Selection and Sorting of Heterogeneous Firms Through Competitive Pressures

Kiminori Matsuyama
Northwestern University

Philip Ushchev
HSE University, St. Petersburg

Last Updated: 2022-03-23; 9:26:20 PM

Hitotsubashi Conference on International Trade and FDI
December 11-12, 2021
Competitive Pressures on Heterogeneous Firms

How do competitive pressures affect selection of firms with different productivity? Or sorting across different markets?

- Melitz (2003): monopolistic competition (MC) with heterogeneous firms under CES
 - MC firms sell their products at an exogenous & common markup rate, *unresponsive to competitive pressures*
 - Market size: no effect on distribution of firm types and on their behaviors; All adjustments at the *extensive margin.*
- Melitz-Ottaviano (2008) depart from CES using *Linear DS + the outside competitive sector*

We depart from CES using **H.S.A. (Homothetic with a Single Aggregator)** DS with gross substitutes

- **Homothetic** (unlike the linear DS and most other commonly-used non-CES DSs)
 - a single measure of market size; the demand composition does not matter.
 - isolate the effect of endogenous markup rate from nonhomotheticity
 - straightforward to use it as a building block for multi-sector GE models
- **Nonparametric** and **flexible** (unlike CES and translog, which are special cases)
 - can be used to perform robustness-check for CES and translog
 - allow for (but no need to impose) the choke price, Marshall’s 2nd law as well as *what we call* the 3rd law
- **Tractable** due to **Single Aggregator** (unlike Kimball, which needs two aggregators), a *sufficient statistic* for competitive pressures, which acts like a *magnifier of firm heterogeneity*. A simple diagram for
 - proving the existence & the uniqueness of free-entry equilibrium with firm heterogeneity
 - conducting most comparative statics without *parametric* restrictions on the demand or productivity distribution.
 - e.g., no need to assume zero overhead cost (unlike MO and ACDR)
- Defined by **the market share function**, for which data is readily available and easily identifiable.
Symmetric H.S.A. (Homothetic with a Single Aggregator) with Gross Substitutes

Here we consider a continuum of varieties ($\omega \in \Omega$), gross substitutes, and symmetry (Our 2017 paper for a general analysis).

Market Share of $\omega \in \Omega$ depends solely on its single relative price (= its own price/the common price aggregator)

$$\frac{p_{\omega}x_{\omega}}{px} = \frac{\partial \ln P(\mathbf{p})}{\partial \ln p_{\omega}} = s \left(\frac{p_{\omega}}{A(\mathbf{p})} \right),$$

where

$$\int_{\Omega} s \left(\frac{p_{\omega}}{A(\mathbf{p})} \right) d\omega \equiv 1.$$

1. $s: \mathbb{R}_+^+ \rightarrow \mathbb{R}_+$: the market share function, decreasing in the relative price for $s(z) > 0$ with $\lim_{z \to z^\text{c}} s(z) = 0$.
 - If $z^\text{c} \equiv \inf\{z > 0|s(z) = 0\} < \infty$, $z^\text{c}A(\mathbf{p})$ is the choke price.

2. $A(\mathbf{p})$: the common price aggregator defined implicitly by the adding-up constraint $\int_{\Omega} s(p_{\omega}/A)d\omega \equiv 1.$

By construction, market shares add up to one; $A(\mathbf{p})$ linear homogenous in \mathbf{p} for a fixed Ω. A larger Ω reduces $A(\mathbf{p})$.

- CES if $s(z) = \gamma z^{1-\sigma}, (\sigma > 1)$; translog cost if $s(z) = -\gamma \ln \left(\frac{z}{z^\text{c}} \right)$; CoPaTh if $s(z) = \gamma \left[1 - \left(\frac{z}{z^\text{c}} \right)^{1-\rho} \right]^{\frac{\rho}{1-\rho}}, (0 < \rho < 1)$.

Unit Cost Function: $P(\mathbf{p}) \propto A(\mathbf{p}) \exp \left\{ -\int_{\Omega} \left[\int_{p_{\omega}/A(\mathbf{p})}^{z^\text{c}} \frac{s(\xi)}{\xi} d\xi \right] d\omega \right\}$

Note: Our 2017 paper proved that $P(\mathbf{p})$ is quasi-concave and that $P(\mathbf{p})/A(\mathbf{p}) \neq c$ for any $c > 0$, unless CES

- $A(\mathbf{p})$, the inverse measure of competitive pressures, fully captures cross price effects in the demand system
- $P(\mathbf{p})$, the inverse measure of TFP, captures the productivity consequences of price changes
Monopolistic Competition under H.S.A.: Pricing

Pricing (Lerner) Formula
\[p_\psi \left[1 - \frac{1}{\zeta(p_\psi/A)} \right] = \psi \implies \frac{p_\psi}{A} \left[1 - \frac{1}{\zeta(p_\psi/A)} \right] = \frac{\psi}{A} \]

where
\[\zeta(z) \equiv 1 - \frac{d \ln s(z)}{d \ln z} \equiv 1 - \varepsilon_s(z) > 1, \quad \text{for } z \in (0, \bar{z}); \quad \lim_{z \to \bar{z}} \zeta(z) = -\lim_{z \to \bar{z}} \varepsilon_s(z) = \infty, \text{if } \bar{z} < \infty. \]

\(\psi \): firm-specific marginal cost (in labor, the numeraire)

\(A = A(p) \): the inverse measure of competitive pressures, common across firms, a sufficient statistic.

Relative price
\[z_\psi \equiv \frac{p_\psi}{A} = Z\left(\frac{\psi}{A}\right), \quad \text{an increasing function of } \psi/A, \text{ the normalized cost, only.} \]

Price elasticity
\[\zeta\left(Z\left(\frac{\psi}{A}\right)\right) \equiv \sigma\left(\frac{\psi}{A}\right) > 1 \]

Markup rate
\[\mu_\psi \equiv \frac{p_\psi}{\psi} = \frac{\sigma(\psi/A)}{\sigma(\psi/A) - 1} \equiv \mu\left(\frac{\psi}{A}\right) > 1 \]

Pass-through rate
\[\rho_\psi \equiv \frac{\partial \ln p_\psi}{\partial \ln \psi} = \frac{d \ln Z(\psi/A)}{d \ln (\psi/A)} \equiv \varepsilon_Z\left(\frac{\psi}{A}\right) \equiv \rho\left(\frac{\psi}{A}\right) = 1 + \varepsilon_\mu\left(\frac{\psi}{A}\right) \]

are all functions of \(\psi/A \) only, continuously differentiable under mild regularity conditions.

More competitive pressures, a lower \(A \), act like a magnifier of firm heterogeneity.
Monopolistic Competition under H.S.A.: Revenue, Profit, & Employment

Revenue

\[R_\psi = s(z_\psi)L = s\left(\frac{Z(\psi)}{A}\right)L \equiv r\left(\frac{\psi}{A}\right)L \quad \Rightarrow \quad \varepsilon_r\left(\frac{\psi}{A}\right) = -\left[\sigma\left(\frac{\psi}{A}\right) - 1\right]\rho\left(\frac{\psi}{A}\right) < 0 \]

Gross Profit

\[\Pi_\psi = \frac{s(z_\psi)}{\zeta(z_\psi)}L = \frac{r(\psi/A)}{\sigma(\psi/A)}L \equiv \pi\left(\frac{\psi}{A}\right)L \quad \Rightarrow \quad \varepsilon_\pi\left(\frac{\psi}{A}\right) = 1 - \sigma\left(\frac{\psi}{A}\right) < 0 \]

Variable Employment

\[\psi_x = R_\psi - \Pi_\psi = \frac{r(\psi/A)}{\mu(\psi/A)}L \equiv \ell\left(\frac{\psi}{A}\right)L \quad \Rightarrow \quad \varepsilon_\ell\left(\frac{\psi}{A}\right) = 1 - \sigma\left(\frac{\psi}{A}\right)\rho\left(\frac{\psi}{A}\right) \leq 0 \]

- Revenue \(r(\psi/A)L \), profit \(\pi(\psi/A)L \), employment \(\ell(\psi/A)L \), all functions of \(\psi/A \), multiplied by market size \(L \), continuously differentiable under mild regularity conditions.
- Market size affects the relative profit, revenue, and employment across firms only through its effects on \(A \).
- Both revenue \(r(\psi/A)L \) and profit \(\pi(\psi/A)L \) are always strictly decreasing in \(\psi/A \).
- Employment \(\ell(\psi/A)L \) may be nonmonotonic in \(\psi/A \).
 - If the markup rate declines with \(\psi/A \), employment cannot decline as fast as the revenue.
 - If the markup rate declines faster than the revenue, the employment is increasing in \(\psi/A \).

Again, more competitive pressures, a lower \(A \), act like a magnifier of firm heterogeneity.
General Equilibrium: Existence and Uniqueness

As in Melitz, firms pay the entry cost $F_e > 0$ to draw $\psi \sim G(\psi)$, cdf with the support, $(\underline{\psi}, \overline{\psi}) \subset (0, \infty)$, and pay the overhead $F > 0$ to stay & produce.

Cutoff Rule: stay if $\psi < \psi_c$; exit if $\psi > \psi_c$, where

$$\pi \left(\frac{\psi_c}{A} \right) L = F$$

positively-sloped $A \downarrow$ (more competitive pressures) $\implies \psi_c \downarrow$ (tougher selection)

Free Entry Condition:

$$F_e = \int_\psi^{\psi_c} \left[\pi \left(\frac{\psi}{A} \right) L - F \right] dG(\psi)$$

negative-sloped, both $A \downarrow$ (more competitive pressures) and $\psi_c \downarrow$ (tougher selection) make entry less attractive.

$A = A(p)$ and ψ_c: uniquely determined, respond continuously to F_e/L & F/L under mild regularity conditions. (This proof of the unique existence applies also to the Melitz model under CES.)

With A and ψ_c fixed, the adding-up constraint pins down the mass of entrants, M and that of active firms, $MG(\psi_c)$.
Cross-Sectional Implications of Marshall’s 2nd Law

(A2): \(\zeta(z_{\psi}) \) is increasing in \(z_{\psi} \equiv p_{\psi}/A = Z(\psi/A) \)

- **Price elasticity** \(\zeta(Z(\psi/A)) \equiv \sigma(\psi/A) \) increasing in \(\psi/A \); high-\(\psi \) firms operate at more elastic parts of demand curve.

 - **Markup Rate**, \(\mu(\psi/A) \), decreasing in \(\psi/A \) \(\Leftrightarrow \) \(\varepsilon_{\mu}(\psi/A) < 0 \)
 high-\(\psi \) firms charge lower markup rates.

 - **Incomplete Pass-Through**: The pass-through rate, \(\rho(\psi/A) = 1 + \varepsilon_{\mu}(\psi/A) < 1 \).

- **Procompetitive effect of entry/Strategic complementarity in pricing**, \(\frac{\partial \ln p_{\psi}}{\partial \ln A} = 1 - \rho(\psi/A) > 0 \).
 Firms set the price lower under more competitive pressures \((A = A(p) \downarrow) \), due to either a larger \(\Omega \) and/or a lower \(p \)

- **Profit**, \(\pi(\psi/A)L \), always decreasing, **strictly log-supermodular** in \(\psi \) and \(A \).
 \(A \downarrow \rightarrow \) a proportionately larger decline in profit for high-\(\psi \) firms \(\rightarrow \) Larger dispersion of profit

\(f(\psi/A) \) is (strictly) log-super(sub)modular in \(\psi \& A \) \(\Leftrightarrow \) \(\varepsilon_{f} \left(\frac{\psi}{A} \right) \equiv \frac{d \ln f(\psi/A)}{d \ln(\psi/A)} \) is (strictly) decreasing (increasing) in \(\psi/A \).
Cross-Sectional Implications of the 3rd Law

In addition to A2, if we further assume, with some empirical support,

\[\rho(\psi/A) = 1 + \varepsilon_\mu(\psi/A) \] is weak(strictly) increasing--we call it \textbf{Weak(Strong) 3rd Law}.

Under translog, \(\rho(\psi/A) \) is strictly decreasing, violating A3

- **Markup rate**, \(\mu(\psi/A) \), decreasing under A2, \textbf{log-submodular} in \(\psi \) & \(A \) under A3. For strong A3, it is strict and \(A \downarrow \rightarrow \) a proportionately smaller decline in markup rate for high-\(\psi \) firms \(\rightarrow \) Smaller dispersion of markup rate

- **Revenue**, \(r(\psi/A)L \), always decreasing, \textbf{strictly log-supermodular} in \(\psi \) & \(A \) under weak A3
 \(A \downarrow \rightarrow \) a proportionately larger decline in revenue for high-\(\psi \) firms \(\rightarrow \) Larger dispersion of revenue

- **Employment**, \(\ell(\psi/A)L = \frac{r(\psi/A)}{\mu(\psi/A)}L \), \textit{hump-shaped} in \(\psi/A \), \textbf{strictly log-supermodular} in \(\psi \) & \(A \) under weak A3
 Employment increasing in \(\psi \) across all active firms with a large enough overhead/market size ratio.
 \(A \downarrow \rightarrow \) Employment up for the most productive firms.

- **Pass-through rate**, \(\rho(\psi/A) \), \textbf{strictly log-submodular} in \(\psi \) & \(A \) for a small enough \(\bar{z} \) under strong A3.
 \(A \downarrow \rightarrow \) a proportionately smaller increase in the pass-through rate for low-\(\psi \) firms among the active
Cross-Sectional Implications of More Competitive Pressures ($A \downarrow$)

Profit Function: $\Pi_\psi = \pi(\psi / A)L$
- *always* decreasing in ψ
- strictly log-supermodular *under A2*
 - $A \downarrow$ with L fixed shifts down with a steeper slope at each ψ;
 - $A \downarrow$ due to $L \uparrow$, a parallel shift up, a *single-crossing*

- $\ln \Pi_\psi = \ln \pi \left(\frac{\psi}{A} \right) + \ln L$
- $\ln \psi$
- $\ln \Psi$

Markup Rate Function: $\mu_\psi = \mu(\psi / A) > 1$
- *decreasing in* ψ *under A2*
- weakly log-submodular *under Weak A3*
- strictly log-submodular *under Strong A3*
 - $A \downarrow$ shifts down with a flatter slope at each ψ

- $\ln \mu_\psi = \ln \mu \left(\frac{\psi}{A} \right) > 0$
- $\ln \psi$
- $\ln \Psi$

✓ With $\ln \psi$ in the horizontal axis, $A \downarrow$ causes a parallel leftward shift of the graphs.
✓ $f(\psi / A)$ is (strictly) log-super(sub)modular in ψ & $A \Leftrightarrow \ln f(\psi / A)$ is (strictly) concave(convex) in $\ln(\psi / A)$.

Under Weak A3, $R_\psi = r(\psi / A)L$, strictly log-supermodular and shares similar properties with $\pi(\psi / A)L$.
Employment Function: $\ell(\psi/A)L = r(\psi/A)L/\mu(\psi/A)$
- *Hump-shaped* in ψ under $A2$ and weak $A3$.
 $\rightarrow A \downarrow$ shifts up (down) for a low (high) ψ with $A \downarrow$
- Strictly log-supermodular *under Weak A3*
 for $A \downarrow$ with a fixed L; for $A \downarrow$ caused by $L \uparrow$
 Single-crossing even with a fixed L

Pass-Through Rate Function: $\rho_\psi = \rho(\psi/A)$
- $\rho(\psi/A) < 1$ *under A2*, hence it cannot be strictly log-submodular for a higher range of ψ/A
- Strictly increasing in ψ *under Strong A3*
- Strictly log-submodular for a lower range of ψ/A *under A2 and Strong A3* $\Rightarrow A \downarrow$ shifts up with a steeper slope at each ψ with a small enough \bar{z}.

In sum, more competitive pressures ($A \downarrow$)
$\rightarrow \mu(\psi/A) \downarrow$ under $A2$ & $\rho(\psi/A) \uparrow$ under strong $A3$
\rightarrow Profit, Revenue, Employment become more concentrated among the most productive.
GE Comparative Statics Implications: Selection (in a single market setting)

Effects of $F_e \downarrow$

Effects of $L \uparrow$ if $\sigma'(\cdot) > 0$ (i.e., A2)

Effects of $F \downarrow$ if $\ell'(\cdot) > 0$

- $L \uparrow$ under A2: the profit up for low-ψ and down for high-ψ. (Similarly on the revenue under A2 and the weak A3)
- All 3 cases lead to $\psi_c \downarrow$ & $A \downarrow$, creating a non-trivial composition effect
 - Under A2, $A \downarrow$ causes $\mu(\psi/A) \downarrow$ for each ψ, but $\psi_c \downarrow$ means high-ψ firms with lower $\mu(\psi/A)$ drop out.
 - Under strong A3, $A \downarrow$ causes $\rho(\psi/A) \uparrow$ for each ψ, but $\psi_c \downarrow$ means high-ψ firms with higher $\rho(\psi/A)$ drop out.

The average markup (or pass-through) rate can go either way, with $F_e \downarrow$ + Pareto-productivity a knife-edge case

More competition, which causes more concentration, may result in the rise of markup.

- The effects on M & $MG(\psi_c)$ depend on whether $E_G(\psi) = \psi g(\psi)/G(\psi)$ is decreasing, constant, or increasing.
GE Implications: Sorting (in a multi-market setting)

More competitive pressures in larger markets:
\[L_1 > L_2 > \cdots > L_J > 0 \Rightarrow 0 < A_1 < A_2 < \cdots < A_J < \infty \]
Under A2, more efficient firms sort themselves into larger markets
Firms \(\psi \in (\psi_{j-1}, \psi_j) \) entering market- \(j \)

Markup Rate across markets under A2

Pass-Through Rate across markets under strong A3

The Composition Effect: examples with Pareto-productivity such that
- The average markup rates higher (the average pass-through rates lower under Strong A3) in larger (more competitive) markets
- A decline in \(F_e \) causes uniform declines in \(\psi_j \) & \(A_j \) with the average markup/pass-through rates unchanged.

A caution against testing A2/A3 by comparing the average markup/pass-through rates in cross-section of cities.
(Highly Selective) Literature Review

H.S.A. Demand System: Matsuyama-Ushchev (2017)
MC with Heterogeneous Firms: Melitz (2003) and many others: Melitz-Redding (2015) for a survey
MC under non-CES demand systems: Thisse-Ushchev (2018) for a survey
- **Nonhomothetic non-CES:**
 - $U = \int_{\Omega} u(x_\omega) d\omega$: Dixit-Stiglitz (77), Behrens-Murata (07), ZKPT (12), Mrázová-Neary(17), Dhingra-Morrow (19); ACDR (19)
- **Homothetic non-CES:** Feenstra (2003), Kimball (1995), Matsuyama-Ushchev (2020a, 2020b, 2022)

Empirical Evidence: *The 2nd Law:* DeLoecker-Goldberg (14), Burstein-Gopinath (14); *The 3rd Law:* Berman et.al.(12); Amiti et.al. (19); *Market Size Effects:* Campbell-Hopenhayn(05); *Rise of markup:* Autor et.al.(20), DeLoecker et.al.(20)

Selection of Heterogeneous Firms through Competitive Pressures
Melitz-Ottaviano (2008), Baqee-Fahri-Sangani (2021)

Sorting of Heterogeneous Firms Across Markets in General Equilibrium

Sorting of Heterogeneous Firms Across Markets in Reduced Form/Partial Equilibrium

Log-Super(Sub)modularity: Costinot (2009), Costinot-Vogel (2010, 2015)