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A Extension with Farmers

In this section, we sketch how the model can be extended by including farm
labor as a separate input in production. This extension addresses the concern
that in the pre-industrial era, most people were engaged in food production,
whereas craftspeople made up a smaller fraction of the population.

The economy produces two goods, food F and manufactured goods M . Man-
ufactured goods are produced under constant returns with effective craftsmen’s
labor L as the only input:

M = L.

Food is produced using a Cobb-Douglas technology that uses land X and farm
labor Nf :

F = (Nf )
1−α−β
1−β X

α
1−β

with α, β ∈ (0, 1). An individual has Cobb-Douglas utility over consumption
of food f and manufactured goods m, and total utility (including the altruistic
component) is:

(1) u(c, I ′) = mβf1−β + γ I ′.

The setup is equivalent to one with a single consumption good c (a composite
of food and manufactured goods) as in (1) that is produced with the aggregate
production function:

Y = (Nf )
1−α−β

LβXα.

The total amount of land is normalized to one, X = 1, and land is owned by
farmers.

There are now three aggregate state variables: Nf (population of farmers),
Nm (population of craftsmen), and k. Let N = Nm + Nf be the total number
of adults. Farmers and craftsmen have the same survival rate and there is no
intergenerational mobility across occupations. Hence, the laws of motion for
population are:

N ′m = n Nm, N ′f = n Nf , N ′ = N ′m +N ′f = n N.

As a consequence, the share of both groups in the total population is constant.
We define ρ as

ρ =
Nm
N

.

The assumptions of equal population growth and no occupational mobility are
made for simplicity. In reality, it is well known that in pre-industrial times
cities (where craftsmen were concentrated) experienced much higher mortality
than the countryside, so that there was net migration into cities. Allowing
for such rural-urban migration could be accommodated in our framework and
would leave the main results intact, but would come at the cost of complicating
the analysis. Given that our focus is on knowledge transmission rather than
urbanization, we abstract from such features here.
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Given those two changes to the specification, the rest of analysis carries
on. Two new parameters are involved. The market equilibrium condition (18)
becomes:

δ′(aM)− κ =
γθβ

ρ

1

aM/nM + ν
yM.

The extension with farmers clarifies that the Malthusian constraint matters
even if there are constant returns to scale in the craftsmen’s sector. Along a
balanced growth path, manufacturing output grows faster than food output.
This depresses the relative price of manufactured goods (produced by crafts-
men). Specifically, in a given period the relative price of manufactured goods is
given by:

pM
pF

=
β

1− β
(Nf )

1−α−β
1−β X

α
1−β

L
.

The declining relative price of the output of craftsmen implies that their effective
income (in terms of the composite consumption good) is constant in the balanced
growth path even though their output is growing.

It also becomes easier to analyze the role of parameter α, as now this only
plays a role in the Malthusian constraint. A low α corresponds to labor-intensive
agriculture. In this case returns to population size decrease at a lower rate, and
hence an increase in productivity growth leads to a larger shift in population
growth and income per capita compared to the case of a large land share.1 It
modifies the incentives to move to another mode of organizing apprenticeship,
as detailed in Proposition 1.

Proposition 1 (Effect of Labor-Intensive Agriculture).
If Agriculture is labor intensive (low α), the long-term gains in growth from
moving from family to market, gM − gF, and from clan to market, gM − gC,
are reduced. But the gain from moving from family to clan, gC − gF, is
increased.

Figure I shows the result graphically. An implication of this proposition is
that a country with labor intensive agriculture has more incentives to adopt the
clan than the family.

B Extension with the “Leonardo da Vinci”

Assumption

In this section, we allow for the possibility that advanced techniques may
be “ahead of their time,” in the sense that their full productive value can only
be realized at a higher state of aggregate knowledge. For example, Leonardo
da Vinci invented a number of machines and devices that could be successfully

1. Vollrath (2011) argues that agriculture in pre-industrial China was more labor intensive
compared to Europe (due to the possibility of multiple crops per year, wet-field rice production
etc.), and that this accounts for part of observed differences in living standards.
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Figure I: Effect of labor intensive agriculture

built only centuries later. To capture this feature in a simple way, we assume
that each craftsman has a potential output which is linked to own knowledge hi,
but that the craftsman may be constrained by the average state of knowledge in
the economy. Specifically, the potential output q̄i of a craftsman with knowledge
hi is given by:

(2) q̄i = h−θi .

The actual output qi of a craftsman cannot exceed the average potential output
q̄ = E (q̄i) in the economy, so that:

(3) qi = min{q̄i, q̄}.

The assumption that individual productivity is constrained by aggregate knowl-
edge is not essential to any of our results. Still, without this assumption in any
period there would be some masters with arbitrarily high output, which is im-
plausible. With the constraint, a good part of the knowledge in the economy
is latent knowledge that will unfold its full potential only in later generations.
This closely relates to Mokyr (2002)’s argument that the growth of productivity
is constrained by the epistemic base on which a technique rests. The more peo-
ple using a technique understand the science behind it, the broader the base.
According to Mokyr (2002), this basis was very narrow in pre-modern Europe
and gradually became wider.

Figure II illustrates the distribution of actual output qi among craftsmen
for two values of knowledge k, where the dashed line corresponds to a higher
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state of knowledge. The kinks in the distribution functions represent the points
above which potential productivity is constrained by the average knowledge in
the society. Because of the specific shape of the exponential distribution, the
share of craftsmen who are constrained by the average knowledge is constant
(and given by 1/e).

CDF

1

0

output qi

1− 1

e

Figure II: Distribution Function of Productivity at time t (solid
line) and t′ > t (dashed line)

Given the exponential distribution for hi and (2), potential output q̄i follows
a Fréchet distribution with scale parameter kθ and shape parameter 1/θ.

We can now express the total supply of effective labor by craftsmen as a
function of state variables. The average potential output across craftsmen is
given by:

q̄ =

∫ ∞
0

h−θi (k exp(−khi)) dhi =

∫ ∞
0

kθ(khi)
−θ exp(−khi) kdhi = kθΓ(1− θ),

where Γ(t) =
∫∞

0
xt−1 exp(−x)dx is the Euler gamma function. Given (3), the

actual output qi of a craftsman is:

qi = min{q̄i, q̄} = min
[
h−θi , kθΓ(1− θ)

]
.

The threshold for hi below which craftsmen are constrained by average knowl-
edge is given by:

ĥ = k−1Γ(1− θ)−1/θ.
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The expected supply of output of a given craftsman is:

E (qi) =

∫ ĥ

0

kθΓ(1− θ)k exp[−khi]dhi +

∫ ∞
ĥ

h−θi k exp[−khi]dhi

= kθΛ.

Here Λ is a constant given by:

Λ = Γ(1− θ) + exp[−Γ(1− θ)−1/θ]θΓ(−θ) + Γ(1− θ,Γ(1− θ)−1/θ),

and Γ(t, s) =
∫∞
s
xt−1 exp(−x)dx is the incomplete gamma function. The total

supply of craftsmen’s labor L in efficiency units is then given by the expected
output per craftsmen E (qi) multiplied by the number of craftsmen N :

L = N kθ Λ.

In sum, all the results in the benchmark continue to hold with the “Leonardo”
assumption, up to some constant terms: Γ(1− θ) should be replaced by Λ.

In the proof of Proposition 3, the “Leonardo” assumption requires to com-
pute ∂E (q′)/ ∂k′ differently. In particular, in deriving E (q′) with respect to
k′ we should be careful in taking as given the future average society knowledge
q̄′ = (k′)θΓ(1 − θ), i.e. the externality in (3). More precisely, (3) should be
written as:

E (q′) =

∫ ĥ′

0

(k′)θΓ(1− θ)︸ ︷︷ ︸
q̄ (exogenous)

k′ exp[−k′hi]dhi +

∫ ∞
ĥ′

h−θi k′ exp[−k′hi]dhi

where
ĥ′ = Γ(1− θ)−1/θ/k′.

Integrating we obtain:

E (q′) = (1− exp[Γ(1− θ)/θ]) q̄ + (k′)θ Γ(1− θ,Γ(1− θ)−1/θ)

and the derivative is

∂E (q′)

∂k′
= θΓ(1− θ,Γ(1− θ)−1/θ)(k′)θ−1 = Θ(k′)θ−1.

with Θ = θΓ(1−θ,Γ(1−θ)−1/θ). Compared to the benchmark, there is a factor
Γ(1− θ,Γ(1− θ)−1/θ) instead of a factor Γ(1− θ).

The model with the “Leonardo” assumption also speaks to the role of the
unlimited support of knowledge in the baseline model. One may regard this as-
sumption as unattractive, because it implies that everything that can be known
is already known to at least someone from the beginning of time. The model
extension shows that our results remain intact if the support of realized produc-
tivity is bounded. Moreover, one can regard this extension as an approximation
of a model where latent knowledge is bounded as well, i.e., where there is a point
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mass of knowledge at the upper bound. The difference between such a model
and the “Leonardo” extension is that in the “Leonardo” model the upper bound
moves up in proportion to average knowledge, whereas with bounded support
the upper bound would stay in place. Yet because growth of average knowledge
is slow, the two models would be yield near-identical implications in the short
and medium run (although if the rate of creation of new knowledge were zero,
growth would peter out in the long run). Hence, one can regard our analysis as
an approximation of a model with a finite support of knowledge.

C Proof of Proposition 2

The threshold for sufficient altruism is given by

γ̂ =
(δ(nF)− κnF) n̄s

(1− α)(nF)2
Γ(1− θ), with nF = (1 + ν)

(1−α)θ
α .

We claim that the balanced growth path exists if γ > max{0, γ̂}.
Let us first compute the balanced growth path, supposing it exists. The

growth rate of knowledge in (b) comes from (13) where we have imposed m =
mF = 1. Population growth is obtained using (10). Income per capita in
(c) derives from (9). Utility in (d) is derived as follows: Income of a given
craftsman is qi (1− α) YL + κaF (from (5)). Expected income, using (6), is

kθΓ(1−θ)(1− α)YL +κaF +αyF, where αyF is income from owning land. Given

the value of L from (7), this simplifies into (1− α) YN + κaF + αyF. The future
labor income of the child is (1− α)yF.

For the balanced growth path defined above to be incentive compatible,
i.e. parents are indeed willing to provide their kids with teaching, the cost of
teaching should be less than the gain in the income, as evaluated by the altruistic
parents. Normalizing the labor income of a craftsman without training to zero,
this condition is:

δ(nF)− κnF < γ nFE

[
(1− α)q

Y

L

]
= γ nF(1− α)yF.

Using (6) and (7), this condition determines the lower bound on the altruism
factor γ:

γ̂ >
(δ(nF)− κnF) n̄s

(1− α)(nF)2
Γ(1− θ).

D Proof of Proposition 3

The required threshold for altruism is given by:

γ >
δ′
(

(1 + ν)
(1−α)θ
α

)
− κ

(1−α)νθ
n̄s (1 + ν)

(1−α)θ
α −2

.
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Let us first compute the balanced growth path, supposing it exists. To
determine the number of apprentices per master, we use (14). Equation (15)
is derived as follows. Each apprentice learns from mC = (nC)

o
masters. As

the draws for the initial knowledge of masters are not independent (all these
masters were educated by the same persons), their acquired knowledge ki is the
same, but they had different ideas of their own drawn from Exp(νk−1). The
acquired knowledge of the apprentices thus follows:

(ki)′ = ki +mCνk−1.

The final knowledge of the apprentices is given by

k′ = (ki)′ + νk.

Using (ki)′ = k′ − νk and (ki) = k − νk−1 in the first equation, we get

(4) k′ − νk = k − νk−1 +mCνk−1

which leads to (15) where g = k′/k.
The average utility expression takes into account the flows between master

and apprentices. Adults are paid as masters by aC parents the amount of
δ′(aC)−κ. Their disutility net of income from apprentices is δ(aC)−κaC. They
also pay as parents the same amount δ′(aC)− κ for each of their children nC to
each of their master mC. The balance is:

aC(δ′(aC)− κ)− (δ(aC)− κaC)−mCnC(δ′(aC)− κ) = −(δ(aC)− κaC).

From Equation (15) and the value of nC, the growth rate g = gC should
satisfy:

(5) g2 − (1 + ν)g + ν = νg
(1−α)θo

α .

The left hand side is a convex function f1(g), while the right hand side is a
function of g and o, f2(g, o). Figure III represents these two functions for
different sizes of the clan. At the minimum possible value of g, the left hand
side is smaller than the right hand side:

f1(1) = 0 < f2(1, o) = ν∀o > 0.

Several cases may occur:
• For o ≤ α

(1−α)θ , f2(g, o) is concave, crosses f1(g) once, and there exist a

solution to the equality (5).
• For α

(1−α)θ < o ≤ 2α
(1−α)θ , one can apply the l’Hospital rule twice to show

that

lim
g→∞

f1(g)

f2(g, o)
> 1,

implying that f2(g, o) is below f1(g) for large g and crosses it once. Hence
there exist a solution to the equality (5).
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Figure III: Equation (5)

• If o > 2α
(1−α)θ but not “too large,” f2(g, o) cuts f1(g) twice. There are two

balanced growth paths.
• For o very large, the function f2(g, o) which is above f1(g) for g = 1, stays

above it as g increases. In that case, there is no solution to Equation (5),
and no balanced growth path. The interpretation is that the clan is so big
that technological level and population grow at an accelerating rate.

We can summarize these findings by defining ō, such that if o ≤ ō, a balanced
growth path exists.

Differentiating (5), the effect of o on g is given by:

dg

do
=

∂f2/∂o

∂f1/∂g − ∂f2/∂g
.

The term ∂f2/∂o is positive as g > 1. We conclude that increasing o increases
g for equilibria where ∂f1/∂g > ∂f2/∂g, that is where f2(g, o) cuts f1(g) from
above as g increases.

Let us now consider whether such an equilibrium is incentive compatible. If
o is too low, the threat of punishment is insufficient to prevent shirking, and
only the family equilibrium exists. If o is large, parents may no longer be willing
to apprentice their children with all current adult members of the clan. In other
words, the clan should be large enough for the threat of punishment to ensure
compliance, but small enough for parents to be willing to pay the apprenticeship
fee. Hence, there exists thresholds omin and omax such that if omax > o > omin

the clan equilibrium is incentive compatible.
Assuming that the punishment technology is such that one person can do
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only negligible harm to another, but more than one person can exert a much
more damaging action, sufficient in any case to deter shirking, we get omin = 0.

The clan equilibrium is sustained if, for each child, the marginal cost paid to
the master is lower than the expected marginal benefit, as priced by the parents:

(6) δ′(a)− κ ≤ γ ∂E (q′)

∂k′
∂k′

∂m
(1− α)

Y ′

L′
.

The right hand side represents the expected effect on individual productivity of
meeting an additional master. (1− α)Y

′

L′ is exogenous for the individual, and
the altruism parameter γ reflects that the marginal benefit is seen from the
point of view of the parent.

Let us first consider the term ∂E (q′)/∂k′. From (6), the derivative is

∂E (q′)

∂k′
= θΓ(1− θ)(k′)θ−1.

The term ∂k′/∂m can be directly obtained using (4) and is equal to νk−1.
Finally, the term Y ′/L′ can be transformed into:

(7)
Y ′

L′
=
Y ′

N ′
N ′

L′
=
Y ′

N ′
1

Γ(1− θ)(k′)θ

using (7). Condition (6) can now be rewritten as:

(8) δ′(a)− κ ≤ γθ(k′)θ−1 νk−1 (1− α)
Y ′

N ′
1

(k′)θ
.

which, along a balanced growth path, reduces to

δ′
(

(gC)
(1−α)θ(o+1)

α

)
− κ ≤ γ(1− α)νθ

n̄s
(gC)

(1−α)θ
α −2.

The left hand side is increasing in o as gC > 1, gC is increasing in o, and δ(a)
is convex. If it is smaller than the right hand side for the minimum value of o
(o = 0, gC = 1 + ν), i.e. if

δ′
(

(1 + ν)
(1−α)θ
α

)
− κ < γ(1− α)νθ

n̄s
(1 + ν)

(1−α)θ
α −2.

then either the right hand side becomes larger than the left hand side for some
value of o = ô > 0, or they never intersect, in which case ô is infinite. Notice
that the right hand side is decreasing in gC, and hence in o, provided that

(1− α)θ < 2α,

in which case, omax, the maximum size of the clan which is incentive compatible,
is necessarily finite.

In the analysis of the incentive compatibility, we have assumed that gC was
defined, we show above that it is not the case o > ō. Hence, the threshold above
which a balanced growth path exists and is incentive compatible is omax =
min{ō, ô}.
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E Proof of Lemma 4

The first-order condition for the parent’s problem can be written as:

p︸︷︷︸
marginal cost

n = γ n
∂E (q′)

∂k′
∂E (k′)

∂m
(1− α)

Y ′

L′︸ ︷︷ ︸
marginal benefit (∂I ′/∂m)

.

Remembering from (6) that

∂E (q′)

∂k′
= θΓ(1− θ)(k′)θ−1,

and using k′ = k(m + ν) (from (13)) as masters are now drawn randomly, we
obtain, in equilibrium:

δ′(a)− κ = p = γθΓ(1− θ) (k′)θ

m+ ν
(1− α)

Y ′

L′
.

Using (7), this equation simplifies into

δ′(a)− κ = γθ(1− α)
1

m+ ν

Y ′

N ′
.

F Proof of Proposition 5

For a fixed number of masters m, the market equilibrium yields higher
growth in productivity because those masters are drawn randomly. Indeed,
from the proof of Proposition 3, productivity in C follows

k′ = (1 + ν)k + (m− 1)νk−1

which implies a growth rate equal to:

gC =
1 + ν +

√
(1 + ν)2 + 4(m− 1)ν

2

which is always less than the growth rate with the market, m+ν, for ν > 0 and
m > 1.

Moreover, the equilibrium number of masters mM is higher in the market
equilibrium compared to the clan equilibrium. Indeed, mM balances marginal
cost and benefit. If the clan equilibrium had a higher number of masters, it
would not be incentive compatible (parents would not like to pay all those
masters).

Notice that, in the computation of the utility, the payments from apprentices,
paM, and for children, pnMmM, balance.
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G Proof of Lemma 6

The maximization problem of the guild is:

max
aj

{
pjaj − δ(aj) + κaj

}
subject to:

SjN
′mj = Naj ,(9)

pj = γ
∂EI ′ij
∂mj

,

γEI ′ij − pjmj = γ(1− α)
Y ′

N ′
− pm.

Replacing pj and p by their value from the second constraint into the third leads
to:

γ(S′j)
1
λ−1

(
k′j
k′

) θ
λ

− θ

mj + ν
(S′j)

1
λ−1

(
k′j
k′

) θ
λ

mj = γ − θ

m+ ν
m.

which can be solved for S′j :

S′j =

[
(γ − θ)m+ γν

(γ − θ)mj + γν

(
mj + ν

m+ ν

)1− θλ
] λ

1−λ

.

The second constraint can be rewritten as:

pj = γθ(1− α)
1

m+ ν

Y ′

N ′
(γ − θ)m+ γν

(γ − θ)mj + γν

and the equilibrium on the apprenticeship market (9) is:

aj = n S′j mj .

These constraints imply that lowering the supply of apprenticeships aj increases
the price pj . It is now easier to express the maximization program in terms of
mj :

max
mj

{(
γθ(1− α)

m+ ν

Y ′

N ′
(γ − θ)m+ γν

(γ − θ)mj + γν
+ κ

)
n S′j mj − δ

(
n S′j mj

)}
.

The first order condition is:

− (γ − θ)
(
γθ(1− α)

m+ ν

Y ′

N ′
(γ − θ)m+ γν

((γ − θ)mj + γν)
2

)
S′j mj+((

γθ(1− α)

m+ ν

Y ′

N ′
(γ − θ)m+ γν

(γ − θ)mj + γν
+ κ

)
− δ′

(
n S′j mj

))( ∂S′j
∂mj

mj + S′j

)
= 0
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with

∂S′j
∂mj

=
λ

1− λ

[
(γ − θ)m+ γν

(γ − θ)mj + γν

(
mj + ν

m+ ν

)1− θλ
] λ

1−λ−1

×
(
−(γ − θ) (γ − θ)m+ γν

((γ − θ)mj + γν)
2

(
mj + ν

m+ ν

)1− θλ

+

(
1− θ

λ

)
(γ − θ)m+ γν

(γ − θ)mj + γν

(
mj + ν

m+ ν

)− θλ)
.

At the symmetric Nash equilibrium between guilds, this becomes:

− (γ − θ)
(
γθ(1− α)

m+ ν

Y ′

N ′
1

(γ − θ)m+ γν

)
m+((

γθ(1− α)

m+ ν

Y ′

N ′
+ κ

)
− δ′ (n m)

)(
∂S′j
∂mj

m+ 1

)
= 0

with:
∂S′j
∂mj

=
λ

1− λ

( −(γ − θ)
(γ − θ)m+ γν

+

(
1− θ

λ

))
,

which we can rearrange into:

γθ(1− α)

m+ ν

Y ′

N ′

( − (γ − θ)m
(γ − θ)m+ γν

+
∂S′j
∂mj

m+ 1

)
+(κ− δ′ (n m))

(
∂S′j
∂mj

m+ 1

)
= 0

and finally:

δ′(nm)− κ =

(
γθ(1− α)

m+ ν

Y ′

N ′

)
Ω(m)

with:

Ω(m) =

(
−(γ−θ)m

(γ−θ)m+γν + 1 + λm
1−λ

(
−(γ−θ)

(γ−θ)m+γν +
(
1− θ

λ

)))
1 + λm

1−λ

(
−(γ−θ)

(γ−θ)m+γν +
(
1− θ

λ

)) .

Ω(m) can be further simplified into:

Ω(m) =
1− λ+ (λ− θ)m− (γ−θ)m

(γ−θ)m+γν

1− λ+ (λ− θ)m− λ (γ−θ)m
(γ−θ)m+γν

.

When λ→ 1,
∂S′j
∂mj
→∞ and Ω(m)→ 1.

H Proof of Proposition 7

Before considering the optimization problem, let us compute the effect of
changing mj on income Ij . Using Equation (7), we can compute the relative
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quantity of efficient labor in sector j as:

L′j
L′

= S′j

(
k′j
k′

)θ
.

With this expression, and with Equation (6), which adapts to trade j as Eqj =
Γ(1− θ)kθj , it is convenient to rewrite expected income as:

EI ′ij = (1− α)
Y ′

N ′
(S′j)

1
λ−1

(
k′j
k′

) θ
λ

.

Let us now compute the effect of changing mj on individual income. Using
the result in (7), and k′j = (mj + ν)kj , we get:

∂EI ′ij
∂mj

= θΓ(1− θ)
(k′j)

θ

mj + ν
(1− α)

Y ′

L′

(
L′j
L′

) 1
λ−1

which can moreover be simplified using (7):

∂EI ′ij
∂mj

= θ(1− α)
(k′j)

θ

(k′)θ
1

mj + ν
(1− α),

leading to:

∂EI ′ij
∂mj

= θ(1− α)
1

mj + ν

Y ′

N ′
(S′j)

1
λ−1

(
k′j
k′

) θ
λ

.

Marginal income is therefore equal to expected income multiplied by: θ
mj+ν

.

To study the equilibrium, one should consider Equation (24) replacing aG,
mG and yG by their value:

(10) δ′((gG − ν)nG)− κ = γθ(1− α)
1

gG

nG

n̄s
Ω(gG − ν).

This equation describes a relationship between gG and nG which we call the
“apprenticeship monopolistic market,” as it is derived from the demand for
apprenticeship and the monopolistic behavior of the guild. Equation (10) can
be rewritten as:

nG =
κ

δ̄(gG − ν)− γθ(1− α)

sn̄ gG
Ω(gG − ν)

.

If we compare this expression with the equivalent in the market equilibrium,
Equation (20), we see that the denominator is necessarily larger. Hence, for any
given g, nG < nM. It follows that gG < gM.

Notice finally that, as in the market equilibrium, the payments from ap-
prentices, paG, and for children, pnGmG, balance in the computation of the
utility.
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I Proof of Proposition 8

We can compute the gains of adopting the guild institution as:

uF→G − uF→F = γn0(yG

1 − yF

1 ) + κ(a0 − n0)− δ(a0) + δ(n0)− µ(N0),

uC→G − uC→C = γn0(yG

1 − yC

1 ) + κ(a0 − (n0)o+1)− δ(a0) + δ((n0)o+1)

−µ(N0).

N makes people in the family equilibrium indifferent between adopting the guild
or not, i.e., it solves:

γn0(yG

1 − yF

1 ) + κ(a0 − n0)− δ(a0) + δ(n0)− µ(N) = 0.

One should show that for N0 = N , people in the clan equilibrium do not want
to adopt the guild, i.e.:

γn0(yG

1 − yC

1 ) + κ(a0 − (n0)o+1)− δ(a0) + δ((n0)o+1)− µ(N) < 0.

This is true if:

(11) γn0y
C

1 + (κ(n0)o+1 − δ((n0)o+1)) > γyF

1 + κn0 − δ(n0).

Let us define the following function:

ψ(m) = γn0u(m) + κmn0 − δ(mn0).

u(m) is the function that relates future income to number of masters learning
from, in the context of the clan equilibrium. From (8) and (4), we get:

u(m) = Γ(1− θ)1−α ((1 + ν)k − νk−1 +mνk−1︸ ︷︷ ︸
k′

)(1−α)θ (N ′)−α.

Hence, u(m) is increasing and concave in m. As a consequence, ψ(m) is also
concave in m (δ(·) is convex). To see whether it is increasing, we can compute:

ψ′(m) = γ n0(1− α)Γ(1− θ)1−αθ(k′)(1−α)θ−1νk−1 (N ′)−α + κn0 − δ′(mn0)n0.

We also know from Appendix D that the clan equilibrium is sustained if the
marginal cost paid to the master is less than the expected marginal benefit, i.e.
δ′((n0)o+1)− κ ≤ ∂yC

1 /∂m0, which implies, from (8) and (8):

γθ (1− α)Γ(1− θ)1−α (k′)(1−α)θ−1νk−1 (N ′)−α + κ− δ′(mn0) ≥ 0.

This individual level condition implies that, at the aggregate equilibrium, ψ′(m) >
0. Using the mean value theorem for derivatives, we know there exists m̃ ∈
[1,mC] such that (ψ(mC) − ψ(1))/(mC − 1) = ψ′(m̃). As ψ(·) is concave,
ψ′(m̃) > ψ′(mC) > 0 which proves ψ(mC) > ψ(1) and inequality (11) holds.

N makes people in the clan equilibrium indifferent between adopting the
guild or not, i.e. it solves

γn0(yG

1 − yC

1 ) + κ(a0 − (n0)o+1)− δ(a0) + δ((n0)o+1)− µ(N) = 0.
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One should show that for N0 = N , people in the family equilibrium also want
to adopt the guild, i.e.:

γn0(yG

1 − yF

1 ) + κ(a0 − n0)− δ(a0) + δ(n0)− µ(N) > 0.

This is true as µ(N) < µ(N).

J Productivity Growth Calculations for
Western Europe and China

Table I displays the data that underlie our calculations of aggregate produc-
tivity growth in Western Europe and China in the period 1–1820. We compute
productivity based on the aggregate production function used in the main anal-
ysis with a TFP term At:

Yt = AtP
1−α
t Xα,

where X = 1 is the fixed factor land (the normalization to one amounts to a
choice of units) and Pt is labor supply, measured by population. Productivity
can therefore be computed from data on population and GDP per capita (Yt/Pt)
as:

(12) At =
Yt

P 1−α
t

=

(
Yt
Pt

)
pαt .

As discussed in Section V.A., the share of land is set to α = 1/3. We do
not explicitly account for physical capital, which was a relatively unimportant
factor of production in the pre-industrial period, and at any rate no reliable
long-term estimates of capital are available. Any changes in output that are
due to physical investment would be reflected in measured productivity.

The first two panels of Table I display population and income levels Western
Europe and China from Maddison (2010). From 1 to 1000, the data imply
slowly growing TFP in China and actually some regression in Western Europe.
After 1000, there is an acceleration in productivity growth in both regions, but
the rise in much more pronounced in Europe, with a gap between the regions
of 2.5 percent per period until 1500, and 2.4 percent from 1500 to 1820.

Given the distant time periods involved, estimating income levels is naturally
fraught with difficulty. As an alternative data source, we also consider the
recent estimates of levels of income per capita by Broadberry, Guan, and Li
(2014). The numbers are not always directly comparable to Maddison (2010)
(e.g., Broadberry, Guan, and Li 2014 do not provide an average for Western
Europe). The sources broadly agree on the measurement of population and on
the acceleration of productivity growth in Europe, but there are large deviations
in the estimates of levels of income per capita in China, which matter for the
computation of growth rates. To generate an alternative estimate of the gap
in productivity growth between Western Europe and China after 1000, in the
third panel of Table I we combine the population data from Maddison (2010)
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Year Population GDP/cap. TFP ∆TFP
Western Europe (Maddison 2010)

1 18,600 600 159
1000 19,700 425 115 -0.8%
1500 48,192 797 290 4.7%
1820 114,559 1,234 599 5.8%

China (Maddison 2010)
1 59,600 450 176

1000 59,000 466 181 0.1%
1500 103,000 600 281 2.2%
1820 381,000 600 435 3.5%

China ( GDP/cap.: Broadberry et al. 2014)
1000 59,000 1,382 538
1500 103,000 1,127 528 -0.1%
1820 381,000 595 431 -1.6%

TABLE I: Growth Accounting for China and Western Europe,
1–1820. Population in 1,000, income per capita in 1990

international dollars, TFP is computed according to (12) and
divided by 100, ∆TFP is growth rate of TFP in percent per

generation (25 years).

with the estimates of GDP per capita from Broadberry, Guan, and Li (2014).
The estimates for GDP per capita in China in 1000 and 1500 (the year 1 is not
available) are much higher compared to Maddison (2010), resulting in a decline
in measured TFP over time. Based on these numbers, the gap in TFP growth
between Western Europe and China per 25 years was 4.8 percent for 1000–1500,
and 7.4 percent for 1500–1820.

A caveat in using these gaps in overall TFP growth to evaluate our model is
that our model is primarily about productivity improvements in artisanal pro-
duction, whereas agriculture made up the majority of the economy. This can be
partly addressed by noting that there are important interactions between arti-
sans and craftsmen and agricultural productivity, such as improvements driven
by better agricultural implements, dairying techniques, millwrighting, and bet-
ter storage, transport, and processing of agricultural products, which concerns
a large number of crafts. In addition, some of the benefits of better dissemina-
tion of knowledge in Europe can be found in agriculture in altered form. One
aspect of this is the prevalence in Western Europe of highly mobile servants,
both male and female, who worked on farms other than those of their imme-
diately family and may have contributed to the dissemination of productivity
improvements. The prevalence of mobile servants in Western Europe was due
to differences in family organization around the world (see Hajnal 1982) and did
not have a close equivalent in China. Regarding other productivity improve-
ments in agriculture, the key issue for our purposes is whether these were much
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different between China and Western Europe, i.e., whether the rise of Europe
could perhaps be due primarily due to agricultural productivity rather than
productivity in the crafts and ultimately manufacturing. The data to settle this
question definitively does not exist, but our reading of the existing evidence is
that at the very least improvements in the sectors that we focus on here played
a very important role. Within agriculture, the main drivers of productivity were
new crops and better cultivation methods. With regards to crops, an important
factor was the introduction of new crops from the New World after Columbus,
which occurred in both Europe and China. With regards to cultivation, Europe
gained from the introduction of fodder crops and the closer integration of the
pastoral and arable sectors in the “new husbandry,” and China gained from
the spread of double-cropping. What we think is beyond any question is the
well-documented growth in the productivity of pre-Industrial Revolution (arti-
sanal) manufacturing in Europe in a wide range of industries, from high-skilled
instrument and clock making to ironworking and textiles. This was simply not
matched by anything we see in China.
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