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Abstract

We propose autoregressive moving average (ARMA) and generalized autoregres-
sive conditional heteroscedastic (GARCH) models driven by Asymmetric Laplace (AL)
noise. The AL distribution plays, in the geometric-stable class, the analogous role
played by the normal in the alpha-stable class, and has shown promise in the modeling
of certain types of financial and engineering data. In the case of an ARMA model we
derive the marginal distribution of the process, as well as its bivariate distribution when
separated by a finite number of lags. The calculation of exact confidence bands for min-
imum mean-squared error linear predictors is shown to be straightforward. Conditional
maximum likelihood-based inference is advocated, and corresponding asymptotic results
are discussed. The models are particularly suited for processes that are skewed, peaked,
and leptokurtic, but which appear to have some higher order moments. A case study of
a fund of real estate returns reveals that AL noise models tend to deliver a superior fit
with substantially less parameters than normal noise counterparts, and provide both a
competitive fit and a greater degree of numerical stability with respect to other skewed
distributions.

Keywords: ARMA, GARCH, conditional maximum likelihood, joint distri-
bution, prediction, financial returns

1 Introduction

The classical linear autoregressive moving average (ARMA) model has enjoyed widespread
popularity in the time series literature. A theoretical justification for its applicability is
in part provided by The Wold Decomposition, which states that a stationary process can
essentially be expressed as a linear combination of current and past values of a serially
uncorrelated (white noise) sequence.

Distributional assumptions on the noise or innovations process, although not needed for
optimal point forecasts, are a prerequisite for accurate confidence bands (see section 2).
For estimation one can by default maximize a Gaussian likelihood, resulting in consistent
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and asymptotically normal parameter estimates by assuming only that the the noise is
independent and identically distributed (IID), and not necessarily normal (e.g. Brockwell
and Davis, 1991). However, this does not in general result in (asymptotically) efficient
estimates, unless the noise is itself Gaussian. There can therefore be some gains by more
carefully specifying the marginal and joint distributions of the process, or equivalently of
the noise process. This is particularly true of financial data, which tend to exhibit heavy
tails and sometimes skewness, neither of which is consistent with a Gaussian distribution.

There has been some interest in the literature, mostly in engineering but more recently
also in finance, in using the Laplace and related distributions in data modeling contexts
that involve time. Davenport (1952) modeled speech waves using the Laplace distribution.
McGill (1962) showed that the Laplace distribution provides a characterization of the error
in a timing device that is under periodic excitation. Hsu (1979) finds that navigation errors
for aircraft position are best fitted by a mixture of two Laplace distributions. Damsleth
and El-Shaarawi (1989) employ an ARMA model driven by Laplace noise to fit weekly
data on sulphate concentration in a Canadian watershed. Anderson and Arnold (1993)
observed that IBM daily stock price returns are adequately modeled by Linnik processes.
The Linnik (also known as α-Laplace) is a symmetric distribution supported on the real
line and parameterized by a tail index α ∈ (0, 2]. For α = 2 the Linnik coincides with
the Laplace. Thomas and Jayakumar (2003) discuss a generalized Linnik distribution and
process.

The efforts in using the Laplace distribution in ARMA models have focused on two pri-
mary directions. The NLAR(1) and NLAR(2) models of Dewald and Lewis (1985) and the
NAREX(1) model of Novković (1998), assume a marginal Laplace distribution and find the
noise process to be a mixture of Laplace densities. Similar results are obtained by Jayaku-
mar and Kuttykrishnan (2007), who assume an asymmetric Laplace marginal distribution.
On the other hand, Damsleth and El-Shaarawi (1989) start with Laplace noise and find
the marginal distribution of the process to be a linear combination of Laplace distributions.
Damsleth and El-Shaarawi (1989) also show that the requirements of having Laplace dis-
tributions for both the marginal and noise processes, cannot be simultaneously achieved
within the class of linear time series models. Other notable ARMA modeling attempts
at incorporating Laplace-like distributions include the Linnik processes of Anderson and
Arnold (1993) which can be viewed as random coefficient autoregressive (AR) schemes, and
the AR processes of Lekshmi and Jose (2004) which have geometric α-Laplace marginals.

Recently, Kotz, Kozubowski, and Podgórski (2001) introduced a generalization of the
symmetric Laplace location-scale family of distributions that allows for skewness. They
find that this asymmetric Laplace (AL) distribution is leptokurtic (its kurtosis exceeds 3)
and shows promise in the modeling of data from fields as diverse as engineering, finance,
astronomy, and the biological and environmental sciences. We sometimes use the term
“heavy-tailed” when referring to this and similar distributions whose kurtosis exceeds 3
but, since all its moments are finite, the AL is not heavy-tailed in the sense that P (|X| >
x) ∼ x−α, for some α > 0 as x→∞, whence E|X|δ =∞ for δ > α. Its rich structure also
allows natural extensions to stable laws, commonly used in financial applications.

Stable distributions enjoy the property of stability with respect to scaled sums. In the
case of the stable (Paretian stable or α-stable) distribution Y , this defining property is that
for a sequence Y1, Y2, . . . of IID copies of Y , there exist sequences an > 0 and bn such that
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Y
d= an(Y1 + · · ·+ Yn) + bn for all n. These distributions form a location-scale family, with

a parameter controlling skewness and an exponent α ∈ (0, 2] governing the heaviness of
the tail. The normal is the only non-degenerate stable distribution with a finite variance
(α = 2). See e.g. Samorodnitsky and Taqqu (1994) for more on the stable distribution.

Geometric stable distributions are similar to Paretian stable, but the defining stability
property is now with respect to the limit of scaled random sums: For a sequence Y1, Y2, . . .
of IID copies of Y , there exist sequences ap > 0 and bp such that ap(Y1 + · · · + YGp +

Gpbp)
d→ Y as p→ 0, where Gp is geometric with mean 1/p and is independent of the Yi’s

(Kozubowski, 1994). These distributions also form a location-scale family, with a parameter
controlling skewness and a tail index parameter α ∈ (0, 2] governing the tail behavior. In
fact, the Geometric stable can be viewed as a Paretian stable with random location and
scale parameters (Kozubowski and Rachev, 1994). Analogous to the normal, the AL is the
only non-degenerate Geometric stable distribution with a finite variance (α = 2). See Kotz
et al. (2001) for more on Geometric stable laws.

It is commonly accepted that stable distributions provide useful models for certain types
of financial data like asset returns. Recent work by Andrews, Calder, and Davis (2009)
suggests it may also be a plausible model for traded stock volume. They propose a method
of maximum likelihood estimation for autoregressive processes and fit a stable AR(2) model
to Wal-Mart stock volume. To accommodate the possibility of market crashes, Kozubowski
and Rachev (1994) preserve the stability of stock price changes up to a geometrically-
distributed random time, leading to the class of Geometric stable laws. They go on to
empirically compare the fit of several distributions to various financial returns data, and find
that the Geometric stable provides a better fit than several others, including the Paretian
stable. Hence, although both Paretian and Geometric stable distributions are handicapped
by a lack of explicit expressions for densities and distribution functions, the latter can
provide a better fit if the data are both heavy-tailed and peaked.

In Trindade and Zhu (2007) we approximated the sampling distributions of estimators of
financial risk under IID sampling from the AL distribution, and found the AL to be a good
(marginal) model for currency exchange rate returns. Our goal in the present paper is to
extend that work to a dependent data setting, by investigating time series models where the
AL distribution is the driving white noise (or innovations) process. To this end, in section 2
we consider ARMA models driven by AL noise, and derive both the marginal and bivariate
distributions of the process. Parameter estimation via conditional maximum likelihood, and
prediction of the process are also discussed. Section 3 extends this to ARMA models driven
by GARCH AL noise, where parameters are again estimated by maximizing the conditional
likelihood. Simulations in section 4 shed light on the quality of the finite-sample estimates.
We end in section 5 with an illustration and comparison of the models applied to a data set
of real estate returns.

2 ARMA Models With Asymmetric Laplace Noise

In this section we will consider ARMA models driven by IID AL noise. We will first derive
the marginal distribution of the process, and give explicit expressions for its cumulative
distribution function (CDF) and probability density function (PDF). We will then consider
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the joint distribution of the process and discuss the prediction problem. Finally, we will
propose a parameter estimation approach.

2.1 Marginal distribution of the process

The AL location-scale family of distributions recently introduced by Kotz et al. (2001) is
a welcome extension of the ordinary (symmetric) Laplace that already enjoys widespread
popularity in applications from fields as diverse as engineering, finance, astronomy, and the
biological and environmental sciences. Random variable Y is AL distributed with location
parameter θ, scale parameter τ > 0, and skewness parameter κ > 0, Y ∼ AL(θ, κ, τ), if its
PDF is of the form

f(y; θ, κ, τ) =
κ
√

2
τ(1 + κ2)

exp

{
− sgn(y − θ)

√
2
τ
κsgn(y−θ)(y − θ)

}
.

We have expressed the PDF here in a form that is more suitable for programming, rather
than the original version. Its mode, mean, and variance are respectively, θ, µ = θ+ τ(κ−1−
κ)/
√

2, and σ2 = (µ− θ)2 + τ2. Values of κ in the intervals (0, 1) and (1,∞), correspond to
positive (right) and negative (left) skewness, respectively. The (adjusted) kurtosis of an AL
distribution varies between 3 (the least value for the symmetric Laplace distribution when
κ = 1) and 6 (the largest value attained for the limiting exponential distribution as κ→ 0).
By contrast the normal has a kurtosis of 0, and the AL is therefore leptokurtic.

For density derivation and simulation purposes, an important property of Y ∼ AL(θ, κ, τ),
is that it admits the representation

Y
d= θ + τ(E1/κ− κE2)/

√
2, (1)

where E1 and E2 are IID standard exponential random variables. Thus the moment gener-
ating function of an AL exists, and consequently all its moments are finite.

Definition 1 (ARMA model with AL noise) Let Zt ∼ IID AL(θ, κ, τ), with θ = −τ(κ−1−
κ)/
√

2. Then {Xt} is an ARMA(p, q) process driven by AL noise if it is a stationary solu-
tion of the equations

Xt = φ1Xt−1 + · · ·+ φpXt−p + λ1Zt−1 + · · ·+ λqZt−q + Zt, (2)

where the polynomials φ(z) = 1− φ1z − · · · − φpzp and λ(z) = 1 + λ1z + · · ·+ λqz
q have no

common factors.

Note that a stationary solution exists if and only if φ(z) 6= 0 for |z| = 1. In this case,
the Laurent series expansion of 1/φ(z), 1/φ(z) =

∑∞
j=−∞ ψjz

j , exists on some annulus
{z : a−1 < |z| < a}, a > 1, and the unique stationary solution to (2) is given by Xt =∑∞

j=−∞ ψjZt−j (Brockwell and Davis, 1991, Chap. 3). The ψj coefficients decay at a roughly
geometric rate as j → ±∞ and are therefore absolutely summable.

The specification
θ = −τ(κ−1 − κ)/

√
2, (3)
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ensures that Zt has zero mean, as is typically required in the definition of an ARMA model.
Other specifications, such as Zt having zero median, would also make sense. For the rest of
the paper, the notation f(zt;κ, τ) will denote the PDF of Zt as in Definition 1.

The model in this definition has the flexibility to describe a stationary autocorrelated
process with asymmetric excursions about the mean. The allowance for asymmetry is an
important requirement in many modeling scenarios. In finance for example, the cost to buy
a call option is limited, but the return can be substantial. An improvement in credit quality
brings limited returns to investors, but in case of defaults or downgrades the loss could be
large. The model also has the flexibility to describe data with heavy tails. Figure 1 displays
three simulated realizations from the MA(1) process,

Xt = 0.8Zt−1 + Zt, {Zt} ∼ IID W,

with W a standard normal distribution in the left panels, W ∼ AL(0, 1, 1) (a symmetric
Laplace) in the middle panels, andW ∼ AL(−0.73, 0.50, 0.69) in the right panels. In the last
two cases the scale parameter τ was chosen so that the variance of Zt is 1, thus coinciding
with that from the first case. The histograms of the data displayed in the bottom panels
confirm that the marginal distributions of the three processes are quite different. In the
left panels, Xt is actually normal with mean 0 and variance 2.66. In the middle and right
panels the distributions are clearly more peaked and (in the latter) skewed, and therefore
look AL-like.

We now derive the marginal distribution of an ARMA(p, q) model driven by AL noise.
In so doing, we will extend the results of Damsleth and EL-Shaarawi (1989) who derive
this in the special case of symmetric Laplace noise. Their method is in turn an application
of the method used by Box (1954) to derive the distribution of any linear combination
of independent χ2 random variables with even degrees of freedom. Our approach will be
slightly different, and hinges upon representation (1). Although not strictly necessary for
the result of this subsection, we will assume for simplicity of exposition that series (2) is
causal, meaning that it can be expressed as a linear combination of lagged values of the
noise series,

Xt =
∞∑
j=0

ψjZt−j , (4)

for some absolutely summable sequence of constants {ψj}. We may sometimes also assume
invertibility, i.e. Zt =

∑∞
i=0 πiXt−i for some sequence of absolutely summable coefficients

{πi}. (Equivalently, the series is causal if and only if φ(z) 6= 0 for |z| ≤ 1, and invertible if
and only if λ(z) 6= 0 for |z| ≤ 1.) Causality and invertibility are standard assumptions in
the time series literature, since non-causal and/or non-invertible models have second-order
equivalent causal, invertible representations (Breidt and Davis, 1992).

The marginal CDF of Xt when only a finite number of the ψj ’s are nonzero, is now easily
computed by appealing to the result concerning the distribution of a linear combination of
exponential random variables derived by Ali and Obaidullah (1982).

Proposition 1 Let X(m)
t =

∑m
j=0 ψjZt−j, where Zt, Zt−1, . . . , Zt−m are IID AL(θ, κ, τ),
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Figure 1: Simulated realizations from an MA(1) process driven by normal noise (left), AL
noise with κ = 1 (middle), and AL noise with κ = 0.5 (right). Corresponding histograms
of the data are shown in the bottom panels.
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MA(1) with AL noise (κκ=1)
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MA(1) with AL noise (κκ=0.5)
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and the ψj are distinct and nonzero for all j. Define ν = θ
∑m

j=0 ψj, the coefficients

ai =

{
τψi/2/(κ

√
2), if i is even,

−τψ(i−1)/2κ/
√

2, if i is odd,
Ai =

2m+1∏
k=0, k 6=i

(ai − ak), i = 0, 1, . . . , 2m+ 1,

and the index sets J− = {k = 0, 1, . . . , 2m+1 | ak < 0}, J+ = {k = 0, 1, . . . , 2m+1 | ak > 0}.
Then the CDF of X(m)

t is given by

F
X

(m)
t

(x) =

{∑
i∈J− a

2m+1
i A−1

i exp{−(x− ν)/ai}, if x < ν,

1−
∑

i∈J+
a2m+1
i A−1

i exp{−(x− ν)/ai}, if x ≥ ν,
(5)

and upon differentiation we obtain immediately its PDF

f
X

(m)
t

(x) =

{
−
∑

i∈J− a
2m
i A−1

i exp{−(x− ν)/ai}, if x < ν,∑
i∈J+

a2m
i A−1

i exp{−(x− ν)/ai}, if x ≥ ν.
(6)
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The marginal distribution of Xt for an ARMA process can then be obtained by letting
m→∞ in Proposition 1, whence we obtain that X(m)

t converges absolutely with probability
one and in mean square toXt (Brockwell and Davis, 1991, Prop. 3.1.1). However, the infinite
sum in (4) can essentially be truncated after a few terms since (in general) the ψj ’s decay
at a roughly geometric rate (Brockwell and Davis, 1991, Chap. 3). In the case of an MA(q)
process, the summation is finite since m = q, and explicit closed-form expressions for the
Ai’s could in principle be derived. For example, if q = 1 routine computations give the
following result.

Corollary 1 (Marginal distribution of MA(1) with AL noise) With ν = (1 + λ)θ,
the marginal PDF of the MA(1) process {Xt} in Definition 1, where the MA coefficient
satisfies λ > 0 and λ 6= 1, is given by

fXt(x) =

−b2 exp
{√

2
τκ (x− ν)

}
+ b4 exp

{ √
2

λτκ(x− ν)
}
, if x < ν,

−b1 exp
{
−κ
√

2
τ (x− ν)

}
+ b3 exp

{
−κ
√

2
λτ (x− ν)

}
, if x ≥ ν.

where

b2 =
κ3
√

2
τ(1 + κ2)(λ+ κ2)(λ− 1)

, b4 =
λκ3
√

2
τ(1 + κ2)(1 + λκ2)(λ− 1)

,

b1 =
κ
√

2
τ(1 + κ2)(1 + λκ2)(λ− 1)

, b3 =
λκ
√

2
τ(1 + κ2)(λ+ κ2)(λ− 1)

.

Some plots of these densities for the case λ = 0.8 and τ = 1 appear in Figure 2. A
similar expression for the PDF results when λ < 0. For λ = 1, ψ0 = 1 = ψ1, and a
slightly different formula than the one presented in Proposition 1 can be similarly obtained
following the algorithm of Ali and Obaidullah (1982). (This different form is to be used
whenever there are coincident ψj ’s.) Note that the density of an MA(1) is not quite a
mixture of AL densities; it would be a mixture of AL(ν, κ, τ) and AL(ν, κ, λτ) if the pairs
of normalizing constants (b1, b2) and (b3, b4) coincided (a fact which happens if and only if
κ = 1). This result extends to a general ARMA(p,q) when κ = 1, as noted by Damsleth
and EL-Shaarawi (1989): the marginal density is a mixture of AL densities, but although
the mixing coefficients sum to unity, this is not necessarily a proper mixture since some of
the coefficients may be negative.

Remark 1 Since stationary, non-causal ARMA processes have an infinite-order moving
average representation Xt =

∑∞
j=−∞ ψjZt−j with ψj → 0 as j → ±∞, a result similar to

Proposition 1 can be obtained for truncated non-causal series.

2.2 Joint distribution of the process

The joint distribution of a sequence of observations (X1, . . . , Xn) from an ARMA model
driven by AL noise would be much more difficult to derive. Damsleth and EL-Shaarawi
(1989) compute the bivariate distribution of (Xt−h, Xt) for any lag h in the simpler special
case of an AR(1) driven by (symmetric) Laplace noise. Similar results can be obtained in
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Figure 2: Marginal density functions from an MA(1) process with coefficient λ = 0.8 driven
by AL noise with scale parameter τ = 1, for various settings of the skewness parameter κ.
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our setting on a case by case basis. For example consider the ARMA(1,1) with AL noise,
Xt = φXt−1 + λZt−1 + Zt. By iterating this expression h− 1 times (h ≥ 1) we obtain,

Xt = φhXt−h + λφh−1Zt−h +
h−1∑
j=0

ψjZt−j , where ψj =

{
1, j = 0,
(φ+ λ)φj−1, j ≥ 1.

Define W1 =
∑h−1

j=0 ψjZt−j , W2 = Zt−h, and W3 =
∑∞

j=1 ψjZt−h−j , and note that the Wi

are independent. This means the joint PDF of (W1,W2,W3) is straightforward to derive
from Proposition 1, since each Wi is a linear combinations of AL random variables. Now,
Xt−h = W2+W3 and Xt = W1+aW2+bW3, where a = φh+λφh−1 and b = φh. This defines
a one-to-one transformation: (W1,W2,W3) 7→ (Xt−h, Xt,W1), with Jacobian (b−a)−1. The
joint PDF of (Xt−h, Xt) can then be obtained by (numerically) integrating the joint PDF
of (Xt−h, Xt,W1) over W1, yielding

fXt−h,Xt,(x, y) =
1

|b− a|

∫ ∞
−∞

fW1(w)fW2

(
bx− y + w

b− a

)
fW3

(
y − w − ax

b− a

)
dw.
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Figure 3 illustrates some of the shapes obtained for the joint PDF of (Xt−h, Xt) when
φ = 0.5 and λ = 0.8. The value of h is 1 and 2 in the top and bottom panels, respectively,
while κ is 1 and 0.5 in the left and right panels, respectively. There is a moderate amount
of correlation in the panels corresponding to h = 1, since the model autocorrelation at lag
1 is ρ(1) = 0.75. For lag h = 2, the model autocorrelation is only ρ(2) = 0.37,

Figure 3: Bivariate density function of (Xt−h, Xt) from the ARMA(1,1) model Xt −
0.5Xt−1 = 0.8Zt−1 + Zt, with Zt ∼ IID AL(θ, κ, τ = 1).
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2.3 Prediction of the process

We consider the classical best linear h-step ahead (finite past) prediction problem, i.e. the
linear function of observations X1, . . . , Xn from a causal invertible ARMA driven by IID
AL noise that minimizes the mean squared prediction error. From (4), it is clear that the
resulting predictor will itself be of the form of (4), whence its distribution can be readily
derived as in the preceding sections.

To simplify the exposition, we will focus on the h-step ahead best linear predictor (BLP),
X̃n+h, based on the infinite past. Then, standard results from, say, Brockwell and Davis
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(1991), gives X̃n+h =
∑∞

j=h ψjZn+h−j , whence

Xn+h − X̃n+h =
h−1∑
j=0

ψjZn+h−j := Ẽh, and, E(Xn+h − X̃n+h)2 = σ2
Z

h−1∑
j=0

ψ2
j := σ̃2

h,

where σ2
Z is the variance of (the noise) Zt. As is well known, the BLP on the infinite past co-

incides with the best predictor on the infinite past, E(Xn+h|Xn, Xn−1, . . .). In applications,
if n is large the difference between the BLPs on the infinite vs. finite pasts is negligible.

If Ẽh,α denotes the αth quantile of Ẽh, then we have

P (X̃n+h + Ẽh,α/2 < Xn+h < X̃n+h + Ẽh,1−α/2) = 1− α,

whence the end terms of the inequality can be taken to be (1− α)100% prediction bounds.
If Zt ∼ N(0, σ2

Z), then Ẽh,α = Φασ̃h, where Φα is the αth quantile of a standard normal. If
Zt ∼ AL(θ, κ, τ), then Ẽh is a linear combination of AL distributions, whence its quantiles
can be readily obtained from Proposition 1.

2.4 Parameter estimation

The fact that computation of just the joint distribution of (Xs, Xt) requires numerical
integration means that, with the goal of maximum likelihood estimation in mind, it is
generally infeasible to pursue a full exact likelihood approach. Conditional maximum like-
lihood estimation on the other hand is quite straightforward to implement, and we pursue
this approach instead. The resulting conditional maximum likelihood estimates, sometimes
called quasi-maximum likelihood estimates (QMLEs), are essentially indistinguishable from
(unconditional) maximum likelihood estimates (MLEs) for large sample sizes. The reason
for this is clear from (7) below; for MLEs the summation starts at t = 1.

Assuming the ARMA(p, q) model of Definition 1 is both causal and invertible, the log-
likelihood of {X1, . . . , Xn} conditional on {X1, . . . , Xp} is given by (Li and McLeod, 1988):

l(φ1, . . . , φp, λ1, . . . , λq, κ, τ) =
n∑

t=p+1

log f(zt;κ, τ), (7)

where the zt’s represent model residuals which can be computed from (2) using the obser-
vations X1, . . . , Xn, with zt = EZt = 0, for t = min(p − q + 1, p), . . . , p. QMLEs are then
obtained by maximizing (7).

Results concerning consistency and asymptotic normality of ARMA model QMLEs for a
general noise density f(·) is derived under fairly mild assumptions by Li and McLeod (1988).
One of these assumptions requires the (almost everywhere) existence and continuity of first
and second order derivatives of f(z;κ, τ) with respect to both z and the parameters. This
does not however present a problem since the AL density is non-differentiable only at z = θ.
The zero-mean restriction (3) on estimation necessitates some care when computing the last
2 × 2 block of the Fisher Information matrix corresponding to the AL noise contribution.
Details are provided in the appendix.
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3 ARMA Models With GARCH Asymmetric Laplace Noise

When linear models are not appropriate, nonlinear time series models such as bilinear
models, random coefficient autoregressive models, and threshold models, are possible al-
ternatives. The nonlinear class of AutoRegressive Conditionally Heteroscedastic (ARCH)
models was introduced by Engle (1982) upon observing that the volatility of certain series
depends on the past; a common occurrence with financial data. This class was generalized
by Bollerslev (1986) to the GARCH process. In this section we will consider ARMA models
driven by AL GARCH noise, the definition of which is as follows.

Definition 2 (ARMA model with AL GARCH noise) Let et ∼ IID AL(θ, κ, τ), with
θ = −τ(κ−1 − κ)/

√
2 and τ2 = 2[2 + (κ−1 − κ)2]−1. Then {Xt} is an ARMA(p, q) process

driven by GARCH(u, v) AL noise if it is a stationary solution of the equations

Xt =
p∑
i=1

φiXt−i +
q∑
j=1

λjZt−j + Zt,

and
Zt = σtet, (8)

where σt is a positive function of Zs, s < t, defined by

σ2
t = α0 +

u∑
i=1

αiZ
2
t−i +

v∑
j=1

βjσ
2
t−j , (9)

with α0 > 0, αi ≥ 0, i = 1, . . . , u, and βj ≥ 0, j = 1, . . . , v.

The specified values of θ and τ ensure that {et} is a zero-mean and unit variance series, as
is commonly stipulated in the formulation of GARCH models.

The ARMA-GARCH model has the property that the conditional mean and variance
are given by,

E[Xt|Zs, s < t] =
p∑
i=1

φiXt−i +
q∑
j=1

λjZt−j := µt,

and Var[Xt|Zs, s < t] = σ2
t , respectively. Derivation of the marginal distribution of just the

GARCH process Zt (let alone Xt) is intractable already in the case of et ∼ IID Gaussian, and
thus will not be attempted here under the more complicated AL model. Similar statements
hold for the distributional properties of predictors.

Model fitting can be accomplished by maximizing the joint conditional likelihood as de-
scribed in section 2. This is more commonly known as quasi-maximum likelihood estimation
(QMLE) in the GARCH literature. The joint conditional likelihood of an ARMA-GARCH
model is

L(φ1, . . . , φp, λ1, . . . , λq, α0, . . . , αu, β1, . . . , βv, κ) =
n∏

t=p+1

1
σt
f

(
xt − µt
σt

;κ
)
,

where f(·;κ) is the PDF of et. Standard deviations σt, t ≥ 0, can be computed recursively
from (8) and (9), with Zt = 0 and σ2

t = σ̂2 for all t ≤ 0, where σ̂2 is the sample variance of
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the GARCH residuals {Ẑ1, . . . , Ẑn}. As before, this conditional likelihood function can be
maximized via numerical optimization methods.

Asymptotic results for Gaussian QMLEs of ARMA-GARCH model parameters are nicely
summarized by Francq and Zakoian (2004), who establish these under weaker conditions
than previous authors. To the best of our knowledge, no extensions have yet been worked out
for non-Gaussian QMLEs. Berkes and Horvath (2004) do however consider ML and QML
estimation for the parameters of pure GARCH processes under a variety of distributional
assumptions, and one possibility would be to extend that work to ARMA-GARCH processes
with AL innovations. Another interesting direction would be to consider the least absolute
deviations estimators for GARCH model parameters introduced in Peng and Yao (2003),
and use those for ARMA-GARCH parameter estimation. The least absolute deviations
estimators are robust in the sense that they are asymptotically normal and n1/2-consistent
under more general conditions than Gaussian MLEs, and they are more efficient for processes
with a heavy-tailed noise distribution.

Notwithstanding the lack of more explicit asymptotic results for ARMA-GARCH mod-
els, appropriate regularity conditions guarantee the usual consistency and asymptotic nor-
mality of MLEs with covariance matrix equal to the inverse of the Fisher Information. If
analytical expressions for the latter prove to be intractable, standard errors for all parame-
ter estimates can nevertheless be obtained by inverting the (numerically evaluated) Hessian
matrix, H, and taking the square root of the appropriate diagonal entries. This is in fact an
option available in many software packages, e.g. “S+FinMetrics” of Splus and “fGarch” of
R. If the model is correctly specified this provides a reasonable alternative to explicit eval-
uation of the Information matrix. An alternative that is robust to model misspecification
is to calculate standard errors based on the sandwich estimator of the covariance matrix,
H−1ggTH−1, where g denotes the gradient vector, but the increase in robustness is gained
at the expense of efficiency. For details see Davidson and MacKinnon (2004, Chapt.10).

4 Simulations

In this section we present a small simulation study to assess the quality of the QMLEs from
ARMA and ARMA-GARCH models with AL innovations. The PDF, CDF, quantiles, and
random numbers from an AL distribution are available from the R package “VGAM”. At
the time of writing there does not seem to be any package for fitting ARMA models with
AL noise. The estimates in Tables 1 and 2 below were thus obtained with our own program
written in Matlab.

The ARMA-GARCH estimates in Tables 3 and 4 were obtained with the R package
“fGarch” developed by Rmetrics (www.rmetrics.org). Skewness is introduced into the nor-
mal, generalized error (also known as exponential power), and t distributions, via the
method of Fernandez and Steel (1998), and thus the generalized error distribution with
shape parameter ν = 1 (and skewness κ) coincides with the AL. Standard errors are based
on the numerically evaluated Hessian. The package is nicely documented in a forthcoming
paper by Würtz, Chalabi, and Luksan.

Tables 1 and 2 list the fitted parameters of the first five simulations from an ARMA(1,1)
and an AR(2) model under IID AL noise. The calculation of means and mean squared errors
is based on 100 simulations. The sample size in each simulation is n = 100.
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Table 1: Estimated parameter values for the first 5 of 100 simulations from an ARMA(1,1)
model under AL noise with a sample size of n = 100. Means and mean squared errors
(MSE) are for all 100 simulations.

Parameters κ τ φ λ
True values 0.8 1 0.7 0.5
simulation 1 0.740 0.921 0.760 0.505
simulation 2 0.815 0.984 0.711 0.481
simulation 3 0.828 1.029 0.712 0.477
simulation 4 0.836 0.998 0.642 0.606
simulation 5 0.742 1.019 0.724 0.435
Mean 0.807 0.985 0.689 0.500
MSE 0.008 0.011 0.006 0.009

Table 2: Estimated parameter values for the first 5 of 100 simulations from an AR(2) model
under AL noise with a sample size of n = 100. Means and mean squared errors (MSE) are
for all 100 simulations.

Parameters κ τ φ1 φ2

True values 0.8 1 0.7 -0.1
simulation 1 0.671 0.930 0.801 -0.176
simulation 2 0.674 0.749 0.749 -0.166
simulation 3 0.906 1.042 0.855 -0.200
simulation 4 0.860 1.065 0.710 -0.083
simulation 5 0.692 0.890 0.825 -0.105
Mean 0.789 0.975 0.697 -0.105
MSE 0.008 0.014 0.009 0.006
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These simulations were repeated for the same ARMA models, but now driven by AL
GARCH(1,1) noise (Tables 3 and 4). The ARMA(1,1) had GARCH parameter values of
α0 = 0.1, α1 = 0.3, β1 = 0.2, whereas the AR(2) had α0 = 0.2, α1 = 0.4, β1 = 0.5.

Table 3: Estimated parameter values for the first 5 of 100 simulations from an ARMA(1,1)
model under AL GARCH(1,1) noise with a sample size of n = 100. Means and mean
squared errors (MSE) are for all 100 simulations.

Parameters κ φ λ α0 α1 β1

True values 0.8 0.7 0.5 0.1 0.3 0.2
simulation 1 0.954 0.535 0.682 0.412 0.020 0.005
simulation 2 0.930 0.740 0.547 0.425 0.189 0.000
simulation 3 0.954 0.612 0.602 0.294 0.308 0.456
simulation 4 0.964 0.652 0.486 0.354 0.027 0.000
simulation 5 0.942 0.756 0.402 0.408 0.000 0.000
Mean 0.926 0.681 0.504 0.339 0.223 0.102
MSE 0.032 0.016 0.021 0.076 0.047 0.056

Table 4: Estimated parameter values for the first 5 of 100 simulations from an AR(2) model
under AL GARCH(1,1) noise with a sample size of n = 100. Means and mean squared
errors (MSE) are for all 100 simulations.

Parameters κ φ1 φ2 α0 α1 β1

True values 0.8 0.7 -0.1 0.2 0.4 0.5
simulation 1 0.899 0.477 -0.088 0.159 0.529 0.342
simulation 2 0.827 0.831 -0.247 1.146 0.000 0.000
simulation 3 0.648 0.749 -0.260 0.028 0.740 0.323
simulation 4 0.904 0.667 -0.137 0.817 0.000 0.007
simulation 5 0.494 0.610 -0.020 0.073 0.685 0.288
Mean 0.818 0.685 -0.112 0.417 0.376 0.256
MSE 0.025 0.013 0.018 0.193 0.099 0.113

We can see that reasonable estimates are obtained when a numerical optimization
method is used to maximize the conditional likelihood. There seems to be more bias in
the GARCH parameter estimates.

5 Application: Modeling TIAA-CREF Real Estate Returns

In this section we present a case study to illustrate the proposed methodology. We analyze
the returns of the real estate variable annuity account managed by the Teachers Insurance
and Annuity Association - College Retirement Equities Fund (TIAA-CREF), based in New

14



York City. This account seeks favorable long-term returns primarily through rental income
and appreciation of real estate investments. The data we consider range from June 15,
2004 to December 31, 2006; a total of 650 daily values. Returns were computed by taking
differences of successive log values i.e. by differencing the natural logarithm values at lag 1.

The plots in Figure 4 indicate the data is peaked, heavy-tailed, and right-skewed. There
is also a persistent autocorrelation (ACF) that exhibits a somewhat periodic behavior,
possibly due to a monthly seasonal effect. This is confirmed by the periodogram which
has a moderate peak at a period of about 21 (trading) days. A suspected cause may be
the accummulation of monthly rental income arriving at the end of each month. However,
some large returns are also observed throughout the month. The fact that the calendar
end-of-month may not occur on a trading day (and the number of days in a month varies),
may be part of the reason that standard attempts at de-seasonalizing, such as differencing
at lags around 21, do not work here. With enough expert knowledge about the account
one could conceivably construct a suitable set of regressors that may successfully extract
such deterministic features (and possibly any remaining autocorrelation along with it). In
the spirit of illustrating our methodology, we will proceed by attempting to fit stationary
ARMA models directly to the returns without any further pre-processing.

We first searched for the best-fitting ARMA models driven by IID AL noise, and by
IID normal noise. Our criterion for best is the Akaike Information Criterion (AIC), coupled
with a check for lack of serial correlation in the resulting residuals. Our version of AIC
is the classical one, -2(log likelihood)+2(number of parameters), see e.g. Brockwell and
Davis (1991). We searched the space of all ARMA(p, q) models, up to maximum values of
p = 20 = q. The AL and normal noise models were obtained by maximizing respectively,
the conditional and full likelihoods. Parameter estimates for the resulting best model with
IID AL noise, an MA(1) with AIC=-7704, appear in Table 5. The best model with IID
normal noise was an ARMA(5,4) with AIC=-7391 (estimates not shown).

Table 5: Estimated parameters (and standard errors) for 4 MA(1) models fitted to the
TIAA-CREF returns with the following noise structures: IID Asymmetric Laplace (IID AL),
GARCH(1,1) Asymmetric Laplace (GCH AL), GARCH(1,1) Asymmetric Normal (GCH
AN), GARCH(1,1) Asymmetric t (GCH AT). (NaN=undefined.)

Noise Parameter Estimates (Standard Errors)
Structure λ α0 α1 β1 κ τ or ν
IID AL 6.21E-02 6.64E-01 τ=6.31E-04

(2.38E-02) (3.68E-02) (4.28E-05)
GCH AL 7.32E-02 4.97E-07 8.53E-02 1.00E-08 1.50E+00

(1.51E-02) (4.96E-08) (4.22E-02) (9.19E-02) (2.01E-02)
GCH AN 9.32E-02 2.97E-07 2.63E-01 2.24E-01 1.80E+00

(4.65E-02) (4.62E-08) (8.71E-02) (1.02E-01) (1.03E-01)
GCH AT 8.88E-02 6.59E-07 1.04E-01 1.00E-08 1.52E+00 ν=3.06E+00

(2.97E-02) (1.19E-07) (6.21E-02) (NaN) (8.62E-02) (4.19E-01)

The first panel of Figure 5 shows a relative frequency histogram of the mean-corrected
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Figure 4: TIAA-CREF real estate returns data. The bottom panels show the sample
autocorrelation (ACF) and partial autocorrelation (PACF) functions.
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returns, with the marginal PDFs of the best-fitting ARMA with AL (solid) and normal
(dashed) noises superimposed. The ARMA with normal noise naturally fails to capture the
skewness and peakedness, while the fit of the AL noise model is remarkable.

As is typical of financial data, although the residuals from the ARMA model with normal
noise are uncorrelated, a look at the ACFs of the squares and (especially) the absolute values
of the residuals suggests dependence. The situation is somewhat different for the residuals
from the MA(1) model with AL noise. In fact the returns have been (more) successfully
whitened by the MA(1) filter, and there is little evidence of dependence present in the ACFs
of the squares and absolute values.

To better capture the dependence we entertained the same ARMA(5,4) and MA(1) mod-
els, but now driven by GARCH(1,1) noise. The GARCH was fit using several distributions
for the noise et: normal for the ARMA(5,4), and asymmetric versions of the normal (AN),
Laplace (AL), and Student-t (AT), for the MA(1). Parameter estimates for the four MA(1)
models thus fitted appear in Table 5. The ARMA model estimates were obtained with
our own Matlab program; standard errors being based on the observed Fisher Information
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derived in the Appendix. The ARMA-GARCH model estimates were obtained with the R
package “fGarch”. Here standard errors are based on the numerically evaluated Hessian,
and we note that there are problems with the estimate of β1 for the GARCH(1,1) driven by
asymmetric t noise (its standard error is either negative or beyond the limits of numerical
precision carried by the software).

Table 6 summarizes the results in terms of the AIC values obtained with each model
considered (parameter estimates for most of these are in Table 5). The lowest AIC model
was the MA(1) with GARCH(1,1) Asymmetric Student-t noise (AIC=-7724), but there
were numerical problems with the estimation as mentioned above. The next lowest were
the MA(1)-GARCH(1,1) AL and MA(1)-IID AL, both with an AIC of essentially -7704.
The remaining models are not competitive in terms of AIC.

Table 6: AIC values obtained from different models for the conditional mean and variance
structures fitted to the TIAA-CREF returns.

Conditional Mean Conditional Variance AIC
ARMA(5,4) IID Normal -7391.3
ARMA(5,4) GARCH(1,1) Normal -7465.1
MA(1) GARCH(1,1) Asymmetric Normal -7578.4
MA(1) IID Asymmetric Laplace -7703.7
MA(1) GARCH(1,1) Asymmetric Laplace -7704.2
MA(1) GARCH(1,1) Asymmetric Student-t -7724.2

QQ-plots of the residuals from the three MA(1)-GARCH(1,1) models appearing in Ta-
ble 5 are presented in Figure 5. We note that the AL and (particularly) the asymmetric t
(with approximately 3 degrees of freedom) provide the best fits, however there are numer-
ical issues with the latter in this particular dataset. The AL and t are also qualitatively
very different distributions; the former has finite moments of all orders, whereas a t with
ν ′ degrees of freedom has finite moments only up to a maximum order of ν, ν < ν ′. Note
that the difference between the two fits rests mainly on about 3 or 4 residuals. The AL
only substantially deviates from the line in 3 upper tail values, but the t deviates both in
3 upper tail and one lower tail value.

An interesting feature of the normal vs. AL noise models is that apart from giving
models with lower AIC, the latter tend to also have substantially less parameters. Note
that although we are lumping the ARMA and ARMA-GARCH models in the same table,
the former are intended to capture only the conditional mean, while the latter provide a
model for both the conditional mean and conditional variance of the process. They should
not therefore be viewed as directly competing models.

Table 7 presents predictions for the first return of 2007 using the fitted ARMA models
with IID noise, along with 95% confidence bands. Note how the Gaussian prediction band
is naturally symmetric, while that from the AL noise model reflects the asymmetry present
in the data. Both bands do in fact capture the observed return value of 0.00036.

In conclusion, we note that ARMA models with AL noise can be useful for modeling
time-varying conditional expectations of processes that tend to be peaked, skewed, and
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Figure 5: Panel 1: Histogram of TIAA-CREF real estate returns and the marginal PDFs
of the best-fitting ARMA models: MA(1) with IID AL noise (solid), ARMA(5,4) with IID
normal noise (dashed). Remaining panels: QQ-plots of the residuals from three MA(1)-
GARCH(1,1) models fitted to the TIAA-CREF returns, corresponding to different asym-
metric distributions for the GARCH innovations.
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leptokurtic, but which appear to have some higher order moments. In similar situations,
GARCH models with AL innovations may provide a competitive fit and a greater degree of
numerical stability with respect to other skewed distributions. AL noise models may also
have substantially less parameters than their normal noise counterparts. These models are
therefore worthy of inclusion in the applied statistician’s “toolbox”.
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Table 7: Predictions of the first return of 2007 from two models fitted to the TIAA-CREF
returns.

Model Lower Prediction Bound Upper Prediction Bound
ARMA(5,4) with IID Normal noise 0.00032-0.00157 0.00032+0.00157
MA(1) with IID AL noise 0.00051-0.00105 0.00051+0.00179

A QMLE Asymptotics for an ARMA Model With AL Noise

Let η = (φ1, . . . , φp, λ1, . . . , λq, κ, τ) denote the vector of parameters for the zero-mean
ARMA(p, q) model driven by AL noise of Definition 1, and let η̂ be its QMLE based on n
observations. An application of the Theorem in Li and McLeod (1988), allows us to conclude
that η̂ is asymptotically normal with mean η and covariance matrix n−1Ω−1, where Ω has
the following block structure:

Ω =
[
Jp+q 0

0 Ĩ2

]
.

Jp+q has dimension p+q, its elements being functions of the AL PDF and the autocovariance
of the process (see the Theorem in Li and McLeod, 1988). Ĩ2 is the 2×2 Fisher Information
matrix (per observation) corresponding to n IID observations from the AL PDF f̃(y;κ, τ),
which represents f(y; θ, κ, τ) with the constraint θ = −τ(κ−1 − κ)/

√
2 as in (3).

For an MA(1) model, routine calculations give J1 = (1 +κ4)/[(1−λ2)κ2]. For a general
ARMA, the elements of Ĩ2 are given by:

Ĩ2(1, 1) = E

(
∂ log f̃
∂κ

)2

, Ĩ2(1, 2) = E

(
∂ log f̃
∂κ

∂ log f̃
∂τ

)
, Ĩ2(2, 2) = E

(
∂ log f̃
∂τ

)2

.

These elements can be obtained from those for the 3×3 Fisher Information, I3, correspond-
ing to the (unconstrained) f(y; θ, κ, τ) case, which is given in Kotz et al. (2001, Sec.3.5).
For example, total differentiation with respect to κ gives,

∂ log f̃
∂κ

=
∂ log f
∂θ

∂θ

∂κ
+
∂ log f
∂κ

,

so that after squaring and taking expectations,

Ĩ2(1, 1) =
(
∂θ

∂κ

)2

I3(1, 1) + I3(2, 2) + 2
∂θ

∂κ
I3(1, 2) =

1 + κ2 + 4κ4 + κ6 + κ8

(1 + κ2)2κ4
.

Proceeding similarly, we obtain

Ĩ2(1, 2) =
∂θ

∂κ

∂θ

∂τ
I3(1, 1) +

∂θ

∂κ
I3(1, 3) +

∂θ

∂τ
I3(1, 2) + I3(2, 3) =

(1− κ2)(κ4 − 3κ2 − 1)
(1 + κ2)τκ3

,

and

Ĩ2(2, 2) =
(
∂θ

∂τ

)2

I3(1, 1) + I3(3, 3) + 2
∂θ

∂τ
I3(1, 3) =

1− κ2 + κ4

τ2κ2
.
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