NED 2017

September 7-9, 2017, Pisa 10th International Conference on Nonlinear Economic Dynamics

Fashion Cycles: a Discrete Time Analysis

Iryna Sushko

Inst of Mathematics, National Academy of Sciences of Ukraine

Laura Gardini

Dept of Economics, Society and Politics, University of Urbino, Italy Kiminori Matsuyama

Dept. of Economics, Northwestern University, USA

2D piecewise linear discontinuous map

$$F: I^2 \to I^2, I^2 = [0, 1] \times [0, 1],$$

 $F_1: \begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} (1 - \delta)x \\ (1 - \delta)y + \delta \end{pmatrix}, (x, y) \in D_1;$
 $F_2: \begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} (1 - \delta)x + \delta \\ (1 - \delta)y \end{pmatrix}, (x, y) \in D_2;$
 $F_3: \begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} (1 - \delta)x \\ (1 - \delta)y \end{pmatrix}, (x, y) \in D_3;$
 $F_4: \begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} (1 - \delta)x + \delta \\ (1 - \delta)y + \delta \end{pmatrix}, (x, y) \in D_4.$

2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

2D piecewise linear discontinuous map

$$F: I^2 \to I^2, I^2 = [0, 1] \times [0, 1],$$

 $F_1: \begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} (1 - \delta)x \\ (1 - \delta)y + \delta \end{pmatrix}, (x, y) \in D_1;$
 $F_2: \begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} (1 - \delta)x + \delta \\ (1 - \delta)y \end{pmatrix}, (x, y) \in D_2;$
 $F_3: \begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} (1 - \delta)x \\ (1 - \delta)y \end{pmatrix}, (x, y) \in D_3;$
 $F_4: \begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} (1 - \delta)x + \delta \\ (1 - \delta)y + \delta \end{pmatrix}, (x, y) \in D_4.$

where the **regions** are defined as

$$egin{array}{rcl} D_1&=&\{(x,y):P^x<0,\ P^y<0\}; & D_2=\{(x,y):P^x>0,\ P^y>0\}\ D_3&=&\{(x,y):P^x<0,\ P^y>0\}, & D_4=\{(x,y):P^x>0,\ P^y<0\}\ P^x=(x-1/2)+m_x(y-1/2), & P^y=(y-1/2)+m_y(x-1/2) \end{array}$$

2D piecewise linear discontinuous map

$$F: I^2 \to I^2, I^2 = [0, 1] \times [0, 1],$$

 $F_1: \begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} (1 - \delta)x \\ (1 - \delta)y + \delta \end{pmatrix}, (x, y) \in D_1;$
 $F_2: \begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} (1 - \delta)x + \delta \\ (1 - \delta)y \end{pmatrix}, (x, y) \in D_2;$
 $F_3: \begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} (1 - \delta)x \\ (1 - \delta)y \end{pmatrix}, (x, y) \in D_3;$
 $F_4: \begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} (1 - \delta)x + \delta \\ (1 - \delta)y + \delta \end{pmatrix}, (x, y) \in D_4.$

where the **regions** are defined as

$$egin{array}{rcl} D_1&=&\{(x,y):P^x<0,\ P^y<0\};\ D_2=\{(x,y):P^x>0,\ P^y>0\}\ D_3&=&\{(x,y):P^x<0,\ P^y>0\},\ D_4=\{(x,y):P^x>0,\ P^y<0\} \end{array}$$

$$P^x = (x - 1/2) + m_x(y - 1/2), \quad P^y = (y - 1/2) + m_y(x - 1/2)$$

and the parameters satisfy $0 < \delta < 1, \ m_x > 0, \ m_y > 0.$

where the regions are defined as

 $egin{array}{rcl} D_1&=&\{(x,y):P^x<0,\ P^y<0\}; & D_2=\{(x,y):P^x>0,\ P^y>0\}\ D_3&=&\{(x,y):P^x<0,\ P^y>0\}, & D_4=\{(x,y):P^x>0,\ P^y<0\} \end{array}$

$$P^x = (x - 1/2) + m_x(y - 1/2), \quad P^y = (y - 1/2) + m_y(x - 1/2)$$

and the parameters satisfy $0 < \delta < 1, \ m_x > 0, \ m_y > 0.$

where the regions are defined as

$$egin{array}{rcl} D_1&=&\{(x,y):P^x<0,\ P^y<0\}; & D_2=\{(x,y):P^x>0,\ P^y>0\}\ D_3&=&\{(x,y):P^x<0,\ P^y>0\}, & D_4=\{(x,y):P^x>0,\ P^y<0\} \end{array}$$

$$P^x = (x - 1/2) + m_x(y - 1/2), \quad P^y = (y - 1/2) + m_y(x - 1/2)$$

and the **parameters** satisfy $0 < \delta < 1$, $m_x > 0$, $m_y > 0$.

Preliminaries

- Map F is symmetric wrt (x, y) = (1/2, 1/2) denoted S.
- Any invariant set A of map F is either symmetric wrt S or there must exist one more invariant set A' which is symmetric to A wrt S.

イロト イポト イヨト イヨト

Preliminaries

- Map F is symmetric wrt (x, y) = (1/2, 1/2) denoted S.
- Any invariant set A of map F is either symmetric wrt S or there must exist one more invariant set A' which is symmetric to A wrt S.

The discontinuity lines:

 $y = -\frac{1}{m_x}x + \frac{1+m_x}{2m_x}$ $(C^x) \Leftrightarrow P^x = 0$, $y = -m_yx + \frac{m_y+1}{2}$ $(C^y) \Leftrightarrow P^y = 0$ They coincide if $m_y = \frac{1}{m_x}$ (C) in which case F is defined by the maps F_1 and F_2 only.

(日) (四) (E) (E) (E) (E)

Preliminaries

- Map F is symmetric wrt (x, y) = (1/2, 1/2) denoted S.
- Any invariant set A of map F is either symmetric wrt S or there must exist one more invariant set A' which is symmetric to A wrt S.

The discontinuity lines: $y = -\frac{1}{m_x}x + \frac{1+m_x}{2m_x}$ (C^x) $\Leftrightarrow P^x = 0$, $y = -m_yx + \frac{m_y+1}{2}$ (C^y) $\Leftrightarrow P^y = 0$ They coincide if $m_y = \frac{1}{m_x}$ (C) in which case F is defined by the maps F_1 and F_2 only.

2D bif. diagram: period adding and period incrementing structures

Depending on $m_x m_y \gtrless 1, \, m_x \gtrless 1, \, m_y \gtrless 1$

• For $(m_x, m_y) \in R_I = \{m_x m_y > 1, m_x < 1\}$ (Case I) and $(m_x, m_y) \in R_{II} = \{m_x m_y < 1, m_y > 1\}$ (Case II) map F has two attracting border fix. p-ts, (x, y) = (0, 1) and (x, y) = (1, 0). Their basins are separated by C^x .

イロト イロト イヨト イヨト 三日

Depending on $m_x m_y \gtrless 1, \, m_x \gtrless 1, \, m_y \gtrless 1$

• For $(m_x, m_y) \in R_I = \{m_x m_y > 1, m_x < 1\}$ (Case I) and $(m_x, m_y) \in R_{II} = \{m_x m_y < 1, m_y > 1\}$ (Case II) map F has two attracting border fix. p-ts, (x, y) = (0, 1) and (x, y) = (1, 0). Their basins are separated by C^x .

NED, Pisa, Sept. 7-9, 2017

Discrete Time Fashion Cycles

• For $(m_x, m_y) \in R_{III} = \{m_y < 1, m_x < 1\}$ (Case III)

æ

<ロ> (四) (四) (三) (三) (三)

• For $(m_x, m_y) \in R_{III} = \{m_y < 1, m_x < 1\}$ (Case III)

Attractors of F (Case III)

An *n*-cycle γ_n , $n \ge 2$, belonging to the left border I_0 of I^2 , and an *n*-cycle γ'_n belonging to the right border I_1 of I^2 . The basins of γ_n and γ'_n are separated by C^x .

The dynamics on I_0 (I_1) are governed by the **1D piecewise linear discontinuous map** g (\overline{g} , resp.) with the discontinuity point $c_{-1} = (m_y + 1)/2 > 1/2$ ($c'_{-1} = (1 - m_y)/2 = 1 - c_{-1} < 1/2$):

$$g:y
ightarrow g(y)= \left\{egin{array}{cc} g_L(y)=(1-\delta)y+\delta, & 0\leq y< c_{-1}\ g_R(y)=(1-\delta)y, & c_{-1}< y\leq 1 \end{array}
ight.$$

イロト イポト イヨト イヨト

The dynamics on I_0 (I_1) are governed by the 1D piecewise linear discontinuous map g (\overline{g} , resp.) with the discontinuity point $c_{-1} = (m_y + 1)/2 > 1/2$ ($c'_{-1} = (1 - m_y)/2 = 1 - c_{-1} < 1/2$):

$$g:y
ightarrow g(y)= \left\{egin{array}{cc} g_L(y)=(1-\delta)y+\delta, & 0\leq y< c_{-1}\ g_R(y)=(1-\delta)y, & c_{-1}< y\leq 1 \end{array}
ight.$$

イロト イポト イヨト イヨト

The dynamics on I_0 (I_1) are governed by the 1D piecewise linear discontinuous map g (\overline{g} , resp.) with the discontinuity point $c_{-1} = (m_y + 1)/2 > 1/2$ ($c'_{-1} = (1 - m_y)/2 = 1 - c_{-1} < 1/2$):

$$g: y
ightarrow g(y) = \left\{egin{array}{cc} g_L(y) = (1-\delta)y + \delta, & 0 \leq y < c_{-1} \ g_R(y) = (1-\delta)y, & c_{-1} < y \leq 1 \end{array}
ight.$$

The dynamics on I_0 (I_1) are governed by the 1D piecewise linear discontinuous map g (\overline{g} , resp.) with the discontinuity point $c_{-1} = (m_y + 1)/2 > 1/2$ ($c'_{-1} = (1 - m_y)/2 = 1 - c_{-1} < 1/2$):

$$g:y
ightarrow g(y) = \left\{egin{array}{cc} g_L(y) = (1-\delta)y + \delta, & 0 \leq y < c_{-1} \ g_R(y) = (1-\delta)y, & c_{-1} < y \leq 1 \end{array}
ight.$$

NED, Pisa, Sept. 7-9, 2017

9 / 35

• For $(m_x,m_y)\in R_{IV}=\{m_xm_y<1,\ m_x>1\}$ (Case IV)

3

(ロ) (四) (三) (三)

• For $(m_x,m_y)\in R_{IV}=\{m_xm_y<1,\ m_x>1\}$ (Case IV)

Attractors of map F (Case IV)

An interior 2-cycle Γ_2 , which may coexist or not with two attracting border *n*-cycles $\gamma_n \in I_0$ and $\gamma'_n \in I_1$.

æ

イロト 不得下 イヨト イヨト

An interior 2-cycle $\Gamma_2 = \{p_0, p_1\}$, with

$$p_0 = \left(rac{1}{2-\delta},rac{1-\delta}{2-\delta}
ight) \in D_1, \quad p_1 = \left(rac{1-\delta}{2-\delta},rac{1}{2-\delta}
ight) \in D_2$$

exists for $m_x > 1$, $m_y < 1$ (i.e., $(m_x, m_y) \in R_{IV} \cup R_V$): At $m_x = 1$ a BCB occurs at which $p_0 \in C^x$ (as well as $p_1 \in C^x$); At $m_y = 1$ a BCB occurs at which $p_0 \in C^y$ (as well as $p_1 \in C^y$)

2

イロン イロン イヨン イヨン

2

(ロ) (四) (三) (三)

• For $(m_x,m_y)\in R_V=\{m_xm_y>1,\ m_y<1\}$ (Case V)

æ

(ロ) (四) (三) (三)

• For $(m_x, m_y) \in R_V = \{m_x m_y > 1, \ m_y < 1\}$ (Case V)

Case V

Attractors (Case V)

- Case IV \Rightarrow Case V: the curves C^x and C^y are merging and switching their position.
- Borders I_0 and I_1 are no longer invariant, cycles γ_n and γ'_n no longer exist.
- 2-cycle Γ_2 may coexists or not with basic cycle Γ_{2n} , $n \geq 2$, or with Γ_{2n} and $\Gamma_{2(n+1)}$.

Case V: interior 2- and 2n-cycles; incrementing structure

æ

(ロ) (四) (三) (三)

Case V: interior 2- and 2n-cycles; incrementing structure

2

イロト イポト イヨト イヨト

• For $(m_x, m_y) \in R_{VI} = \{m_x > 1, \ m_y > 1\}$ (Case VI)

3

イロン イロン イヨン イヨン

• For $(m_x, m_y) \in R_{VI} = \{m_x > 1, \ m_y > 1\}$ (Case VI)

3

(ロ) (四) (三) (三)

• For $(m_x, m_y) \in R_{VI} = \{m_x > 1, \ m_y > 1\}$ (Case VI)

Attractors of map F (Case VI)

Several coexisting attracting interior cycles of even periods.

NED, Pisa, Sept. 7-9, 2017

Let F has an interior cycle $\Gamma_{2n} = \{p_i\}_{i=0}^{2n-1} = \{(x_i, y_i)\}_{i=0}^{2n-1}, n \ge 1$. It can be represented by a symbolic sequence $\sigma = \sigma_0 \sigma_1 \dots \sigma_{2n-1}$ where $\sigma_i \in \{1, 2, 3, 4\}$ and

 $\sigma_i = \begin{cases} 1 & \text{if } p_i \in D_1 \\ 2 & \text{if } p_i \in D_2 \\ 3 & \text{if } p_i \in D_3 \\ 4 & \text{if } p_i \in D_4 \end{cases}$ • Any interior cycle Γ_{2n} , $n \ge 1$, of map F can be represented by the symbolic sequence $1^k 4^m 2^k 3^m$ where k > 1, 0 < m < k.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Let F has an interior cycle $\Gamma_{2n} = \{p_i\}_{i=0}^{2n-1} = \{(x_i, y_i)\}_{i=0}^{2n-1}, n \ge 1$. It can be represented by a symbolic sequence $\sigma = \sigma_0 \sigma_1 \dots \sigma_{2n-1}$ where $\sigma_i \in \{1, 2, 3, 4\}$ and

- $\sigma_i = \left\{egin{array}{cccc} 1 & ext{if} \ p_i \in D_1 \ 2 & ext{if} \ p_i \in D_2 \ 3 & ext{if} \ p_i \in D_3 \ 4 & ext{if} \ p_i \in D_4 \end{array}
 ight.$
 - Any interior cycle Γ_{2n} , $n \ge 1$, of map F can be represented by the symbolic sequence $1^k 4^m 2^k 3^m$ where $k \ge 1$, $0 \le m \le k$.

NED, Pisa, Sept. 7-9, 2017

Discrete Time Fashion Cycles

• The rightmost point $p_0 \in D_1$ of the cycle $\Gamma_{2n} = \{p_i\}_{i=0}^{2n-1}$, $n \ge 1$, of map F with symbolic sequence $1^k 4^m 2^k 3^m$ has the following coordinates:

$$(x_0, y_0) = \left(rac{a^m}{1+a^{m+k}}, rac{a^{m+k}}{1+a^{m+k}}
ight), \ \ a := 1-\delta$$

・ロト ・個ト ・ヨト ・ヨト

• The rightmost point $p_0 \in D_1$ of the cycle $\Gamma_{2n} = \{p_i\}_{i=0}^{2n-1}, n \ge 1$, of map F with symbolic sequence $1^k 4^m 2^k 3^m$ has the following coordinates:

$$(x_0,y_0)=\left(rac{a^m}{1+a^{m+k}},rac{a^{m+k}}{1+a^{m+k}}
ight),\;\;a:=1-\delta$$

(日) (四) (注意) (注) (三)

• The rightmost point $p_0 \in D_1$ of the cycle $\Gamma_{2n} = \{p_i\}_{i=0}^{2n-1}$, $n \ge 1$, of map F with symbolic sequence $1^k 4^m 2^k 3^m$ has the following coordinates:

$$(x_0,y_0)=\left(rac{a^m}{1+a^{m+k}},rac{a^{m+k}}{1+a^{m+k}}
ight),\;\;a:=1-\delta$$

NED, Pisa, Sept. 7-9, 2017

• The rightmost point $p_0 \in D_1$ of the cycle $\Gamma_{2n} = \{p_i\}_{i=0}^{2n-1}$, $n \ge 1$, of map F with symbolic sequence $1^k 4^m 2^k 3^m$ has the following coordinates:

$$(x_0, y_0) = \left(rac{a^m}{1+a^{m+k}}, rac{a^{m+k}}{1+a^{m+k}}
ight), \ a := 1 - \delta$$

BCB of $\Gamma_{2(m+k)}$: $p_{2(k+m)-1} \in C^y$

・ロト ・四ト ・ヨト ・ヨト

• The rightmost point $p_0 \in D_1$ of the cycle $\Gamma_{2n} = \{p_i\}_{i=0}^{2n-1}$, $n \ge 1$, of map F with symbolic sequence $1^k 4^m 2^k 3^m$ has the following coordinates:

$$(x_0,y_0)=\left(rac{a^m}{1+a^{m+k}},rac{a^{m+k}}{1+a^{m+k}}
ight),\;\;a:=1-\delta$$

• The rightmost point $p_0 \in D_1$ of the cycle $\Gamma_{2n} = \{p_i\}_{i=0}^{2n-1}, n \ge 1$, of map F with symbolic sequence $1^k 4^m 2^k 3^m$ has the following coordinates:

$$(x_0, y_0) = \left(rac{a^m}{1+a^{m+k}}, rac{a^{m+k}}{1+a^{m+k}}
ight), \ \ a := 1-\delta$$

The set of periodicity regions $\{P_{m,k}\}_{k=m}^{\infty}$ form a period incrementing structure.

・ロト ・四ト ・ヨト ・ヨト

The set of periodicity regions $\{P_{m,k}\}_{k=m}^{\infty}$ form a period incrementing structure.

Proposition 2. The number of **period incrementing structures** in the (m_x, m_y) -plane is defined by $l = \lfloor \log_{1-\delta} 0.5 \rfloor + 1$, that is, for fixed $0 < \delta < 1$ map F can have cycles with symbolic sequences $1^k 4^m 2^k 3^m$ for any 1 < m < l and k > m.

・ロト ・聞ト ・ヨト ・ヨト

The set of periodicity regions $\{P_{m,k}\}_{k=m}^{\infty}$ form a period incrementing structure.

Proposition 2. The number of **period incrementing structures** in the (m_x, m_y) -plane is defined by $l = \lfloor \log_{1-\delta} 0.5 \rfloor + 1$, that is, for fixed $0 < \delta < 1$ map F can have cycles with symbolic sequences $1^k 4^m 2^k 3^m$ for any $1 \le m \le l$ and $k \ge m$.

$\delta = 0.1 \Rightarrow l = 7$ 1.4 atan(my) atan(my mv mv $m_{v=1}$ m 0.8 0.8 0.6 0.6 23 25 0.4 0.4 $m_{\rm Y} = 1$ 0.4 0.6 0.8 $1 atan(m_x)^{1.4}$ 0 0.4 0.6 0.8 $1 atan(m_x)$ 1.4

イロト イポト イヨト イヨト

The set of periodicity regions $\{P_{m,k}\}_{k=m}^{\infty}$ form a period incrementing structure.

Proposition 2. The number of **period incrementing structures** in the (m_x, m_y) -plane is defined by $l = \lfloor \log_{1-\delta} 0.5 \rfloor + 1$, that is, for fixed $0 < \delta < 1$ map F can have cycles with symbolic sequences $1^k 4^m 2^k 3^m$ for any $1 \le m \le l$ and $k \ge m$.

 $\delta=0.3\Rightarrow l=2$

<ロト <回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$\delta=0.3\Rightarrow l=2$

NED, Pisa, Sept. 7-9, 2017

Discrete Time Fashion Cycles

Proposition 3. In the (x, y)-phase plane of map F a parallelogram P with vertices p, q, p' and q' can be constructed if $m_y > m_x, m_x > 1$, independently on δ . Here

$$p = (x_p, y_p) = (1/2 + M/2m_y, 1/2 - M/2), q = (x_q, y_q) = (1/2 - M/2, 1/2 + M/2m_x)$$

$$p' = (1-x_p, 1-y_p)\,,\,\,q' = (1-x_q, 1-y_q)\,,\,M = (m_y-m_x)/(m_xm_y-1)\,,$$

Consider a region $P_{m,k}$ and its vertex point $p_{m,k}^{1,3} = (m_{x(m,k)}^3, m_{y(m,k)}^1)$.

▲□▶ ▲□▶ ★ □▶ ★ □▶ - □ - つくぐ

Consider a region $P_{m,k}$ and its vertex point $p_{m,k}^{1,3} = (m_{x(m,k)}^3, m_{y(m,k)}^1)$.

Proposition 4. The vertex point $p_{m,k}^{1,3}$ of region $P_{m,k}$ (i.e., $m_x = m_{x(m,k)}^3$, $m_y = m_{y(m,k)}^1$) is a particular **codimension-2 BCB point** at which four points of the cycle $\Gamma_{2(m+k)}$ collide with the borders: $p_0 \in C^y$, $p_k \in C^x$, $p_{k+m} \in C^y$ and $p_{2k+m} \in C^x$. Moreover, at $p_{m,k}^{1,3}$ it holds that $p_0 = p$, $p_k = q$, $p_{k+m} = p'$ and $p_{2k+m} = q'$.

(ロ) (四) (E) (E) (E)

Consider a region $P_{m,k}$ and its vertex point $p_{m,k}^{1,3} = (m_{x(m,k)}^3, m_{y(m,k)}^1)$.

Proposition 4. The vertex point $p_{m,k}^{1,3}$ of region $P_{m,k}$ (i.e., $m_x = m_{x(m,k)}^3$, $m_y = m_{y(m,k)}^1$) is a particular **codimension-2 BCB point** at which four points of the cycle $\Gamma_{2(m+k)}$ collide with the borders: $p_0 \in C^y$, $p_k \in C^x$, $p_{k+m} \in C^y$ and $p_{2k+m} \in C^x$. Moreover, at $p_{m,k}^{1,3}$ it holds that $p_0 = p$, $p_k = q$, $p_{k+m} = p'$ and $p_{2k+m} = q'$.

 $p_{m,k}^{1,3}$ for different m, k belong to curves V_k : $m_y = \frac{a^k m_x}{m_x(a^k-1)+1}$, which for fixed k and $\delta \to 0$ $(a \to 1_-)$ tend to $m_y = m_x$, while for fixed δ and $k \to \infty$ tend to $m_x = 1$.

NED, Pisa, Sept. 7-9, 2017

Continuous-time fashion model is defined as follows:

$$\begin{array}{rcl} \frac{d\lambda_t}{dt} & \in & \left\{ \begin{array}{ll} \{\alpha(1-\lambda_t)\} & \text{if } P_t > 0, \\ [-\alpha\lambda_t, \alpha(1-\lambda_t)] & \text{if } P_t = 0, \\ \{-\alpha\lambda_t\} & \text{if } P_t < 0, \end{array} \right. \\ \left. \frac{d\lambda_t^*}{dt} & \in & \left\{ \begin{array}{ll} \{\alpha(1-\lambda_t^*)\}, & \text{if } P_t^* > 0, \\ [-\alpha\lambda_t^*, \alpha(1-\lambda_t^*)], & \text{if } P_t^* = 0, \\ \{-\alpha\lambda_t^*\}, & \text{if } P_t^* < 0, \end{array} \right. \end{array} \right. \end{array}$$

 $P_t = (\lambda_t - 1/2) + m(\lambda_t^* - 1/2), \quad P_t^* = (\lambda_t^* - 1/2) + m^*(\lambda_t - 1/2).$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目目 めんの

Continuous-time fashion model is defined as follows:

$$\begin{array}{rcl} \displaystyle \frac{d\lambda_t}{dt} & \in & \left\{ \begin{array}{ll} \{\alpha(1-\lambda_t)\} & \text{if } P_t > 0, \\ [-\alpha\lambda_t, \alpha(1-\lambda_t)] & \text{if } P_t = 0, \\ \{-\alpha\lambda_t\} & \text{if } P_t < 0, \end{array} \right. \\ \displaystyle \frac{d\lambda_t^*}{dt} & \in & \left\{ \begin{array}{ll} \{\alpha(1-\lambda_t^*)\}, & \text{if } P_t^* > 0, \\ [-\alpha\lambda_t^*, \alpha(1-\lambda_t^*)], & \text{if } P_t^* = 0, \\ \{-\alpha\lambda_t^*\}, & \text{if } P_t^* < 0, \end{array} \right. \end{array} \right. \end{array}$$

$$P_t = (\lambda_t - 1/2) + m(\lambda_t^* - 1/2), \quad P_t^* = (\lambda_t^* - 1/2) + m^*(\lambda_t - 1/2).$$

 λ_t (λ_t^*) is a fraction of Conformists (Nonconformists) that chooses one of two strategies, m > 0 $(m^* > 0)$ is the relative frequency of intergroup matching to intragroup matching from a C's (N's) point of view, $\alpha > 0$ is the speed of adjustment.

Continuous-time fashion model is defined as follows:

$$\begin{array}{rcl} \displaystyle \frac{d\lambda_t}{dt} & \in & \left\{ \begin{array}{ll} \{\alpha(1-\lambda_t)\} & \text{if } P_t > 0, \\ [-\alpha\lambda_t, \alpha(1-\lambda_t)] & \text{if } P_t = 0, \\ \{-\alpha\lambda_t\} & \text{if } P_t < 0, \end{array} \right. \\ \displaystyle \frac{d\lambda_t^*}{dt} & \in & \left\{ \begin{array}{ll} \{\alpha(1-\lambda_t^*)\}, & \text{if } P_t^* > 0, \\ [-\alpha\lambda_t^*, \alpha(1-\lambda_t^*)], & \text{if } P_t^* = 0, \\ \{-\alpha\lambda_t^*\}, & \text{if } P_t^* < 0, \end{array} \right. \end{array} \right. \end{array}$$

$$P_t = (\lambda_t - 1/2) + m(\lambda_t^* - 1/2), \quad P_t^* = (\lambda_t^* - 1/2) + m^*(\lambda_t - 1/2).$$

 λ_t (λ_t^*) is a fraction of Conformists (Nonconformists) that chooses one of two strategies, m > 0 $(m^* > 0)$ is the relative frequency of intergroup matching to intragroup matching from a C's (N's) point of view, $\alpha > 0$ is the speed of adjustment.

The (m, m^*) -plane can be subdivided into the regions according to the location of the discontinuity lines. In Matsuyama, 1992, these regions are distinguished as **Case 1** $(m < 1 < mm^*)$, **Case 2** $(m < mm^* < 1)$, **Case 3** $(mm^* < m < 1)$, **Case 4** $(m > 1 > mm^*)$, **Case 5** $(m > mm^* > 1)$ and **Case 6** $(mm^* > m > 1)$, where **Case 6a** $(m \ge m^* > 1)$ and **Case 6b** $(m^* > m > 1)$.

NED, Pisa, Sept. 7-9, 2017

Attractors of the continuous-time fashion model (Matsuyama, 1992)

- In Case 1 and Case 2 the attractors of Λ are the **border fixed points** $(\lambda_t, \lambda_t^*) = (0, 1)$ and $(\lambda_t, \lambda_t^*) = (1.0)$.
- In Case 3 and Case 4.the attractors are the **border points** $(\lambda_t, \lambda_t^*) = (0, \frac{1+m^*}{2})$ and $(\lambda_t, \lambda_t^*) = (1, \frac{1-m^*}{2})$.
- In Case 5 and Case 6a the attractor is the interior point $(\lambda_t, \lambda_t^*) = (\frac{1}{2}, \frac{1}{2})$.
- In Case 6b the attractor is a limit cycle formed by a parallelogram with vertices

$$P = \left(\frac{1}{2} + \frac{X_{\infty}}{2m^*}, \frac{1}{2} - \frac{X_{\infty}}{2}\right), \quad Q = \left(\frac{1}{2} - \frac{X_{\infty}}{2}, \frac{1}{2} + \frac{X_{\infty}}{2m}\right)$$
$$P' = \left(\frac{1}{2} - \frac{X_{\infty}}{2m^*}, \frac{1}{2} + \frac{X_{\infty}}{2}\right), \quad Q = \left(\frac{1}{2} + \frac{X_{\infty}}{2}, \frac{1}{2} - \frac{X_{\infty}}{2m}\right)$$

where

$$X_{\infty} = \frac{m^* - m}{mm^* - 1}$$

NED, Pisa, Sept. 7-9, 2017

Discrete Time Fashion Cycles

NED, Pisa, Sept. 7-9, 2017

Discrete Time Fashion Cycles

Cases III and IV

As $\delta \to 0$ cycles $\gamma_n \in I_0$ and $\gamma'_n \in I_1$ of map F shrink to $d = C^x \cap I_0$ and $d' = C^x \cap I_1$, respectively, while Γ_2 shrinks to S.

Cases III and IV

As $\delta \to 0$ cycles $\gamma_n \in I_0$ and $\gamma'_n \in I_1$ of map F shrink to $d = C^x \cap I_0$ and $d' = C^x \cap I_1$, respectively, while Γ_2 shrinks to S.

Cases V and Vla

As $\delta
ightarrow$ 0 limit sets of trajectories of map F shrink to S .

Cases V and Vla

As $\delta
ightarrow$ 0 limit sets of trajectories of map F shrink to S.

NED, Pisa, Sept. 7-9, 2017

Discrete Time Fashion Cycles

Cases VIb

As $\delta
ightarrow 0$ limit sets of trajectories of map F tend to parallelogram P.

<ロト <回ト < 回ト < 回ト = 三日

Cases VIb

As $\delta
ightarrow 0$ limit sets of trajectories of map F tend to parallelogram P.

<ロト <回ト < 回ト < 回ト = 三日

Cases VIb

As $\delta
ightarrow 0$ limit sets of trajectories of map F tend to parallelogram P.

1D diagrams δ versus x for $m_y < m_x$, $m_y = m_x$ and $m_y > m_x$

• V. Avrutin, I. Sushko. A gallery of bifurcation scenarios in piecewise smooth 1D maps. In: Global analysis of dynamic models for economics, finance and social sciences (G.-I. Bischi, C. Chiarella and I. Sushko Eds.), Springer, 2013.

• L. Gardini, V. Avrutin, I. Sushko. Codimension-2 border collision bifurcations in one-dimensional discontinuous piecewise smooth maps. Int. J. Bifurcation and Chaos, Vol. 24, No. 2 (2014) 1450024 (30 pages).

• K. Matsuyama. Custom versus Fashion: Path-dependence and Limit Cycles in a Random Matching Game. Discussion paper N 1030, 1992, Dept of Economics, Northwestern University.

• I. Sushko, L. Gardini, V. Avrutin. Nonsmooth One-dimensional Maps: Some Basic Concepts and Denitions. Journal of Di¤erence Equations and Applications (2016) DOI: 10.1080/10236198.2016.1248426.

• F. Tramontana, I. Sushko, V. Avrutin. Period adding structure in a 2D discontinuous model of economic growth. Applied Mathematics and Computation, 253 (2015) 262273.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで