝐹𝐹⁄ > (𝐿𝐿 𝐹𝐹⁄ )0, entry is excessive at the unique symmetric 

equilibrium. Likewise, suppose that, for all 𝐿𝐿 𝐹𝐹⁄ > (𝐿𝐿 𝐹𝐹⁄ )0, entry is anticompetitive at the unique 

symmetric equilibrium given by eq.(26) and eq.(27). That means that 𝑟𝑟𝜙𝜙′ (𝓎𝓎) < 0 for all 𝓎𝓎 < 𝓎𝓎0. 

Then, Lemma 5 tells us ℰ𝜙𝜙′ (𝓎𝓎) > 0 for all 𝓎𝓎 < 𝓎𝓎0.  Hence, for all 𝐿𝐿 𝐹𝐹⁄ > (𝐿𝐿 𝐹𝐹⁄ )0, entry is 

insufficient at the unique symmetric equilibrium. 

We are now ready to summarize the main properties of H.D.I.A. in the next theorem, by 

consolidating Propositions 4, 5, and 6 and Lemma 5. In doing so, we take into account that 𝓎𝓎𝐸𝐸 is 

strictly decreasing in 𝐿𝐿 𝐹𝐹⁄  and takes any value in (0,∞), as 𝐿𝐿 𝐹𝐹⁄  varies from zero to infinity, and 
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that the existence of the choke price, 𝜙𝜙′(0) < ∞, implies lim
𝓎𝓎→0

𝑟𝑟𝜙𝜙(𝓎𝓎) = 0 and lim
𝓎𝓎→0

 ℰ𝜙𝜙(𝓎𝓎) = 1, 

and hence 𝑟𝑟𝜙𝜙′ (𝓎𝓎) > 0 and ℰ𝜙𝜙′ (𝓎𝓎) < 0 for a sufficiently small 𝓎𝓎, which means that entry is 

procompetitive and excessive for a sufficiently large 𝐿𝐿 𝐹𝐹⁄ > 0. 

 

Theorem 2: Consider monopolistic competition under symmetric H.D.I.A. with gross substitutes. 

Assume D1 to ensure the symmetry of equilibrium and D2 to ensure the uniqueness of the 

symmetric equilibrium.  Then, the unique symmetric equilibrium is given by eq.(26) and eq.(27).  

Assume D3 to ensure that the planner’s problem is well-defined. Then, at the unique symmetric 

equilibrium, entry is, 

• procompetitive and excessive for any 𝐿𝐿 𝐹𝐹⁄ > 0, if  𝑟𝑟𝜙𝜙′(𝓎𝓎) > 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝓎𝓎 ∈ (0,∞); 

• neutral and optimal for any 𝐿𝐿 𝐹𝐹⁄ > 0, if 𝑟𝑟𝜙𝜙′(𝓎𝓎) = 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝓎𝓎 ∈ (0,∞), that is, under CES; 

• anticompetitive and insufficient for any 𝐿𝐿 𝐹𝐹⁄ > 0, 𝑖𝑖𝑖𝑖 𝑟𝑟𝜙𝜙′(𝓎𝓎) < 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝓎𝓎 ∈ (0,∞). 

Furthermore, in the presence of the choke price, 𝜙𝜙′(0) < ∞, entry is procompetitive and 

excessive for a sufficiently large 𝐿𝐿 𝐹𝐹⁄ > 0. 

 

We now turn to some examples to illustrate Theorem 2. 

Example 4; Perturbed CES, H.D.I.A. with global monotonicity.  Consider a family of 

H.D.I.A. technologies, such that   

𝑟𝑟𝜙𝜙(𝓎𝓎) ≡ −
𝓎𝓎𝜙𝜙′′(𝓎𝓎)
𝜙𝜙′(𝓎𝓎) =

1
𝜎𝜎

+ 𝛿𝛿 �1 −
1
𝜎𝜎
�𝑔𝑔(𝓎𝓎), 

where 𝜎𝜎 > 1, and 𝑔𝑔(𝓎𝓎) satisfies 𝑔𝑔′(𝓎𝓎) > 0  for all 𝓎𝓎 > 0 with 𝑔𝑔(0) = 0 and 𝑔𝑔(∞) = 1 and 

sup{𝓎𝓎𝑔𝑔′(𝓎𝓎)|𝓎𝓎 > 0} ≡ 𝜅𝜅 < ∞.  For example,  

𝑔𝑔(𝓎𝓎) =
𝓎𝓎

𝜂𝜂 + 𝓎𝓎
, 𝜂𝜂 > 0 ⟹ 𝜅𝜅 =

1
4

< ∞ 

𝑔𝑔(𝓎𝓎) = 1 − 𝑒𝑒−𝜇𝜇𝜇𝜇 , 𝜇𝜇 > 0 ⟹  𝜅𝜅 = 𝑒𝑒−1 < ∞ 

satisfy these conditions.  In addition, we impose the following restrictions on 𝜎𝜎, 𝛿𝛿, and 𝜅𝜅: 

 −
1

(1 + 𝜅𝜅)𝜎𝜎 − 1
< 𝛿𝛿 < 1, 



 
 

Page 31 of 51 
 

so that 0 < 𝑟𝑟𝜙𝜙(𝓎𝓎) < 1, D1, D2, and D3 hold.18  Then, Theorem 2 can be applied. In this 

example, entry is procompetitive and excessive for all 𝐿𝐿 𝐹𝐹⁄ > 0 when 0 < 𝛿𝛿 < 1, while it is 

anticompetitive and insufficient for all 𝐿𝐿 𝐹𝐹⁄ > 0 when − 1
(1+𝜅𝜅)𝜎𝜎−1

< 𝛿𝛿 < 0. 

 

Example 5: H.D.I.A. with a choke price.  Consider a family of H.D.I.A. technologies such that   

0 < 𝑟𝑟𝜙𝜙(𝓎𝓎) ≡ −
𝓎𝓎𝜙𝜙′′(𝓎𝓎)
𝜙𝜙′(𝓎𝓎) < 1, 

satisfies 𝑟𝑟𝜙𝜙′ (𝓎𝓎) > 0  for all 𝓎𝓎 > 0 and 

lim
𝓎𝓎→0

�
𝑟𝑟𝜙𝜙(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝑑𝑑
𝓎𝓎0
′

𝓎𝓎
< ∞ ⟺𝜙𝜙′(0) = lim

𝓎𝓎→0
 𝑒𝑒𝑒𝑒𝑒𝑒 ��

𝑟𝑟𝜙𝜙(𝜉𝜉)
𝜉𝜉 𝑑𝑑𝑑𝑑

𝓎𝓎0
′

𝓎𝓎
� < ∞, 

which implies the choke price.  For example, 𝑟𝑟𝜙𝜙(𝓎𝓎) = 𝓎𝓎
𝜂𝜂+𝓎𝓎

, 𝜂𝜂 > 0 and 𝑟𝑟𝜙𝜙(𝓎𝓎) = 1 − 𝑒𝑒−𝜇𝜇𝜇𝜇 , 𝜇𝜇 >

0, satisfy these conditions.  Clearly, D1, D2, and D3 are all satisfied, and from Lemma 5, 

𝑟𝑟𝜙𝜙′ (𝓎𝓎) > 0 ⟹ ℰ𝜙𝜙′ (𝓎𝓎) < 0 for all 𝓎𝓎 > 0.  Hence, entry is always procompetitive and excessive, 

not just for a sufficiently large 𝐿𝐿/𝐹𝐹. 

 

The assumption of the global monotonicity of 𝑟𝑟𝜙𝜙(∙) in Theorem 2, which implies the 

global monotonicity of ℰ𝜙𝜙(∙) by Lemma 5, is important.  Otherwise, entry could be 

procompetitive and yet insufficient, or anticompetitive and yet excessive, as the next example 

illustrates. 

Example 6.  Perturbed CES, H.D.I.A. without global monotonicity.   Consider a family of 

H.D.I.A technologies with 

ℰ𝜙𝜙(𝓎𝓎) ≡
𝓎𝓎𝜙𝜙′(𝓎𝓎)
𝜙𝜙(𝓎𝓎) = 1 −

1
𝜎𝜎

+ 𝛿𝛿𝛿𝛿(𝓎𝓎), 

 
18It is easy to verify 0 < 𝑟𝑟𝜙𝜙(𝓎𝓎) < 1 and D3.  For D1 and D2, if 𝛿𝛿 ≥ 0, 𝑟𝑟𝜙𝜙′ (𝓎𝓎) ≥ 0, which implies both D1 and D2.  
If 𝛿𝛿 < 0, 𝑟𝑟𝜙𝜙′ (𝓎𝓎) < 0 for all 𝓎𝓎 > 0.  From Lemma 5, this implies ℰ𝜙𝜙′ (𝓎𝓎) > 0 for all 𝓎𝓎 > 0, which means that D2 
implies D1.  To verify that D2 for 𝛿𝛿 < 0, note that 𝑟𝑟𝜙𝜙′ (𝓎𝓎) < 0 and ℰ𝜙𝜙′ (𝓎𝓎) > 0 for all 𝓎𝓎 > 0 implies  

𝑟𝑟𝜙𝜙(𝓎𝓎)ℰ𝜙𝜙(𝓎𝓎) >  𝑟𝑟𝜙𝜙(∞)ℰ𝜙𝜙(0) = �
1
𝜎𝜎

+ 𝛿𝛿 �1 −
1
𝜎𝜎
�� �1 −

1
𝜎𝜎
�, 

while 𝛿𝛿 < 0 and the definition of 𝜅𝜅 implies 

𝓎𝓎𝑟𝑟𝜙𝜙′ (𝓎𝓎) = 𝛿𝛿 �1 −
1
𝜎𝜎
�𝓎𝓎𝑔𝑔′(𝓎𝓎) > 𝛿𝛿 �1 −

1
𝜎𝜎
�𝜅𝜅 

Adding each side of the two inequalities above yields 𝑟𝑟𝜙𝜙(𝓎𝓎)ℰ𝜙𝜙(𝓎𝓎) + 𝓎𝓎𝑟𝑟𝜙𝜙′ (𝓎𝓎) > 0, because − 1
(1+𝜅𝜅)𝜎𝜎−1

< 𝛿𝛿 < 0, 
which is equivalent to D2. 
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𝑟𝑟𝜙𝜙(𝓎𝓎) ≡ −
𝓎𝓎𝜙𝜙′′(𝓎𝓎)
𝜙𝜙′(𝓎𝓎) = 1 − ℰ𝜙𝜙(𝓎𝓎) −

𝓎𝓎ℰ𝜙𝜙′ (𝓎𝓎)
ℰ𝜙𝜙(𝓎𝓎) =

1
𝜎𝜎

+ 𝛿𝛿𝛿𝛿(𝓎𝓎) −
𝛿𝛿𝛿𝛿𝑔𝑔′(𝓎𝓎)

1 − 1
𝜎𝜎 + 𝛿𝛿𝛿𝛿(𝓎𝓎)

. 

where 𝜎𝜎 > 1, 𝛿𝛿 can be either positive or negative (but sufficiently small in absolute value to ensure 

D1, D2 and D3), while 𝑔𝑔(𝓎𝓎) is twice-continuously differentiable, single-peaked, and satisfies 

𝑔𝑔(0) = 𝑔𝑔(∞) = 0, sup |𝑔𝑔′(𝓎𝓎)| < ∞.  Let 𝓎𝓎� > 0 be the maximizer of 𝑔𝑔(𝓎𝓎). Hence, 𝑔𝑔′(𝓎𝓎�) =

0 > 𝑔𝑔′′(𝓎𝓎�).  For example, 

𝑔𝑔(𝓎𝓎) =
𝓎𝓎

𝜆𝜆 + 𝓎𝓎2 , 𝜆𝜆 > 0 ⟹𝓎𝓎� = �𝜆𝜆; 

𝑔𝑔(𝓎𝓎) = 𝓎𝓎𝑒𝑒−𝜇𝜇𝓎𝓎 , 𝜇𝜇 > 0 ⟹𝓎𝓎� = 1 𝜇𝜇⁄ . 

From Proposition 6, entry is excessive if and only if ℰ𝜙𝜙′ (𝓎𝓎𝐸𝐸) = 𝛿𝛿𝑔𝑔′(𝓎𝓎𝐸𝐸) < 0, while it is 

insufficient if and only if  ℰ𝜙𝜙′ (𝓎𝓎𝐸𝐸) = 𝛿𝛿𝑔𝑔′(𝓎𝓎𝐸𝐸) > 0.   Evaluating 𝑟𝑟𝜙𝜙′ (𝓎𝓎) at 𝓎𝓎 = 𝓎𝓎�  yields: 

𝑟𝑟𝜙𝜙′ (𝓎𝓎�) = −
𝓎𝓎�ℰ𝜙𝜙′′(𝓎𝓎�)
ℰ𝜙𝜙(𝓎𝓎�) = −𝛿𝛿𝑔𝑔′′(𝓎𝓎�)

𝓎𝓎�
ℰ𝜙𝜙(𝓎𝓎�) ⋛ 0 ⟺ 𝛿𝛿 ⋛ 0, 

Thus, from Proposition 5, entry is procompetitive in the vicinity of 𝓎𝓎� , if 𝛿𝛿 > 0, while it is 

anticompetitive in the vicinity of 𝓎𝓎� , if 𝛿𝛿 < 0. 

Combining these two observations, we conclude that entry is procompetitive and yet 

insufficient for 𝛿𝛿 > 0 and 𝓎𝓎𝐸𝐸 slightly higher than 𝓎𝓎� , or equivalently, 𝐹𝐹 𝐿𝐿⁄   slightly higher than 

𝜙𝜙(𝓎𝓎�)𝑟𝑟𝜙𝜙(𝓎𝓎�), while it is anticompetitive and yet excessive for 𝛿𝛿 < 0 and 𝓎𝓎𝐸𝐸 slightly lower than 𝓎𝓎� , 

or equivalently 𝐹𝐹 𝐿𝐿⁄  slightly lower than 𝜙𝜙(𝓎𝓎�)𝑟𝑟𝜙𝜙(𝓎𝓎�).  

 

5.   Dixit-Stiglitz under H.I.I.A. (Homothetic Indirect Implicit Additivity) 

5.1.H.I.I.A. Demand System  

We call CRS technology, 𝑋𝑋 = 𝑋𝑋(𝐱𝐱) or 𝑃𝑃 = 𝑃𝑃(𝐩𝐩), homothetic with indirect implicit 

additivity (H.I.I.A.)19 if 𝑃𝑃 = 𝑃𝑃(𝐩𝐩) can be defined implicitly by: 

 
� 𝜃𝜃 �

𝑝𝑝(𝜔𝜔)
𝑃𝑃(𝐩𝐩)�𝑑𝑑𝑑𝑑Ω

= 1, 

 

(28) 

 
19 More generally, 𝑃𝑃 = 𝑃𝑃(𝐩𝐩) satisfies indirect implicit additivity (I.I.A.) if it is defined implicitly by  
∫ 𝜃𝜃�(𝑝𝑝(𝜔𝜔),𝑃𝑃)𝑑𝑑𝑑𝑑Ω = 1. See Hanoch (1975; Section 3). Clearly, H.I.I.A. is a subclass of I.I.A., where 𝜃𝜃�(𝑝𝑝(𝜔𝜔),𝑃𝑃) =
𝜃𝜃(𝑝𝑝(𝜔𝜔) 𝑃𝑃⁄ ). In contrast, 𝑃𝑃 = 𝑃𝑃(𝐩𝐩) satisfies indirect explicit additivity (I.E.A.) if it can be written as 𝑃𝑃 =
ℳ�∫ 𝜃𝜃�𝑝𝑝(𝜔𝜔)�𝑑𝑑𝑑𝑑Ω � where ℳ(∙) is a monotone transformation. Although I.E.A. is another subclass of I.I.A., it 
cannot be homothetic unless it is CES.  
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where 𝜃𝜃(⋅):ℝ+ → ℝ+ is thrice continuously differentiable, strictly decreasing, and strictly 

convex, as long as 𝜃𝜃(𝓏𝓏) > 0 with  lim𝓏𝓏→0 𝜃𝜃(𝓏𝓏) = ∞ and  lim𝓏𝓏→𝓏̅𝓏 𝜃𝜃(𝓏𝓏) = 0, where 𝓏̅𝓏 ≡

inf{𝓏𝓏 > 0|𝜃𝜃(𝓏𝓏) = 0}. Again, we allow for the possibility of 𝓏̅𝓏 < ∞, the existence of the choke 

price, in which case, lim
𝓏𝓏→𝓏𝓏

𝜃𝜃′(𝓏𝓏) = 0.  If 𝓏̅𝓏 = ∞, the choke price does not exist and demand for 

each input always remains positive for any positive price vector. 

In the following analysis, both the elasticity of 𝜃𝜃(⋅) in its absolute value, 

 
ℰ𝜃𝜃(𝓏𝓏) ≡ −

𝓏𝓏𝜃𝜃′(𝓏𝓏)
𝜃𝜃(𝓏𝓏) > 0. 

 

(29) 

and the elasticity of 𝜃𝜃′(∙) in its absolute value, 

 
𝑟𝑟𝜃𝜃(𝓏𝓏) ≡ −

𝓏𝓏𝜃𝜃′′(𝓏𝓏)
𝜃𝜃′(𝓏𝓏) > 1 

 

(30) 

both defined over (0,𝓏𝓏), play important roles.  That 𝜃𝜃(𝓏𝓏) is strictly decreasing and strictly 

positive in (0,𝓏𝓏) ensures  ℰ𝜃𝜃(𝓏𝓏) > 0, and that 𝜃𝜃(𝓏𝓏) is strictly decreasing and strictly convex in 

(0,𝓏𝓏) ensures 𝑟𝑟𝜃𝜃(𝓏𝓏) > 0. However, the convexity of 𝜃𝜃(𝓏𝓏) does not impose any upper bound on 

ℰ𝜃𝜃(𝓏𝓏).  In addition, it is necessary to assume 𝑟𝑟𝜃𝜃(𝓏𝓏) > 1 to ensure that inputs are gross 

substitutes, as will be seen below.  Note that ℰ𝜃𝜃(𝓏𝓏) > 0 is twice continuously differentiable in 

(0,𝓏𝓏) and satisfies lim
𝓏𝓏→𝓏𝓏

ℰ𝜃𝜃(𝓏𝓏) = ∞  if 𝓏𝓏 < ∞, and that 𝑟𝑟𝜃𝜃(𝓏𝓏) > 1 is continuously differentiable in 

(0,𝓏𝓏) and satisfies lim
𝓏𝓏→𝓏𝓏

𝑟𝑟𝜃𝜃(𝓏𝓏) = ∞  if 𝓏𝓏 < ∞.  Conversely, either from any twice continuously 

differentiable ℰ𝜃𝜃(𝓏𝓏) > 0, defined over (0,𝓏𝓏), satisfying lim
𝓏𝓏→𝓏𝓏

ℰ𝜃𝜃(𝓏𝓏) = ∞  if 𝓏𝓏 < ∞  or from any 

continuously differentiable 𝑟𝑟𝜃𝜃(𝓏𝓏) > 1, defined over (0,𝓏𝓏),  satisfying lim
𝓏𝓏→𝓏𝓏

𝑟𝑟𝜃𝜃(𝓏𝓏) = ∞ if 𝓏𝓏 < ∞, 

one could recover 𝜃𝜃(𝓏𝓏) as follows: 

𝜃𝜃(𝓏𝓏) = 𝑒𝑒𝑒𝑒𝑒𝑒 �−� ℰ𝜃𝜃(𝜉𝜉)
𝑑𝑑𝑑𝑑
𝜉𝜉

𝓏𝓏

𝓏𝓏0
� ; 

𝜃𝜃(𝓏𝓏) = � 𝑒𝑒𝑒𝑒𝑒𝑒 �−� 𝑟𝑟𝜃𝜃(𝜉𝜉′)
𝑑𝑑𝜉𝜉′

𝜉𝜉′
𝜉𝜉

𝓏𝓏0′
� 𝑑𝑑𝜉𝜉.

∞

𝓏𝓏
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where 𝓏𝓏0 > 0 and 𝓏𝓏0′ > 0 are both constants.20  One could also verify from eq.(29) and eq.(30) 

that ℰ𝜃𝜃(𝓏𝓏) and 𝑟𝑟𝜃𝜃(𝓏𝓏) are related as follows: 

𝓏𝓏ℰ𝜃𝜃′(𝓏𝓏)
ℰ𝜃𝜃(𝓏𝓏) = 1 + ℰ𝜃𝜃(𝓏𝓏) − 𝑟𝑟𝜃𝜃(𝓏𝓏). 

Clearly, CES with gross substitutes is a special case with 𝜃𝜃(𝓏𝓏) = 𝐴𝐴𝓏𝓏1−𝜎𝜎 and ℰ𝜃𝜃(𝓏𝓏) + 1 =

𝑟𝑟𝜃𝜃(𝓏𝓏) = 𝜎𝜎 > 1. 

The cost minimization problem, eq.(2) subject to eq. (28) implies that the demand curve 

for each 𝜔𝜔 ∈ Ω can be written as: 

 
𝑥𝑥(𝜔𝜔) = −𝐵𝐵∗(𝐱𝐱)𝜃𝜃′ �

𝑝𝑝(𝜔𝜔)
𝑃𝑃(𝐩𝐩)� > 0,  

(31) 

where 𝐵𝐵∗(𝐱𝐱) > 0 is the Lagrange multiplier associated with eq.(28), and it is the linear 

homogenous function in 𝐱𝐱, given by 

� 𝜃𝜃 �(−𝜃𝜃′)−1 �
𝑥𝑥(𝜔𝜔)
𝐵𝐵∗(𝐱𝐱)��𝑑𝑑𝑑𝑑Ω

≡ 1. 

From eq.(31), the market share of each input can be written either as a function of 𝐩𝐩, or as a 

function of 𝐱𝐱, as follows:  

𝑝𝑝(𝜔𝜔)
𝑃𝑃(𝐩𝐩)

𝑥𝑥(𝜔𝜔)
𝑋𝑋(𝐱𝐱)

= −𝜃𝜃′ �
𝑝𝑝(𝜔𝜔)
𝑃𝑃(𝐩𝐩)

�
𝑝𝑝(𝜔𝜔)
𝐶𝐶(𝐩𝐩)

= (−𝜃𝜃′)−1 �
𝑥𝑥(𝜔𝜔)
𝐵𝐵∗(𝐱𝐱)

�
𝑥𝑥(𝜔𝜔)
𝑋𝑋(𝐱𝐱)

, 

where the production function is given by:  

 
𝑋𝑋 = 𝑋𝑋(𝐱𝐱) = � (−𝜃𝜃′)−1 �

𝑥𝑥(𝜔𝜔)
𝐵𝐵∗(𝐱𝐱)

�𝑥𝑥(𝜔𝜔)𝑑𝑑𝑑𝑑
Ω

 
(32) 

and 𝐶𝐶(𝐩𝐩) is a linear homogenous function of 𝐩𝐩, given by 

𝐶𝐶(𝐩𝐩) ≡ −� 𝜃𝜃′ �
𝑝𝑝(𝜔𝜔)
𝑃𝑃(𝐩𝐩)�𝑝𝑝

(𝜔𝜔)𝑑𝑑𝑑𝑑
Ω

> 0, 

and it satisfies 

𝐶𝐶(𝐩𝐩)
𝑃𝑃(𝐩𝐩)

= −� 𝜃𝜃′ �
𝑝𝑝(𝜔𝜔)
𝑃𝑃(𝐩𝐩)

�
𝑝𝑝(𝜔𝜔)
𝑃𝑃(𝐩𝐩)

𝑑𝑑𝑑𝑑
Ω

= � (−𝜃𝜃′)−1 �
𝑥𝑥(𝜔𝜔)
𝐵𝐵∗(𝐱𝐱)

�
𝑥𝑥(𝜔𝜔)
𝐵𝐵∗(𝐱𝐱)

𝑑𝑑𝑑𝑑
Ω

=
𝑋𝑋(𝐱𝐱)
𝐵𝐵∗(𝐱𝐱)

. 

 
20 These constants imply that 𝜃𝜃(𝓏𝓏)is determined up to a positive scalar multiplier.  However, 𝛾𝛾𝜃𝜃(𝓏𝓏) with 𝛾𝛾 > 0 
generate the same CRS technology. All we need is to renormalize the indices of varieties, as 
∫  𝛾𝛾𝛾𝛾𝜃𝜃(𝑝𝑝(𝜔𝜔) 𝑃𝑃⁄ )𝑑𝑑𝑑𝑑Ω = ∫  𝛾𝛾𝜃𝜃(𝑝𝑝(𝜔𝜔′) 𝑃𝑃⁄ )𝑑𝑑𝜔𝜔′

Ω = 1, with 𝜔𝜔′ = 𝛾𝛾𝛾𝛾. 
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These two expressions for the market share under H.I.I.A. show that it is either a function of the 

two relative prices,  𝑝𝑝(𝜔𝜔) 𝑃𝑃(𝐩𝐩)⁄  and  𝑝𝑝(𝜔𝜔) 𝐶𝐶(𝐩𝐩)⁄ , or a function of the two relative quantities, 

𝑥𝑥(𝜔𝜔) 𝑋𝑋(𝐱𝐱)⁄  and 𝑥𝑥(𝜔𝜔) 𝐵𝐵∗(𝐱𝐱)⁄ , unless 𝑃𝑃(𝐩𝐩) 𝐶𝐶(𝐩𝐩) = 𝐵𝐵∗(𝐱𝐱) 𝑋𝑋(𝐱𝐱) = 𝑐𝑐 > 0⁄⁄  for a constant 𝑐𝑐, 

which occurs if and only if it is CES.  Thus, H.I.I.A. and H.S.A. do not overlap with the sole 

exception of CES. 21 

From the demand curve, eq.(31), the elasticity of substitution between a pair of inputs, 𝜔𝜔1 

and 𝜔𝜔2, evaluated at the same price (and hence at the same quantity) can be expressed as:  

−
𝜕𝜕 ln(𝑥𝑥(𝜔𝜔1) 𝑥𝑥(𝜔𝜔2)⁄ )
𝜕𝜕 ln(𝑝𝑝(𝜔𝜔1) 𝑝𝑝(𝜔𝜔2)⁄ )�

𝑝𝑝(𝜔𝜔1)=𝑝𝑝(𝜔𝜔2)=𝑝𝑝
 = 𝑟𝑟𝜃𝜃 �

𝑝𝑝
𝑃𝑃
� > 1, 

hence 𝑟𝑟𝜃𝜃(𝓏𝓏) > 1 to ensure that inputs are gross substitutes. 

 
5.2.Profit Maximization by Input Producing Firms under H.I.I.A. 

From the demand curve, eq.(31), the profit of firm 𝜔𝜔 ∈ Ω is given by: 

 
𝜋𝜋(𝜔𝜔) = −(𝑝𝑝(𝜔𝜔) − 𝜓𝜓)𝐵𝐵∗(𝐱𝐱)𝜃𝜃′ �

𝑝𝑝(𝜔𝜔)
𝑃𝑃(𝐩𝐩)� − 𝐹𝐹. 

 

 

Firm 𝜔𝜔  chooses its price, 𝑝𝑝(𝜔𝜔), to maximize its profit 𝜋𝜋(𝜔𝜔), taking the aggregate variables, 𝑃𝑃 =
𝑃𝑃(𝐩𝐩) and 𝐵𝐵∗(𝐱𝐱) as given.   Or equivalently, it chooses 𝓏𝓏(𝜔𝜔) ≡ 𝑝𝑝(𝜔𝜔) 𝑃𝑃(𝐩𝐩)⁄  to minimize 

�𝓏𝓏(𝜔𝜔) −
𝜓𝜓

𝑃𝑃(𝐩𝐩)� 𝜃𝜃
′(𝓏𝓏(𝜔𝜔)). 

The FOC is: 

 𝜃𝜃′�𝓏𝓏(𝜔𝜔)� + �𝓏𝓏(𝜔𝜔) −
𝜓𝜓

𝑃𝑃(𝐩𝐩)�𝜃𝜃
′′�𝓏𝓏(𝜔𝜔)�

= 𝓏𝓏(𝜔𝜔)𝜃𝜃′′�𝓏𝓏(𝜔𝜔)� �1 −
𝜓𝜓

𝑝𝑝(𝜔𝜔) −
1

𝑟𝑟𝜃𝜃�𝓏𝓏(𝜔𝜔)�
� = 0. 

 

(33) 

In what follows, we keep it simple by imposing the following assumption to ensure that 
FOC is sufficient for the global optimum. 

Assumption I1: For all 𝓏𝓏 ∈ (0, 𝓏̅𝓏), 

 𝜃𝜃′′′(𝓏𝓏)
𝜃𝜃′′(𝓏𝓏) − 2

𝜃𝜃′′(𝓏𝓏)
𝜃𝜃′(𝓏𝓏) > 0 ⟺  

𝓏𝓏𝑟𝑟𝜃𝜃′(𝓏𝓏)
𝑟𝑟𝜃𝜃(𝓏𝓏) + 𝑟𝑟𝜃𝜃(𝓏𝓏)− 1 > 0. 

 

 
21See Proposition 3-(ii) in Matsuyama and Ushchev (2017).  Its Proposition 4-(iii) also shows that H.D.I.A. and 
H.I.I.A. do not overlap with the sole exception of CES.    
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I1 is equivalent to the strict concavity of 1 𝜃𝜃′(∙)⁄ .  It is readily verified that the LHS of the FOC, 

eq.(33) increases in the neighborhood of every solution to eq.(33) if and only if I1 holds.  Hence, 

eq.(33) gives the unique profit-maximizing price for each firm.  Thus, all the firms set the same 

price, 𝑝𝑝(𝜔𝜔) = 𝑝𝑝, and produce the same amount, 𝑥𝑥(𝜔𝜔) = 𝑥𝑥.   Hence, under I1, asymmetric 

equilibria do not exist.  Unlike in the case of H.S.A., but as in the case of H.D.I.A., the condition 

that rules out asymmetric equilibria does not ensure the uniqueness of a symmetric equilibrium 

under H.I.I.A., which needs to be introduced separately; see I2 below.    

 

5.3. Symmetric Free-Entry Equilibrium under H.I.I.A. 

A symmetric free-entry equilibrium under H.I.I.A. satisfies the following conditions: 

H.I.I.A. integral condition, eq.(28) under symmetry: 
 𝑉𝑉𝑉𝑉 �

𝑝𝑝
𝑃𝑃
� = 1; 
 

(34) 

Firm’s pricing formula, given by FOC eq.(33) under symmetry: 
 1 −

𝜓𝜓
𝑝𝑝

=
1

𝑟𝑟𝜃𝜃 �
𝑝𝑝
𝑃𝑃�

, (35) 

in addition to the zero-profit (free-entry) condition, (9) and the resource constraint, (10). 

For the uniqueness of a symmetric equilibrium, we introduce the following condition: 

Assumption I2: For all 𝓏𝓏 ∈ (0, 𝓏̅𝓏), 

 𝓏𝓏𝜃𝜃′′′(𝓏𝓏)
𝜃𝜃′′(𝓏𝓏)

+ 1 + 𝑟𝑟𝜃𝜃(𝓏𝓏) + ℰ𝜃𝜃(𝓏𝓏) > 0 ⟺  
𝓏𝓏𝑟𝑟𝜃𝜃′(𝓏𝓏)
𝑟𝑟𝜃𝜃(𝓏𝓏) + ℰ𝜃𝜃(𝓏𝓏) > 0. 

 

 

Clearly, I1 implies I2 if  

𝓏𝓏ℰ𝜃𝜃′(𝓏𝓏)
ℰ𝜃𝜃(𝓏𝓏) = 1 + ℰ𝜃𝜃(𝓏𝓏) − 𝑟𝑟𝜃𝜃(𝓏𝓏) > 0, 

and I2 implies I1, if  

𝓏𝓏ℰ𝜃𝜃′(𝓏𝓏)
ℰ𝜃𝜃(𝓏𝓏) = 1 + ℰ𝜃𝜃(𝓏𝓏) − 𝑟𝑟𝜃𝜃(𝓏𝓏) < 0, 

and I2 and I1 are equivalent if and only if  
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𝓏𝓏ℰ𝜃𝜃′(𝓏𝓏)
ℰ𝜃𝜃(𝓏𝓏) = 1 + ℰ𝜃𝜃(𝓏𝓏) − 𝑟𝑟𝜃𝜃(𝓏𝓏) = 0, 

that is, under and only under CES. 

To see why I2 ensures the existence and the uniqueness of a symmetric free-entry 

equilibrium under H.I.I.A., note first that the pricing formula, eq.(35), and the free entry 

condition eq.(9) can be combined to yield: 

 𝑝𝑝𝑝𝑝 = 𝑟𝑟𝜃𝜃(𝑝𝑝 𝑃𝑃⁄ )𝐹𝐹. (36) 

From eq.(9) and eq.(10), 𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐿𝐿, which can be combined with eq.(36) to obtain: 
𝐿𝐿
𝑉𝑉

= 𝑝𝑝𝑝𝑝 = 𝑟𝑟𝜃𝜃(𝑝𝑝 𝑃𝑃⁄ )𝐹𝐹, 

which becomes after using the H.I.I.A. condition, eq.(34): 

 𝜃𝜃(𝑝𝑝 𝑃𝑃⁄ )
 𝑟𝑟𝜃𝜃(𝑝𝑝 𝑃𝑃⁄ )

=
𝐹𝐹
𝐿𝐿

. 

The LHS of this equation is decreasing in 𝑝𝑝 𝑃𝑃⁄ , because I2 implies   

𝑑𝑑 log  [𝜃𝜃(𝓏𝓏) 𝑟𝑟𝜃𝜃(𝓏𝓏)⁄ ]
𝑑𝑑 log 𝓏𝓏

=
𝓏𝓏𝜃𝜃′′′(𝓏𝓏)
𝜃𝜃′′(𝓏𝓏)

+ 1 + 𝑟𝑟𝜃𝜃(𝓏𝓏) + ℰ𝜃𝜃(𝓏𝓏) > 0 for all 𝓏𝓏 ∈ (0, 𝓏̅𝓏) 

Furthermore, lim𝓏𝓏→0 𝜃𝜃(𝓏𝓏) 𝑟𝑟𝜃𝜃(𝓏𝓏)⁄ = ∞ and lim𝓏𝓏→𝓏̅𝓏 𝜃𝜃(𝓏𝓏) 𝑟𝑟𝜃𝜃(𝓏𝓏)⁄ = 0. Hence, for each 𝐿𝐿 𝐹𝐹⁄ > 0,  

the equilibrium value of 𝓏𝓏, 𝓏𝓏𝐸𝐸, is pinned down uniquely by 

  𝜃𝜃(𝓏𝓏𝐸𝐸)
 𝑟𝑟𝜃𝜃(𝓏𝓏𝐸𝐸)

=
𝐹𝐹
𝐿𝐿

 
(37) 

and 𝓏𝓏𝐸𝐸 is increasing in 𝐿𝐿 𝐹𝐹⁄  with the range (0, 𝓏̅𝓏).  By inserting this value into eq.(34), eq.(35), 

and eq.(9),  

 𝑉𝑉𝐸𝐸 =
1

𝜃𝜃(𝓏𝓏𝐸𝐸) ;  

 
𝑃𝑃𝐸𝐸 =

𝑝𝑝𝐸𝐸

𝓏𝓏𝐸𝐸
=

𝜓𝜓 𝓏𝓏𝐸𝐸⁄
1 − 1 𝑟𝑟𝜃𝜃(𝓏𝓏𝐸𝐸)⁄ > 0; 

(38) 

 
𝑥𝑥𝐸𝐸 =

(𝑟𝑟𝜃𝜃(𝓏𝓏𝐸𝐸) − 1)𝐹𝐹
𝜓𝜓

=
𝜃𝜃(𝓏𝓏𝐸𝐸)𝐿𝐿 − 𝐹𝐹

𝜓𝜓
> 0. 

 

Thus, we have shown: 

Proposition 7. Under I1, no asymmetric equilibria exist. Furthermore, under I1 and I2, there 

exists a unique symmetric free-entry equilibrium under H.I.I.A. for each 𝐿𝐿 𝐹𝐹⁄ > 0, given by 

eq.(37) and eq.(38). 
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5.4.Comparative Statics under H.I.I.A.: Procompetitive versus Anticompetitive 

Let us now turn to the comparative statics to study the market size effect. 

Proposition 8.  Assume I1 and I2.  At the unique symmetric equilibrium in monopolistic 

competition under H.I.I.A., given by eq.(37) and eq.(38),  

Procompetitive: 
𝑟𝑟𝜃𝜃′(𝓏𝓏𝐸𝐸) > 0 ⟹  

𝜕𝜕𝑝𝑝𝐸𝐸

𝜕𝜕𝜕𝜕
< 0; 

𝜕𝜕 log𝑉𝑉𝐸𝐸

𝜕𝜕 log 𝐿𝐿
< 1; 

𝜕𝜕𝑥𝑥𝐸𝐸

𝜕𝜕𝜕𝜕
> 0 

 

Neutral (CES): 
𝑟𝑟𝜃𝜃′(𝓏𝓏𝐸𝐸) = 0 ⟹  

𝜕𝜕𝑝𝑝𝐸𝐸

𝜕𝜕𝜕𝜕
= 0; 

𝜕𝜕 log𝑉𝑉𝐸𝐸

𝜕𝜕 log 𝐿𝐿
= 1; 

𝜕𝜕𝑥𝑥𝐸𝐸

𝜕𝜕𝜕𝜕
= 0 

 

Anticompetitive: 
𝑟𝑟𝜃𝜃′(𝓏𝓏𝐸𝐸) < 0 ⟹  

𝜕𝜕𝑝𝑝𝐸𝐸

𝜕𝜕𝜕𝜕
> 0; 

𝜕𝜕 log𝑉𝑉𝐸𝐸

𝜕𝜕 log 𝐿𝐿
> 1; 

𝜕𝜕𝑥𝑥𝐸𝐸

𝜕𝜕𝜕𝜕
< 0. 

 

Proof:  Since eq.(37) implies 𝜕𝜕𝓏𝓏𝐸𝐸 𝜕𝜕𝜕𝜕⁄ > 0 under I2, this follows from eq.(38).∎ 

The conditions for the procompetitive vs. anticompetitive cases under H.I.I.A. are analogous to 

those under H.S.A and H.D.I.A.  For example, the condition for the procompetitive case is 

𝜁𝜁′(𝑧𝑧𝐸𝐸) = 𝜁𝜁′(𝑝𝑝𝐸𝐸 𝐴𝐴𝐸𝐸⁄ ) > 0 under H.S.A., while it is 𝑟𝑟𝜃𝜃′(𝓏𝓏𝐸𝐸) = 𝜁𝜁′(𝑝𝑝𝐸𝐸 𝑃𝑃𝐸𝐸⁄ ) > 0 under H.I.I.A. That 

is, the price elasticity of demand for an input goes up as its price goes up, holding the aggregates 

fixed.  This is nothing but Marshall’s 2nd law of demand.  Note also that, if the condition for the 

procompetitive case holds globally, 𝑟𝑟𝜃𝜃′(∙) > 0, I1 and I2 hold automatically. However, neither I1 

nor I2 necessarily implies 𝑟𝑟𝜃𝜃′(𝓏𝓏) > 0.  This means that I1 and I2 do not rule out the 

anticompetitive case, 𝑟𝑟𝜃𝜃′(𝓏𝓏) < 0. 

 

5.5.Welfare Analysis under H.I.I.A.: Excessive versus Insufficient 

We now turn to the welfare analysis under H.I.I.A.. The social planner maximizes the output, 

given by eq.(32), subject to the resource constraint, 

𝑉𝑉𝑉𝑉 + 𝜓𝜓� 𝑥𝑥(𝜔𝜔)𝑑𝑑𝑑𝑑
Ω

= 𝐿𝐿. 

Because of the symmetry and the convexity of this problem, the solution has to be symmetric, 

𝑥𝑥(𝜔𝜔) = 𝑥𝑥.  By denoting   

𝓏𝓏 = (−𝜃𝜃′)−1 �
𝑥𝑥

𝐵𝐵(𝐱𝐱)�, 
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the problem is hence reduced to maximize 𝑋𝑋 = 𝑉𝑉𝑉𝑉𝑉𝑉 subject to 𝑉𝑉𝑉𝑉(𝓏𝓏) = 1 and (𝐹𝐹 + 𝜓𝜓𝜓𝜓)𝑉𝑉 = 𝐿𝐿, 

or equivalently, 

max
𝓏𝓏

𝑋𝑋 = max
0≤𝓏𝓏≤𝓏̂𝓏

𝑊𝑊(𝓏𝓏) ≡ 𝓏𝓏 �1 −
𝐹𝐹 𝐿𝐿⁄
𝜃𝜃(𝓏𝓏)�, 

where 𝓏̂𝓏 ≡ 𝜃𝜃−1(𝐹𝐹 𝐿𝐿⁄ ) ∈ (0,𝓏𝓏).  Clearly, 𝑊𝑊(0) = 𝑊𝑊(𝓏̂𝓏) = 0, and 𝑊𝑊(𝓏𝓏) > 0 when 0 < 𝓏𝓏 < 𝓏̂𝓏. 

 

Lemma 6. Assume I2. Then, 𝑊𝑊(𝓏𝓏) is unimodal, with 

𝑊𝑊′(𝓏𝓏) ⋛ 0 ⟺
𝐿𝐿
𝐹𝐹
⋛

1 + ℰ𝜃𝜃(𝓏𝓏)
 𝜃𝜃(𝓏𝓏) ⟺ 𝓏𝓏 ⋚ 𝓏𝓏𝑂𝑂 

where 𝓏𝓏𝑜𝑜 ∈ (0, 𝓏̂𝓏) is the socially optimal value of 𝓏𝓏, uniquely given by 

𝐿𝐿
𝐹𝐹

=
1 + ℰ𝜃𝜃(𝓏𝓏𝑂𝑂)

 𝜃𝜃(𝓏𝓏𝑂𝑂)  

and 𝓏𝓏𝑂𝑂 is strictly increasing in 𝐿𝐿 𝐹𝐹⁄ . 

Proof.  Differentiating 𝑊𝑊(𝓏𝓏) yields  

 
 𝑊𝑊′(𝓏𝓏) = 1 −

𝐹𝐹
𝐿𝐿

1 + ℰ𝜃𝜃(𝓏𝓏)
 𝜃𝜃(𝓏𝓏) . 

 

𝑊𝑊′′(𝓏𝓏) =
ℰ𝜃𝜃(𝓏𝓏)

 𝓏𝓏
�
𝑟𝑟𝜃𝜃(𝓏𝓏)
𝜃𝜃(𝓏𝓏)

𝐹𝐹
𝐿𝐿
− 2�1 −  𝑊𝑊′(𝓏𝓏)��. 

To show that 𝑊𝑊(𝓏𝓏) is unimodal with the unique global optimizer, 𝓏𝓏𝑜𝑜 ∈ (0, 𝓏̂𝓏) satisfying 

𝑊𝑊′(𝓏𝓏𝑜𝑜) = 0,  suppose the contrary. Then, there exist 0 < 𝓏𝓏1 < 𝓏𝓏2 <  𝓏𝓏3 < 𝓏̂𝓏, such that 𝓏𝓏1 and 

𝓏𝓏3 are local maxima satisfying  𝑊𝑊′(𝓏𝓏1) = 0 > 𝑊𝑊′′(𝓏𝓏1) and 𝑊𝑊′(𝓏𝓏3) = 0 > 𝑊𝑊′′(𝓏𝓏3) and 𝓏𝓏2 is a 

local minimum satisfying 𝑊𝑊′(𝓏𝓏2) = 0 < 𝑊𝑊′′(𝓏𝓏2).  This implies  

𝑟𝑟𝜃𝜃(𝓏𝓏)
𝜃𝜃(𝓏𝓏)

𝐹𝐹
𝐿𝐿
− 2�1 −  𝑊𝑊′(𝓏𝓏)� =

𝑟𝑟𝜃𝜃(𝓏𝓏)
𝜃𝜃(𝓏𝓏)

𝐹𝐹
𝐿𝐿
− 2 

is negative at 𝓏𝓏1 and 𝓏𝓏3 and positive at 𝓏𝓏2, contradicting the monotonicity of  𝑟𝑟𝜃𝜃(𝓏𝓏) 𝜃𝜃(𝓏𝓏)⁄ , hence 

I2.  That 𝓏𝓏𝑂𝑂 is strictly increasing in 𝐿𝐿 𝐹𝐹⁄  follows from 𝑊𝑊′′(𝓏𝓏𝑂𝑂) < 0 and 𝜕𝜕𝑊𝑊′(𝓏𝓏𝑂𝑂) 𝜕𝜕(𝐿𝐿 𝐹𝐹⁄⁄ ) >

0.∎ 

 

Proposition 9. Assume I1 and I2.  Then, at the unique symmetric equilibrium in monopolistic 

competition under H.I.I.A., given by eq.(37) and eq.(38), 𝑉𝑉𝐸𝐸 , the equilibrium mass of firms that 

enter = the equilibrium mass of varieties produced and 𝑉𝑉𝑂𝑂 , the mass of the optimal mass of firms 

that enter = the optimal mass of varieties produced,, satisfy 
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Excessive Entry: 𝓏𝓏𝐸𝐸ℰ𝜃𝜃′(𝓏𝓏𝐸𝐸)
ℰ𝜃𝜃(𝓏𝓏𝐸𝐸) = 1 + ℰ𝜃𝜃(𝓏𝓏𝐸𝐸) − 𝑟𝑟𝜃𝜃(𝓏𝓏𝐸𝐸) > 0 ⟺  𝑉𝑉𝐸𝐸 >  𝑉𝑉𝑂𝑂 

Optimal Entry (CES): 𝓏𝓏𝐸𝐸ℰ𝜃𝜃′(𝓏𝓏𝐸𝐸)
ℰ𝜃𝜃(𝓏𝓏𝐸𝐸) = 1 + ℰ𝜃𝜃(𝓏𝓏𝐸𝐸) − 𝑟𝑟𝜃𝜃(𝓏𝓏𝐸𝐸) = 0 ⟺  𝑉𝑉𝐸𝐸 =  𝑉𝑉𝑂𝑂 

Insufficient Entry: 𝓏𝓏𝐸𝐸ℰ𝜃𝜃′(𝓏𝓏𝐸𝐸)
ℰ𝜃𝜃(𝓏𝓏𝐸𝐸) = 1 + ℰ𝜃𝜃(𝓏𝓏𝐸𝐸) − 𝑟𝑟𝜃𝜃(𝓏𝓏𝐸𝐸) < 0 ⟺  𝑉𝑉𝐸𝐸 <  𝑉𝑉𝑂𝑂 

 

Proof.  Since eq.(37) implies 

𝑊𝑊′(𝓏𝓏𝐸𝐸) = 1 −
𝐹𝐹
𝐿𝐿

1 + ℰ𝜃𝜃(𝓏𝓏𝐸𝐸)
 𝜃𝜃(𝓏𝓏𝐸𝐸) = 1 −

1 + ℰ𝜃𝜃(𝓏𝓏𝐸𝐸)
𝑟𝑟𝜃𝜃(𝓏𝓏𝐸𝐸) 

, 

and Lemma 6 implies 𝑊𝑊′(𝓏𝓏𝐸𝐸) ⋛ 0 ⟺ 𝓏𝓏𝐸𝐸 ⋚ 𝓏𝓏𝑂𝑂 ⟺ 𝑉𝑉𝐸𝐸 ⋚ 𝑉𝑉𝑂𝑂, we have 

𝑟𝑟𝜃𝜃(𝓏𝓏𝐸𝐸) − 1 − ℰ𝜃𝜃(𝓏𝓏𝐸𝐸) ⋛ 0 ⟺ 𝑉𝑉𝐸𝐸 ⋚ 𝑉𝑉𝑂𝑂 . 

This completes the proof. ∎ 

 

Note that, in order for the equilibrium entry to be optimal for a range of the parameter values 

under H.I.I.A, 𝓏𝓏ℰ𝜃𝜃
′ (𝓏𝓏)

ℰ𝜃𝜃(𝓏𝓏) = 1 + ℰ𝜃𝜃(𝓏𝓏) − 𝑟𝑟𝜃𝜃(𝓏𝓏) = 0 must hold for the relevant range of 𝓏𝓏, that is, 

under and only under CES. Thus, CES offers the borderline case between the cases of excessive 

entry and insufficient entry within H.I.I.A. 

 

5.6.Main H.I.I.A. Theorem and Some Examples 

Proposition 8 states that the sign of 𝑟𝑟𝜃𝜃′(𝓏𝓏𝐸𝐸) determines whether entry is procompetitive or 

anticompetitive, while Proposition 9 states the sign of ℰ𝜃𝜃′ (𝓏𝓏𝐸𝐸) determines whether entry is 

excessive or insufficient. Hence, one might think, unlike under H.S.A, that these conditions are 

unrelated to each other, and that both procompetitive entry and anticompetitive entry can be 

either excessive or insufficient under H.I.I.A.. However, similar to the case of H.D.I.A., the next 

lemma shows that there exists a tight connection between the two conditions. 

 

Lemma 7: Assume that 𝑟𝑟𝜃𝜃′(⋅) does not change sign over (𝓏𝓏0,𝓏𝓏), where 0 < 𝓏𝓏0 <  𝓏𝓏. Then, for 

all 𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏), 

𝑟𝑟𝜃𝜃′(⋅) ⋛ 0 ⟹  ℰ𝜃𝜃′ (⋅) ⋛ 0. 

Proof: See Appendix B. ∎ 
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Here is the implication of Lemma 7. Suppose that, for all 𝐿𝐿 𝐹𝐹⁄ > (𝐿𝐿 𝐹𝐹⁄ )0, entry is procompetitive 

at the unique symmetric equilibrium given by eq.(37) and eq.(38). That means that 𝑟𝑟𝜃𝜃′(𝓏𝓏) > 0 for 

all 𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏), where 𝓏𝓏0 satisfies (𝜃𝜃( 𝓏𝓏0) 𝑟𝑟𝜃𝜃( 𝓏𝓏0)⁄ )(𝐿𝐿 𝐹𝐹⁄ )0 = 1. Then, Lemma 7 tells us 

ℰ𝜃𝜃′ (𝓏𝓏) > 0 for all 𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏). Hence, for all 𝐿𝐿 𝐹𝐹⁄ > (𝐿𝐿 𝐹𝐹⁄ )0, entry is excessive at the unique 

symmetric equilibrium.  Likewise, suppose that, for all 𝐿𝐿 𝐹𝐹⁄ > (𝐿𝐿 𝐹𝐹⁄ )0, entry is anticompetitive 

at the unique symmetric equilibrium given by eq.(37) and eq.(38). That means 𝑟𝑟𝜃𝜃′(𝓏𝓏) < 0 for all 

𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏).  Then, Lemma 7 tells us ℰ𝜃𝜃′ (𝓏𝓏) < 0 for all 𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏). Hence, for all 𝐿𝐿 𝐹𝐹⁄ >

(𝐿𝐿 𝐹𝐹⁄ )0, entry is insufficient at the unique symmetric equilibrium. 

We are now ready to summarize the main properties of H.I.I.A. in the next theorem, by 

consolidating Propositions 7, 8, and 9 and Lemma 7. In doing so, we take into account that 𝓏𝓏𝐸𝐸 is 

strictly increasing in 𝐿𝐿 𝐹𝐹⁄  and takes any value in (0,𝓏𝓏), as 𝐿𝐿 𝐹𝐹⁄  varies from zero to infinity, and 

that the existence of the choke price, 𝓏𝓏 < ∞, implies lim
𝓏𝓏→𝓏𝓏

𝑟𝑟𝜃𝜃(𝓏𝓏) = ∞ and lim
𝓏𝓏→𝓏𝓏

 ℰ𝜃𝜃(𝓏𝓏) = ∞, and 

hence 𝑟𝑟𝜃𝜃′(𝓏𝓏) > 0 and ℰ𝜃𝜃′(𝓏𝓏) > 0 for 𝓏𝓏 sufficiently close to 𝓏𝓏, which means that entry is 

procompetitive and excessive for a sufficiently large 𝐿𝐿 𝐹𝐹⁄ > 0. 

 

Theorem 3: Consider monopolistic competition under symmetric H.I.I.A. with gross substitutes. 

Assume I1 to ensure the symmetry of equilibrium and I2 to ensure the uniqueness of the 

symmetric equilibrium.  Then, the unique symmetric equilibrium is given by eq.(37) and eq.(38).  

At the unique symmetric equilibrium, entry is, 

• procompetitive and excessive for any 𝐿𝐿 𝐹𝐹⁄ > 0, if  𝑟𝑟𝜃𝜃′(𝓏𝓏) > 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝓏𝓏 ∈ (0,𝓏𝓏); 

• neutral and optimal for any 𝐿𝐿 𝐹𝐹⁄ > 0, 𝑖𝑖𝑖𝑖 𝑟𝑟𝜃𝜃′(𝓏𝓏) = 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝓏𝓏 ∈ (0,∞); that is, under CES; 

• anticompetitive and insufficient for any 𝐿𝐿 𝐹𝐹⁄ > 0, 𝑖𝑖𝑖𝑖 𝑟𝑟𝜃𝜃′(𝓏𝓏) < 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝓏𝓏 ∈ (0,∞). 

Furthermore, in the presence of the choke price, 𝓏𝓏 < ∞, entry is procompetitive and excessive 

for a sufficiently large 𝐿𝐿 𝐹𝐹⁄ > 0. 

 

We now turn to some examples to illustrate Theorem 3. 

Example 7: Perturbed CES, H.I.I.A. with global monotonicity.   Consider a family of H.I.I.A. 

technologies, given by  

𝑟𝑟𝜃𝜃(𝓏𝓏) ≡ −
𝓏𝓏𝜃𝜃′′(𝓏𝓏)
𝜃𝜃′(𝓏𝓏) = 𝜎𝜎 + 𝛿𝛿(𝜎𝜎 − 1)𝑔𝑔(𝓏𝓏), 
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where 𝜎𝜎 > 1 and 𝑔𝑔(𝓏𝓏) satisfies 𝑔𝑔′(𝓏𝓏) > 0  for all 𝓏𝓏 > 0 with 𝑔𝑔(0) = −1, 𝑔𝑔(∞) = 0 and 

sup{𝓏𝓏𝑔𝑔′(𝓏𝓏)|𝓏𝓏 > 0} ≡ 𝜈𝜈 < ∞.  For example,  

𝑔𝑔(𝓏𝓏) = −
𝜂𝜂

𝜂𝜂 + 𝓏𝓏
, 𝜂𝜂 > 0 ⟹ 𝜈𝜈 =

1
4

< ∞, 

𝑔𝑔(𝓏𝓏) = −𝑒𝑒−𝜇𝜇𝜇𝜇 ,𝜇𝜇 > 0 ⟹ 𝜈𝜈 = 𝑒𝑒−1 < ∞, 

 satisfy these conditions.  In addition, we impose the following restriction on 𝜎𝜎, 𝛿𝛿, and 𝜈𝜈: 

−
𝜎𝜎
𝜈𝜈

< 𝛿𝛿 < 1, 

so that 𝑟𝑟𝜃𝜃(𝓏𝓏) > 1, I1, and I2 hold.22  Then, Theorem 3 can be applied.  In this example, entry is 

procompetitive and excessive for all 𝐿𝐿 𝐹𝐹⁄ > 0, when 0 < 𝛿𝛿 < 1, while it is anticompetitive and 

insufficient for all 𝐿𝐿 𝐹𝐹⁄ > 0, when −𝜎𝜎
𝜈𝜈

< 𝛿𝛿 < 0.  

 

Example 8: H.I.I.A. with a choke price.   Consider an H.I.I.A. technology, given by 

𝜃𝜃(𝓏𝓏) = �
(log(𝓏𝓏 𝓏𝓏⁄ ))1+𝛿𝛿

1 + 𝛿𝛿
, 0 < 𝓏𝓏 < 𝓏𝓏,

0,                                 𝓏𝓏 ≥ 𝓏𝓏,
 

with 0 < 𝓏𝓏 < ∞ and 𝛿𝛿 > 0.  For all 𝓏𝓏 such that 0 < 𝓏𝓏 < 𝓏𝓏, we have 

𝜃𝜃′(𝓏𝓏) = −
(log(𝓏𝓏 𝓏𝓏⁄ ))𝛿𝛿

𝓏𝓏
< 0;    𝜃𝜃′′(𝓏𝓏) =

(log(𝓏𝓏 𝓏𝓏⁄ ))𝛿𝛿

𝓏𝓏2
�1 +

𝛿𝛿
log(𝓏𝓏 𝓏𝓏⁄ )� > 0; 

Hence, lim
𝓏𝓏→𝓏𝓏

𝜃𝜃(𝓏𝓏) = lim
𝓏𝓏→𝓏𝓏

𝜃𝜃′(𝓏𝓏) = 0. Also,  

ℰ𝜃𝜃(𝓏𝓏) =
1 + 𝛿𝛿

log(𝓏𝓏 𝓏𝓏⁄ ) > 0;   𝑟𝑟𝜃𝜃(𝓏𝓏) = 1 +
𝛿𝛿

log(𝓏𝓏 𝓏𝓏⁄ ) > 1, 

which implies lim
𝓏𝓏↑𝓏𝓏

ℰ𝜃𝜃(𝓏𝓏) = ∞ = lim
𝓏𝓏↑𝓏𝓏

𝑟𝑟𝜃𝜃(𝓏𝓏). Furthermore, for all 𝓏𝓏 such that 0 < 𝓏𝓏 < 𝓏𝓏, we have: 

ℰ𝜃𝜃′ (𝓏𝓏) > 0, 𝑟𝑟𝜃𝜃′(𝓏𝓏) > 0, 

 
22It is easy to verify 𝑟𝑟𝜃𝜃(𝓏𝓏) > 1 holds. For I1 and I2, if 𝛿𝛿 ≥ 0, 𝑟𝑟𝜃𝜃′(𝓏𝓏) ≥ 0, which implies both I1 and I2. If 𝛿𝛿 < 0, 
𝑟𝑟𝜃𝜃′(𝓏𝓏) < 0 for all 𝓏𝓏 > 0.  From Lemma 7, this implies ℰ𝜃𝜃′ (𝓏𝓏) < 0 for all 𝓏𝓏 > 0, which means that I2 implies I1.  To 
verify I2 for 𝛿𝛿 < 0, note that 𝑟𝑟𝜃𝜃′(𝓏𝓏) < 0 and ℰ𝜃𝜃′ (𝓏𝓏) < 0 for all 𝓏𝓏 > 0 implies 

𝑟𝑟𝜃𝜃(𝓏𝓏)ℰ𝜃𝜃(𝓏𝓏) > 𝑟𝑟𝜃𝜃(∞)ℰ𝜃𝜃(∞) = 𝜎𝜎(𝜎𝜎 − 1), 
while 𝛿𝛿 < 0 and the definition of 𝜈𝜈 imply 

𝓏𝓏𝑟𝑟𝜃𝜃′(𝓏𝓏) = 𝛿𝛿(𝜎𝜎 − 1)𝓏𝓏𝑔𝑔′(𝓏𝓏) > 𝜈𝜈𝜈𝜈(𝜎𝜎 − 1). 
Adding each side of these two inequalities yields  𝑟𝑟𝜃𝜃(𝓏𝓏)ℰ𝜃𝜃(𝓏𝓏) + 𝓏𝓏𝑟𝑟𝜃𝜃′(𝓏𝓏) > (𝜎𝜎 + 𝜈𝜈𝜈𝜈)(𝜎𝜎 − 1) > 0, which is 
equivalent to I2. 
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and hence entry is always procompetitive and excessive, not just for a sufficient large 𝐿𝐿/𝐹𝐹. 

 

The assumption of the global monotonicity of 𝑟𝑟𝜃𝜃(∙) in Theorem 3, which implies the 

global monotonicity of ℰ𝜃𝜃(∙) by Lemma 7, is important.  Otherwise, entry could be 

procompetitive and yet insufficient, or anticompetitive and yet excessive, as the next example 

illustrates. 

Example 9.  Perturbed CES, H.I.I.A. without global monotonicity.  Consider a family of 

H.I.I.A technologies with 

ℰ𝜃𝜃(𝓏𝓏) ≡ −
𝓏𝓏𝜃𝜃′(𝓏𝓏)
𝜃𝜃(𝓏𝓏) = 𝜎𝜎 − 1 + 𝛿𝛿𝛿𝛿(𝓏𝓏),  

𝑟𝑟𝜃𝜃(𝓏𝓏) ≡ −
𝓏𝓏𝜃𝜃′′(𝓏𝓏)
𝜃𝜃′(𝓏𝓏) = 1 + ℰ𝜃𝜃(𝓏𝓏) −

𝓏𝓏ℰ𝜃𝜃′ (𝓏𝓏)
ℰ𝜃𝜃(𝓏𝓏) = 𝑟𝑟𝜃𝜃(𝓏𝓏) = 𝜎𝜎 + 𝛿𝛿𝛿𝛿(𝓏𝓏) −

𝛿𝛿𝓏𝓏𝑔𝑔′(𝓏𝓏)
𝜎𝜎 − 1 + 𝛿𝛿𝛿𝛿(𝓏𝓏)

, 

where 𝜎𝜎 > 1, 𝛿𝛿 can be either positive or negative (but sufficiently small in absolute value to ensure 

I1 and I2), while 𝑔𝑔(𝓏𝓏) is twice-continuously differentiable, single-peaked, and satisfies 𝑔𝑔(0) =

𝑔𝑔(∞) = 0, sup |𝑔𝑔′(𝓏𝓏)| < ∞. Let 𝓏̃𝓏 > 0 be the maximizer of 𝑔𝑔(𝓏𝓏) Hence, 𝑔𝑔′(𝓏̃𝓏) = 0 > 𝑔𝑔′′(𝓏̃𝓏).  

For example, 

𝑔𝑔(𝓏𝓏) =
𝓏𝓏

𝜆𝜆 + 𝓏𝓏2
, 𝜆𝜆 > 0 ⟹ 𝓏̃𝓏 = √𝜆𝜆; 

𝑔𝑔(𝓏𝓏) = 𝓏𝓏𝑒𝑒−𝜇𝜇𝜇𝜇 ,𝜇𝜇 > 0 ⟹ 𝓏̃𝓏 = 1 𝜇𝜇⁄ . 

From Proposition 9, entry is excessive if and only if ℰ𝜃𝜃′ (𝓏𝓏𝐸𝐸) = 𝛿𝛿𝑔𝑔′(𝓏𝓏𝐸𝐸) > 0, while it is   

insufficient if and only if ℰ𝜃𝜃′ (𝓏𝓏𝐸𝐸) = 𝛿𝛿𝑔𝑔′(𝓏𝓏𝐸𝐸) < 0.  Evaluating 𝑟𝑟𝜃𝜃′(𝓏𝓏) at 𝓏𝓏 = 𝓏̃𝓏 yields: 

𝑟𝑟𝜙𝜙′ (𝓏̃𝓏) = −
𝓏̃𝓏ℰ𝜃𝜃′′(𝓏̃𝓏)
ℰ𝜃𝜃(𝓏̃𝓏) = −𝛿𝛿𝑔𝑔′′(𝓏̃𝓏)

𝓏̃𝓏
ℰ𝜃𝜃(𝓏̃𝓏) ⋛ 0 ⟺ 𝛿𝛿 ⋛ 0. 

Thus, from Proposition 8, entry is procompetitive in the vicinity of 𝓏̃𝓏, if 𝛿𝛿 > 0, while it is 

anticompetitive in the vicinity of 𝓏̃𝓏, if 𝛿𝛿 < 0. 

Combining these two observations, we conclude that entry is procompetitive and yet 

insufficient for 𝛿𝛿 > 0 and 𝓏𝓏𝐸𝐸 slightly higher than 𝓏̃𝓏, or equivalently, 𝐿𝐿 𝐹𝐹⁄  slightly higher than 

𝑟𝑟𝜃𝜃(𝓏̃𝓏) 𝜃𝜃(𝓏̃𝓏)⁄ , while it is anticompetitive and yet excessive for 𝛿𝛿 < 0 and 𝓏𝓏𝐸𝐸 slightly lower than 𝓏̃𝓏, 

or equivalently, 𝐿𝐿 𝐹𝐹⁄   slightly higher than 𝑟𝑟𝜃𝜃(𝓏̃𝓏) 𝜃𝜃(𝓏̃𝓏)⁄ . 

 

6.   Conclusions 
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In this paper, we extended the canonical model of monopolistic competition with 

symmetric homothetic CES demand system with gross substitutes by Dixit and Stiglitz (1977, 

Section I) to three classes of homothetic demand systems, H.S.A., H.D.I.A., and H.I.I.A, which 

are mutually exclusive except that each class contains CES as a knife-edge case. These 

extensions allowed us to identify the condition for procompetitive vs. anticompetitive entry, as 

well as the condition for excessive vs. insufficient entry.  Among the main findings are that entry 

is excessive (insufficient) if it is globally procompetitive (anticompetitive) and that, in the 

presence of the choke price, entry is procompetitive and excessive at least for a sufficiently large 

market size.  One implication is that, if procompetitive entry is the empirically relevant case, 

entry is excessive, which means that (small) regulation of entry is welfare-improving, at least in 

the absence of other forms of distortion.23 

One natural next step would be to follow the footsteps of Dhingra and Morrow (2019) to 

address the nature of inefficiency in the free-entry equilibrium under these three classes in the 

presence of heterogenous firms.  It should be noted that the sources of heterogeneity may matter. 

Whether firms are heterogenous in productivity a la Melitz or in weights in the demand systems, 

though they are isomorphic to each other under CES, could make differences under non-CES. 

The monopolistic competition models under these three classes of homothetic demand 

systems developed in this paper, being so tractable, should also find many applications.  In 

particular, homotheticity makes it easier to use it as a building block in dynamic general 

equilibrium settings.  Indeed, in Matsuyama and Ushchev (2020), we develop a dynamic 

monopolistic competition model under H.S.A. to investigate how market size affects the 

dynamics of innovation through the procompetitive effect and find it to be as tractable as the 

CES case, with much richer implications. 

 
  

 
23An open question is whether these results can be extended to general symmetric homothetic demand systems with 
gross substitutes. The difficulty for proving them more generally is to find the conditions that ensure the existence 
and uniqueness of symmetric free-entry equilibrium, as well as the conditions that ensure global monotonicity of the 
markup rate response.  Unaware of any counter example, we conjecture that these results hold more generally. This 
is why we indicate the possibility of procompetitive and yet insufficient entry and anticompetitive and yet excessive 
entry by small gray zones in Figure 2. 
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Appendix A: Proof of Lemma 5 

We first prove the two preliminary lemmas, Lemma A1 and Lemma A2. 

Lemma A1. For any 𝜙𝜙(⋅) which is strictly increasing, strictly concave, and satisfies 𝜙𝜙(0) = 0, 

ℰ𝜙𝜙(0) = 1 − 𝑟𝑟𝜙𝜙(0). 

Proof. From 𝜙𝜙(0) = 0 and 0 < 𝓎𝓎𝜙𝜙′(𝓎𝓎) < 𝜙𝜙(𝓎𝓎) for all 𝓎𝓎 > 0, lim
𝓎𝓎→0

𝓎𝓎𝜙𝜙′(𝓎𝓎) = 0. It is thus 

legitimate to use the l’Hospital’s rule in computing the following limit: 

ℰ𝜙𝜙(0) ≡ lim
𝓎𝓎↓0

ℰ𝜙𝜙(𝓎𝓎) = lim
𝓎𝓎↓0

𝓎𝓎𝜙𝜙′(𝓎𝓎)
𝜙𝜙(𝓎𝓎) = lim

𝓎𝓎↓0

𝜙𝜙′(𝓎𝓎) + 𝓎𝓎𝜙𝜙′′(𝓎𝓎)
𝜙𝜙′(𝓎𝓎) = 1 − 𝑟𝑟𝜙𝜙(0). 

This completes the proof. ∎ 

Lemma A2. Assume that 𝑟𝑟𝜙𝜙′ (⋅) does not change sign over (0,𝓎𝓎0), where 0 < 𝓎𝓎0 ≤ ∞. Then, for 

all 𝓎𝓎 ∈ (0,𝓎𝓎0), 

ℰ𝜙𝜙(𝓎𝓎) ⋚ ℰ𝜙𝜙(0) ⟺ 𝑟𝑟𝜙𝜙′ (𝓎𝓎) ⋛ 0. 

Proof. Two cases may arise. 

Case 1: 𝑟𝑟𝜙𝜙(0) < 1. First, define: 

 ∆𝑟𝑟𝜙𝜙(𝓎𝓎) ≡ 𝑟𝑟𝜙𝜙(𝓎𝓎) − 𝑟𝑟𝜙𝜙(0)  

to obtain the identity, 

𝑑𝑑 log𝜙𝜙′(𝓎𝓎)
𝑑𝑑 log𝓎𝓎

≡ −𝑟𝑟𝜙𝜙(𝓎𝓎) = −𝑟𝑟𝜙𝜙(0) − ∆𝑟𝑟𝜙𝜙(𝓎𝓎), 

integrating which yields 

𝜙𝜙′(𝓎𝓎) = 𝑓𝑓(𝓎𝓎)𝓎𝓎−𝑟𝑟𝜙𝜙(0), 𝑓𝑓(𝓎𝓎) ≡ exp �−�
∆𝑟𝑟𝜙𝜙(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝑑𝑑
𝓎𝓎

𝓎𝓎0
� > 0; 

𝜙𝜙(𝓎𝓎) = � 𝜙𝜙′(𝜉𝜉)𝑑𝑑𝑑𝑑
𝓎𝓎

0
= � 𝑓𝑓(𝜉𝜉)𝜉𝜉−𝑟𝑟𝜙𝜙(0)𝑑𝑑𝑑𝑑

𝓎𝓎

0
. 

Hence, 

 
ℰ𝜙𝜙(𝓎𝓎) ≡

𝓎𝓎𝜙𝜙′(𝓎𝓎)
𝜙𝜙(𝓎𝓎) =

𝑓𝑓(𝓎𝓎)𝓎𝓎1−𝑟𝑟𝜙𝜙(0)

∫ 𝑓𝑓(𝜉𝜉)𝜉𝜉−𝑟𝑟𝜙𝜙(0)𝑑𝑑𝑑𝑑𝓎𝓎
0

. 
 

By the mean value theorem, there exists 𝛼𝛼(𝓎𝓎) ∈ (0,𝓎𝓎), such that 

� 𝑓𝑓(𝜉𝜉)𝜉𝜉−𝑟𝑟𝜙𝜙(0)𝑑𝑑𝑑𝑑
𝓎𝓎

0
= 𝑓𝑓(𝛼𝛼(𝓎𝓎))� 𝜉𝜉−𝑟𝑟𝜙𝜙(0)𝑑𝑑𝑑𝑑

𝓎𝓎

0
=

1
1 − 𝑟𝑟𝜙𝜙(0)𝑓𝑓

(𝛼𝛼(𝓎𝓎))𝓎𝓎1−𝑟𝑟𝜙𝜙(0). 

Hence, using the definition of 𝑓𝑓(𝓎𝓎) and Lemma A1, 
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ℰ𝜙𝜙(𝓎𝓎) = �1 − 𝑟𝑟𝜙𝜙(0)�

𝑓𝑓(𝓎𝓎)
𝑓𝑓(𝛼𝛼(𝓎𝓎)) = ℰ𝜙𝜙(0) exp �−�

∆𝑟𝑟𝜙𝜙(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝑑𝑑
𝓎𝓎

𝛼𝛼(𝓎𝓎)
�. 

 

Then, for all 𝓎𝓎 ∈ (0,𝓎𝓎0), 0 < 𝛼𝛼(𝓎𝓎) < 𝓎𝓎 < 𝓎𝓎0 implies 

ℰ𝜙𝜙(𝓎𝓎) ⋚ ℰ𝜙𝜙(0) ⟺�
∆𝑟𝑟𝜙𝜙(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝑑𝑑
𝓎𝓎

𝛼𝛼𝛼𝛼
⋛ 0 ⟺ 𝑟𝑟𝜙𝜙′ (𝓎𝓎) ⋛ 0. 

Case 2: 𝑟𝑟𝜙𝜙(0) = 1. This happens only when 𝑟𝑟𝜙𝜙′ (𝓎𝓎) < 0 for all 𝓎𝓎 ∈ (0,𝓎𝓎0), because 𝑟𝑟𝜙𝜙(𝓎𝓎) <

1 = 𝑟𝑟𝜙𝜙(0) for all 𝓎𝓎 ∈ (0,𝓎𝓎0). And from Lemma A1, ℰ𝜙𝜙(𝓎𝓎) > 0 = ℰ𝜙𝜙(0) for all 𝓎𝓎 ∈ (0,𝓎𝓎0). 

This completes the proof. ∎ 

We are now ready to prove Lemma 5. 

Lemma 5. Assume that 𝑟𝑟𝜙𝜙′ (⋅) does not change sign over (0,𝓎𝓎0), where 0 < 𝓎𝓎0 ≤ ∞. Then, for 

all 𝓎𝓎 ∈ (0,𝓎𝓎0) 

𝑟𝑟𝜙𝜙′ (⋅) ⋛ 0 ⟹  ℰ𝜙𝜙′ (⋅) ⋚ 0. 

Proof. Three cases may arise. 

Case 1: 𝑟𝑟𝜙𝜙′ (𝓎𝓎) > 0 for all 𝓎𝓎 ∈ (0,𝓎𝓎0). To prove by contradiction, suppose to the contrary that 

that there is 𝓎𝓎1 ∈ (0,𝓎𝓎0), such that ℰ𝜙𝜙′ (𝓎𝓎1) ≥ 0. Two sub-cases may arise. 

Case 1-1: ℰ𝜙𝜙′ (𝓎𝓎1) > 0. Because Lemma A2 implies ℰ𝜙𝜙(𝓎𝓎1) < ℰ𝜙𝜙(0), ℰ𝜙𝜙(𝓎𝓎) must have an 

interior local minimizer 𝓎𝓎2 ∈ (0,𝓎𝓎1), which satisfies 

ℰ𝜙𝜙′ (𝓎𝓎2) = 0, ℰ𝜙𝜙′′(𝓎𝓎2) ≥ 0. 

Differentiating the identity 

ℰ𝜙𝜙′ (𝓎𝓎) =
ℰ𝜙𝜙(𝓎𝓎)
𝓎𝓎

�1 − ℰ𝜙𝜙(𝓎𝓎) − 𝑟𝑟𝜙𝜙(𝓎𝓎)�, 

at 𝓎𝓎 = 𝓎𝓎2 and using ℰ𝜙𝜙′ (𝓎𝓎2) = 0, we obtain: 

ℰ𝜙𝜙′′(𝓎𝓎2) = −
ℰ𝜙𝜙(𝓎𝓎2)
𝓎𝓎2

𝑟𝑟𝜙𝜙′ (𝓎𝓎2) < 0, 

which clearly contradicts ℰ𝜙𝜙′′(𝓎𝓎2) ≥ 0. 

Case 1-2: ℰ𝜙𝜙′ (𝓎𝓎1) = 0. In this case, differentiating the identity 

ℰ𝜙𝜙′ (𝓎𝓎) =
ℰ𝜙𝜙(𝓎𝓎)
𝓎𝓎

�1 − ℰ𝜙𝜙(𝓎𝓎) − 𝑟𝑟𝜙𝜙(𝓎𝓎)�, 

at 𝓎𝓎 = 𝓎𝓎1 yields 
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ℰ𝜙𝜙′′(𝓎𝓎1) = −
ℰ𝜙𝜙(𝓎𝓎1)
𝓎𝓎1

𝑟𝑟𝜙𝜙′ (𝓎𝓎1) < 0. 

Therefore, for a small ℎ > 0 we have: ℰ𝜙𝜙′ (𝓎𝓎1 − ℎ) > ℰ𝜙𝜙′ (𝓎𝓎1) = 0. By replacing 𝓎𝓎1 with 𝓎𝓎1 −

ℎ, we use the same argument as in case 1-1. 

Thus, we have: 

𝑟𝑟𝜙𝜙′ (𝓎𝓎) > 0  𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝓎𝓎 ∈ (0,𝓎𝓎0) ⟹  ℰ𝜙𝜙′ (𝓎𝓎) < 0  𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝓎𝓎 ∈ (0,𝓎𝓎0).  

Case 2: 𝑟𝑟𝜙𝜙′ (𝓎𝓎) = 0 for all 𝓎𝓎 ∈ (0,𝓎𝓎0) This is the CES case, which is straightforward. 

Case 3: 𝑟𝑟𝜙𝜙′ (𝓎𝓎) < 0 for all 𝓎𝓎 ∈ (0,𝓎𝓎0) . One can handle this case along the same lines as case 1. 

This completes the proof. ∎ 

 

Appendix B: Proof of Lemma 7 

We first prove the three preliminary lemmas, Lemma B1, Lemma B2, and Lemma B3. 

Lemma B1.   𝓏𝓏𝜃𝜃′(𝓏𝓏) = 0. 

Proof. For 𝓏𝓏 < ∞, this follows from 𝜃𝜃′(𝓏𝓏) = 0. For 𝓏𝓏 = ∞, 

𝜃𝜃(𝓏𝓏) = −� 𝜃𝜃′(𝜉𝜉)𝑑𝑑𝑑𝑑
∞

𝓏𝓏
= −�

𝜉𝜉𝜃𝜃′(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝑑𝑑
∞

𝓏𝓏
= − lim

𝑥𝑥→∞
�

𝜉𝜉𝜃𝜃′(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝑑𝑑
𝑥𝑥

𝓏𝓏
 

Suppose that there is 𝓏𝓏0 > 0 such that, for all 𝓏𝓏 > 𝓏𝓏0,  −𝓏𝓏𝜃𝜃′(𝓏𝓏) > 𝑐𝑐 > 0.  Then, 

𝜃𝜃(𝓏𝓏0) = − lim
𝑥𝑥→∞

�
𝜉𝜉𝜃𝜃′(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝑑𝑑
𝑥𝑥

𝓏𝓏0
> lim

𝑥𝑥→∞
�

𝑐𝑐
𝜉𝜉
𝑑𝑑𝑑𝑑

𝑥𝑥

𝓏𝓏0
= ∞, 

a contradiction.  Hence,  𝓏𝓏𝜃𝜃′(𝓏𝓏) = lim
𝓏𝓏→∞

𝓏𝓏𝜃𝜃′(𝓏𝓏) = 0.  This completes the proof. ∎ 

Lemma B2. For any 𝜃𝜃(⋅) which defines an H.I.I.A. technology, we have: 

ℰ𝜃𝜃(𝓏𝓏) = 𝑟𝑟𝜃𝜃(𝓏𝓏)− 1, 

where 0 < 𝓏𝓏 ≡ inf{𝓏𝓏 > 0 | 𝜃𝜃(𝓏𝓏) = 0} ≤ ∞. 

Proof. Since 𝜃𝜃(𝓏𝓏) = 0 = 𝓏𝓏𝜃𝜃′(𝓏𝓏) by Lemma B1, it is legitimate to use the l’Hospital’s rule in 

computing the following limit: 

ℰ𝜃𝜃(𝓏𝓏) ≡ lim
𝓏𝓏↑𝓏𝓏

ℰ𝜃𝜃(𝓏𝓏) = lim
𝓏𝓏↑𝓏𝓏

−𝓏𝓏𝜃𝜃′(𝓏𝓏)
𝜃𝜃(𝓏𝓏) = lim

𝓏𝓏↑𝓏𝓏

−𝓏𝓏𝜃𝜃′′(𝓏𝓏) − 𝜃𝜃′(𝓏𝓏)
𝜃𝜃′(𝓏𝓏) = 𝑟𝑟𝜃𝜃(𝓏𝓏) − 1. 

This completes the proof. ∎ 

Lemma B3. Assume that 𝑟𝑟𝜃𝜃′(⋅) does not change sign over  (𝓏𝓏0,𝓏𝓏), where 0 < 𝓏𝓏0 <  𝓏𝓏. Then, for 

all 𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏), 

ℰ𝜃𝜃(𝓏𝓏) ⋚ ℰ𝜃𝜃(𝓏𝓏) ⟺ 𝑟𝑟𝜃𝜃′(𝓏𝓏) ⋛ 0. 
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Proof. If 𝑟𝑟𝜃𝜃(𝓏𝓏) = ∞, then the only possibility is that 𝑟𝑟𝜃𝜃′(⋅) > 0. In this case, by Lemma B2, we 

have: ℰ𝜃𝜃(𝓏𝓏) = ∞ > ℰ𝜃𝜃(𝓏𝓏) for all 𝓏𝓏 ∈ (0,𝓏𝓏).  Consider now the case when 1 < 𝑟𝑟𝜃𝜃(𝓏𝓏) < ∞, 

hence 𝓏𝓏 = ∞. Two cases may arise. 

Case 1: 𝑟𝑟𝜃𝜃(∞) > 1. First, define: 

 ∆𝑟𝑟𝜃𝜃(𝓏𝓏) ≡ 𝑟𝑟𝜃𝜃(∞) − 𝑟𝑟𝜃𝜃(𝓏𝓏),  

to obtain the identity,  

𝑑𝑑 log[−𝜃𝜃′(𝓏𝓏)]
𝑑𝑑 log𝓏𝓏

= ∆𝑟𝑟𝜃𝜃(𝓏𝓏)− 𝑟𝑟𝜃𝜃(∞), 

integrating which yields 

−𝜃𝜃′(𝓏𝓏) = 𝑓𝑓(𝓏𝓏)𝓏𝓏−𝑟𝑟𝜃𝜃(∞), 𝑓𝑓(𝓏𝓏) ≡ exp ��
∆𝑟𝑟𝜃𝜃(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝑑𝑑
𝓏𝓏

𝓏𝓏0
� > 0; 

𝜃𝜃(𝓏𝓏) = −� 𝜃𝜃′(𝜉𝜉)𝑑𝑑𝑑𝑑
∞

𝓏𝓏
= � 𝑓𝑓(𝜉𝜉)𝜉𝜉−𝑟𝑟𝜃𝜃(∞)𝑑𝑑𝑑𝑑

∞

𝓏𝓏
. 

Hence, 

 
ℰ𝜃𝜃(𝓏𝓏) ≡ −

𝓏𝓏𝜃𝜃′(𝓏𝓏)
𝜃𝜃(𝓏𝓏) =

𝑓𝑓(𝓏𝓏)𝓏𝓏1−𝑟𝑟𝜃𝜃(∞)

∫ 𝑓𝑓(𝜉𝜉)𝜉𝜉−𝑟𝑟𝜃𝜃(∞)𝑑𝑑𝑑𝑑∞
𝓏𝓏

. 
 

By the mean value theorem, there exists 𝛽𝛽(𝓏𝓏) > 𝓏𝓏, such that 

� 𝑓𝑓(𝜉𝜉)𝜉𝜉−𝑟𝑟𝜃𝜃(∞)𝑑𝑑𝑑𝑑
∞

𝓏𝓏
= 𝑓𝑓(𝛽𝛽(𝓏𝓏))� 𝜉𝜉−𝑟𝑟𝜃𝜃(∞)𝑑𝑑𝑑𝑑

∞

𝓏𝓏
=

1
𝑟𝑟𝜃𝜃(∞) − 1

𝑓𝑓(𝛽𝛽(𝓏𝓏))𝓏𝓏1−𝑟𝑟𝜃𝜃(∞). 

Hence, using the definition of 𝑓𝑓(𝓏𝓏) and Lemma B2 for 𝓏𝓏 = ∞, 

 
ℰ𝜃𝜃(𝓏𝓏) = (𝑟𝑟𝜃𝜃(∞) − 1)

𝑓𝑓(𝓏𝓏)
𝑓𝑓(𝛽𝛽(𝓏𝓏)) = ℰ𝜃𝜃(∞) exp �−�

∆𝑟𝑟𝜃𝜃(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝑑𝑑
𝛽𝛽(𝓏𝓏)

𝓏𝓏
�. 

 

Then, for all 𝓏𝓏 > 𝓏𝓏0, 𝛽𝛽(𝓏𝓏) > 𝓏𝓏 >  𝓏𝓏0 implies 

ℰ𝜃𝜃(𝓏𝓏) ⋚ ℰ𝜃𝜃(∞) ⟺�
∆𝑟𝑟𝜃𝜃(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝑑𝑑
𝛽𝛽(𝓏𝓏)

𝓏𝓏
⋛ 0 ⟺ 𝑟𝑟𝜃𝜃′(⋅) ⋛ 0. 

Case 2: 𝑟𝑟𝜃𝜃(∞) = 1. This happens only when 𝑟𝑟𝜃𝜃′(𝓏𝓏) < 0 for all 𝓏𝓏 ∈ (𝓏𝓏0,∞), because 𝑟𝑟𝜃𝜃(𝓏𝓏) > 1 

for all 𝓏𝓏 ∈ (𝓏𝓏0,∞). From Lemma B2, ℰ𝜃𝜃(𝓏𝓏) > 0 = ℰ𝜃𝜃(∞) for all 𝓏𝓏 ∈ (𝓏𝓏0,∞). 

This completes the proof. ∎ 

 We are now ready to prove Lemma 7. 

Lemma 7. Assume that 𝑟𝑟𝜃𝜃′(⋅) does not change sign over (𝓏𝓏0,𝓏𝓏), where 0 < 𝓏𝓏0 <  𝓏𝓏. Then, for all 

𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏), 
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𝑟𝑟𝜃𝜃′(⋅) ⋛ 0 ⟹  ℰ𝜙𝜙′ (⋅) ⋛ 0. 

Proof. Three cases may arise. 

Case 1: 𝑟𝑟𝜃𝜃′(𝓏𝓏) > 0 for all 𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏). To prove by contradiction, suppose to the contrary that 

there is 𝓏𝓏1 ∈ (𝓏𝓏0,𝓏𝓏), such that ℰ𝜃𝜃′ (𝓏𝓏1) ≤ 0. Two sub-cases may arise. 

Case 1-1: ℰ𝜃𝜃′ (𝓏𝓏1) < 0. Because Lemma B3 implies ℰ𝜃𝜃(𝓏𝓏1) < ℰ𝜃𝜃(𝓏𝓏), ℰ𝜃𝜃(⋅) must have an 

interior local minimizer 𝓏𝓏2 ∈ (𝓏𝓏1,𝓏𝓏), which satisfies 

ℰ𝜃𝜃′ (𝓏𝓏2) = 0, ℰ𝜃𝜃′′(𝓏𝓏2) ≥ 0. 

Differentiating the identity 

ℰ𝜃𝜃′ (𝓏𝓏) =
ℰ𝜃𝜃(𝓏𝓏)
𝓏𝓏

�1 + ℰ𝜃𝜃(𝓏𝓏) − 𝑟𝑟𝜃𝜃(𝓏𝓏)�, 

at 𝓏𝓏 = 𝓏𝓏2 and using ℰ𝜃𝜃′ (𝓏𝓏2) = 0, we obtain: 

ℰ𝜃𝜃′′(𝓏𝓏2) = −
ℰ𝜃𝜃(𝓏𝓏2)
𝓏𝓏2

𝑟𝑟𝜃𝜃′(𝓏𝓏2) < 0, 

which clearly contradicts ℰ𝜃𝜃′′(𝓏𝓏2) ≥ 0. 

Case 1-2: ℰ𝜃𝜃′ (𝓏𝓏1) = 0. In this case, differentiating the identity 

ℰ𝜃𝜃′ (𝓏𝓏) =
ℰ𝜃𝜃(𝓏𝓏)
𝓏𝓏

�1 + ℰ𝜃𝜃(𝓏𝓏) − 𝑟𝑟𝜃𝜃(𝓏𝓏)�, 

at 𝓏𝓏 = 𝓏𝓏1 yields 

ℰ𝜃𝜃′′(𝓏𝓏1) = −
ℰ𝜃𝜃(𝓏𝓏1)
𝓏𝓏1

𝑟𝑟𝜃𝜃′(𝓏𝓏1) < 0. 

Therefore, for a small ℎ > 0 we have: ℰ𝜃𝜃′ (𝓏𝓏1 + ℎ) < ℰ𝜙𝜙′ (𝓏𝓏1) = 0. By replacing 𝓏𝓏1 with 𝓏𝓏1 + ℎ, 

we use the same argument as in case 1-1. 

Thus, we have: 

𝑟𝑟𝜃𝜃′(𝓏𝓏) > 0  𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏) ⟹  ℰ𝜃𝜃′ (𝓏𝓏) > 0  𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏).  

Case 2: 𝑟𝑟𝜃𝜃′(𝓏𝓏) = 0 for all 𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏). This is the CES case, which is straightforward. 

Case 3: 𝑟𝑟𝜃𝜃′(𝓏𝓏) < 0 for all 𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏). One can handle this case along the same lines as case 1. 

This completes the proof. ∎ 
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Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. 
 


