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For a linear model with multiple rational expectations equilibria (REE) we discuss the set of 
possible REE. Solutions include (i) locally unique minimal state variable solutions. taking an 
AR(I) form and (ii) continua of solutions which may depend on sunspots. We analyze the 
convergence of econometric learning to the different REE. There exist cases with more than one 
stable AR(l) solution. It is also possible for a continuum of solutions to be stable. but this 
property is not robust to overparametrization. An application is developed, and it is suggested 
that the exhibited phenomena may arise in applied macroeconomic models. 
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1. Introduction 

The Rational Expectations (RE) hypothesis is pervasive in economics and 
is now the assumption of choice when building macroeconomic models. A 
practical problem in RE modelling is that a model can have multiple 
equilibria. Indeed, multiple formal solutions will typically arise in dynamic 
expectations models, including even fully specified general equilibrium 
models. Such concepts as fundamental solutions, bubbles and sunspots have 
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been used to describe various rational expectations equilibria (REE).’ With 

multiple equilibria the predictive power of the RE hypothesis alone is weak, 
and additional criteria for finding ‘reasonable’ solutions are needed. Various 
selection criteria have been proposed in the literature including stationarity 
of equilibria, minimum variance solutions, minimal state variable solutions, 
and expectational stability of equilibria (see e.g. McCallum (1983) and Evans 
and Honkapohja (1992a) for discussions and references). 

Stability under adaptive learning - the object of study in this paper - has 
also been increasingly adopted as a useful selection criterion.* In learning 
behavior agents are boundedly rational during the adjustment process. They 
are assumed to follow a natural statistical learning rule which has the 
potential to converge to an REE. Much of the early literature analyzed 
convergence of learning rules in models with a unique REE, but some recent 
papers have considered convergence of learning with multiple equilibria. A 
reasonable solution is then an equilibrium that is a locally stable outcome of 
such learning processes. 

The focus of this paper is the role of learning in linear dynamic 
expectations models with multiple REE. We examine this case, because linear 
RE models are the standard tool for applied macroeconomists. One purpose 
of the paper is to show that straightforward approaches are available for 
both the derivation of the set of possible REE and the analysis of 
convergence of econometric learning rules for linear models. 

In the simple linear models that have been heretofore examined, there have 
been no cases of multiple REE which are robustly stable under learning.3 
This raises the question: is this a general result? The second purpose of this 
paper is to show that the answer is negative. Multiple strongly stable 
solutions (in the sense defined below) can exist for more general models. 

Our basic approach can be summarised as follows. For concreteness 
consider the model 

Y,=r+dY,-1+ f Bi(,-lY:+i)+~, 
i=O 

(1.1) 

where y, is a scalar endogenous variable, 1- i~:+~ denotes expectations of y,+r 
formed at the end of period t- 1, and u, is a sequence of independent 

‘See e.g. McCallum (1983). Evans and Honkapohja (1986). Broze et al. (1987), and Chiappori 
and Guesnerie (1988) for results, examples and further references. 

r For convergence of least squares learning see Bray (1982). Bray and Savin (1986). Fourgeaud 
et al. (1986). Marcet and Sargent (1988, 1989a. b), Woodford (1990). and Evans and Honkapohja 
(1992b,c). Related approaches include, inter alia, Grandmont and Laroque (1986, 1991) and 
Guesnerie and Woodford (1991). 

‘The case m = 1 for (1.1) below is the most general linear model analyzed comprehensively so 
far. Evans and Honkapohja (1992a) examined this case of nt= 1 for E-stability. The current 
paper sets m = 2 and establishes the connection between econometric learning and E-stability. 

Larry Christiano
Highlight
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disturbances. For applied macroeconomists the standard solution procedure 
would be to obtain what are often called minimal state variable solutions, see 
McCallum (1983). For model (1.1) this would amount to assuming a tirst- 
order autoregressive (AR( 1)) form at the outset: 

y,=a+b,y,-, +v,. (1.2) 

This is a common practice and is appropriate for avoiding bubble or 
sunspot REE. It is known that in general there can exist m+ 1 different 
solutions of form (1.2) to model ( 1.1).4 In addition to these solutions (which 
are locally unique in the parameter space), various solution continua to (1.1) 
also exist. These continua may involve sunspof solutions, i.e. solutions which 
depend on extraneous random variables through expectations formation. We 
show in section 2 (and Appendix A) how the method of undetermined 
coefficients can be used to obtain the full set of solutions. 

For learning dynamics we establish and exploit the connection between 
stability under learning and a disequilibrium stability criterion known as 
expectational stability (E-stability).’ We show that this connection, estab- 
lished by Marcet and Sargent (1988, 1989a) in models with a unique REE, 
holds also for local stability in models with multiple REE. The basic result 
for the AR(l) solutions above is that such an REE is stable under learning if 
and only if it is E-stable. (Analogous but more subtle results hold for the 
solutions continua.) 

The concept of E-stability can be easily illustrated as follows for the case 
m=2. Suppose agents believe that the economy follows an AR(l) process 
(1.2). In specifying this perceived law of motion we do not impose rational 
expectations, though we have chosen a form which corresponds to one class 
of RE solutions. We next calculate the expectation functions that agents 
would have, given these perceptions. The corresponding expectation func- 
tions are: 

t-1Yt ==a+bly,-l, 

r-,Y:+,=u+~,(,-,y:)=a(l+b,)+b:y,_,, 

r-ly:+2=u+b,(,-,y:+,)=u(l+b,+b:)+b:y,_,. 

Inserting these expectations into (1.1) with m =2 we obtain the actual law 
of motion generated by these perceptions: 

‘They can be obtained by computing the expectations E,_ ,y,+, from (1.2), inserting into (1.1) 
and solving the resulting m+ 1 degree polynomial. There are fewer than m+ 1 solutions of form 
(1.2) if some roots of the polynomial are nonreal. 

‘E-stability has, for example, been considered in Lucas (1978, section 6), DeCanio (1979), Bray 
(1982, Proposition 4). Evans (1985, 1986, 1989) and Evans and Honkapohja (1992a). 

Larry Christiano
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Y, = T,(a, bl) + &,(a, MY,- l + u,, where 

T,(a,b,)=a+a((Bo+Bz)+(bl+l)(B1+Bzbl)), (1.3a) 

T,,(a,b,)=6+P,b,+B,b:+B2b:. (1.3b) 

This defines a mapping T(a, b,) =( T,(a, b,), T,,(a, b,))’ from the perceived to 
the actual law of motion. (’ denotes the transpose.) Note that the AR( 1) REE 
correspond to the fixed points of ?: 

E-stability is then defined in terms of the differential equation 

~a,b,)‘=T(a,b,)-(a,bl)‘. (1.4) 

This equation describes a stylized learning process in notional time T, in 
which the perceived law of motion (a, b,)’ is partially adjusted towards the 
actual law T(u, b,) generated by the perceptions.6 An AR( 1) solution which 
is locally stable in terms of this differential equation is said to be (weakly) E- 
stable. The results in section 3 will give the conditions for E-stability, while 
section 4 establishes the connection with adaptive learning. 

Although formal proofs of convergence under econometric learning are 
technical, and rest on the stochastic approximation literature, the intuitive 
reason for the connection with E-stability is straightforward. Under econo- 
metric learning, once the sample size is sufficiently large, each new obser- 
vation generates a forecast error which on average moves the estimated 
parameters of the perceived law of motion a small increment toward the 
actual law. This adjustment is approximated by (1.4), with the link between 
notional time t and real time I approximately given, for t large, by 
s(r)--r(t-l)=t_‘. 

In this paper we will analyze comprehensively the model (1.1) with m = 2. 
This is a simple and special case, but it is sufficient for showing the existence 
of multiple stable solutions, and for exhibiting the approach and techniques 
which can be applied in more general contexts. An open economy macro 
example fitting exactly the case m=2 is discussed in section 5. 

For this model there is a domain of parameter values for which there is a 
unique REE that is stable under learning. However, it is also possible to find 
other parameter regions which yield multiple robustly stable AR(l) solutions. 
This suggests that this possibility may arise in applied high order linear 

6E-stability is sometimes defined in terms of iterations on the Tmapping, and the concept of 
iterative E-stability can be useful in discussions of ‘educative’ justifications of RE. However, it is 
the differential equation formulation which has precise connections to convergence of learning 
algorithms, and is therefore the concept employed here. For a brief comparison, see Evans 
(1989). 
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macroeconomic models. In addition, we show that for some parameter 
regions econometric learning can converge to continua of solutions depend- 
ing on sunspots, though this result is very sensitive to the form of the 
learning rule. Practitioners should be aware of these phenomena and the 
tools for analyzing the stability of the various REE under learning. 

2. The formal framework 

The analysis is carried out using the following class of scalar linear models: 

Y, = a + dy, - 1 + Bd, - Iv3 + PA - A+ A + Ml - &+ A + vt9 (2.1) 

where /12#0. The disturbance term u, satisfies E,_,uI+,=O Vs30. r_,y:+s 
denotes the expectation formed at the end of period t- 1 which agents hold 
for the value of y,+,. Under rational expectations we have 1_ t~$+~ = E,_ ~JJ,+~, 
where E,_,() denotes the mathematical expectation conditional on infor- 
mation at t - 1. The information set is the usual one, consisting of past 
values of the endogenous variable and the disturbance term as well as of any 
sunspot process that might influence the economy through expectations. 
Note that the information set does not include current values of the 
variables. 

(2.1) is not a general formulation, but the earlier literature, as noted above, 
has looked at even more specific cases. (2.1) provides a simple linear model 
which can have multiple stable equilibria and solution continua of different 
dimensionalities. 

2.1. The RE solutions 

The simple method mentioned in the introduction can be used to obtain 
minimal state variable solutions. For a comprehensive listing of all REE, 
however, it is more convenient to view these REE as special cases of the 
general representation, see Broze et al. (1987) and Evans and Honkapohja 
(1986). 

This general representation is carried out in terms of finite ARMA 
processes in the endogenous variable y, and the disturbance term ur, together 
with a moving average of an arbitrary martingale difference sequence w,. w, 
can either represent an extraneous (sunspot) process or can depend upon u, 
(We may assume without loss of generality that w, is not a linear function of 
the process u,.) For convenience, we will refer to w, as a sunspot, Note that, 
although we will refer to ARMA or AR solutions, u, and w, need not in 
general have constant variances. Appendix A derives the general form of the 
solutions with sunspots. 

The set of REE for model (2.1) can be written as follows: 
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(i) The ARMA representation of highest AR degree is ARMA(3,2) in 
variables y, and u, plus a MA(2) process in terms of w,: 

Y,=--clB;‘-BtP;LYt-1+(1-Bo)P;fYr-2-~B;1Y,-3+~t+C,~r-t 

+c2u,_2+dlw,_, +d2wtm2. (2.2) 

The AR coefficients in (2.2) can be obtained from (2.1) by replacing r_Iy:+S 

by Y,+, and multiplying by /?; ‘. The coefficients for the moving average 
terms cr, c2, d,, and d, are all arbitrary, as is the sunspot process itself. (It is 
easy to verify by substitution that (2.2) solves (2.1)) We will refer to (2.2) as 
the ARMA(3,2) class of equilibria. (2.2) can also be written in terms of 
polynomials of the lag operator L in the factored form 

(1 -PIUS -~&)(l -L+)Y,= --&‘a+(1 -,4UU -c(2W, 

+ L(d, + d2L)w,. (2.2‘) 

The pC;.s in (2.2’) can clearly take any value. In writing (2.2’) we have, for 
clarity of exposition, assumed that the left-hand side has three real roots. (If 
not, it can be factored into a first-degree and a quadratic polynomial.) The 
relationship between pr’s and the parameters of the model is 

B;‘BI=-(Pl+P*+P3)? P;‘(Bo_l)=PlPz+P,P,+P,P3, 

P;rs= -PlP2P3* (2.3) 

(ii) There exist, generically, one or three classes of equilibria of ARMA(2, 1) 
type in y, and u, plus a possible sunspot term. These are obtained by 
eliminating one of the AR(l) roots. Choosing, for example, pL1 =p3 and 
d 2 = -p3dl we have the common factor (1 -p3L.) on both sides of (2.2’). 
Cancelling it we obtain 

(1 -P,Q(l -PzUY,= -aS;‘(1-P3)-‘+UI+5ul_I+KW,_1, (2.4) 

where 5 and K are arbitrary constants.’ We will refer to these as 
ARMA(2,l) classes of equilibria. The corresponding AR parameters on y,_ 1 

and Y,-2 are 6, =bt +p2), 6,= -w2. 
(iii) There exist, generically, one or three REE which are AR(l) processes in 
(y,, u,), with no dependence on a sunspot process. These ‘minimal state 
variable solutions’ are the standard REE referred to above, and are obtained 
by eliminating two common factors in (2.2’) without the sunspot terms (i.e. 
d, = d2 = 0). Cancelling e.g. the factors (1 --p2L) and (1 - p3L) gives 

‘Elimination of common factors also requires an appropriate choice of initial conditions, see 
Evans and Honkapohja (1986). 
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(l-p,L)Y,=-aB;‘(l-p,)-‘(l-p,)-‘+v, (2.5) 

Subsequently, these will be called (pi) AR(l) equilibria, where pi stands for 
the remaining root on the left-hand side. 

2.2. Expectational stability 

The general concept of E-stability for the various REE is formulated along 
the lines outlined in the introductory discussion of section 1. Consider 
perceived laws of motion of the form 

~,=a+ i biy,_i+U,+ i Ciu,-i+ i diw,-~ 
i=l i=l i=l 

(2.6) 

Note that for appropriate s, r, and q (2.6) nests all of the REE. As before 
we compute ,- iY:+ i, for i=O, 1,2, as 

‘=u+ ~ biY,_i+ ~ CiU,_i+ ~ diw,_i, ,-IYf 
i=l i=l i=l 

,-IY:+2=a+b,(,-,Y:+,)+b2(,-,Y:)+ i biYc+2_i+ i CiDf+2_i 
i=3 i=3 

+ i diw,+z-k 
i=3 

If s, r, or qG2, the appropriate terms in the above expression are set equal 
to 0. 

Inserting these expressions into (2.1) we obtain an actual law of motion of 
the same form as (2.6). This defines a mapping 6’= T(B), where 8’= 
(a, b’, c’,d’) and we have introduced the vector notation b’=(bl, . . . , b,), 
c’=(c,, . . . , c,) and d’=(dl, . . . , d,). (Again ’ denotes the transpose.) The 
explicit T-mapping is given in the beginning of Appendix B. 

E-stability is then defined in terms of the differential equation 

d6/dr = T( 0) - 6. (2.7) 

It will be important to make a distinction between weak and strong 
E-stability. An AR(l) equilibrium is said to be strongly E-stable if (2.7) is 
locally stable at that solution for every choice of s, r, q> 1. For weak E- 
stabiliry of the AR(l) solution we require only local stability of the subsystem 
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in the variables (a, b,) with bi for i>,2, and c and d set identically to 0. A set 
of ARMA(2,l) solutions with sunspots is weakly E-stable, if there is local 
convergence of (2.7) to that set for s= 2, r = 1 and q= 1. For strong 
E-stability we require local convergence for every s>, 2, r> 1 and 4 >/ 1. (For 
ARMA(2,l) solutions without sunspots one omits the term ~=,diw,_i.) For 
the set of ARMA(3,2) equilibria these concepts are defined analogously. 

Weak E-stability permits only perturbations in the coefficients of the 
variables that enter the REE being considered, while strong E-stability 
requires robustness also with respect to overparametrizations. 

3. E-stability of rational expectations equilibria 

3.1. AR(l)-equilibria 

We begin with the REE that can be represented as AR( 1) processes in y, 
with disturbance term u, (and no dependence on sunspots). As noted above, 
depending on the values of the structural parameters 6, fiO, b,, and /I2 there 
generically exist one or three such equilibria. Without loss of generality, we 
focus on the AR( 1) equilibrium with root P,:~ 

Proposition 3.1. The pi-AR(l) equilibrium is weakly E-stable if (a) 
fiz(pl-ppz)(pl-p3)<0, and (b) /12(1-p&(1-p3)<0. It is strongly E-stable, if 
additionally (c) pzpzp3 CO. 

It is necessary to recall relations (2.3) when applying the stability 
conditions.’ In many cases there is a unique strongly E-stable AR( 1) 
equilibrium. However, manipulating conditions (a)-(c) we obtain: 

Corollary 1. Suppose there are three AR( 1) solutions and without loss of 
generality assume p, <p2 <p3. If the p,-AR( 1) equilibrium is weakly E-stable, 
then the other AR(l) solutions are not. The pi-AR(l) and pa-AR(l) equilibria 
are both strongly E-stable if (a) f12 ~0, und (b) either 1 <p, cp2 < p3 or 

0<pI<p~<p3<1 or pI<pz<p3<0. 

This possibility of multiple strongly E-stable solutions in linear models has 
not been previously noticed. In section 5 we illustrate this and other 
possibilities in an economic model that tits our framework. Intuitively, the 
possibility of multiple E-stable solutions is evident from (1.4) since the 
differential equation for b, is a cubic and it is independent of the other 
variable a. 

There is no simple connection between E-stability and stochastic stationar- 

Ihe proofs of E-stability results are given in Appendix 9. 
‘There is a subtlety which arises when z=O: Strictly speaking, weak E-stability should in that 

case be defined using only the diNerential equation for b,. Then condition (a) is alone sufiicient. 
An analogous point arises for the ARMA solutions when the constant term is absent. 
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ity, even in the ‘saddle-point stable’ case in which the model has a unique 
stationary equilibrium. In particular, suppose the model satisfies - 1 <pr < 
O-C l,<p, <p3 and & >O. Then the pr-AR( 1) solution is uniquely stationary, 
whereas the p,-AR(I) equilibrium is uniquely strongly E-stable. This shows 
that in general E-stability leads to selection of equilibria which are distinct 
from those that would be given by other proposed criteria. Evans and 
Honkapohja (1992a) discuss at some length the relationships between the 
various selection criteria (when /I2 = 0). 

The following result provides some additional understanding of the above 
phenomena: 

Corollary 2. Let - 1~6 < 1 be given. For all PO, fil and t!?2 sufficiently small 
in magnitude, there is a unique stationary AR(l) solution and it is uniquely 
strongly E-stable. 

Thus the possibilities of multiple E-stable AR(l) solutions and of nonsta- 
tionary E-stable solutions can only arise (for - 1~6 < 1) when there is a 
sufficiently strong dependence of the current state on the expected state of 
the economy”. 

3.2. ARMA-equilibria 

Next we discuss the stability properties of the other possible REE to 
model (2.1). Recall from section 2 that these take the form of ARMA(3,2) 
and, generically, one or three ARMA(2, 1) continua, which may or may not 
depend on sunspot variables. They were illustrated by formulae (2.2) and 
(2.4) respectively. The different classes of ARMA solutions can sometimes be 
weakly E-stable: 

Proposition 3.2. There exists a nontrivial domain of the parameters 
(PO, /.?,, /I*, 6) such that the class of ARMA(3,2) equilibria is weakly E-stable. 

Proposition 3.3. There exists a nontrivial domain of the parameters 
(PO, PI, pz, 6) such that a class of ARMA(2, 1) equilibria is weakly E-stable. 

Appendix B gives the precise stability conditions for each case.” A 
numerical example will be given in section 4. However, it turns out that the 
ARMA solutions are fragile in the following sense: 

Proposition 3.4. The classes of ARMA solutions are never strongly E-stable. 

“Note that under the assumptions of Corollary 2 the ARMA solutions are nonstationary. It 
is shown below that the ARMA solutions are never strongly E-stable. It can also be verified that 
there are domains of parameter values for which (i) there is a unique stationary AR(I) solution 
and it is strongly E-stable and (ii) all other solutions fail to be even weakly E-stable. 

“Note that an ARMA class without sunspots is weakly E-stable under the same conditions 
as the corresponding ARMA class with sunspots. 
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Remark. The lack of strong stability is delicate. If an ARMA solution set is 
weakly E-stable, the overparametrized system (2.7) will exhibit one-sided 
stability/instability, with convergence from some nearby starting points and 
divergence from others. 

In summary, the ARMA continua of REE, with or without sunspots, can 
at best be only weakly E-stable. If strong E-stability is desired, one must 
limit attention to the sunspot-free AR(l) equilibria which are locally unique 
in the parameter space (Evans and Honkapohja, 1986, p. 232).” 

In Section 4 we exhibit simulations showing convergence and nonconver- 
gence to a weakly E-stable continuum. There are two reasons for devoting 
some attention to such solutions. First, because of the substantial current 
interest in sunspot solutions as a possible explanation of macroeconomic 
fluctuations, we feel it is important to fully investigate their stability 
properties under learning. Second, we note that there are examples of models 
in which there are weakly E-stable solutions, but no strongly E-stable 
solutions (Evans and Honkapohja, 1992a, Corollary 2, p. 7; Evans, 1989, 
Section 4). Thus, in some cases, insisting on strong E-stability may be too 
stringent. 

4. Real time learning 

We now take up the issue of the evolution of the system under real time 
learning rules. At time t- 1 agents are assumed to have the perceived law of 
motion 

yr=a,-l+ i bi.l- lYt-i+ i ci,t-lut-i+ut+ i di.r-lwt-i (4.1) 
i=l i=l i=l 

which they use to form subjective expectations 1_ ly:+ jr i=O, 1, 213. We 
assume that a,_,, b;_,=(b,,,_, ,..., b,v,_l), c;_~=(c,~,-~ ,..., c,,~_~) and d;_,= 
(di,,-I,..., d,,,_ i) are updated each period using a recursive econometric 
algorithm, as described below. The value of y, is then given by (2.1). We are 
interested in finding which rational expectations equilibria can be possible 
long-run outcomes and in the conditions for local convergence. We argue 
that the answers are determined by the E-stability conditions derived in the 
preceding section. Throughout this section we assume that u, and w, are 
mutually independent sequences of identically and independently distributed 
random variables with 0 means and bounded moments. 

“This gives some support for McCallum’s (1983) primary selection criterion, based on the 
minimal state variables principle. However, concerning his subsidiary principle see Evans and 
Honkapohja (1992a) and the discussion after Corollary 1 to Proposition 3.1 above. 

IsThis assumes that the exogenous shock v, is in the information set I,. If it remains 
unobservable then u, itself must be estimated. See below. 
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When demonstrating convergence of econometric learning algorithms our 
proofs rely on the ‘ordinary differential equation approach’ for analysing 
stochastic recursive systems developed by Ljung (1977) and applied to RE 
models by Marcet and Sargent (1989a, b). 

A preliminary comment is in order. Since our results are proved using 
Marcet and Sargent (1989a), our algorithm incorporates a ‘projection facility’ 
which ensures that estimates do not leave some bounded set containing the 
REE parameters under consideration. The use of a projection facility has 
recently been criticized by Grandmont and Laroque (1991). We regard the 
projection facility as a convenient and appropriate technical device for 
examining the local stability of particular equilibria in the context of a 
general model with multiple solutions. Its role is to eliminate the possibility 
that random shocks, at an early stage of the process, displace estimates 
outside the domain of attraction of the REE equilibrium being considered. 
Using a projection facility one obtains a very strong sense of stochastic 
convergence, almost sure convergence, when the E-stability condition is met. 
Weaker notions of stochastic convergence are available for algorithms 
without the projection facility at the cost of considerable technical complica- 
tion, see Evans and Honkapohja (1994).14 In fact, in most of the simulations 
below we dispense with the projection facility. 

4.1. AR(I) case 

We begin with the AR(l) case in which the perceived law of motion is 
given byi J+=u,_.~ +b,_,y,_, +u,, so that the actual law of motion is 

yr=~(a(al-,,b,-I)+Tb,(a,-I,br-,)yf-‘+u,, (4.2) 

where T.(.) and Tb,(.) are given by (1.3a) and (1.3b), respectively. Below we 
write T(a, b) = (T,(a, b), T,,(a, b))‘. 

As remarked below, the algorithm to update (a, b,) is in fact a modifica- 
tion of recursive least squares estimation. Our formulation will also be 
suitable for estimation of higher order processes. Let 

0,’ = (a,, b,), (4.3a) 

r,- t’=(l, Y,- I), (4.3b) 

and define (8,, i?,) by 

14We also note that in particular (nonlinear) models it has been possible to obtain theoretical 
results of almost sure convergence without the use of a projection facility, see e.g. Woodford 
(1990). and Evans and Honkapohja (1992b). 

150ne could also allow for the possibility that agents are estimating the coefficient of the u, 
shock. 
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6 = 0, - 1 + ta,/NR) - ‘2, - Ih 

R,=R,_I+(a!Jt)(z,_,z,_l’-R,_l/at), where 

G=Yr-Zr-l r-19 ‘8 

yc=zI-17-(e1-1)+0,, 

(4.4a) 

(4.4b) 

(4.4c) 

(4.4d) 

and the weights a, form a positive, nondecreasing sequence with a,-+1 as 
t+co and limsuptla,-a,_,I=K<oO as t -+a~. For later convenience we have 
rewritten (4.2), the actual law of motion for y,, as (4.4d) and included it in the 
algorithm equations. 

A projection facility is defined by D, c D 1 c R” x (I? x W), with n = 2 here. 
We assume that Dr is open and bounded and that D, is a closed set of 
positive measure. Dz must be such that its projection onto Iw” contains the 
REE of interest in its interior. The perceived law of motion evolves according 
to the algorithm 

(4.4e) 

Remark. For D, = D, = Iw2 x ( [w2 x rW2), a,= 1 for all t and for appropriate 
initial conditions, (4.4a-c) reduces to recursive least squares estimation of 0. 
This can be seen by checking that fI,=(~~=l~j_Izj_l’)-l(~~=,~j_,yj) is a 
solution to (4.4a-c). We refer to (4.4a-c) as the RLS algorithm. Other choices 
of a, yield weighted least squares. In the recursive form (4.4) the estimate 0, is 
revised in response to the last forecast error 6,. 

In considering the limit points of the above real time learning rule, we will 
limit the discussion to the case of (asymptotically) stationary AR( 1) solutions. 
An extension to the nonstationary case can easily be developed using 
transformed variables, see Evans and Honkapohja (1993). 

Proposition 4.1. Let (a(p), p)=e8, denote a particular AR(l) RE solution to 
the model (2.1) and suppose that (p\ c 1. If 0/ is weakly E-stable then there 
exists a nontriCu1 projection facility such that under (4.3)-(4.4) we have 8,-+8, 
with probability 1. 

The basic idea of the proofI is that, provided certain technical conditions 
are met, the convergence of (e,, R,) is determined by the stability of Ljung’s 
‘associated differential equation’ 

dtI/dr = R - 5v,(e)(7-(8) -e), (4Sa) 

‘6Proofs of all propositions in this section are in Appendix C. 
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dRjds=M,(@-R, (4Sb) 

where M,(@=E[z,(B)z,(O)‘] and O’=(a,b). Here z,(e) is the process generated 
by (4.3) and (4&l) with 0, replaced by fixed 0. 

Essentially (4.5) is obtained by substituting (4.4c) and (4.4d) into (4.4a), 
replacing 0,-e,_, by d6/ds and R,-R,_, by dR/dr, fixing (tI,_,, R,_,) at 
(0, R), and replacing z, by 1 and stochastic quantities by the limit of their 
expectations. It can be shown that local stability of (e,, R,) in (4.5), where 
R,=M,(0J, is governed by stability of t9/ in the differential equation (2.7) of 
section 2. But this is just our weak E-stability condition. 

Proposition 4.1 establishes a local convergence theorem for weakly E- 
stable stationary AR(l) solutions. Comparison of (4.5) and (2.7) makes 
transparent the deep connection between E-stability and the ordinary 
differential equation approach for showing convergence of recursive algor- 
ithms. We remark that the size of the projection facility is determined by the 
basin of attraction of OJ 

Corresponding instability results for AR(l) learning now follow directly 
from Proposition 2 of Marcet and Sargent (1989a).” The following proposi- 
tion in essence says that estimates do not converge to nonrational solutions 
or to E-unstable REE. 

Proposition 4.2. Let 19 =(d, 6) satisfv the stationarity condition J&,(6)( < 1, 
and let 8, be generated by (4.3)-(4.4). (i) If eEint(D,) is not an AR(l) RE 
solution then tI,+& with probability 0. (ii) if t? is an E-unstable AR(l) RE 
solution (and the modulus of the maximal root of DT(@# 1) then tI,+f? with 
probability 0. 

4.2. Higher order AR and ARMA estimation 

We now consider two further issues in real time learning dynamics: (i) Are 
the AR(l) solutions locally stable under real time learning rules in which the 
agents overparametrize by estimating a higher order AR process or an 
ARMA process? (ii) Are the ARMA continua of solutions stable under real 
time learning dynamics? In both cases we argue that the answer is governed 
by the E-stability conditions derived in earlier sections. For (i) this can be 
demonstrated by extending earlier arguments. For (ii) Ljung’s theorems 
cannot be applied for technical reasons, and we must rely on simulations. 
Before taking up either issue we must specify the econometric learning 
algorithm. 

Suppose that agents have a perceived law of motion of the general form 
(4.1). In considering the method of econometric estimation of the parameters 
we must make a distinction as to whether or not the shocks u, are observed. 

“Their assumption Al is not required, see Ljung (1977, Theorem 2). 



1084 G.W Evans and S. Honkapohja, Learning, concergence, and scabiliry 

If u, is observed at t then the estimation of the parameters (a, b, c, d) can be 
carried out using the RLS algorithm (4.4) with the state vector z, augmented 
to include lags of y,, u, and w, and with 0, augmented to include the 
additional parameters. The actual law of motion of the system is given by 
(4.4), where we replace (4.3) by 

Z1-,‘=(l,Yr-t,...rYl-s,UI-tr...,~,-,,W,-t ,..., w,-J, (4.6a) 

0; = (a,, bt.,, . . .t b,,, c1.n. . ., c,,,, dl,,, . . ., 4J (4.6b) 

and where T(8) is the mapping discussed in section 2 and formally given in 
Appendix B. 

Before presenting the results, some discussion is needed on the permitted 
overparametrizations in our learning algorithms. A stationary AR( 1) process 
y,=py,_ 1 + u, is equivalent to a stationary ARMA(m+ 1, m) process of the 
form c(L)( 1 -pL)y, = c(L)u, for any degree m lag polynomial c(L).” This is in 
essence an identification problem created by common factors which we wish 
to avoid here. Therefore, in considering the stability of recursive learning 
algorithms, we permit only overparametrizations of either the autoregressive 
or the moving average components, but not both. 

Proposition 4.3. Suppose (a(p),p) is an AR(l) RE solurion to the model (2.1) 
with IpI < 1. Suppose that learning dynamics are given by the RLS algorithm, 
i.e. by (4.4) and (4.6), where either s= 1 or there are no moving auerage terms 
in u,. If this AR(l) solution is strongly E-stable then there exists a nontriuial 
projection facility such that 8,+8, = (a(p), p, 0,. . ., 0)’ with probability 1 .I9 

If the exogenous shocks are not observed by agents then they must 
undertake genuine ARMA estimation. Recursive ARMA estimation pro- 
cedures, which are modifications of the above algorithms, are described in 
Ljung and Siiderstriim (1983). Applications to learning within rational 
expectations models are described in Marcet and Sargent (1993). There are 
two principal algorithms, which Ljung and Siiderstrom refer to as the pseudo 
linear regression (PLR) algorithm and the recursive prediction error (RPE) 
algorithm. We develop formally these algorithms in Appendix C. The basic 
idea in them is to replace the unobserved u, with estimates which are the 
(unfiltered or appropriately filtered) forecast errors + 

Remark. Proposition 4.3 holds also for the PLR and RPE algorithms. 

Finally we turn to the ARMA(2,l) and ARMA(3,2) continua of solutions. 
Technical complications, due to the continua of solutions and zero eigen- 
values, prevent the application of Ljung’s (1977) theorems. Thus we revert to 

“‘However for almost all initial conditions these processes are only equivalent asymptotically. 
191nstabilit; results, along the lines of Proposition 4.2, can also be obtained. 
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simulations, which suggest that E-stability does appear to govern conver- 
gence under real-time learning dynamics. 

4.3. Simulation results 

Simulations can provide the following information: (1) local stability of 
econometric learning dynamics in cases where theoretical results could not be 
obtained, (2) global analysis of learning dynamics, (3) information on the 
speed of convergence. We illustrate the findings with two examples. Except 
where indicated, the simulations do not employ a projection facility. 

Example I (A case of a weakly E-stable ARMA continuum). Model (2.1) 
was studied with parameters 

a=O, S=-0.48, /?,,=2, /II,=-1.2 and /&=-4. 

The exogenous shock u, was assumed to be independent normal white 
noise with standard deviation o=O.l and we allow for the presence of an 
observable sunspot w, generated with the same distribution as u, but 
independent of the u, process. This model has a continuum of ARMA(2,l) 
solutions of the form 

with r and K free. This set of solutions is stationary and forms a weakly 
E-stable class.” We focus on the issue of local stability under econometric 
learning dynamics of this ARMA(2,l) class. 

Simulations were conducted using the RPE algorithm without projection 
facility to estimate ARMA(2, 1) or ARMA(3, 1) models, allowing for a 
sunspot.‘r Whether there is convergence to a member of the ARMA(2,l) 
solution class depends on the initial point relative to the domain of 
attraction (and on the sequence of random shocks). Fig. 1 shows a typical 
path, over the first 5000 periods, of an estimated ARMA(2,l) model with the 
starting point 

@(0),61(O), b2(0),cl(O),d1(0))=(0,0.4, -0.25,0.3,0.5). 

The path seems to be clearly converging toward the ARMA(2,l) class of 
solutions. This is what we expect since the solution class is weakly E-stable. 
The simulation was extended to 40,000 periods.22 The t =40,000 values for 
(a,bl,b2,cl,dl) of 

“‘There is also an AR(l) solution and an ARMA(3.2) class of solutions. 
“The initial R(0) was set at the E#JI’ corresponding to initial a, b, c parameters. For the 

deIinition of $ see Appendix C. a(t) was set at a(t) = I for all t and the initial r was set at t = 300. 
“The very long simulations were done to be sure of the asymptotics. 
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(-0.0001,0.5021, -0.1494,0.4590,0.4953) 

appear to confirm the stability under recursive ARMA(2, 1) estimation of this 
set of ARMA(2,l) solutions. Note that the final values of the coefftcients of 
II, _ 1 and w, _ 1 depend on the initial values of all parameters. 

When we overparametrize with ARMA(3,l) estimation and start from a 
point near the ARMA(2,l) equilibrium, a typical simulation over the first 
40,000 periods is shown in Fig. 2a-b. The initial parameter values were 
chosen to be 

(a(O),bl(O),b2(0), b3(0),c1(0),d1(0))=(0,0.5, -0.15, -0.02,0.3,0.5). 

After 40,000 periods the system has diverged from the ARMA(2,l) 
equilibria. 23 At t=40000 the values of(a,bl,b2,b3,cl,c2,dl,d2) are 7 

(-0.0004, -0.3792,0.2078, -0.1022,0.3549,0.3309). 

This is again the expected result, given the failure of the solution to be 
strongly E-stable.24 

Example 2 (A case with three real stationary AR(l) solutions, two of which 
are strongly E-stable). Consider (2.1) with parameters a=O, 6= 1, /&, = 
- 3.53968254, PI = 6.66666667, & = - 3.174603 18. This yields AR( 1) solutions 
with roots 

p1, p2, p3 =0.5,0.7,0.9. 

In each REE we have a(pi) = 0. The roots 0.5 and 0.9 are strongly E-stable 
and 0.7 is E-unstable. 

First we illustrate the resutts of section 4 when a projection facility is 
employed for the AR( 1) coefftcient bl. We choose the projection facility 
D, = [0.73,0.97] and D, =(0.72,0.98). These sets lie inside the basin of 
attraction of p3=0.9 and therefore RLS estimates will converge to this 
solution. Simulations were conducted using the RLS procedure to estimate 
an AR(l) process with intercept. u, was generated by normal white noise, 
with standard deviation 0.5,25 and the initial value of b 1 set at 0.74 in c = 20. 
Simulations varied substantially in terms of speed of convergence. An 
example which converges fairly quickly is shown in Fig. 3. In this simulation 

*‘In fact it has clearly moved to a neighborhood of a point in the ARMA(3,2) class. 
“‘The siiuation with ARMA(3, 1) estimation is in fact even more complex. When a small 

projection facility is employed, bounding b2 between -0.2 and -0.1, simulations showing 
apparent convergence to the ARMA(2,l) solution have been obtained. We interpret this as due 
to the one-sided stability/instability of the solution with respect to strong E-stability. In the 
convergent cases the projection facility keeps the system near the equilibrium and the motion is 
eventually caught by a stable trajectory. 

25The initial R(0) was set at the identity matrix and z(t) = 1 for all t. 
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Fig. 3. AR(I) with projection facilities. 1500 periods. 

the projection facility is employed only once, after 36 periods, when bl would 
otherwise have fallen below 0.72. Thereafter convergence toward bl =0.9 is 
fairly smooth. 

Using simulations we can also consider global learning dynamics for this 
example. Initial parameter estimates are now set at the unstable root 
(a, b,)=(O, 0.7) at t= 1 and no projection facility is employed. Agents are 
again assumed to estimate an AR(l) process using RLS. 

Table 1 gives the distribution of the autoregressive coefficient b,(t), based 
on 1000 simulations. After 50 periods the distribution shows little pattern 
over (0.25,0.99). After 1000 periods, the importance of E-stability becomes 
clear, with 2 peaks around the E-stable points and a trough in the 
distribution near the E-unstable starting point. The bimodal shape is 
intensified at 10,000 periods. The speed of convergence is slow, but of course 
the length of the ‘period’ could be quite short in applications. 

5. An economic application 

In this section we provide a brief application of the preceding results to an 
open-economy macroeconomic model illustrating the relevance of the model 
(2.1). The model is a variant of the Dornbusch (1976) overshooting model: 

PI-P,- 1 =+t-14)+~,, (5.1) 

4 = - Y@, - J%,+ I+ P,) + de, -P,), (5.2) 
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Table 1 

Distribution of bl for AR( 1) estimation. 

Distribution of bl, in percent after 50, 
1000 and 10,OSIO periods 

Value 50 
ofbl periods 

<0.35 
0.35-0.45 
0.45-0.5s 
0.55-0.65 
0.65-0.75 
0.75-0.85 
0.85-0.95 
>0.95 

11.6 
15.1 
17.3 
14.3 
13.9 
14.0 
12.2 

1.6 

1000 
periods 

0.1 
11.6 
30.0 
12.8 
11.0 
11.7 
21.9 
0.9 

10,000 
periods 

0.0 
1.0 

41.9 
11.9 
8.3 
9.6 

27.3 
0.0 

‘Based on 1000 simulations with model parameters as in 
text. E-stable roots at 0.5 and 0.9. E-unstable root at 0.7. 
Initial bl set at 0.7. 

(5.3) 

r, = Eler + i -e, (5.4) 

All variables, except interest rates, are taken as logarithms, and the model 
is described in deviation form. Eq. (5.1) is a price adjustment rule of the 
usual kind, according to which prices respond to expected excess demand. 
Output is taken to be constant. Eq. (5.2) gives the aggregate demand 
function, dependent on real interest rates and international competitiveness. 
Eq. (5.3) gives the LM equation in which we assume that money supply 
accommodates past inflation to the extent described by parameter 3. Finally, 
(5.4) is the usual interest rate parity or arbitrage condition. 

In the basic formulation all the parameters rt, 7, q, I, 3 are taken to be 
positive, but for later purposes we note that in somewhat exceptional 
circumstances the competitiveness parameter 17 might be negative. This could 
come about when the economy is strongly dependent on an imported raw 
material and the demand elasticity for its exports is low. A detailed 
discussion of this argument is provided in Bruno and Sachs (1985, pp. 
104-105). 

Elementary but tedious calculations lead to the price equation: 

p,=(l+xy91-‘+K9~1-‘)p,-, 

-(l+~y9rl-‘+n?l-‘+~y~-‘+~~+~crl)E,_,p, 

+(lflcrl+2~y+~yl-‘)E,_,p,+,-nyE,_,p,+,+u,. (5.5) 

This is of type (2.1). In the illustrations below we have picked values for II, 
y, and 1 which might be considered as fairly reasonable. We then vary policy 
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Table 2 

Strong E-stability and stationarity of AR(l) equilibria.” 

Parameters AR(I) roots E-stability Stationarity 

3=0.5 1.250 

?l’O.Z 1.043 
0.384 

3=0.5 1.067 

‘I= -0.1 0.898 
0.512 

3= 1.1 0.989 

q= -0.1 0.772 
0.716 

IlO 

IlO 

yes 
yes 
tl0 

IlO 

ye= 
no 

yes 

no 
no 

yes 

no 

yes 
yes 

yes 
yes 
yes 

’ Maintained parameter values: n = 1.5. 7 = I .5, 1= 10. 

responsiveness 3 and competitiveness q to show how various possibilities of 
E-stable equilibria can arise. The results for the AR(l) equilibria are 
displayed in Table 2. 

On the first row there is a unique, strongly E-stable equilibrium and it is 
stationary. The other rows show that for q ~0 and/or 3> 1 non-stationary 
strongly E-stable or multiple strongly E-stable cases can arise. It is also 
possible to get weakly E-stable ARMA(2, 1) solutions. For example, when 
7c= 1.5, y= 1.5, i.= 10, 3= 1.1 and q= -0.1, the stationary ARMA(2, 1) class 

with 5 and K free, is weakly E-stable. Thus for some choices of parameters it 
is possible for econometric learning procedures to converge to sunspot 
solutions, although this result is not robust to overparametrization of the 
learning algorithm. 

Although somewhat extreme parameter values are used to obtain the more 
exotic phenomena, we believe this example illustrates the range of possibili- 
ties that may be encountered in applied models. 

6. Conclusions 

We have explored the conditions for convergence of real-time learning 
algorithms in dynamic linear models when multiple REE prevail. The results 
indicate that convergence of econometric learning dynamics is governed by 
E-stability conditions. The theoretical basis for this relationship is clear for 
the finite set of AR(l) equilibria. For technical reasons the issue remains 
open in theory for continua of REE, including sunspot solutions, though 
simulations support the connection. 

It must be emphasized that stability can depend on how the agents 
parametrize expectations and, in particular, on possible overparametrization 
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of a given solution. The applied macroeconomist will typically focus on 
minimal state variable solutions, i.e. the AR(l) solutions for the model 
considered here, and the stability of the AR(l) solutions can be robust to 
overparametrization. In many cases this principle of selecting stable solutions 
provides a unique choice. However, as we have seen, this need not be so if 
the reduced form places a large enough weight on expectational variables. If 
multiple strongly stable REE are present, this feature is inherent to the 
model and cannot be avoided by the practitioner. 

For some practical questions the continua of solutions may be of special 
interest. For example, it may be desirable to take seriously the sunspot 
solutions. If so, the analysis of learning is still relevant. Stability under 
learning again narrows the set of attainable solutions, and in some cases 
learning can converge to these solutions. However, the issue of robustness to 
overparametrization is critical here, as we have shown that the solutions 
continua can be weakly but are not strongly E-stable. 

We anticipate that the full range of features discovered in this paper will 
typically be present in more complex linear models, even perhaps including 
large-scale empirical models. The generalization of our findings clearly 
warrants further study. However, the tools presented in this paper can 
already be applied to particular models of interest. 

Appendix A: Derivation of the sunspot equilibria (2.2) 

Following Evans and Honkapohja (1986) denote by Yr the ‘longest’ 
ARMA solution generated by the disturbance term u, of model (2.1). This has 
the form (2.2) without the sunspot terms diw,_1+dzw,_2. Let Yf denote any 
sunspot term (which is a process not linearly dependent on 0,‘s as such a 
dependence would be included in the ARMA solution just mentioned). If 2 
satisfies the homogeneous equation corresponding to (2.1) then, by linearity, 
a general solution to (2.1) is given by YF+$. Write yf as an arbitrary linear 
function of arbitrary innovations w, and past values of yf: 

From (A.l) one computes E,_iys=Yf-z,,w,, Et_ly~+l=Y~tl- 

(~1+Y1G%-%wt+1~ etc. Substituting into the homogeneous equation yields 

$= -B;‘B1VS-1+B;‘(l-Bo)~-z-P;‘6YS-3+n,w, 

+CJr, +(y, +P;‘Phlwt- 1 

Solutions to the homogeneous equation must also satisfy y: -E,_ ,$ = 0, 
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so that x 0 =O, while x, and x2 can be freely chosen. Therefore, the terms 
involving w(-~, for i=O, 1,2, take the form di~,-i+d~w,_~, with d, and d, 
arbitrary, and we have (2.2). 

Appendix B: E-stability results 

In the general case the mapping 19’= T(8) takes the form 

a*=a+~oa+P,(b,a+a)+~z[b,(b,a+a)+b,a+a], 

for i=2,...,s-2, 

br-,=B,b,-,+B,(b,b,-,+b,)+BzCb,(blb,-,+b,)+bzbs-,l, 

b: =B,b,+Bt(b,b,)+B2CbI(b,b,)+b2b;l, 

~*=Doci+Pl(bl~i+~i+1)+PzCbr(blci+ci+I)+bzc~+ci+21 

for i= l,...,r-2, 

c: =aoc,+Bl(b,c,)+P,Cb,(b,c,)+b,c,l, 

for i= l,...,q-2, 

d,*-,=B,d,-,+B,(b,d,-,+d,)+P,Cb,(b,d,-,+d,)+b,d,-,l, 

d,* =P,d,+B,(b,d,)+B,Cb,(b,d,)+b,d,l. 03.1) 

The differential equation (2.7), with T given by (B.l), has the property that 
the equations for b are independent of a, c and d. Close inspection of the 
structure also reveals that, for assessing stability, we can assume s=4, 
r = q = 3, without loss of generality. 

The first step is to linearize (2.7). Since the subsystem for variables 
b=(bl,..., b4)’ is independent of the other variables we write it in vector form 
as b=f(b). Denoting any equilibrium point by 6 and the deviation variables 
by b’= b-6 the linearization takes the form 6t=(8J16)/c?b)bt, where the 
matrix af(6)/8b of the partial derivatives af/abj is computed to be 
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k-G* + 28,U, + 8263 PO + P*h + m: + 25,) - 1 

191+ 8263 0 2P,h 

82 0 

B1+8262 82 

Bo+81~1+~2(~:+~2b-l 81 +B261 I (B-3 

0 Do+8161+82(6:+62)-1 

Writing u’ = a - Li we obtain the linearized equation 

d+=[~~+~~(1+&~)+~~(1+6~(1+6~)+6~)-1]a+ 

+ [Pia + &ci( 1 + 26,)]b’, + /3@b: E Au+ + Bb’. (B.3) 

We omit explicit linearization of d=g(d, b) and E=g(c, b). 

Proof of Proposition 3.1. To assess strong E-stability we set 6, = pl, 6i =0 
for i= 2,3,4, F=O, and a=O. Then 

det[$(b)/ab - E,I] =(/I0 + jI,6, + /3,6: - 1 - i)3 

x(/10+2jI,6,+3j?,6~- 1 -E.). 

Using the relationships (2.3) between /Ii’s and p;s from section 2. we have 
3 roots equal to &,+flipi +/?*p: - 1 = p2p2p3 and one root equal to 
/?o+plpl +3/3,pf- 1 =f12[-pLp2-p1p3 +p2p3+pf]. Since these expressions 
are necessarily real, their negativity is a necessary condition for strong E- 
stability. For weak E-stability we set s= 1 so that only the latter single root 
appears. (In what follows we only consider the generic case that these roots 
are non-zero.) 

Finally we consider the other variables. From eq. (B.3) for a’ we have an 
additional stability condition At0 or, writing it in terms of p;s and 
simplifying, f12[p2p3 -p2 -p3 + 1] ~0. The equations for vectors c and d 
(omitted) provide no further conditions. 

Proof of Corollary 2 (sketch). Consider the case /&,=/Ii =0 (with /I? ZO). An 
AR( 1) root p satisfies fi2p3 - p + S = 0. If p2 > 0 is sufficiently small there are 3 
real roots which satisfy p1 < - 1 <p2 < 1 <p3. If /I2 <O there is a unique real 
root - 1 <p2 < 1 and the complex roots have squared modulus jIT i. It is 
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readily verified that the p2-AR(I) solution is uniquely strongly E-stable, and 
the Corollary follows by continuity of roots and eigenvalues. 

Proof of Proposition 3.2. For E-stability of the ARMA(3,2) solution class 
we first evaluate the coefficient matrix for b at 
values yielding 

3(/%-1)+PW -B1 B* 0- 

/WV -B,)-8 3(8,--l) BZ a* 

B,BY ‘6 -6 0 0 

0 0 0 0 

the ARMA(3,2) equilibrium ; 0 
A i Bt = 

-I 1 : 0 - 
(B-4) 

. . . . . . . . . . . 
0 ; 0 

Eq. (B.4) has one zero eigenvalue, but this does not arise with weak 
E-stability (when s= 3 and b4 =O is imposed). Then only the first three 
equations having the coefftcient matrix A are relevant. 

The parameter domain for weak E-stability of the ARMA(3,2) solution 
class is given by: 
(a) A is a stable matrix and 

(b) Pz<O. 
Condition (a) is immediate from the above analysis of the b subsystem. 
Condition (b) then follows from the a equation (B.3). 

Moving to consider the systems for c and d, we note that with 6, = 
-/I&‘, 6,=(1-&J/?;‘, 6s= -&?;I, b4=0, the linearization is trivial, and 
one must revert to the original equations. The equation for c1 is a linear 
differential equation with time-varying coefficients via the independently 
evolving variables 6, and b2, so it can be directly integrated. Using an 
argument analogous to that in Evans and Honkapohja (1992a, pp. 5-6) it is 
seen that c2 converges. Given the time paths cl(t) the equation for c1 is a 
linear equation with variable coefficients with time-dependence through b,, 
b, and c2, so it can also be directly integrated and cl(t) will converge to a 
finite value. Thus, c and d converge when the subsystem for b is stable. 

Proof of Proposition 3.3. For the ARMA(2, 1) solutions, first evaluate the 
coefficient matrix (B.2) at the appropriate REE values of the AR parameters 
6. The resulting matrix can be written 

r B : 82 0 1 i 
I i 

B1 +I%6 +82 82 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
0 81+82h ’ 

0 ; 0 0 1 (B.5) 

where B is the 2 x 2 matrix in the top left corner. (BS) has a zero 
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eigenvalue of multiplicity two, which complicates only the analysis of strong 
E-stability of the ARMA(2,l) solutions. The parameter domain for weak E- 
stability is given by: 
(a) B is a stable matrix, and 

(b) Bo+Br(l +&)+Sl(l +&(I +&)+6,)- 1~0. 
Condition (a) follows from (B.5) and (b) from (B.3). The rest of the proof is 

analogous to the last stage outlined in the proof of Proposition 3.2 above. 

Prooffor Proposition 3.4 (remark). It is sufficient to show instability of the 
subsystem for vector b. Linearization cannot be used as (B.4) has a zero 
eigenvalue and (B.5) a zero eigenvalue of multiplicity two. The method of 
proof is the same as in Evans and Honkapohja (1992a). Details are available 
from the authors. 

Appendix C: Real time learning results 

Proof of Proposition 4.1. The result is based on Theorem 4 of Ljung (1977) 
and is most easily demonstrated using the proofs of Propositions 1 and 3 of 
Marcet and Sargent (1989). 26 The associated differential equation is 
given by (4.5). For a sufliciently small open interval f,(p) around p, (4.5) has 
a unique equilibrium (0 ,RJ) on D,=([w x I,(p)) x([w2 x lR2) and &I:(O) is 
nonsingular with (T,,(b)f< 1 for (0, R&D,. By the assumption of weak 
E-stability (2.7) is locally stable at 8,. Using the argument of Marcet and 
Sargent (1989a), Proposition 3, it follows that (4.5) is locally stable at 

($ R,). 
Let D, be the intersection of the domain of attraction of (O,, RI) with D,. 

D, is an open set. It is readily verified that (Al)-(A5) of Marcet and Sargent 
(1989a) are satisfied on D,. Hence, as they argue, conditions B of Ljung 
(1977) are met. To apply Proposition 1 of Marcet and Sargent (1989a) we 
require also that their assumption A.7.2 is met, i.e. defining D2 closed, D, 
open and bounded, with D, CD, CD,, such that trajectories of (4.5) starting 
in D, never leave a closed subset of D,. But the existence of suitable 
nontrivial D, and D2 follows from local stability of (O,, R,-) under (4.5). 

We can thus invoke Proposition 1 of Marcet and Sargent (1989a) and 
conclude that Of=(uI,b,)’ converges almost surely to (a(p),p)’ as t--*x. (The 
statement of Proposition 1 of Marcet and Sargent appears to require that it 
also be shown that their assumption (A.6) is satisfied. However, it is clear 
from the proof of their Proposition 1, and from the statement and discussion 
of Theorem 4 of Ljung, that no additional condition is required). 

16Marcet and Sargent (1989a) incorporate a l-period observation lag into their (4a-b). Our 
(z,, 0,) corresponds to their (I~.,- Ir u,_ ,) and we use 0, for their & Finally, for their algorithm to 
correspond exactly to RLS, zJt in their R, equation of (4a) should be a,/(t+ 1). This makes no 
difference asymptotically. 
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Proof of Fropos~ijo~ 4.3. The RLS algo~thm is given by (4.4) and (4.6) with 
n =s+ t +q -I- 1 in the projection facility. The associated differential equation 
continues to be given by (4.5), where ~~~) = Ez~~)z~~~ and where now z,(tJ) 
is defined as the process generated by (4.6) and (4&J) with 8, replaced by a 
fixed 8. The argument follows the proof of Proposition 4.1 except that 7J@) is 
given by (B.l), so that strong E-stability is needed for the stability of (O,.,R,) 
under (4.5). 

In the ARMA estimation with unobservable u, we assume that agents 
estimate u, by c,. The perceived law of motion is then given by (4.1) with 6, in 
place of u,. With Iearning dynamics following the PLR algorithm the actual 
Iaw of motion is given by (4.4) and 

with n==s+rfq+l in the projection facility. Initial values for 

(6 0,‘. *9 E+-~J and f~~,.-.,~-(~-~~l are required, and in the simulations they 
are set at 0. The PLR algorithm differs from RLS only in that the 
unobserved u, are repiaced by running estimates er. In the RPE algorithm 
f4,4a, b) is replaced by 

(C.2a) 

(C2b) 

(C.2c) 

Learning dynamics under the RPE algorithm are thus specified by (4.40-e), 
(Cl) and (C.2). The RPE algorithm augments the PLR algorithm with an 
extra state variable, $,, defined as z, filtered by the inverse of the estimated 
moving average polynomial. et then replaces z, in the recursive formulae for 
(8,, R,). The advantage of the RPE a~go~thm is that it is an approximation to 
maximum likelihood estimation (when used to estimate an exogenous 
ARMA process), see Ljtmg and Soderstriim (1983, esp. ch. 3.7) and Marcet 
and Sargent (1993). The proof of the remark at the end of section 4.2 is 
available on request. 
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