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Abstract

The above four models are compared from the point of view of their implications
for the dynamic response of the economy to a technology shock and to a monetary
policy shock. There are four results. First, it makes essentially no difference whether
markets are complete or not. Second, a parameterization is found having the following
two implications: (i) in the wake of a technology shock, the model without financial
frictions (CEE) responds in roughly the same way as the model with financial frictions.
This is explained as reflecting the fact that Irving Fisher’s ‘Fisher price deflation effect’
cancels with income and capital gains effects; (ii) in the wake of a monetary policy
shock, the model with financial frictions responds much more strongly than does CEE
because in this case the Fisher price effects and the income and capital gains effects
work in the same direction. Our third result is that, while (i) and (ii) reflect a plausible
parameterization, alternative (seemingly) plausible parameterizations produce models
with properties different than (i) and (ii). Fourth, without additional frictions the
model with just financial frictions appears to have counterfactual implications for what
happens after a monetary policy shock.



Contents

1 CEE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Equilibrium Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 The Flexible Price Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Adding Financial Frictions to CEE . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 The Additional Equilibrium Conditions . . . . . . . . . . . . . . . . . . . . . 9
2.2 Some Additional Technical Details for the Model . . . . . . . . . . . . . . . 13

3 No-monitoring Cost, no Sticky Price/Wage Version of the Model . . . . . . . . . . 15
3.1 No Idiosyncratic Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 With Idiosyncratic Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 No Frictions, μ = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Steady State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 The Fisherian Debt-Deflation Hypothesis . . . . . . . . . . . . . . . . . . . . . . . 23
5 Complete Markets Version of the Model . . . . . . . . . . . . . . . . . . . . . . . . 24
6 Simplified Equilibrium Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.1 CEE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 CEE+BGG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3 CEE+BGG-Fisher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1 Benchmark Frictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 Dropping the Non-Financial Frictions . . . . . . . . . . . . . . . . . . . . . . 33
7.3 Adding Monetary Frictions But Leaving out Adjustment Costs and Habit . . 35
7.4 Adding Adjustment Costs and Habit . . . . . . . . . . . . . . . . . . . . . . 35

8 Steady State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2



1. CEE Model

1.1. Model

Final good firm technology:

Yt =

∙Z 1

0

Yjt
1
λt dj

¸λf
, 1 ≤ λf <∞, (1.1)

Intermediate good j is produced by a price-setting monopolist with technology:

Yjt =

½
�tK

α
jt (ztljt)

1−α −Φzt if �tKα
jt (ztljt)

1−α > Φzt
0, otherwise

, 0 < α < 1, (1.2)

where Φzt is a fixed cost and Kjt and ljt denote the services of capital and homogeneous
labor. Capital and labor services are hired in competitive markets at nominal prices, Ptr

k
t ,

and Wt, respectively. The object, zt, in (1.2), is assumed to evolve deterministically:

zt = zt−1μz. (1.3)

Law of motion of technology, �t :

log (�t) = ρ log (�t−1) + ε�t.

We adopt a variant of Calvo sticky prices. In each period, t, a fraction of intermediate-goods
firms, 1− ξp, can reoptimize their price. If the i

th firm in period t cannot reoptimize, then
it sets price according to:

Pit = π̃tPi,t−1,

where
π̃t = πιt−1π̄

1−ι. (1.4)

Here, πt denotes the gross rate of inflation, πt = Pt/Pt−1, and π̄ denotes a constant (in
practice, it would be set to unity or to steady state inflation). If the ith firm is permitted to
optimize its price at time t, it chooses Pi,t = P̃t to optimize discounted profits:

Et

∞X
j=0

¡
βξp
¢j
λt+j [Pi,t+jYi,t+j − Pt+jst+j (Yi,t+j + Φzt+j)] . (1.5)

Here, λt+j is the multiplier on firm profits in the household’s budget constraint. Also,
Pi,t+j, j > 0 denotes the price of a firm that sets Pi,t = P̃t and does not reoptimize between
t+1, ..., t+j. The equilibrium conditions associated with firms appear in the next subsection.
The household maximizes utility

Ej
t

∞X
l=0

βl−t

⎧⎪⎨⎪⎩u(ct+l)− ψL

h1+σLj,t

1 + σL
− υ

³
Pt+lct+l
Md
t+l

´1−σq
1− σq

⎫⎪⎬⎪⎭ , υ ' 0, (1.6)
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subject to the constraint

Pt (ct + it) +Md
t+1 −Md

t + Tt+1 ≤Wt,jlt,j + Ptr
k
t kt + (1 +Re

t )Tt, (1.7)

where Md
t denotes the household’s beginning-of-period stock of money and Tt denotes nom-

inal bonds issued in period t− 1, which earn interest, Re
t , in period t. This nominal interest

rate is known at t− 1. The household’s problem is to maximize (1.6) subject to the capital
accumulation technology linking investment, i, to capital.
The jth household, j ∈ (0, 1) , supplies a differentiated labor service which is aggregated

into a homogeneous labor good by perfectly competitive labor contractors using the following
constant returns to scale technology:

lt =

∙Z 1

0

(ht,j)
1
λw dj

¸λw
, 1 ≤ λw <∞. (1.8)

Aggregate labor is sold competitively by the representative labor contractor to intermediate
goods producers for wage Wt and the jth household’s wage is Wj,t. The contractor hires ht,j,
j ∈ (0, 1), in order to maximize profits:

max
ht,j

Wt

∙Z 1

0

(ht,j)
1
λw dj

¸λw
−
Z 1

0

Wt,jht,jdj,

which leads to the first order condition:

Wtl
λw−1
λw

t (ht,j)
1−λw
λw =Wt,j,

or,

ht,j = lt

∙
Wt,j

Wt

¸ λw
1−λw

. (1.9)

The jth household views (1.9) as a demand curve for its specialized labor services. The rules
are that if the household posts a wage, Wt,j, then it must supply the services, ht,j, implied
by the demand curve.
Thus, the household’s problem is to choose its wage rate, Wt,j. With probability, 1− ξw,

it can optimize its wage rate and with the complementary probability, it cannot. In this
case, we suppose that it sets its wage as follows:

Wt,j = π̃w,t−1Wt−1,j, π̃w,t ≡ (πt−1)ιw π̄1−ιw . (1.10)

The 1− ξw households that set their wage optimally in period t all find it optimal to set the
same wage, W̃t. The household which can optimize its wage in period t does so to optimize
the following objective:

Et

∞X
i=0

(βξw)
i {− ψL

1 + σL
h1+σLj,t+i + λt+iWj,t+ihj,t+i},

where λt+i is the multiplier on the household’s budget constraint, (1.7). The household
discounts by βξw because it is only interested in continuation histories in which it does not
reoptimize its period t wage.
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1.2. Equilibrium Conditions

The equations pertaining to prices are:

(1)p∗t −

⎡⎢⎢⎣¡1− ξp
¢⎛⎜⎝1− ξp

³
πιt−1π̄

1−ι

πt

´ 1
1−λf

1− ξp

⎞⎟⎠
λf

+ ξp

µ
πιt−1π̄

1−ι

πt
p∗t−1

¶ λf
1−λf

⎤⎥⎥⎦
1−λf
λf

= 0 (1.11)

and

(2)Et

(
λz,t (p

∗
t )

λf
λf−1

∙
�t

µ
kt
μz

¶α ³
(w∗t )

λw
λw−1 ht

´1−α
− φ

¸
+

µ
πιtπ̄

1−ι

πt+1

¶ 1
1−λf

βξpFp,t+1 − Fp,t

)
= 0,

(1.12)
where λz,t denotes λtztPt. Also,

(3)λz,tλf (p
∗
t )

λf
λf−1

∙
�t

µ
kt
μz

¶α ³
(w∗t )

λw
λw−1 ht

´1−α
− φ

¸
st+ (1.13)

βξp

µ
πι2t π̄

1−ι2

πt+1

¶ λf
1−λf

⎡⎢⎣1− ξp

³
πιtπ̄

1−ι

πt+1

´ 1
1−λf

1− ξp

⎤⎥⎦
1−λf

Fp,t+1 − Fp,t

⎡⎢⎣1− ξp

³
πιt−1π̄

1−ι

πt

´ 1
1−λf

1− ξp

⎤⎥⎦
1−λf

= 0.

Note that both these equations involve Fp,t. This reflects that a lot of equations have been
substituted out. In particular, we have

Fp,t

⎡⎢⎣1− ξp

³
πιt−1π̄

1−ι

πt

´ 1
1−λf

1− ξp

⎤⎥⎦
1−λf

= Kp,t, p̃t =
Kp,t

Fp,t
,

where p̃t is the price set by price-optimizing firms in period t. In addition, p̃t is substituted out
using the equilibrium condition relating the aggregate price level to the prices of intermediate
goods.
Now, consider the wage equations. The wages of non-optimizing households evolve as

follows:
Wj,t = π̃w,tμzWj,t−1, π̃w,t ≡ (πt−1)ιw π̄1−ιw . (1.14)

Nominal wage growth, πw,t, is:

πw,t =
w̃tμzπt
w̃t−1

,

where
w̃t ≡

Wt

ztPt
.
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The optimality conditions associate with wage-setting are characterized by:

(4)Et{λz,t
(w∗t )

λw
λw−1 ht
λw

+ βξwπ̃
1

1−λw
w,t+1

³
w̃t

w̃t+1πt+1

´ λw
1−λw

πt+1
Fw,t+1 − Fw,t} = 0 (1.15)

and

(5) Et{
h
(w∗t )

λw
λw−1 ht

i1+σL
(1.16)

+βξw

µ
π̃w,t+1

w̃t+1πt+1
w̃t

¶ λw
1−λw (1+σL) 1

ψL

⎡⎢⎣1− ξw

³
π̃w,t+1

w̃t+1πt+1
w̃t

´ 1
1−λw

1− ξw

⎤⎥⎦
1−λw(1+σL)

w̃t+1Fw,t+1

− 1

ψL

⎡⎢⎣1− ξw

³
π̃w,t
w̃tπt

w̃t−1

´ 1
1−λw

1− ξw

⎤⎥⎦
1−λw(1+σL)

w̃tFw,t} = 0.

The law of motion of the labor market distortion is:

(1.17)

(6) w∗t = [(1− ξw)

⎛⎜⎝1− ξw

³
π̃w,t
w̃tπt

w̃t−1

´ 1
1−λw

1− ξw

⎞⎟⎠
λw

+ ξw

µ
π̃w,t
w̃tπt

w̃t−1w
∗
t−1

¶ λw
1−λw

]
1−λw
λw .

Marginal cost:

(7)st =
w̃t

(1− α) �t

⎛⎜⎜⎜⎜⎜⎜⎜⎝
μz

total effective labor, taking into account wage distortionsz }| {
(w∗t )

λw
λw−1

number of peoplez}|{
ht

kt

⎞⎟⎟⎟⎟⎟⎟⎟⎠

α

(1.18)

Resource constraint:

(8)ct + It = (p
∗
t )

λf
λf−1

½
�t

µ
kt
μz

¶α h
(w∗t )

λw
λw−1 ht

i1−α
− φ

¾
(1.19)

where

(9)kt+1 − (1− δ)μ−1z kt =

∙
1− S00μ2z

2
(
It
It−1
− 1)2

¸
It, (1.20)

where It is investment scaled by zt.
Equation defining the nominal non-state contingent rate of interest:

(10)Et{β
1

πt+1μz
λz,t+1 (1 +Rt)− λz,t} = 0 (1.21)
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The derivative of utility with respect to consumption (after scaling by multiplying by zt),

(11)Et

∙
λz,t −

μz
ctμz − bct−1

+ bβ
1

μzct+1 − bct

¸
= 0, (1.22)

where ct denotes consumption scaled by zt. The capital first order condition:

(12)− λz,t +Etλz,t+1
β

μz

1 +Rk
t+1

πt+1
= 0, (1.23)

where Rk
t+1 denotes the rate of return on capital:

(13)1 +Rk
t =

rkt + (1− δ)qt
qt−1

πt, r
k
t = α�t

Ã
μz (w

∗
t )

λw
λw−1 ht

kt

!1−α
st,

where qt denotes the market price of capital, kt+1, scaled by the price, Pt, of homogeneous
goods. The investment first order condition:

(14)Et{λztqt
∙
1− S00μ2z

2
(
It
It−1
− 1)2 − S00μ2z(

It
It−1
− 1) It

It−1

¸
(1.24)

−λzt + βλzt+1qt+1S
00μ2z(

It+1
It
− 1)

µ
It+1
It

¶2
} = 0,

where It is interpreted as investment, divided by zt.
The monetary policy rule:

(15) log (1 +Rt) = (1− ρ̃) log (1 +R) + ρ̃ log (1 +Rt−1) (1.25)

+
1− ρ̃

1 +R

∙
ãpπ log

πt+1
π

+ ãy
1

4
log

yt
y

¸
+ xpt ,

where xpt is an iid monetary policy shock and yt denotes output, ct + It.
There are 15 equilibrium conditions in 15 unknowns:

λzt, ht, ct, It, yt, qt, πt, w̃t, w
∗
t , p

∗
t , Fp,t, kt, st, Rt, R

k
t .

1.3. The Flexible Price Case

It is interesting to consider the special case of price flexibility, i.e., when ξp = ξw = 0. In
this case, (1) implies p∗t = 1, (2)(3) imply st = 1/λf , (6) implies w

∗
t = 1, and the remaining
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equations imply:

1

λf
=

λw
ψLh

σL
t

λz,t

(1− α) �t

µ
μzht
kt

¶α

(1.26)

ct + It = �t

µ
kt
μz

¶α

h1−αt − φ (1.27)

kt+1 − (1− δ)μ−1z kt =

∙
1− S00μ2z

2
(
It
It−1
− 1)2

¸
It(1.28)

Et{β
1

μz
λz,t+1

1 +Rt

πt+1
− λz,t} = 0 (1.29)

Et

∙
λz,t −

μz
ctμz − bct−1

+ bβ
1

μzct+1 − bct

¸
= 0 (1.30)

Et{λztqt
∙
1− S00μ2z

2
(
It
It−1
− 1)2 − S00μ2z(

It
It−1
− 1) It

It−1

¸
(1.31)

−λzt + βλzt+1qt+1S
00μ2z(

It+1
It
− 1)

µ
It+1
It

¶2
} = 0

and the household’s intertemporal equation:

−λz,t +Etλz,t+1
β

μz

α�t
³
μzht
kt

´1−α
1
λf
+ (1− δ)qt

qt−1
= 0 (1.32)

This represents 7 equations in 7 unknowns: kt+1, ct, It, ht, λz,t, qt, (1 +Rt) /πt+1. An-
other equation is required to disentangle inflation and Rt from the real rate. Consider the
possibility that the Taylor rule could do this:

(15) log (1 +Rt) = (1− ρ̃) log (1 +R) + ρ̃ log (1 +Rt−1)

+
1− ρ̃

1 +R
Et

∙
ãpπ log

πt+1
π

+ ãy
1

4
log

yt
y

¸
+ xpt ,

Note that this equation cannot be solved for πt conditional on the real rate and other
variables, because of the presence of πt+1.When this is replaced by current inflation, however,
the system does have a unique solution.

2. Adding Financial Frictions to CEE

We now add a version of the financial frictions proposed by Bernanke, Gertler and Gilchrist.
This introduces 3 new relations: the optimality condition associated with the standard debt
contract offered to entrepreneurs, a zero profit condition on banks and the law of motion for
entrepreneurial net worth.
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2.1. The Additional Equilibrium Conditions

A group of households, ‘entrepreneurs’, own the capital stock and rent it out. The sequence
of events from the close of goods markets in period t to close of the goods markets in period
t+ 1 is as follows:

• At close of period t goods markets, entrepreneurs’ state is their net worth, and they
go to a bank where they receive a \loan contract.

• Their loan is combined with their net worth to buy the entire stock of capital, kt+1,
that can be rented in period t+ 1.

• Each entrepreneur receives an idiosyncratic shock, so that their capital becomes ωkt+1.

• In period t + 1 the entrepreneur rents the capital in a competitive market for capital
services.

• In period t+ 1 the entrepreneur sells the entire stock of capital and the period t loan
contract is brought to an end. The entrepreneur’s period t+1 net worth is determined.

• A fraction, γt+1, of entrepreneurs dies (the entrepreneurs who die receive a last meal,
the only consumption they ever get). The complementary fraction is born. Surviving
and newborn entrepreneurs all receive a (small) lump sum transfer.

• Entrepreneurs go to the bank to receive a new loan contract.

We now describe what happens to entrepreneurs in detail. After the period t goods market
closes, entrepreneurs have net worth, nt+1, and they borrow Bt+1 in order to finance their
purchases of the stock of capital:

Bt+1 + nt+1 = qtkt+1.

Here, Bt+1 and nt+1 are both divided by Ptzt. (Recall, qt is the period t currency price of
capital, scaled by Pt, and kt+1 is the end of period t stock of capital, scaled by zt.) After
purchasing capital, each entrepreneur receives a mean-unity idiosyncratic shock, ω, which
has log-normal cdf, Ft. The subscript here reflects that the variance of logω, σ2t , is itself a
random variable which is realized at time t. This random variable controls the riskiness of
individual entrepreneurs, and this has aggregate consequences. We refer to σt as ‘risk’.
Entrepreneurs receive a standard debt contract from banks, which specifies that they

pay Zt+1 in interest on their bank loans in period t + 1, if it is feasible for them to do
so. Entrepreneurs who draw a low value of ω declare bankruptcy, are monitored, and have
everything taken away from them by the bank. The cutoff value of ω which divides bankrupt
from non-bankrupt entrepreneurs, satisfies,

ω̄t+1

¡
1 +Rk

t+1

¢
qtkt+1 = Zt+1Bt+1. (2.1)

In the benchmark version of our model, we follow BGG in supposing that markets are
incomplete. In particular, banks must satisfy a state-by-state zero profit condition:

[1− Ft (ω̄t+1)]Zt+1Bt+1 + (1− μ)

Z ω̄t+1

0

ωdFt (ω)
¡
1 +Rk

t+1

¢
qtkt+1 = (1 +Rt)Bt+1. (2.2)
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From the point of view of households, the assumed absence of complete markets reflects our
assumption that the only opportunities for intertemporal trade available to them is their
non-state contingent deposits with banks. From the perspective of banks, the only agents
with which they could in principle trade in complete markets is households and other banks.
Households are ruled out by assumption and other banks are ruled out by the assumption
that all banks are identical. An implication of the fact that (2.1) and (2.2) must hold in
each state of nature is that ω̄t+1 and Zt+1 must both vary across the period t + 1 state of
nature. The fact that interest paid by entrepreneurs varies across states of nature is perhaps
implausible, and for this reason we consider an alternative formulation below.1

The first term on the left of (2.2) represents the revenues received from non-bankrupt
entrepreneurs, who pay gross interest, Zt+1, and borrow Bt+1 in period t. The next term is
the total receipts from entrepreneurs who are bankrupt, net of monitoring costs. Rearranging
(2.2) and making use of the cutoff equation we obtain:

(16) Γt(ω̄t+1)− μGt(ω̄t+1) =
1 +Rt

1 +Rk
t+1

µ
1− nt+1

qtkt+1

¶
, (2.3)

which must hold in each realized t+ 1 state of nature. Here,

share of entrepreneurial earnings, (1+Rk
t+1)qtkt+1, received by bankz }| {

Γt(ω̄t+1) ≡ ω̄t+1 [1− Ft(ω̄t+1)] +Gt(ω̄t+1)(2.4)

Gt(ω̄t+1) ≡
Z ω̄t+1

0

ωdFt(ω).

The loan contract must satisfy an optimality condition. To derive this condition, note
that entrepreneurs’ utility at the termination of the contract entered into at date t is given
by

net worth of entrepreneurs at conclusion of date t debt contract, scaled by Ptztz }| {
Et

Z ∞

ω̄t+1

£¡
1 +Rk

t+1

¢
ωqtkt+1 − Zt+1Bt+1

¤
dFt(ω)

opportunity cost of entrepreneurial funds, scaled by Ptztz }| {
(1 +Rt)nt+1

= Et

⎧⎨⎩
share of entrepreneurial earnings kept by entrepreneurz }| {

[1− Γt(ω̄t+1)] × 1 +Rk
t+1

1 +Rt

⎫⎬⎭ (t, (t ≡

assets to net worth ratioz }| {
qtkt+1
nt+1

.(2.5)

Here, we have scaled entrepreneurial utility by the opportunity cost of their funds. In
equilibrium, the loan contract (which we can parameterize by (t and ω̄t+1

2) must optimize

1BGG present a defense of the implication that Zt+1 varies across states of nature in footnte 10.
2To see this, note

Bt+1 = nt+1 ((t − 1) , Zt+1 =
(t

(t − 1
¡
1 +Rk

t+1

¢
ω̄t+1.
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the entrepreneur’s utility, subject to the bank’s zero profit condition. In Lagrangian form,
the problem is:

max
(t,{ω̄t+1}

Et{
[1− Γt(ω̄t+1)]

¡
1 +Rk

t+1

¢
(t

1 +Rt
(2.6)

+ηt+1

state-by-state bank zero profit conditionz }| {Ã
[Γt(ω̄t+1)− μGt(ω̄t+1)]

¡
1 +Rk

t+1

¢
(t

1 +Rt
− (t + 1

!
}.

The choice variables in the optimization problem are the single (t and one ω̄t+1 for each
possible period t+1 state of nature. The cost of funds and the rate of return on capital are
taken as given in this optimization problem because banks are competitive. The first order
necessary conditions for optimality are:

Et

½
[1− Γt(ω̄]

1 +Rk
t+1

1 +Rt
+ ηt+1

µ
[Γt(ω̄t+1)− μGt(ω̄t+1)]

1 +Rk
t+1

1 +Rt
− 1
¶¾

= 0

−Γ0t(ω̄t+1) + ηt+1 [Γ
0
t(ω̄t+1)− μG0

t(ω̄t+1)] = 0

[Γt(ω̄t+1)− μGt(ω̄t+1)]
Rk
t+1

Rt
(t − (t + 1 = 0.

Substituting out for ηt+1 from the second first order condition into the first, we obtain:

Et

½
[1− Γt(ω̄t+1)]

1 +Rk
t+1

1 +Rt
+

Γ0t(ω̄t+1)

Γ0t(ω̄t+1)− μG0
t(ω̄t+1)

∙
1 +Rk

t+1

1 +Rt
(Γt(ω̄t+1)− μGt(ω̄t+1))− 1

¸¾
= 0.

In principle these equations should have been derived separately for entrepreneurs with each
different level of possible net worth. It is clear from the first order conditions that had we
done so, each one’s standard debt contract would have been characterized by the same (t,
{ω̄t+1} . Using the facts, Γ0 = 1− F and G0 = ω̄F 0, we obtain

(17)Et

½
[1− Γt(ω̄t+1)]

1 +Rk
t+1

1 +Rt
+

1− Ft(ω̄t+1)

1− Ft(ω̄t+1)− μω̄t+1F 0
t(ω̄t+1)

∙
1 +Rk

t+1

1 +Rt
(Γt(ω̄t+1)− μGt(ω̄t+1))−

= 0.

We now derive the law of motion of net worth. After the loan contract received in t− 1
is settled, but before it is known which entrepreneur exits and which stays, the (scaled by
Ptzt) net worth in period t of entprepreneurs is

Vt =

share of entrepreneurial earnings received by entrepreneursz }| {
[1− Γt−1(ω̄t)] ×

¡
1 +Rk

t

¢ qt−1
πtμz

kt,

11



where the appearance of πtμz in the denominator reflects that qt−1kt has been scaled by
Pt−1zt−1. The above expression can be written

Vt =

=1−Γt−1(ω̄t)z }| {½
1− ω̄t [1− Ft−1(ω̄t)]−

Z ω̄t

0

ωdFt−1(ω)

¾¡
1 +Rk

t

¢ qt−1
πtμz

kt

=
¡
1 +Rk

t

¢ qt−1
πtμz

kt −

earnings of banks, which must equal Bt(1+Rt−1)=(1+Rt−1)(qt−1kt−nt)z }| {µ
ω̄t [1− Ft−1(ω̄t)] + (1− μ)

Z ω̄t

0

ωdFt−1(ω)

¶¡
1 +Rk

t

¢ qt−1
πtμz

kt

−μ
Z ω̄t

0

ωdFt−1(ω)
¡
1 +Rk

t

¢ qt−1
πtμz

kt

=

∙
1 +Rk

t − (1 +Rt−1)− μ

Z ω̄t

0

ωdFt−1(ω)
¡
1 +Rk

t

¢¸ qt−1
πtμz

kt +
(1 +Rt−1)

πtμz
nt.

At this point, γt entrepreneurs exit and are replaced by γt new arrivals. Both surviving
entrepreneurs and new arrivals receive a lump sum transfer in the amount, we. Thus, nt+1 =
γtVt + we, or,

(18)nt+1 =
γt
πtμz

½
Rk
t −Rt−1 − μ

Z ω̄t

0

ωdFt−1(ω)
¡
1 +Rk

t

¢¾
ktqt−1 + we + γt

µ
1 +Rt−1

πtμz

¶
nt.

(2.8)
There is a way to rewrite this expression in a way that conveys additional intuition. Recall
the identity, Bt + nt = qt−1kt. Substitute this into the above expression:

nt+1 =
γt
πtμz

½
Rk
t −Rt−1 − μ

Z ω̄t

0

ωdFt−1(ω)
¡
1 +Rk

t

¢¾
ktqt−1 + we + γt

µ
1 +Rt−1

πtμz

¶
(qt−1kt −Bt)

=
γt
μz

∙
1− μ

Z ω̄t

0

ωdFt−1(ω)

¸
1 +Rk

t

πt
ktqt−1 + we − γt

µ
1 +Rt−1

πtμz

¶
Bt, (2.9)

after cancelling. Recall that 1+Rk
t is proportional to πt, so that inflation does not affect the

earnings of entrepreneurs. However, a jump in πt does reduce the payments on debt, and so
enhances their net worth in this way.
The resource constraint becomes:

dt + ct + It +Θ
1− γt
γt

[nt+1 − we] = (p∗t )
λf

λf−1

½
�t

µ
kt
μ∗z

¶α h
(w∗t )

λw
λw−1 Lt

i1−α
− φ

¾
(2.10)

Here, [nt+1 − we] /γt denotes the assets of entrepreneurs before they have received their real
transfer, we, and before it is determined if they are to be selected to exit. The assets of
the fraction of entrepreneurs that exit is (1− γt) times this amount, and they consume Θ
of their assets, with the other 1 − Θ being transferred to households. Also, dt denotes the
resources used up in monitoring:

dt =
μG(ω̄t)

¡
1 +Rk

t

¢
qt−1kt

μ∗z

1

πt
.

12



In the modified economy, entrepreneurs rather than households accumulate capital. This
means that the household intertemporal equation, (1.23), (i.e., (12)) must be deleted. So,
we have added three new equations, (2.7), (2.3) and (2.8) and deleted one. The net increase
in the number of equations is two. We increase the number of endogenous variables by two:
ω̄t+1 and nt+1 (the first variable is a function of the period t + 1 state of nature, while the
second is a function of the period t state of nature).

2.2. Some Additional Technical Details for the Model

This subsection evaluates various integrals and derivates pertaining to the log-normal cdf.
The log-normal pdf has two parameters, the variance of logω and the mean of ω.We set the
mean to unity and we calibrate the steady state value of the variace so that, in steady state,
F (ω̄) is equal to a specified calibrated value. To evaluate (8.9) it is useful to have a formula
for computing

G(ω̄) =

Z ω̄

0

ωdF (ω).

Thus, note ω = ex, dω = exdx, x = logω, dx = dω/ωZ ω̄

0

ωdF (ω) =

Z log ω̄

−∞
exf (x) dx,

where x = log (ω) and f is the Normal density function. Writing this explicitly:Z ω̄

0

ωdF (ω) =

Z log ω̄

−∞
exf (x) dx

=
1

σx
√
2π

Z log ω̄

−∞
ex exp

−(x−Ex)2

2σ2x dx,

where σ2x is the variance of x. Now, Eω = 1 implies Ex = − (1/2)σ2x, so thatZ ω̄

0

ωdF (ω) =
1

σx
√
2π

Z log ω̄

−∞
ex exp

−(x+1
2σ

2
x)

2

2σ2x dx

=
1

σx
√
2π

Z log ω̄t

−∞
exp

x2σ2x−(x+1
2σ

2
x)

2

2σ2x dx

=
1

σx
√
2π

Z log ω̄t

−∞
exp

−(x− 12σ2x)
2

2σ2x dx.

Now, make the change of variable,

v =
x− 1

2
σ2x

σx
=

x+ 1
2
σ2x

σx
− σx

v̄ =
log (ω̄) + 1

2
σ2x

σx
− σx

dv =
1

σx
dx

13



so that Z ω̄

0

ωdF (ω) =
1

σx
√
2π

Z log(ω̄)+1
2σ

2
x

σx
−σx

−∞
exp

−v2
2 σxdv

=
1√
2π

Z log(ω̄)+1
2σ

2
x

σx
−σx

−∞
exp

−v2
2 dv

= prob

∙
x <

log (ω̄) + 1
2
σ2x

σx
− σx

¸
.

where

Eω = Eex = e[Ex+
1
2
σ2x] = 1

Ex = −1
2
σ2x.

Now consider F and its derivative. Note

F (ω̄) =

Z ω̄

0

dF (ω) =
1

σx
√
2π

Z log ω̄

−∞
exp

−(x+1
2σ

2
x)

2

2σ2x dx.

We make a change of variable similar to the one above:

v =
x+ 1

2
σ2x

σx

v̄ =
log (ω̄) + 1

2
σ2x

σx

dv =
1

σx
dx

so that

F (ω̄) =

Z ω̄

0

dF (ω) =
1√
2π

Z log(ω̄)+1
2σ

2
x

σx

−∞
exp

−v2
2 dv

= prob

∙
v <

log (ω̄) + 1
2
σ2x

σx

¸
Differentiate with respect to ω̄ :

F 0 (ω̄) =
1

ω̄σx

1√
2π
exp

−
log(ω̄)+1

2σ
2
x

σx

2

2

=
1

ω̄σx
Standard Normal pdf

µ
log (ω̄) + 1

2
σ2x

σx

¶
,

where the first equality uses Leibniz’s rule.
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3. No-monitoring Cost, no Sticky Price/Wage Version of the Model

When μ = 0, the 5 equations that pertain to the entrepreneur part of the model reduce to:

Et

1 +Rk
t+1

1 +Rt
= 0 (3.1)

1 +Rk
t =

rkt + (1− δ)qt
qt−1

πt (3.2)

ct + It +Θ
1− γt
γt

[nt+1 − we] = �t

µ
kt
μ∗z

¶α

h1−αt − φ (3.3)

nt+1 =
γt
πtμz

©
Rk
t −Rt−1

ª
ktqt−1 + we + γt

µ
1 +Rt−1

πtμz

¶
nt. (3.4)

Γt(ω̄t+1)
¡
1 +Rk

t+1

¢
qtkt+1 = (1 +Rt)Bt+1 (3.5)

The first equation is the first order condition associated with the optimal contract. We can
derive it more simply in the case, μ = 0. Again, we suppose that the entrepreneur cares only
about the expected value of what he/she gets to keep at the end of the contract:

max
Bt+1,{ω̄t+1}

Et

share of income from capital going to entrepreneurz }| {
[1− Γt(ω̄t+1)]

¡
1 +Rk

t+1

¢
qtkt+1,

subject to the state by state period t+ 1 zero profit condition:

share of entrepreneurial earnings received by bankz }| {
Γt(ω̄t+1) ×

entrepreneurial earningsz }| {¡
1 +Rk

t+1

¢
qtkt+1 =

obligations from bank to households in t+1z }| {
(1 +Rt)Bt+1 ,

where
Bt+1 = qtkt+1 − nt+1, Γt(ω̄t+1) ≡ ω̄t+1 [1− Ft(ω̄t+1)] +Gt(ω̄t+1).

This is the same as

max
Bt+1,{ω̄t+1}

Et

⎧⎪⎨⎪⎩
total earnings of capitalz }| {¡
1 +Rk

t+1

¢
qtkt+1 −

part of earnings going to bankz }| {
Γt(ω̄t+1)

¡
1 +Rk

t+1

¢
qtkt+1

⎫⎪⎬⎪⎭
= max

Bt+1,{ω̄t+1}
Et

©¡
1 +Rk

t+1

¢
qtkt+1 − (1 +Rt) (qtkt+1 − nt+1)

ª
= max

Bt+1,{ω̄t+1}
Et

©¡
1 +Rk

t+1

¢
(Bt+1 + nt+1)− (1 +Rt)Bt+1

ª
(3.6)

= max
Bt+1,{ω̄t+1}

Et

©£¡
1 +Rk

t+1

¢
− (1 +Rt)

¤
Bt+1 +

¡
1 +Rk

t+1

¢
nt+1

ª
,

Note that this problem can be motivated in an even simpler way. Consider someone who
has assets, nt+1, and wishes to borrow Bt+1 at a nominally state-non contingent interest
rate, Rt. That person will choose Bt+1 to maximize (3.6). As long as borrowing occurs (i.e.,
Bt+1 > 0), it must be that

EtR
k
t+1 = Rt.
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If we leave this like this, then (3.6) is sometimes positive, sometimes negative. How can we
interpret this? The household is getting a non-state-contingent nominal payoff, (1 +Rt)Bt+1,
and the projects collectively generate a state-contingent nominal payoff,

¡
1 +Rk

t+1

¢
(Bt+1 + nt+1) .

The ‘incomplete markets’ interpretation is that entrepreneurs in fact have a standard debt
contract with banks, in which they pay a specified state-contingent interest rate in case they
earn enough on their project and they turn over everything they have in case they do not
earn enough. Under the ‘complete markets’ interpretation (see below) the entrepreneur also
has a fixed nominal non-state-contingent interest rate with a bank, and the bank enters
state-contingent financial markets with the household that allows it to pay the non-state-
contingent amount, (1 +Rt)Bt+1. As a result, condition (3.6) only has to hold when summed
across date t+1 states of nature, where the different states are weighted by the household’s
marginal utility of currency in that state. Here, we pursue the incomplete markets interpre-
tation. In part, this is because of evidence below that the equilibrium allocations are roughly
the same in the two cases.
Under incomplete markets and standard debt contract interpretation, the zero profits

condition of banks implies:

Γt(ω̄t+1)
¡
1 +Rk

t+1

¢
(Bt+1 + nt+1) = (1 +Rt)Bt+1,

or,

Γt(ω̄t+1) =
1 +Rt

1 +Rk
t+1

µ
1− nt+1

qtkt+1

¶
, (3.7)

where

Γt(ω̄t+1) = ω̄t+1

(
1− prob

"
v <

log (ω̄t+1) +
1
2
σ2x,t

σx,t

#)
+ prob

"
x <

log (ω̄t+1) +
1
2
σ2x,t

σx,t
− σx,t

#

Numerical experiments suggest that the function, Γt(ω̄t+1), has a hump-shape in the neigh-
borhood of its maximal value, when μ > 0. However, in the μ = 0 case considered here,
Γt(ω̄t+1) seems to be monotone increasing in ω̄t+1. Thus, for given σ2x,t, there is a unique
value of ω̄t+1 that solves the above equation, if there is one at all. Since Γt(ω̄t+1) is bounded
above by unity, we cannot have Rk

t+1 be too much smaller than Rt, for example. In steady
state, it must be that Rk

t+1 = Rt. In this case, a solution requires simply that the debt be
positive.
When the state-contingent value of ω̄t+1 which solves the zero profit condition has been

found, then the state-contingent rate of interest, Zt+1, on the contract can be determined
from:

ω̄t+1

¡
1 +Rk

t+1

¢
qtkt+1

Bt+1
= Zt+1. (3.8)

The measure of entrepreneurs who pay this is [1− Ft (ω̄t+1)] .
Also, to see the Fisher effect here, recall the alternative representation of the law of

motion of net worth derived in (2.9):

nt+1 =
γt
μz

½£
rkt + (1− δ)qt

¤
kt −

1 +Rt−1

πt
Bt

¾
+ we.
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That is, next period’s net worth is equal to the current period payoff on capital minus the real
payments on the nominal debt, which are reduced by inflation when Rt−1 is not contingent
on the date t state. This corresponds to the Fisher effect on the debt. It is interesting to see
how the intertemporal Euler equation is changed by this nominal rigidity. Making use of the
fact, (1 +Rt) = Et

¡
1 +Rk

t+1

¢
, we have that the household’s intertemporal Euler equation

is:

Et

µ
β

μz

λz,t+1
πt+1

¶
Et

¡
1 +Rk

t+1

¢
= λz,t,

so,

Et
β

μz

λz,t+1
λz,tπt+1

¡
1 +Rk

t+1

¢
= 1 + covt

µ
β

μz

λz,t+1
λz,tπt+1

, Rk
t+1

¶
. (3.9)

3.1. No Idiosyncratic Uncertainty

Consider the case when there is no idiosyncratic uncertainty at the level of entrepreneurs.
In this case,

G (ω̄) , F (ω̄) =

½
0 ω̄ < 1
1 ω̄ ≥ 1 ,

so that Γ(ω̄) is a continuous function:

Γ(ω̄) = ω̄ [1− F (ω̄)] +G (ω̄) =

½
ω̄ ω̄ ≤ 1
1 ω̄ ≥ 1 .

For small enough fluctuations in aggregate shocks, Γ(ω̄) < 1, so that Γ(ω̄) = ω̄, and (3.7)
implies:

ω̄t+1 =
1 +Rt

1 +Rk
t+1

Bt+1

qtkt+1
,

and, hence, using (3.8),
1 +Rt = Zt+1.

for it is still true that the zero proft condition must be made to hold in each state. So,
entrepreneurs, when there is no uncertainty, must simply pay interest equal to 1 + Rt. For
small enough shocks they can always afford this, since if Rk

t+1 < Rt, they can simply dig into
the earnings from their own net worth.
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The equilibrium conditions in this case are:

1

λf
=

λw
ψLh

σL
t

λz,t

(1− α) �t

µ
μzht
kt

¶α

(3.10)

gt + ct + It +Θ
1− γt
γt

[nt+1 − we] = �t

µ
kt
μz

¶α

h1−αt − φ (3.11)

kt+1 − (1− δ)μ−1z kt =

∙
1− S00μ2z

2
(
It
It−1
− 1)2

¸
It (3.12)

Et{β
1

μz
λz,t+1

1 +Rt

πt+1
− λz,t} = 0 (3.13)

Et

∙
λz,t −

μz
ctμz − bct−1

+ bβ
1

μzct+1 − bct

¸
= 0 (3.14)

Et{λztqt
∙
1− S00μ2z

2
(
It
It−1
− 1)2 − S00μ2z(

It
It−1
− 1) It

It−1

¸
−λzt + βλzt+1qt+1S

00μ2z(
It+1
It
− 1)

µ
It+1
It

¶2
} = 0 (3.15)

rkt = α�t

µ
μzht
kt

¶1−α
1

λf
(3.16)

1 +Rk
t =

rkt + (1− δ)qt
qt−1

πt (3.17)

Et

¡
1 +Rk

t+1

¢
= 1 +Rt (3.18)

nt+1 =
γt
μz

½£
rkt + (1− δ)qt

¤
kt −

1 +Rt−1

πt
[qt−1kt − nt]

¾
+ we (3.19)

This represents 10 equations in 11 unknowns: ht, kt+1, ct, It, λz,t, qt, rkt , R
k
t , πt, Rt, nt+1. Sup-

pose we add an equation that characterizes monetary policy to close the system. Note that
in this case, (3.19) plays no role in the dynamics of the model if Θ = 0. Indeed, that equation
and nt+1 can be dropped in the solution of the model, and it can be introduced later simply
as a way to define net worth. So, the Fisher effect plays no role here. When Θ > 0 then
equation (3.19) cannot be dropped, because nt also appears in the resource constraint.
To gain additional insight, consider the special case in which the household is the one

doing the investment. In this case, we replace (1+Rt)/πt+1 in the household’s intertemporal
Euler equation, (3.13), with

£
rkt+1 + (1− δ)qt+1

¤
/qt. In this case, (3.10)-(3.16) represents 7

equations in 7 unknowns: ht, kt+1, ct, It, λz,t, qt, rkt . I suspect that, up to linearization, there is
no distinction between these two systems when Θ = 0. One problem is that entrepreneurial
net worth does not exert a drag on the ability of entrepreneurs to buy capital. Without
this, it’s not clear why an entrepreneur who, say, has his net worth reduced because of a
jump in the price level, would be affected in how much he borrows. How much or how
little investment he does should be dictated by investment opportunities. Inspection of the
Euler equation, (3.9), indicates one slight effect of having the entrepreneurs do investment,
which is that they are not risk averse. But, given that risk aversion plays very little role in
household investment, giving the task of investment over to risk averse entrepreneurs should
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not change things very much (and, perhaps not at all in the first order approximation).

3.2. With Idiosyncratic Uncertainty

When there is idiosyncratic uncertainty and μ = 0, then the equations of the system are still
the ones in the previous subsection. In particular, the Fisher effect and net worth play no
role in the dynamics of the system if Θ = 0. In this case, the law of motion of net worth
simply defines net worth and plays no role in model dynamics. When Θ > 0, then net worth
enters as though it were a lump sum tax on ordinary households and creates a wealth effect
on them.

3.3. No Frictions, μ = 0

We take this down to the simplest version of our model, no sticky prices/wages, no adjustment
costs, no habit. Just the financial frictions.

1

λf
=

λwψLh
σL
t ct

(1− α) �t

µ
μzht
kt

¶α

(3.20)

gt + ct + It +Θ
1− γt
γt

[nt+1 − we] = �t

µ
kt
μz

¶α

h1−αt − φ (3.21)

kt+1 − (1− δ)μ−1z kt = It (3.22)

Et
β

μzct+1

1 +Rt

πt+1
=

1

ct
(3.23)

rkt = α�t

µ
μzht
kt

¶1−α
1

λf
(3.24)

Et

£
rkt+1 + (1− δ)

¤
πt+1 = 1 +Rt (3.25)

nt+1 =
γt
μz

½£
rkt + 1− δ

¤
kt −

1 +Rt−1

πt
[kt − nt]

¾
+ we (3.26)

This is 7 equations in 8 unknowns: ht, kt+1, ct, It, Rt, πt, r
k
t , nt+1. Note that when Θ = 0

(3.20)-(3.25) represents 6 equations in the 7 unknowns, ht, kt+1, ct, It, Rt, πt, r
k
t . These could

be solved by adding a Taylor rule monetary policy. In this case, (3.26) would simply define
nt, but would have no impact on the dynamics of the variables.

3.4. Steady State

We now have a total of 11 equations (including the 5 in (3.1)-(3.5)) in the 7 previous un-
knowns plus 5 additional Γt(ω̄t+1), R

k
t , πt, dt, nt variables. Now, the system requires an

additional equation to solve. That equation is provided by the monetary policy rule.
We discuss the computation of the steady state of the model. We have:

Rk = R.

The households’ intertemporal condition on nominal debt implies:

1 +R =
μzπ

β
.
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The intertemporal equation on investment implies q = 1. The sticky wage equilibrium con-
ditions are:

Fw =
λz

h
λw

1− βξw

Kw =
1

ψL

w̃Fw

Kw =
h1+σL

1− βξw
,

so that
h1+σL

1− βξw
=
1

ψL

w̃
λz

h
λw

1− βξw
→ λw

ψLh
σL

λz
= w

The sticky price equilibrium conditions imply s = 1/λf . Efficient employment decisions by
firms then imply:

1

λf
=

w

(1− α)

µ
μzht
kt

¶α

,

which can be put together with the household condition to obtain:

1

λf
=

λw
ψLh

σL
t

λz,t

(1− α)

µ
μzht
kt

¶α

.

We have that
1 +Rk

π
= rk + 1− δ =

μz
β
,

where efficiency in the use of capital by intermediate good firms implies:

rk = α

µ
μzh

k

¶1−α
1

λf
.

Finally, the resource constraint, law of motion of net worth and zero profit condition on
banks correspond to:

c+ I +Θ
1− γ

γ
[n− we] =

µ
k

μz

¶α

h1−α − φ

n =
γ

μz

£
rk + 1− δ

¤
k + we − γ

µ
1 +R

πμz

¶
B

total earnings of entrepreneursz }| {
(1 +R) (ω̄ [1− F (ω̄)] +G (ω̄)) k =

total payments to householdsz }| {
(1 +R) (k − n) .

We now describe a numerical algorithm for finding the steady state. First,

α

µ
μzh

k

¶1−α
1

λf
=

μz
β
− (1− δ)
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delivers the labor/capital ratio:

h

k
=
1

μz

"
λf

μz
β
− (1− δ)

α

# 1
1−α

.

Manipulating the law of motion of net worth, we obtain:

n

k
=

we

k
+

γ

β

n

k
=

we

k

1− γ
β

.

Also,
n

k
− we

k
=

we

k

"
1

1− γ
β

− 1
#
=

we

k

γ
β

1− γ
β

We work out the implications of the steady state zero profit condition for φ. Thus,µ
k

μz

¶α

h1−α = fkk + fhh

fk = α
1

μz

µ
μzh

k

¶1−α
, fh = (1− α)

µ
k

μzh

¶α

rk = α

µ
μzh

k

¶1−α
1

λf
=

μzfk
λf

, fk =
λf
μz

rk

w̃ =
1

λf
(1− α)

µ
μzh

k

¶−α
=
1

λf
fh,

= λf

∙
1

μz
rkk + w̃h

¸
− φ

Then,

y
zero ss profitsz}|{

=
1

μz
rkk + w̃h =

1

λf
[fkk + fhh]

=
1

λf
[y + φ]

(λf − 1) y = φ,

We conclude:

y =

µ
k

μz

¶α

h1−α − φ

=

µ
k

μz

¶α

h1−α − (λf − 1) y,

or,

y =
1

λf

µ
k

μz

¶α

h1−α
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Substituting the latter into the resource constraint:

g + c+ I +Θ
1− γ

γ
[n− we] =

1

λf

µ
k

μz

¶µ
μzh

k

¶1−α
or, since ηgy = g,

c+ I +Θ
1− γ

γ
[n− we] =

1− ηg
λf

µ
k

μz

¶µ
μzh

k

¶1−α
Substituting the steady state capital accumulation equation:£

1− (1− δ)μ−1z
¤
k = I,

into the resource constraint:

c

k
+
£
1− (1− δ)μ−1z

¤
+Θ

1− γ

γ

∙
n

k
− we

k

¸
=
1− ηg
λf

1

μz

µ
μzh

k

¶1−α
.

Substituting out the simplified version of the law of motion for net worth:

c

k
+Θ

1− γ

γ

γ
β

1− γ
β

we

k
=
1− ηg
λf

1

μz

µ
μzh

k

¶1−α
−
£
1− (1− δ)μ−1z

¤
The relationship between the marginal rate of substitution and the marginal product of labor
is, after rearranging,

1

λfλw
=

ψLh
σL

λz

(1− α)

µ
μzh

k

¶α

and we also have:

c
μz − b

μz − bβ
=
1

λz
.

Combining the latter two:

1− α

λfλwψL

³
μzh
k

´α μz − bβ

μz − b
= hσLc =

µ
μzh

k

¶σL µ k

μz

¶σL k

μz

c

k
μz,

or,
1− α

μzλfλwψL

³
μzh
k

´α+σL μz − bβ

μz − b

µ
k

μz

¶−(1+σL)
=

c

k
.

substitute this into the resource constraint:

1−α
μzλfλwψL(

μzh
k )

α+σL

μz−bβ
μz−b³

k
μz

´(1+σL) +Θ
1− γ

γ

γ
β

1− γ
β

we

k
=
1− ηg
λf

1

μz

µ
μzh

k

¶1−α
−
£
1− (1− δ)μ−1z

¤
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which is a single equation in the one unknown, k. Alternatively,

a³
k
μz

´(1+σL) +Θ
1− γ

γ

γ
β

1− γ
β

we

k
= b,

where

a =
1− α

μzλfλwψL

³
μzh
k

´α+σL μz − bβ

μz − b

b =
1− ηg
λf

1

μz

µ
μzh

k

¶1−α
−
£
1− (1− δ)μ−1z

¤
Obviously, there exists a solution for k, and that solution is unique. If Θ = 0, then it can be
solved for analytically. Since we work with a small value of Θ, it is useful to consider, as a
starting point for nonlinear computation, the steady state value of k when Θ = 0 :

k = μz

³a
b

´ 1
1+σL .

The actual value of k will be somewhat larger than this.
Given k all the other variables substituted out in the previous derivations can be com-

puted. We obtain ω̄ from the bank zero-profit condition:

ω̄ [1− F (ω̄)] +G (ω̄) =
k − n

k
. (3.27)

This is the steady state debt to asset ratio of entrepreneurs. This determines the steady
state share of entrepreneurial profits going to banks. Recall,

F (ω̄) = prob

∙
v <

log (ω̄) + 1
2
σ2x

σx

¸
G (ω̄) = prob

∙
x <

log (ω̄) + 1
2
σ2x

σx
− σx

¸
.

We find ω̄ as follows. First, set a calibrated value of F (ω̄) , the bankruptcy rate. Given ω̄, this
allows us to compute σ2x. Given ω̄ and σ2x we can compute G (ω̄) and, hence ω̄ [1− F (ω̄)] +
G (ω̄) . Then, adjust ω̄ until (3.27) is satisfied.

4. The Fisherian Debt-Deflation Hypothesis

We wish to diagnose the role of the assumption that payments to households are non-state
contingent in nominal terms. We do this by exploring the BGG version of the model in
which the payment on households’ bank deposits is non-state contingent in real terms. Thus,
suppose that instead of earning gross nominal return, 1+Rt, from t to t+1 households instead
earn gross nominal return,

Ftπt+1,
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from t to t+1. Here, Ft denotes the real return from t to t+1, which is non-state contingent
in real terms. With two exceptions, we substitute 1 +Rt with Ftπt+1 everywhere. The two
exceptions are the Taylor rule, where we continue to assume a non-state contingent nominal
rate of interest is ‘controlled’. To ensure that that rate of interest is well defined, we keep
equation (10). We add an equation for household deposits:

(10)0Et{β
1

μz,t+1
λz,t+1Ft − λz,t} = 0.

We must change the relevant equations associated with the entrepreneur. The zero profit
condition becomes:

(16)0 Γt−1(ω̄t)− μGt−1(ω̄t) =
Ft−1πt
1 +Rk

t

µ
1− nt

qt−1kt

¶
.

The optimality condition becomes:

(17)0Et

½
[1− Γt(ω̄t+1)]

1 +Rk
t+1

Ftπt+1
+

Γ0t(ω̄t+1)

Γ0t(ω̄t+1)− μG0
t(ω̄t+1)

∙
1 +Rk

t+1

Ftπt+1
(Γt(ω̄t+1)− μGt(ω̄t+1))− 1

¸¾
= 0

and the law of motion of net worth becomes:

(18)0nt+1 =
γt
πtμ∗z

½
1 +Rk

t − Ft−1πt − μ

Z ω̄t

0

ωdFt−1(ω)
¡
1 +Rk

t

¢¾
ktqt−1 + we + γt

Ft−1

μz
nt

5. Complete Markets Version of the Model

We replace the state-by-state zero profit condition, (2.2), by

Etmt+1

∙
[1− Ft (ω̄t+1)]Zt+1Bt+1 + (1− μ)

Z ω̄t+1

0

ωdFt (ω)
¡
1 +Rk

t+1

¢
qtkt+1

¸
= Etmt+1 (1 +Rt)Bt+1 = Bt+1,

using (1.21). Here, mt+1 is the relative price of consumption in period t and each state
of nature in period t + 1, which is treated as exogenous by the bank. In equilibrium, this
relative price is related to the household’s intertemporal marginal rate of substitution in
consumption as follows:

mt+1 =
βλt+1
λt

=
βλz,t+1

λz,tπt+1μz,t+1
.

In effect, this specification of the zero profit condition allows the bank to have non-zero
profits in each individual state of nature, as long as the zero profit condition is satisfied.
Positive and negative cash positions in different states of nature correspond to transfers
between banks and households. Thus, we are implicitly allowing households to participate
in state contingent markets for money, in addition to holding deposits with banks.
We suppose that Zt+1, the nominal interest rate paid by non-bankrupt entrepreneurs, is

not contingent upon the date t+1 state of nature. Thus, the standard debt contract offered
in period t is associated with a single Zt+1 and a single Bt+1. There is a sequence of ω̄t+1’s
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across period t+ 1 states of nature which is determined by (2.1). To derive the equilibrium
condition associated with the optimal debt contract, it is convenient to substitute out for
ω̄t+1 using (2.1):

Etmt+1

("
1− Ft

Ã
Zt+1Bt+1¡

1 +Rk
t+1

¢
qtkt+1

!#
Zt+1

Bt+1

qtkt+1
+ (1− μ)

Z Zt+1Bt+1

(1+Rkt+1)qtkt+1

0

ωdFt (ω)
¡
1 +Rk

t+1

¢)
=

Bt+1

qtkt+1

Making use of the definition of the asset to net worth ratio, (t, in (2.5):

Etmt+1

"∙
1− Ft

µ
At

1 +Rk
t+1

¶¸
At + (1− μ)

Z At
1+Rkt+1

0

ωdFt (ω)
¡
1 +Rk

t+1

¢#
= 1− 1

(t
,

where

At ≡ Zt+1

µ
1− 1

(t

¶
= Zt+1

Bt+1

qtkt+1
(= ω̄t+1

¡
1 +Rk

t+1

¢
),

and, recall,

(t ≡
qtkt+1
nt+1

.

The standard debt contract can now be expressed in terms of two parameters, (t and At.
Competition among banks ensures that these two parameters are selected to maximize en-
trepreneurial utility subject to the zero profit condition. The Lagrangian representation of
the problem is:

max
(t,At

Et{

h
1− Γt

³
At

1+Rk
t+1

´i ¡
1 +Rk

t+1

¢
1 +Rt

(t

+ηt

(
Etmt+1

"∙
1− Ft

µ
At

1 +Rk
t+1

¶¸
At + (1− μ)

Z At
1+Rkt+1

0

ωdFt (ω)
¡
1 +Rk

t+1

¢#
+
1

(t
− 1
)
}.

Since the zero profit condition associated with the period t problem is now represented by
a single equation, there is only one multiplier, ηt, for each date. The first order necessary
condition associated with the optimal (t is

ηt = ((t)
2Et

⎛⎝
h
1− Γt

³
At

1+Rk
t+1

´i ¡
1 +Rk

t+1

¢
1 +Rt

⎞⎠ .

25



The first order necessary condition associated with the optimal At is:3

Et

−Γ0t
³

At
1+Rk

t+1

´
1 +Rt

(t + ηtEtmt+1[−F 0
t

µ
At

1 +Rk
t+1

¶
At

1 +Rk
t+1

+ 1− Ft

µ
At

1 +Rk
t+1

¶
+(1− μ)

At

1 +Rk
t+1

F 0
t

µ
At

1 +Rk
t+1

¶
] = 0,

or,

Et

⎧⎨⎩ηt
βλz,t+1

λz,tπt+1μz,t+1

∙
1− Ft

µ
At

1 +Rk
t+1

¶
− μF 0

t

µ
At

1 +Rk
t+1

¶
At

1 +Rk
t+1

¸
−

Γ0t

³
At

1+Rk
t+1

´
1 +Rt

(t

⎫⎬⎭ = 0

We summarize the equilibrium conditions associated with the standard debt contract in
terms of the notation of the other sections:

0 = Et{ηt
βλz,t+1

λz,tπt+1μz,t+1

∙
1− Ft

µ
At

1 +Rk
t+1

¶
− μF 0

t

µ
At

1 +Rk
t+1

¶
At

1 +Rk
t+1

¸
(5.1)

−
1− Ft

³
At

1+Rk
t+1

´
1 +Rt

(t}

ηt = ((t)
2Et

⎛⎝
h
1− Γt

³
At

1+Rk
t+1

´i ¡
1 +Rk

t+1

¢
1 +Rt

⎞⎠
1− 1

(t
= Et

βλz,t+1
λz,tπt+1μz,t+1

¡
1 +Rk

t+1

¢ ∙
Γt(

At

1 +Rk
t+1

)− μGt(
At

1 +Rk
t+1

)

¸
, (5.2)

where
At = ω̄t+1

¡
1 +Rk

t+1

¢
.

The three equilibrium conditions associated with the financial frictions are the law of motion
of net worth, (2.8), the optimality condition (5.1) and the zero profit condition, (5.2). In
addition, the resource constraint is (2.10).

6. Simplified Equilibrium Conditions

Here is a summary of the equations. They are expressed in simplified form. There are no
adjustment costs in capital, no sticky wages, and no habit persistence in consumption. The
three versions of the model are differentiated.

3We have made use of the result,
G0 (x) = g (f (x)) f 0 (x) ,

when

G (x) =

Z f(x)

g (ω) dω.
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6.1. CEE Model

The pricing setting equations are as before (we set p∗t = 1 because this is without loss of
generality when linearizing and w∗t = 1 because there are no wage setting frictions):

(2)Et

(
λz,t�t

µ
kt
μz

¶α

h1−αt +

µ
πι2t π̄

1−ι2

πt+1

¶ 1
1−λf

βξpFp,t+1 − Fp,t

)
= 0,

and

(3)λz,tλf

∙
�t

µ
kt
μz

¶α

h1−αt − φ

¸
st+

βξp

µ
πι2t π̄

1−ι2

πt+1

¶ λf
1−λf

⎡⎢⎣1− ξp

³
π
ι2
t π̄1−ι2

πt+1

´ 1
1−λf

1− ξp

⎤⎥⎦
1−λf

Fp,t+1 − Fp,t

⎡⎢⎣1− ξp

³
π
ι2
t−1π̄

1−ι2

πt

´ 1
1−λf

1− ξp

⎤⎥⎦
1−λf

= 0.

When linearized about steady state, these reduce to the usual Calvo equation:

π̂t = βEtπ̂t+1 + γŝt + λ̂f,t, γ ≡
¡
1− ξp

¢ ¡
1− βξp

¢
ξp

.

Setting ξw = 0, (4) and (5) reduce to the usual condition that the wage (scaled by Ptzt)
is a markup over marginal cost:

w̃t = λw
ψLh

σL
t

λz,t
, λz,t ≡

1

ct
,

where ct is consumption, scaled by zt. Real marginal cost:

st =
w̃t

(1− α) �t

µ
μzht
kt

¶α

,

where kt is the stock of capital, scaled by zt−1. Resource constraint:

ct + It = �t

µ
kt
μz

¶α

h1−αt

where It is investment, scaled by zt and

kt+1 − (1− δ)μ−1z kt = It.

Equation defining the nominal non-state contingent rate of interest:

Et{β
1

πt+1μz
λz,t+1 (1 +Rt)− λz,t} = 0

The capital first order condition:

Et

½
−λz,t + λz,t+1

β

μz

¡
1 +Rk

t+1

¢¾
= 0,

27



where Rk
t+1 denotes the rate of return on capital:

1 +Rk
t = rkt + 1− δ, rkt = α�t

µ
μzht
kt

¶1−α
st.

The monetary policy rule:

log (1 +Rt) = (1− ρ) log (1 +R) + ρ log (1 +Rt−1)

+
1

1 +R
(1− ρ) ãpπ log

πt+1
π

+ (1− ρ)ãy
1

4 (1 +R)
log

yt
y
+

1

400 (1 +R)
xpt ,

where yt denotes GDP (i.e., ct + It), scaled by zt.

6.2. CEE+BGG

We drop the household’s capital accumulation Euler equation. We add the following equa-
tions. Bank zero profit condition:

[Γt(ω̄t+1)− μGt(ω̄t+1)]
qtkt+1
nt+1

¡
1 +Rk

t+1

¢
= (1 +Rt)

µ
qtkt+1
nt+1

− 1
¶

which must hold in each realized t+1 state of nature.Optimality condition for entrepreneurial
loan contract:

Et

½
[1− Γt(ω̄t+1)]

1 +Rk
t+1

1 +Rt
+

Γ0t(ω̄t+1)

Γ0t(ω̄t+1)− μG0
t(ω̄t+1)

∙
1 +Rk

t+1

1 +Rt
(Γt(ω̄t+1)− μGt(ω̄t+1))− 1

¸¾
= 0.

Law of motion of entrepreneurial net worth, nt+1 :

nt+1 =
γt
πtμz

½
Rk
t −Rt−1 − μ

Z ω̄t

0

ωdFt−1(ω)
¡
1 +Rk

t

¢¾
ktqt−1 + we + γt

µ
1 +Rt−1

πtμz

¶
nt.

The resource constraint replaced by:

dt + ct + It +Θ
1− γt
γt

[nt+1 − we] = �t

µ
kt
μ∗z

¶α

L1−αt ,

where

dt =
μG(ω̄t)

¡
1 +Rk

t

¢
qt−1kt

μ∗z

1

πt
.

6.3. CEE+BGG-Fisher

The households are given an additional equation:

Et{β
1

μz
λz,t+1Ft − λz,t} = 0.

The zero profit condition on banks becomes:

Γt−1(ω̄t)− μGt−1(ω̄t) =
Ft−1πt
1 +Rk

t

µ
1− nt

qt−1kt

¶
.
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The optimality condition becomes:

Et

½
[1− Γt(ω̄t+1)]

1 +Rk
t+1

Ftπt+1
+

Γ0t(ω̄t+1)

Γ0t(ω̄t+1)− μG0
t(ω̄t+1)

∙
1 +Rk

t+1

Ftπt+1
(Γt(ω̄t+1)− μGt(ω̄t+1))− 1

¸¾
= 0

and the law of motion of net worth becomes:

nt+1 =
γt
πtμ∗z

½
1 +Rk

t − Ft−1πt − μ

Z ω̄t

0

ωdFt−1(ω)
¡
1 +Rk

t

¢¾
ktqt−1 + we + γt

Ft−1

μz
nt

7. Results

We first describe the results relative to a benchmark set of frictions. We then examine the
role of those frictions by shutting them down.

7.1. Benchmark Frictions

We used the following parameter values:

ξp = 0.75, λw = 1.05, σL = 1, b = 0.56, β = 1.004
−.25, ψL = 110,

F (ω̄) = 0.026, μ = 0.01, γ = 1− 0.022, Θ = 0.02,
we

c+ I + g
= 0.014, Θ

1− γ

γ

(n− we)

y
= 0.0006, μz = 1.0053,

λf = 1.20, α = 0.36, δ = 0.02,

ι = 0 (i.e., no indexation to lag inflation), ãp = 1.85, ãy = 0.20,

ρ̃ = 0.8, 100
¡
π4 − 1

¢
= 3.5, ρ = 0.9729,

ιw = 0.40 (wage indexation to lag inflation), S00 = 37.43,
c

c+ g + I
= 0.47,

I

c+ g + I
= 0.33,

Φ

c+ I + g
= 0.20,

g

c+ g + I
= 0.20

Consider the dynamic response to a technology shock in the various versions of the model
considered. The shock drives up the state of technology by 1 percent, which then decays
back to steady state according to a geometric pattern with coefficient 0.9729.

Percent Response in GDP to 1 percent Technology Shock
period 1 period 5 period 9 period 13 period 17 period 21 period 25

CEE 0.18 0.52 0.61 0.62 0.61 0.58 0.55
Incomplete 0.19 0.56 0.66 0.68 0.67 0.64 0.60
Incomplete/No Fisher 0.20 0.60 0.71 0.74 0.73 0.70 0.65
Complete 0.19 0.56 0.66 0.68 0.67 0.64 0.60

There are several things worth noting about these results. Whether markets are complete or
not makes virtually no difference. Also, the model with financial frictions (with or without
incomplete markets) produces relatively similar response in output compared with the CEE
model. When the Fisher effect is dropped from the incomplete markets version of the model,
then the effects on output are stronger. This is consistent with the view that the fall in
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the price level associated with a positive technology shock reallocates wealth away from
entrepreneurs. This inhibits entrepreneurs’ ability to buy capital, and acts on a drag on
output by slowing investment.
Consider now the effects of a monetary policy shock. We perturb xpt in (1.25) by .01.

This represents a 4 percentage point (400 basis points!) shock to the interest rate.

Percent Response in GDP to Monetary Policy Shock
period 1 period 5 period 9 period 13 period 17 period 21 period 25

CEE -0.77 -0.92 -0.52 -0.30 -0.19 -0.13 -0.10
Incomplete -0.86 -1.36 -1.18 -1.07 -1.00 -0.93 -0.85
Incomplete/No Fisher -0.87 -1.39 -1.19 -1.06 -0.97 -0.89 -0.80
Complete -0.85 -1.35 -1.17 -1.06 -1.00 -0.92 -0.84

Note that now the financial frictions are more important. In the 17th quarter, the effects on
output are 5 times larger than they are in CEE. Once again, we see that whether markets
are modeled as complete or not makes no difference. Following is the graph of the dynamic
response of gdp and other variables, to a technology shock. With some exceptions, all objects
are in deviation from steady state. The exceptions are consumption, investment, output,
net worth and loans. Their deviation from steady state is multiplied by 100 and divided by
steady state gdp.
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Following is the response of the variables to a monetary policy shock:
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Interestingly, the effects of the financial frictions that we describe here are smaller for
larger monitoring costs, μ. When we set μ = 0.15 (μ = 0.12 is the calibrated value used in
BGG) we obtain the following response to a monetary policy shock:

Percent Response in GDP to Monetary Policy Shock, μ = 0.15
period 1 period 5 period 9 period 13 period 17 period 21 period 25

CEE -0.77 -0.92 -0.52 -0.30 -0.19 -0.13 -0.10
Incomplete -0.93 -1.11 -0.65 -0.41 -0.30 -0.24 -0.19
Incomplete/No Fisher -0.93 -1.11 -0.63 -0.39 -0.27 -0.20 -0.16
Complete -0.92 -1.09 -0.63 -0.41 -0.30 -0.24 -0.20

There is now a much smaller effect from the financial frictions.
It is even possible to reverse the impact of the financial frictions. Consider the following

simultaneous change in the values of the parameters:

μ = 0.15, S00 = 4, σa = 0.001,

where σa is a new parameter, which controls costs associated with variable capital utilization.
Thus, the capital that firms employ is the ‘services’ of capital, utKt. Utilization of capital,
ut, generates adjustment costs in units of the final good that entrepreneurs must pay, in the
amount a (ut)Kt, where

a (ut) = rk
exp (σa (ut − 1))− 1

σa
.

Here, rk denotes the steady state rental rate of capital and σa is a parameter. The function,
a () , is increasing and convex, and has value and slope zero at ut = 1. Unity is the steady
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state value of ut. The modification requires adjusting the rate of return on capital, Rk
t ,

and the resource constraint in obvious ways. The results are as follows. Note that now the
economy without financial frictions responds much more strongly to a technology shock than
does the economy without those frictions.

Percent Response in GDP to 1 percent Technology Shock
period 1 period 5 period 9 period 13 period 17 period 21 period 25

CEE 0.39 1.40 1.54 1.36 1.15 0.99 0.89
Incomplete 0.43 1.12 1.00 0.74 0.53 0.41 0.35
Incomplete/No Fisher 0.49 1.31 1.20 0.88 0.62 0.46 0.38
Complete 0.43 1.11 1.00 0.74 0.54 0.42 0.35

In the case of the monetary policy shock, output in the economy without frictions declines
more than does output in the economy with the frictions.

Percent Response in GDP to Monetary Policy Shock
period 1 period 5 period 9 period 13 period 17 period 21 period 25

CEE -1.32 -2.05 -1.28 -0.70 -0.40 -0.26 -0.20
Incomplete -1.30 -1.82 -1.02 -0.48 -0.22 -0.12 -0.10
Incomplete/No Fisher -1.34 -1.93 -1.02 -0.42 -0.15 -0.07 -0.06
Complete -1.27 -1.77 -1.01 -0.50 -0.25 -0.14 -0.11

The impulse response functions are displayed as follows. The response to the technology
shock is:
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The responses to the monetary policy shock are:
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7.2. Dropping the Non-Financial Frictions

Now consider the case in which there are no wage/price frictions (i.e., ξp = ξw = 0), moni-
toring costs are zero, there are no adjustment costs in capital (S00 = 0), and there is no habit
persistence (b = 0). All other parameters are at their benchmark values listed above. In this
case we obtain:

Percent Response in GDP to Monetary Policy Shock
period 1 period 5 period 9 period 13 period 17 period 21 period 25

CEE 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Incomplete -12.76 -11.96 -11.20 -10.48 -9.79 -9.14 -8.53
Incomplete/No Fisher 1.49 0.05 0.05 0.04 0.04 0.04 0.03
Complete -12.76 -11.96 -11.20 -10.48 -9.79 -9.14 -8.53

As expected, the monetary policy shock is neutral in the CEE model in this case. However,
note how very non-neutral monetary policy is in the incomplete and complete markets mod-
els. This finding is consistent with the conclusions reached in section 3.3, because Θ > 0. To
further confirm those findings, we set Θ = 0. In this case, equilibrium indeterminacy results
if expected inflation appears in the Taylor rule, so we replaced it with current inflation (this
is no surprise in light of the analysis in 3.3.) In this case, we obtained the following results

Percent Response in GDP to Monetary Policy Shock
period 1 period 5 period 9 period 13 period 17 period 21 period 25

CEE 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Incomplete 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
Incomplete/No Fisher 0.79 0.03 0.02 0.01 0.01 0.01 0.01
Complete 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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This is as expected, although we do not have good intuition for the result in the no Fisher
case.
We then reset Θ = 0.02, and we also set μ = 0.10. We then obtained the following very

different results4:

Percent Response in GDP to Monetary Policy Shock
period 1 period 5 period 9 period 13 period 17 period 21 period 25

CEE 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Incomplete 4.44 3.59 2.95 2.45 2.05 1.74 1.48
Incomplete/No Fisher 1.48 0.06 0.05 0.05 0.04 0.04 0.03
Complete 4.38 3.59 2.94 2.45 2.05 1.74 1.48

This last result may at first seem odd. The positive monetary policy shock drives up the
rate of interest and causes a jump in output. The jump is particularly pronounced when
there is a Fisher effect. The following figure displays all the impulse responses. Note the
enormous jump in net worth. In this model, the rise in net worth acts like a lump sum tax
on ordinary households. They respond by working harder and consuming less. Investment
jumps. These responses don’t resemble the responses we think we see in the data.
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We conclude that although the financial frictions are a source of non-neutrality, even in
the absence of other frictions, they have counterfactual implications without those other
frictions.

4In this case, the Taylor rule in the CEE model had current inflation (otherwise there would have been
indeterminacy), but the Taylor rule in the other models was reset to having expected inflation one quarter
in the future.

34



7.3. Adding Monetary Frictions But Leaving out Adjustment Costs and Habit

We now set ξp, ξw, μ and Θ at their benchmark values, and keep S00 = b = 0. Following are
what happens after a monetary policy shock

Percent Response in GDP to Monetary Policy Shock
period 1 period 5 period 9 period 13 period 17 period 21 period 25

CEE -65.70 -4.87 -1.88 -0.90 -0.46 -0.23 -0.09
Incomplete -79.91 -7.49 -3.82 -2.42 -1.68 -1.20 -0.86
Incomplete/No Fisher -29.18 -5.54 -2.44 -1.41 -0.92 -0.63 -0.43
Complete -79.91 -7.49 -3.82 -2.42 -1.68 -1.20 -0.86

Note how the fall in gdp is gigantic. This is true even in the CEE model.
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The jump in the interest rate creates a massive collapse in investment.

7.4. Adding Adjustment Costs and Habit

When we set S00 to its benchmark value, we obtain the following response to a monetary
policy shock:

Percent Response in GDP to Monetary Policy Shock
period 1 period 5 period 9 period 13 period 17 period 21 period 25

CEE -2.03 -0.91 -0.48 -0.28 -0.19 -0.13 -0.10
Incomplete -2.03 -1.34 -1.14 -1.06 -1.00 -0.93 -0.85
Incomplete/No Fisher -2.05 -1.37 -1.14 -1.04 -0.97 -0.89 -0.80
Complete -2.03 -1.34 -1.13 -1.06 -1.00 -0.93 -0.85
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Note that now the response to a monetary policy shock is less gigantic. We can see this in
the following figure too:
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Next, we also set b at its benchmark value and obtained:

Percent Response in GDP to Monetary Policy Shock
period 1 period 5 period 9 period 13 period 17 period 21 period 25

CEE -0.77 -0.92 -0.52 -0.30 -0.19 -0.13 -0.10
Incomplete -0.85 -1.35 -1.17 -1.07 -1.00 -0.93 -0.84
Incomplete/No Fisher -0.87 -1.39 -1.19 -1.06 -0.97 -0.89 -0.80
Complete -0.85 -1.35 -1.17 -1.06 -1.00 -0.92 -0.84

Note that now the fall in output is much smaller than it was in the absence of habit.
The following set of impulse responses suggest that the reason lies in the smaller fall in
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consumption in the wake of a positive technology shock.
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8. Steady State

To solve this model, we need to develop an algorithm for computing its steady state. In our
analysis, we distinguish between steady state inflation, π, and the quantity appearing in the
price and wage updating equations, π̄. Equation (1.11) in steady state, is:

p∗ =
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Note that, if π = π̄ then p∗ = 1. Equation (1.12):
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Equation (1.13) in steady state is:
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Equating the preceding two equations:
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In the case, π = π̄, s = 1/λf . Equation (1.15) in steady state is:
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Equation (1.16) is
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Equating the two expressions for Fw, we obtain:
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⎤⎦λw(1+σL)−1 1− βξw
¡
π̃w
π

¢ 1
1−λw

1− βξw
¡
π̃w
π

¢ λw
1−λw (1+σL)

. (8.3)
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In steady state, (1.17) reduces to:

w∗ =

⎡⎢⎢⎢⎢⎢⎣
(1− ξw)

Ã
1−ξw( π̃wπ )

1
1−λw

1−ξw

!λw

1− ξw
¡
π̃w
π

¢ λw
1−λw

⎤⎥⎥⎥⎥⎥⎦

1−λw
λw

(8.4)

According to the wage equation, the wage is a markup, Wλw, over the household’s marginal
cost. Note that the magnitude of the markup depends on the degree of wage distortions in
the steady state. These will be important to the extent that π̃w 6= πw.
The marginal cost equation, (1.18) implies:

s =
w̃

(1− α)

Ã
μz (w

∗)
λw

λw−1 h

k

!α

,

where w∗ is determined by (8.4). The steady state rental rate of capital is:

rk = α

Ã
μz (w

∗)
λw

λw−1 h

k

!1−α
s. (8.5)

In steady state, the capital accumulation equation, (1.20), is£
1− (1− δ)μ−1z

¤
k = I.

In steady state, the equation for the nominal rate of interest, (1.21), reduces to:

1 +R =
πμz
β

. (8.6)

In steady state, the marginal utility of consumption, (1.22), is

λz =
1

c

μz − bβ

μz − b
. (8.7)

Finally, the euler equation for investment, (1.24), reduces to

q = 1.

We proceed as follows. First, fix the nominal rate of interest according to (8.6). Now, fix
a value for rk. Solve (8.5) for

h

k
=
1

μz
(w∗)

λw
1−λw

µ
rk

αs

¶ 1
1−α

, (8.8)

where s is determined by (8.1). Then,

Rk =
£
rk + (1− δ)

¤
π − 1.
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Then, solve

[1− Γ(ω̄)]
1 +Rk

1 +R
+

Γ0(ω̄)

Γ0(ω̄)− μG0(ω̄)

∙
1 +Rk

1 +R
(Γ(ω̄)− μG(ω̄))− 1

¸
= 0.

for ω̄. Taking into account, Γ0 = 1− F and G0 = ω̄F 0, we have

[1− Γ(ω̄)]
1 +Rk

1 +R
+

1− F (ω̄)

1− F (ω̄)− μω̄F 0(ω̄)

∙
1 +Rk

1 +R
(Γ(ω̄)− μG(ω̄))− 1

¸
= 0. (8.9)

Next, find n/k which solves (2.3):

n

k
= 1− 1 +Rk

1 +R
[Γ(ω̄)− μG(ω̄)] (8.10)

In steady state, (2.8) is

n =
γ

πμ∗z

½
Rk −R− μ

Z ω̄

0

ωdF (ω)
¡
1 +Rk

¢¾µk

n

¶
n+ we + γ

µ
1 +R

πμ∗z

¶
n,

so that

n =
we

1− γ
πμ∗z
{Rk −R− μG (ω̄) (1 +Rk)}

¡
k
n

¢
− γ

³
1+R
πμ∗z

´ ,
k =

µ
k

n

¶
n

h =

µ
h

k

¶
k (8.11)

I =
£
1− (1− δ)μ−1z

¤
k,

where G (ω̄) is obtained from (2.4).
We now need to solve the resource constraint for consumption. But, first we require φ.We

compute φ to guarantee that firm profits are zero in a steady state where π = π̄. Let hss and
kss denote hours worked and capital in such a steady state. Also, let F ss denote gross output
of the final good in that steady state. Write sales of final good firm as F ss−φ. Real marginal
cost in this steady state is sss = 1/λf . Since this is a constant, the total costs of the firm are
sssF ss. Zero profits requires sssF ss = F ss − φ. Thus, φ = (1− sss)F ss = F ss(1− 1/λf), or,

φ =

µ
kss

μ∗z

¶α

(hss)1−α
µ
1− 1

λf

¶
.

Solve the steady state version of the resource constraint, (2.10), for c :

d+ c+ I +Θ
1− γ

γ
[n− we] = (p∗)

λf
λf−1

µ
k

μ∗z

¶α h
(w∗)

λw
λw−1 h

i1−α
− φ.

Compute the steady state real wage using (1.18):

w̃ = s (1− α)

"
μz (w

∗)
λw

λw−1 h

k

#−α
. (8.12)
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Then, solve the labor supply equation, (8.2), for h :

h =

∙
λz

WλwψL

w̃

¸ 1
σL

,

where λz is obtained using (8.7). These calculations began by fixing a value for rk. Adjust
rk until the value of h obtained from the above expression coincides with the value implied
by (8.11).
It is of interest to understand what happens when μ = 0. In this case, (8.9) implies

R = Rk. So, one chooses rk so that R =
£
rk + (1− δ)

¤
π− 1. Then, (8.8) implies a value for

h/k. From (8.11),

n =
we

1− γ
β

.

In the case, π̄ = π, μ = 0 implies:

c+ I +Θ
1− γ

γ
[n− we] =

µ
k

μ∗z

¶α

h1−α −
µ
k

μ∗z

¶α

h1−α
µ
1− 1

λf

¶
=

1

λf

µ
1

μ∗z

¶αµ
h

k

¶1−α
k,

or,
c

k
+
£
1− (1− δ)μ−1z

¤
+Θ

1− γ

γ

[n− we]

k
=
1

λf

µ
1

μ∗z

¶αµ
h

k

¶1−α
The labor-leisure choice implies:

c =

μz−bβ
μz−b

WλwψL

w̃h−σL,

where w̃ can be computed from (8.12) and W = 1 according to (8.3). Substituting this into
the resource constraint, we obtain:

μz−bβ
μz−b

WλwψL

w̃
1

h1+σL
+Θ

(1− γ)we

β − γ

1

h
=

1
λf

³
1
μz

´α ¡
h
k

¢1−α − ³1− 1−δ
μz

´
h
k

,

which is a single equation in one unknown, h. Note that the right side must be positive for
consumption to be positive. Also, the left side goes from 0 to∞ as h goes from∞ to 0. Thus,
there is a unique solution, as long as the model implies positive steady state consumption.
Once this is solved for h, then we have k. Then, given k we can compute ω̄ from (8.10):

n

k
= 1− Γ(ω̄)

Γ(ω̄) = 1− n

k

This gives the same solution as the model without financial frictions, except for the fact that
entrepreneurs consume resources.
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