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Description of the map

2D piecewise linear discontinuous map

F : I2 ! I2; I2 = [0; 1]� [0; 1];

F1 :

�
x
y

�
!

�
(1� �)x
(1� �)y + �

�
; (x; y) 2 D1;

F2 :

�
x
y

�
!

�
(1� �)x+ �
(1� �)y

�
; (x; y) 2 D2;

F3 :

�
x
y

�
!

�
(1� �)x
(1� �)y

�
; (x; y) 2 D3;

F4 :

�
x
y

�
!

�
(1� �)x+ �
(1� �)y + �

�
; (x; y) 2 D4:

where the regions are de�ned as

D1 = f(x; y) : P x < 0; P y < 0g; D2 = f(x; y) : P x > 0; P y > 0g

D3 = f(x; y) : P x < 0; P y > 0g; D4 = f(x; y) : P x > 0; P y < 0g

P x = (x� 1=2) +mx(y � 1=2); P y = (y � 1=2) +my(x� 1=2)

and the parameters satisfy 0 < � < 1; mx > 0; my > 0.
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Preliminaries

Map F is symmetric wrt (x; y) = (1=2; 1=2) denoted S.

Any invariant set A of map F is either symmetric wrt S or there must exist one
more invariant set A0 which is symmetric to A wrt S.

The discontinuity lines:
y = � 1

mx
x+ 1+mx

2mx
(Cx), P x = 0; y = �myx+

my+1

2
(Cy), P y = 0

They coincide if my = 1
mx

(C) in which case F is de�ned by the maps F1 and F2 only.

2D bif. diagram: period adding and period incrementing structures
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Partitioning of the parameter space

Depending on mxmy ≷ 1; mx ≷ 1; my ≷ 1

� For (mx;my) 2 RI = fmxmy > 1; mx < 1g (Case I) and

(mx;my) 2 RII = fmxmy < 1; my > 1g (Case II) map F has two attracting border

�x. p-ts, (x; y) = (0; 1) and (x; y) = (1; 0). Their basins are separated by Cx.
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Partitioning of the parameter space

� For (mx;my) 2 RIII = fmy < 1; mx < 1g (Case III)

Attractors of F (Case III)

An n-cycle 
n, n � 2, belonging to the left border I0 of I2,
and an n-cycle 
0n belonging to the right border I1 of I2.

The basins of 
n and 
0n are separated by Cx.
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Case III: two border n-cycles and period adding structure

The dynamics on I0 (I1) are governed by the 1D piecewise linear discontinuous map g
(g, resp.) with the discontinuity point c�1 = (my + 1)=2 > 1=2
(c0�1 = (1�my)=2 = 1� c�1 < 1=2):

g : y ! g(y) =

�
gL(y) = (1� �)y + �; 0 � y < c�1
gR(y) = (1� �)y; c�1 < y � 1
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Partitioning of the parameter space

� For (mx;my) 2 RIV = fmxmy < 1; mx > 1g (Case IV)

Case IV

Attractors of map F (Case IV)

An interior 2-cycle �2, which may coexist or not with

two attracting border n-cycles 
n 2 I0 and 
0n 2 I1.
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Partitioning of the parameter space

Cases IV and V: An interior 2-cycle

An interior 2-cycle �2 = fp0; p1g; with

p0 =
�

1

2� �
;
1� �

2� �

�
2 D1; p1 =

�
1� �

2� �
;

1

2� �

�
2 D2

exists for mx > 1, my < 1 (i.e., (mx;my) 2 RIV [RV ):
At mx = 1 a BCB occurs at which p0 2 Cx (as well as p1 2 Cx);

At my = 1 a BCB occurs at which p0 2 Cy (as well as p1 2 Cy)
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Interior 2-cycle

Case IV: Basins of attraction (below curve B : my =
1��mx

mx(1��)
)
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Interior 2-cycle

Case IV: Basins of attraction (above curve B : my =
1��mx

mx(1��)
)
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Partitioning of the parameter space

� For (mx;my) 2 RV = fmxmy > 1; my < 1g (Case V)

Case V

Attractors (Case V)

� Case IV ) Case V: the curves Cx and Cy are merging and switching their position.
� Borders I0 and I1 are no longer invariant, cycles 
n and 
0n no longer exist.
� 2-cycle �2 may coexists or not with basic cycle �2n, n � 2; or with �2n and �2(n+1):
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Case V: interior 2- and 2n-cycles; incrementing structure
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Case V: interior 2- and 2n-cycles; incrementing structure
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Partitioning of the parameter space

� For (mx;my) 2 RV I = fmx > 1; my > 1g (Case VI)

Case VI

Attractors of map F (Case VI)

Several coexisting attracting interior cycles of even periods.
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Border collision bifurcations of an interior cycle

Let F has an interior cycle �2n = fpig
2n�1
i=0 = f(xi; yi)g

2n�1
i=0 ; n � 1: It can be

represented by a symbolic sequence � = �0�1:::�2n�1 where �i 2 f1; 2; 3; 4g and

�i =

8><
>:

1 if pi 2 D1

2 if pi 2 D2

3 if pi 2 D3

4 if pi 2 D4

Any interior cycle �2n; n � 1; of map F can be represented by the symbolic
sequence 1k4m2k3m where k � 1; 0 � m � k:

NED, Pisa, Sept. 7-9, 2017 Discrete Time Fashion Cycles 18 / 35



Border collision bifurcations of an interior cycle

Let F has an interior cycle �2n = fpig
2n�1
i=0 = f(xi; yi)g

2n�1
i=0 ; n � 1: It can be

represented by a symbolic sequence � = �0�1:::�2n�1 where �i 2 f1; 2; 3; 4g and

�i =

8><
>:

1 if pi 2 D1

2 if pi 2 D2

3 if pi 2 D3

4 if pi 2 D4

Any interior cycle �2n; n � 1; of map F can be represented by the symbolic
sequence 1k4m2k3m where k � 1; 0 � m � k:

NED, Pisa, Sept. 7-9, 2017 Discrete Time Fashion Cycles 18 / 35



Border collision bifurcations of an interior cycle

The rightmost point p0 2 D1 of the cycle �2n = fpig
2n�1
i=0 ; n � 1; of map F with

symbolic sequence 1k4m2k3m has the following coordinates:

(x0; y0) =
�

am

1+am+k
; am+k

1+am+k

�
; a := 1� �

Proposition 1. Let 0 < � < 1, (mx;my) 2 RV [RV I . Let F have a cycle
�2n = fpig

2n�1
i=0 ; n � 1: Then it is an interior 2(m+ k)-cycle having the symbolic

sequence 1k4m2k3m, where k � m; 0 � m � l, l =
�
log1�� 0:5

�
+ 1. The related

periodicity region Pm;k is con�ned by at most four BCB boundaries:

B1
m;k : my = am+k�1

1+am(ak�2)
=: m1

y(m;k) (p0 2 Cy)

B2
m;k : my = am+k�1(2�a)�1

1+am�1(ak+1�2)
=: m2

y(m;k) (p2(k+m)�1 2 Cy)

B3
m;k : mx = 1�am+k

1+ak(am�2)
=: m3

x(m;k) (pk 2 Cx)

B4
m;k : mx = 1�am+k�1(2�a)

1+ak�1(am+1�2)
=: m4

x(m;k) (pk�1 2 Cx)

The region Pm;k can be one-side unbounded (only the the boundaries B2
m;k; B

3
m;k and

B4
m;k exist) or two-side unbounded (only B2

m;k and B3
m;k exist).
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Border collision bifurcations of an interior cycle
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Period incrementing structures

The set of periodicity regions fPm;kg
1

k=m form a period incrementing structure.

Proposition 2. The number of period incrementing structures in the (mx;my)-plane is

de�ned by l =
�
log1�� 0:5

�
+ 1, that is, for �xed 0 < � < 1 map F can have cycles with

symbolic sequences 1k4m2k3m for any 1 � m � l and k � m:

� = 0:1) l = 7

limk!1m1
y(m;k) =

1
2(1��)m�1 =: my;m; limk!1m2

y(m;k) = my;m�1
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+ 1, that is, for �xed 0 < � < 1 map F can have cycles with

symbolic sequences 1k4m2k3m for any 1 � m � l and k � m:

� = 0:1) l = 7

limk!1m1
y(m;k) =

1
2(1��)m�1 =: my;m; limk!1m2

y(m;k) = my;m�1
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Period incrementing structures

� = 0:3) l = 2
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Codimension-two BCB of an interior cycle

Proposition 3. In the (x; y)-phase plane of map F a parallelogram P with vertices p; q;
p0 and q0 can be constructed if my > mx; mx > 1; independently on �. Here

p = (xp; yp) = (1=2 +M=2my; 1=2�M=2) ; q = (xq; yq) = (1=2�M=2; 1=2 +M=2mx)

p0 = (1� xp; 1� yp) ; q
0 = (1� xq; 1� yq) ;M = (my �mx)=(mxmy � 1)

L00 : y =
yp
xp
x;

L01 : y =
yq�1
xq

x+ 1

L11 : y =
y0p�1

x0p�1
(x� 1) + 1;

L10 : y =
y0q

x0q�1
(x� 1)
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Codimension-two BCB of an interior cycle

Consider a region Pm;k and its vertex point p1;3m;k = (m3
x(m;k);m

1
y(m;k)).

Proposition 4. The vertex point p1;3m;k of region Pm;k (i.e., mx = m3
x(m;k);

my = m1
y(m;k)) is a particular codimension-2 BCB point at which four points of the

cycle �2(m+k) collide with the borders: p0 2 Cy; pk 2 Cx, pk+m 2 Cy and p2k+m 2 Cx:

Moreover, at p1;3m;k it holds that p0 = p; pk = q; pk+m = p0 and p2k+m = q0.

p1;3m;k for di�erent m; k belong to curves Vk : my = akmx

mx(ak�1)+1
, which for �xed k and

� ! 0 (a! 1�) tend to my = mx; while for �xed � and k!1 tend to mx = 1.
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Discrete- versus continuous-time model

Continuous-time fashion model is de�ned as follows:

d�t
dt

2

(
f�(1� �t)g if Pt > 0;
[���t; �(1� �t)] if Pt = 0;
f���tg if Pt < 0;

d��t
dt

2

(
f�(1� ��t )g; if P �t > 0;
[����t ; �(1� ��t )]; if P �t = 0;
f����t g; if P �t < 0;

Pt = (�t � 1=2) +m(��t � 1=2); P �t = (��t � 1=2) +m�(�t � 1=2):

�t (�
�

t ) is a fraction of Conformists (Nonconformists) that chooses one of two strategies,

m > 0 (m� > 0) is the relative frequency of intergroup matching to intragroup matching

from a C's (N's) point of view, � > 0 is the speed of adjustment.

The (m;m�)-plane can be subdivided into the regions according to the location of the

discontinuity lines. In Matsuyama, 1992, these regions are distinguished as Case 1

(m < 1 < mm�), Case 2 (m < mm� < 1), Case 3 (mm� < m < 1), Case 4

(m > 1 > mm�), Case 5 (m > mm� > 1) and Case 6 (mm� > m > 1), where Case 6a

(m � m� > 1) and Case 6b (m� > m > 1).
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Discrete- versus continuous-time model

Attractors of the continuous-time fashion model (Matsuyama, 1992)

In Case 1 and Case 2 the attractors of � are the border �xed points

(�t; �
�

t ) = (0; 1) and (�t; �
�

t ) = (1:0):

In Case 3 and Case 4.the attractors are the border points (�t; �
�

t ) =
�
0; 1+m

�

2

�
and

(�t; �
�

t ) =
�
1; 1�m

�

2

�
:

In Case 5 and Case 6a the attractor is the interior point (�t; �
�

t ) =
�
1
2
; 1
2

�
:

In Case 6b the attractor is a limit cycle formed by a parallelogram with vertices

P =
�
1

2
+

X1

2m�
;
1

2
�
X1

2

�
; Q =

�
1

2
�
X1

2
;
1

2
+
X1

2m

�
P 0 =

�
1

2
�

X1

2m�
;
1

2
+
X1

2

�
; Q =

�
1

2
+
X1

2
;
1

2
�
X1

2m

�
where

X1 =
m� �m

mm� � 1

NED, Pisa, Sept. 7-9, 2017 Discrete Time Fashion Cycles 29 / 35



Discrete- versus continuous-time model
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Discrete- versus continuous-time model
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Discrete- versus continuous-time model

Cases III and IV

As � ! 0 cycles 
n 2 I0 and 
0n 2 I1 of map F shrink to d = Cx \ I0 and d0 = Cx \ I1,

respectively, while �2 shrinks to S.
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Discrete- versus continuous-time model

Cases V and VIa
As � ! 0 limit sets of trajectories of map F shrink to S.
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Discrete- versus continuous-time model

Cases VIb
As � ! 0 limit sets of trajectories of map F tend to parallelogram P .

1D diagrams � versus x for my < mx, my = mx and my > mx
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