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We consider maximum likelihood estimation for both causal and
noncausal autoregressive time series processes with non-Gaussian α-
stable noise. A nondegenerate limiting distribution is given for max-
imum likelihood estimators of the parameters of the autoregressive
model equation and the parameters of the stable noise distribution.
The estimators for the autoregressive parameters are n1/α-consistent
and converge in distribution to the maximizer of a random function.
The form of this limiting distribution is intractable, but the shape
of the distribution for these estimators can be examined using the
bootstrap procedure. The bootstrap is asymptotically valid under
general conditions. The estimators for the parameters of the stable
noise distribution have the traditional n1/2 rate of convergence and
are asymptotically normal. The behavior of the estimators for finite
samples is studied via simulation, and we use maximum likelihood
estimation to fit a noncausal autoregressive model to the natural log-
arithms of volumes of Wal-Mart stock traded daily on the New York
Stock Exchange.

1. Introduction. Many observed time series processes appear “spiky”
due to the occasional appearance of observations particularly large in abso-
lute value. Non-Gaussian α-stable distributions, which have regularly vary-
ing or “heavy” tail probabilities (P(|X| > x) ∼ (constant)x−α, x > 0, 0 <
α < 2), are often used to model these series. Processes exhibiting non-
Gaussian stable behavior have appeared, for example, in economics and fi-
nance (Embrechts, Klüppelberg, and Mikosch [18]; McCulloch [25]; Mittnik
and Rachev [28]), signal processing (Nikias and Shao [29]), and teletraffic
engineering (Resnick [32]).

The focus of this paper is maximum likelihood (ML) estimation for the
parameters of autoregressive (AR) time series processes with non-Gaussian
stable noise. Specific applications for heavy-tailed AR models include fitting
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2 B. ANDREWS, M. CALDER AND R.A. DAVIS

network interarrival times (Resnick [32]), sea surface temperatures (Gal-
lagher [20]), and stock market log-returns (Ling [24]). Causality (all roots of
the AR polynomial are outside the unit circle in the complex plane) is a com-
mon assumption in the time series literature since causal and noncausal mod-
els are indistinguishable in the case of Gaussian noise. However, noncausal
AR models are identifiable in the case of non-Gaussian noise, and these
models are frequently used in deconvolution problems (Blass and Halsey [3];
Chien, Yang, and Chi [10]; Donoho [16]; Scargle [36]) and have also ap-
peared for modeling stock market trading volume data (Breidt, Davis, and
Trindade [5]). We, therefore, consider parameter estimation for both causal
and noncausal AR models. We assume the parameters of the AR model equa-
tion and the parameters of the stable noise distribution are unknown, and
we maximize the likelihood function with respect to all parameters. Since
most stable density functions do not have a closed-form expression, the like-
lihood function is evaluated by inversion of the stable characteristic function.
We show that ML estimators of the AR parameters are n1/α-consistent (n
represents sample size) and converge in distribution to the maximizer of a
random function. The form of this limiting distribution is intractable, but
the shape of the distribution for these estimators can be examined using
the bootstrap procedure. We show the bootstrap procedure is asymptoti-
cally valid provided the bootstrap sample size mn → ∞ with mn/n → 0 as
n → ∞. ML estimators of the parameters of the stable noise distribution
are n1/2-consistent, asymptotically independent of the AR estimators, and
have a multivariate normal limiting distribution.

Parameter estimation for causal, heavy-tailed AR processes has already
been considered in the literature (Davis and Resnick [14], least squares esti-
mators; Davis [11] and Davis, Knight, and Liu [12], least absolute deviations
and other M-estimators; Mikosch, Gadrich, Klüppelberg, and Adler [27],
Whittle estimators; Ling [24], weighted least absolute deviations estima-
tors). The weighted least absolute deviations estimators for causal AR pa-
rameters are n1/2-consistent, and the least squares and Whittle estimators
are (n/ lnn)1/α-consistent, while the unweighted least absolute deviations
estimators have the same faster rate of convergence as ML estimators, n1/α.
Least absolute deviations and ML estimators have different limiting distri-
butions, however, and simulation results in Calder and Davis [8] show that
ML estimates (obtained using the stable likelihood) tend to be more effi-
cient than least absolute deviations estimates, even when the AR process
has regularly varying tail probabilities but is not stable. Theory has not yet
been developed for the distribution of AR parameter estimators when the
process is noncausal and heavy-tailed.
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In Section 2, we discuss properties of AR processes with non-Gaussian
stable noise and give an approximate log-likelihood for the model param-
eters. In Section 3, we give a nondegenerate limiting distribution for ML
estimators, show that the bootstrap procedure can be used to approximate
the distribution for AR parameter estimators, and discuss confidence interval
calculation for the model parameters. Proofs of the lemmas used to establish
the results of Section 3 can be found in the Appendix. We study the behav-
ior of the estimators for finite samples via simulation in Section 4.1 and, in
Section 4.2, use ML estimation to fit a noncausal AR model to the natu-
ral logarithms of volumes of Wal-Mart stock traded daily on the New York
Stock Exchange. A causal AR model is inadequate for these log-volumes
since causal AR residuals appear dependent. The noncausal residuals ap-
pear iid (independent and identically distributed) stable, and so the fitted
noncausal AR model appears much more suitable for the series.

2. Preliminaries. Let {Xt} be the AR process which satisfies the dif-
ference equations

(2.1) φ0(B)Xt = Zt,

where the AR polynomial φ0(z) := 1 − φ01z − · · · − φ0pz
p 6= 0 for |z| = 1,

B is the backshift operator (BkXt = Xt−k, k = 0,±1,±2, . . .), and {Zt}
is an iid sequence of random variables. Because φ0(z) 6= 0 for |z| = 1,
the Laurent series expansion of 1/φ0(z), 1/φ0(z) =

∑∞
j=−∞ ψjz

j , exists on
some annulus {z : a−1 < |z| < a}, a > 1, and the unique strictly station-
ary solution to (2.1) is given by Xt =

∑∞
j=−∞ ψjZt−j (see Brockwell and

Davis [6], Chapter 3). Note that if φ0(z) 6= 0 for |z| ≤ 1, then ψj = 0 for
j < 0, and so {Xt} is said to be causal since Xt =

∑∞
j=0 ψjZt−j , a func-

tion of only the past and present {Zt}. On the other hand, if φ0(z) 6= 0
for |z| ≥ 1, then Xt =

∑∞
j=0 ψ−jZt+j and {Xt} is said to be a purely non-

causal process. In the purely noncausal case, the coefficients {ψj} satisfy
(1 − φ01z − · · · − φ0pz

p)(ψ0 + ψ−1z
−1 + · · · ) = 1, which, if φ0p 6= 0, implies

that ψ0 = ψ−1 = · · · = ψ1−p = 0 and ψ−p = −φ−1
0p . To express φ0(z) as the

product of causal and purely noncausal polynomials, suppose

(2.2) φ0(z) = (1 − θ01z − · · · − θ0r0
zr0)(1 − θ0,r0+1z − · · · − θ0,r0+s0

zs0),

where r0 + s0 = p, θ†0(z) := 1 − θ01z − · · · − θ0r0
zr0 6= 0 for |z| ≤ 1, and

θ∗0(z) := 1 − θ0,r0+1z − · · · − θ0,r0+s0
zs0 6= 0 for |z| ≥ 1. Hence, θ†0(z) is a

causal polynomial and θ∗0(z) is a purely noncausal polynomial. So that φ0(z)
has a unique representation as the product of causal and purely noncausal
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polynomials θ†0(z) and θ∗0(z), if the true order of the polynomial φ0(z) is
less than p (if φ0p = 0), we further suppose that θ0,r0+s0

6= 0 when s0 > 0.
Therefore, if the true order of the AR polynomial φ0(z) is less than p =

r0 + s0, then the true order of θ†0(z) is less than r0, but the order of θ∗0(z) is
s0.

We assume throughout that the iid noise {Zt} have a univariate sta-
ble distribution with exponent α0 ∈ (0, 2), parameter of symmetry |β0| <
1, scale parameter 0 < σ0 < ∞, and location parameter µ0 ∈ IR. Let
τ 0 = (α0, β0, σ0, µ0)

′. By definition, nondegenerate, iid random variables
{St} have a stable distribution if there exist positive constants {an} and

constants {bn} such that an (S1 + · · · + Sn) + bn
L
= S1 for all n. In general,

stable distributions are indexed by an exponent α ∈ (0, 2], a parameter of
symmetry |β| ≤ 1, a scale parameter 0 < σ < ∞, and a location parameter
µ ∈ IR. Hence, τ 0 is in the interior of the stable parameter space. If β = 0,
the stable distribution is symmetric about µ, and, if α = 1 and β = 0, the
symmetric distribution is Cauchy. When α = 2, the stable distribution is
Gaussian with mean µ and standard deviation

√
2σ. Other properties of sta-

ble distributions can be found in Feller [19], Gnedenko and Kolmogorov [21],
Samorodnitsky and Taqqu [35], and Zolotarev [38].

Since the stable noise distribution has exponent α0 < 2,

(2.3) lim
x→∞

xα0P(|Zt| > x) = c̃(α0)σ
α0

0 , with c̃(α) :=

(∫ ∞

0
t−α sin(t) dt

)−1

(Samorodnitsky and Taqqu [35], Property 1.2.15). Following Properties 1.2.1
and 1.2.3 in Samorodnitsky and Taqqu [35], Xt =

∑∞
j=−∞ ψjZt−j also has

a stable distribution with exponent α0 and, hence, the tail probabilities for
the AR process {Xt} are also regularly varying with exponent α0. It follows
that E|Xt|δ <∞ for all δ ∈ [0, α0) and E|Xt|δ = ∞ for all δ ≥ α0.

The characteristic function for Zt is

ϕ0(s) := E{exp(isZt)}

=







exp
{
−σα0

0 |s|α0
[
1 + iβ0(sign s) tan

(πα0

2

) (
|σ0s|1−α0 − 1

)]
+ iµ0s

}
,

α0 6= 1,

exp
{

−σ0|s|
[

1 + iβ0
2
π (sign s) ln(σ0|s|)

]

+ iµ0s
}

, α0 = 1,

(2.4)

and so the density function for the noise can be expressed as f(z; τ 0) =
(2π)−1

∫∞
−∞ exp (−izs)ϕ0(s) ds. No general, closed-form expression is known

for f , however; although computational formulas exist that can be used to
evaluate f (see, for example, McCulloch [26] and Nolan [30]). It can be
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shown that f(z; τ 0) = σ−1
0 f(σ−1

0 (z−µ0); (α0, β0, 1, 0)
′), f(·; (α0, β0, 1, 0)

′) is
unimodal on IR (Yamazato [37]), and f(z; (α, β, 1, 0)′) is infinitely differen-
tiable with respect to (z, α, β) on IR× (0, 2)× (−1, 1). There are alternative
parameterizations for the stable characteristic function ϕ0 (see, for exam-
ple, Zolotarev [38]), but we are using (2.4) so that the noise density function
is differentiable with respect to not only z on IR but also (α, β, σ, µ)′ on
(0, 2) × (−1, 1) × (0,∞) × (−∞,∞). From asymptotic expansions in Du-
Mouchel [17], if Ωδ := {τ = (α, β, σ, µ)′ : ‖τ − τ 0‖ < δ}, then for δ > 0
sufficiently small we have the following bounds for the partial and mixed
partial derivatives of ln f(z; τ ) as |z| → ∞:

• sup
Ωδ

∣
∣
∣
∣
∣

∂2 ln f(z; τ )

∂z2

∣
∣
∣
∣
∣
+ sup

Ωδ

∣
∣
∣
∣
∣

∂2 ln f(z; τ )

∂z∂µ

∣
∣
∣
∣
∣
+ sup

Ωδ

∣
∣
∣
∣
∣

∂2 ln f(z; τ )

∂µ2

∣
∣
∣
∣
∣
= O(|z|−2),

(2.5)

• sup
Ωδ

∣
∣
∣
∣
∣

∂ ln f(z; τ )

∂z

∣
∣
∣
∣
∣
+ sup

Ωδ

∣
∣
∣
∣
∣

∂ ln f(z; τ )

∂µ

∣
∣
∣
∣
∣
+ sup

Ωδ

∣
∣
∣
∣
∣

∂2 ln f(z; τ )

∂z∂β

∣
∣
∣
∣
∣

+ sup
Ωδ

∣
∣
∣
∣
∣

∂2 ln f(z; τ )

∂z∂σ

∣
∣
∣
∣
∣
+ sup

Ωδ

∣
∣
∣
∣
∣

∂2 ln f(z; τ )

∂β∂µ

∣
∣
∣
∣
∣
+ sup

Ωδ

∣
∣
∣
∣
∣

∂2 ln f(z; τ )

∂σ∂µ

∣
∣
∣
∣
∣

= O(|z|−1),(2.6)

• sup
Ωδ

∣
∣
∣
∣
∣

∂2 ln f(z; τ )

∂z∂α

∣
∣
∣
∣
∣
+ sup

Ωδ

∣
∣
∣
∣
∣

∂2 ln f(z; τ )

∂α∂µ

∣
∣
∣
∣
∣
= O(|z|−1 ln |z|),

(2.7)

• sup
Ωδ

∣
∣
∣
∣
∣

∂ ln f(z; τ )

∂β

∣
∣
∣
∣
∣
+ sup

Ωδ

∣
∣
∣
∣
∣

∂ ln f(z; τ )

∂σ

∣
∣
∣
∣
∣
+ sup

Ωδ

∣
∣
∣
∣
∣

∂2 ln f(z; τ )

∂β2

∣
∣
∣
∣
∣

+ sup
Ωδ

∣
∣
∣
∣
∣

∂2 ln f(z; τ )

∂β∂σ

∣
∣
∣
∣
∣
+ sup

Ωδ

∣
∣
∣
∣
∣

∂2 ln f(z; τ )

∂σ2

∣
∣
∣
∣
∣
= O(1),(2.8)

• sup
Ωδ

∣
∣
∣
∣
∣

∂ ln f(z; τ )

∂α

∣
∣
∣
∣
∣
+ sup

Ωδ

∣
∣
∣
∣
∣

∂2 ln f(z; τ )

∂α∂β

∣
∣
∣
∣
∣
+ sup

Ωδ

∣
∣
∣
∣
∣

∂2 ln f(z; τ )

∂α∂σ

∣
∣
∣
∣
∣
= O(ln |z|),

(2.9)

• sup
Ωδ

∣
∣
∣
∣
∣

∂2 ln f(z; τ )

∂α2

∣
∣
∣
∣
∣
= O([ln |z|]2).

(2.10)

From (2.1) and (2.2), Zt = (1− θ01B− · · · − θ0r0
Br0)(1− θ0,r0+1B− · · ·−

θ0,r0+s0
Bs0)Xt. Therefore, for arbitrary autoregressive polynomials θ†(z) =
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6 B. ANDREWS, M. CALDER AND R.A. DAVIS

1 − θ1z − · · · − θrz
r and θ∗(z) = 1 − θr+1z − · · · − θr+sz

s, with r + s = p,
θ†(z) 6= 0 for |z| ≤ 1, θ∗(z) 6= 0 for |z| ≥ 1, and θr+s 6= 0 when s > 0, we
define

(2.11) Zt(θ, s) = (1 − θ1B − · · · − θrB
r)(1 − θr+1B − · · · − θr+sB

s)Xt,

where θ := (θ1, . . . , θp)
′. Let θ0 = (θ01, . . . , θ0p)

′ denote the true parameter
vector and note that {Zt(θ0, s0)} = {Zt}. Now let η = (η1, . . . , ηp+4)

′ =
(θ1, . . . , θp, α, β, σ, µ)′ = (θ′, τ ′)′ and let η0 = (η01, . . . , η0,p+4)

′ = (θ′
0, τ

′
0)

′.
From Breidt, Davis, Lii, and Rosenblatt [4], given a realization {Xt}n

t=1

from (2.1), the log-likelihood of η can be approximated by the conditional
log-likelihood

(2.12) L(η, s) =
n∑

t=p+1

[ln f(Zt(θ, s); τ ) + ln |θp|I{s > 0}] ,

where {Zt(θ, s)}n
t=p+1 is computed using (2.11) and I{·} represents the in-

dicator function (see [4] for the derivation of L). Given {Xt}n
t=1 and fixed p,

we can estimate s0, the order of noncausality for the AR model (2.1), and η0

by maximizing L with respect to both s and η. If the function g is defined
so that

(2.13)

g(θ, s) = [gj(θ, s)]
p
j=1 ,

gj(θ, s) =

{

θj −
∑j

k=1 θj−kθp−s+k, j = 1, . . . , p− s,

−∑j
k=j−p+s θj−kθp−s+k, j = p− s+ 1, . . . , p,

with θ0 = −1 and θk = 0 whenever k /∈ {0, . . . , p}, then an estimate of
φ0 := (φ01, . . . , φ0p)

′ can be obtained using the MLEs of s0 and θ0 and the
fact that φ0 = g(θ0, s0). A similar ML approach is considered in [4] for
lighter-tailed AR processes.

3. Asymptotic Results. In this section, we obtain limiting results for
maximizers of the log-likelihood L. But first, we need to introduce some no-
tation and define a random functionW (·). The ML estimators of θ0 converge
in distribution to the maximizer of W (·).

Suppose the Laurent series expansions for 1/θ†0(z) = 1/(1 − θ01z − · · · −
θ0r0

zr0) and 1/θ∗0(z) = 1/(1 − θ0,r0+1z − · · · − θ0,r0+s0
zs0) are given by

1/θ†0(z) =
∑∞

j=0 πjz
j and 1/θ∗0(z) =

∑∞
j=s0

χjz
−j. From (2.11),

(3.1)
∂Zt(θ, s)

∂θj
=

{

−θ∗(B)Xt−j , j = 1, . . . , r,

−θ†(B)Xt+r−j , j = r + 1, . . . , p,
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and so, for u = (u1, . . . , up)
′ ∈ IRp,

u′ ∂Zt(θ0, s0)

∂θ
= −u1θ

∗
0(B)Xt−1 − · · · − ur0

θ∗0(B)Xt−r0
− ur0+1θ

†
0(B)Xt−1

− · · · − upθ
†
0(B)Xt−s0

= −u1(1/θ
†
0(B))Zt−1 − · · · − ur0

(1/θ†0(B))Zt−r0

−ur0+1(1/θ
∗
0(B))Zt−1 − · · · − up(1/θ

∗
0(B))Zt−s0

= −u1

∞∑

j=0

πjZt−1−j − · · · − ur0

∞∑

j=0

πjZt−r0−j

−ur0+1

∞∑

j=s0

χjZt−1+j − · · · − up

∞∑

j=s0

χjZt−s0+j .

Therefore, if

(3.2)
∞∑

j=−∞

cj(u)Zt−j := u′ ∂Zt(θ0, s0)

∂θ
,

then c0(u) = −upχs0
I{s0 > 0} = upθ

−1
0p I{s0 > 0}, c1(u) = −u1π0I{r0 >

0} = −u1I{r0 > 0}, c−1(u) = −upχ2I{s0 = 1}− (up−1χs0
+upχs0+1)I{s0 >

1}, etc. Since {πj}∞j=0 and {χj}∞j=s0
decay at geometric rates (Brockwell and

Davis [6], Chapter 3), for any u ∈ IRp, there exist constants C(u) > 0 and
0 < D(u) < 1 such that

(3.3) |cj(u)| ≤ C(u)[D(u)]|j| ∀j ∈ {. . . ,−1, 0, 1, . . .}.

We now define the function

W (u)

=
∞∑

k=1

∑

j 6=0

{

ln f
(

Zk,j + [c̃(α0)]
1/α0σ0cj(u)δkΓ

−1/α0

k ; τ 0

)

− ln f (Zk,j; τ 0)
}

,

(3.4)

where

• {Zk,j}k,j is an iid sequence with Zk,j
L
= Z1,

• c̃(·) was defined in (2.3),
• {δk} is iid with P(δk = 1) = (1+β0)/2 and P(δk = −1) = 1−(1+β0)/2,
• Γk = E1 + · · ·+Ek, where {Ek} is an iid series of exponential random

variables with mean one, and
• {Zk,j}, {δk}, and {Ek} are mutually independent.
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8 B. ANDREWS, M. CALDER AND R.A. DAVIS

Note that (1 + β0)/2 = limx→∞[P(Z1 > x)/P(|Z1| > x)] (Samorodnitsky
and Taqqu [35], Property 1.2.15). Some properties of W (·) are given in the
following theorem.

Theorem 3.1. With probability one, the function W (u) defined in (3.4)
is finite for all u ∈ IRp and has a unique maximum.

Proof. Let u ∈ IRp and observe that

W (u)

=
∞∑

k=1

∑

j 6=0

[c̃(α0)]
1/α0σ0cj(u)δkΓ

−1/α0

k

∂ ln f(Zk,j(u); τ 0)

∂z

=
∞∑

k=1

∑

j 6=0

[c̃(α0)]
1/α0σ0cj(u)δkΓ

−1/α0

k

[
∂ ln f(Zk,j(u); τ 0)

∂z
− ∂ ln f(Zk,j; τ 0)

∂z

]

+
∞∑

k=1

∑

j 6=0

[c̃(α0)]
1/α0σ0cj(u)δk

(

Γ
−1/α0

k − k−1/α0

) ∂ ln f(Zk,j; τ 0)

∂z

+
∞∑

k=1

∑

j 6=0

[c̃(α0)]
1/α0σ0cj(u)δkk

−1/α0
∂ ln f(Zk,j; τ 0)

∂z
,

where Zk,j(u) lies between Zk,j and Zk,j + [c̃(α0)]
1/α0σ0cj(u)δkΓ

−1/α0

k .
Since 0 < [c̃(α0)]

1/α0σ0 <∞, by Lemmas A.1–A.3 in the Appendix, |W (u)| <
∞ almost surely. It can be shown similarly that sup‖u‖≤T |W (u)| < ∞ al-
most surely for any T ∈ (0,∞) and, therefore, P(∩∞

T=1{sup‖u‖≤T |W (u)| <
∞}) = 1.

Since f(·; τ 0) is unimodal and differentiable on IR, with positive proba-
bility, ln f(Z1 + ·; τ 0) is strictly concave in a neighborhood of zero, and so,
by Remark 2 in Davis, Knight, and Liu [12], W (·) has a unique maximum
almost surely.

We now give nondegenerate limiting distributions for ML estimators of
η0 = (θ′

0, τ
′
0)

′ = (θ01, . . . , θ0p, α0, β0, σ0, µ0)
′ and estimators of the AR pa-

rameters φ0 = (φ01, . . . , φ0p)
′ in (2.1).

Theorem 3.2. There exists a sequence of maximizers η̂ML =

(θ̂
′

ML, τ̂
′
ML)′ of L(·, s0) in (2.12) such that, as n→ ∞,

(3.5) n1/α0(θ̂ML−θ0)
L→ ξ and n1/2(τ̂ML−τ 0)

L→ Y ∼ N(0, I−1(τ 0)),
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where ξ is the unique maximizer of W (·), ξ and Y are independent, and
I(τ ) := −

[
E{∂2 ln f(Z1; τ )/(∂τi∂τj)}

]

i,j∈{1,...,4}. In addition, if φ̂ML :=

g(θ̂ML, s0), with g as defined in (2.13), then

(3.6) n1/α0(φ̂ML − φ0)
L→ Σ(θ0) ξ,

where

(3.7) Σ(θ) :=








∂g1(θ,s0)
∂θ1

· · · ∂g1(θ,s0)
∂θp

...
. . .

...
∂gp(θ,s0)

∂θ1
· · · ∂gp(θ,s0)

∂θp








and g1, . . . , gp were also defined in (2.13).

Since τ 0 is in the interior of the stable parameter space, given iid observa-
tions {Zt}n

t=1, ML estimators of τ 0 are asymptotically Gaussian with mean
τ 0 and covariance matrix I−1(τ 0)/n (see DuMouchel [17]). The estimators
τ̂ML, therefore, have the same limiting distribution as ML estimators in
the case of observed iid noise. Nolan [31] lists values of I−1(·) for different
parameter values.

For u ∈ IRp and v ∈ IR4, let Wn(u,v) = L(η0+(n−1/α0u′, n−1/2v′)′, s0)−
L(η0, s0), and note that maximizing L(η, s0) with respect to η is equivalent
to maximizing Wn(u,v) with respect to u and v if u = n1/α0(θ − θ0) and
v = n1/2(τ − τ 0). We give a functional convergence result for Wn in the
following theorem, and then use it to prove Theorem 3.2.

Theorem 3.3. As n → ∞, Wn(u,v)
L→ W (u) + v′N − 2−1v′I(τ 0)v

on C(IRp+4), where N ∼ N(0, I(τ 0)) is independent of W (·), and C(IRp+4)
represents the space of continuous functions on IRp+4 where convergence is
equivalent to uniform convergence on every compact subset.

Proof. For u ∈ IRp and v ∈ IR4, let

W ∗
n(u,v) =

n∑

t=p+1






ln f



Zt + n−1/α0

∑

j 6=0

cj(u)Zt−j ; τ 0



− ln f(Zt; τ 0)







+
v′

√
n

n∑

t=p+1

∂ ln f (Zt; τ 0)

∂τ
.
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10 B. ANDREWS, M. CALDER AND R.A. DAVIS

Since

Wn(u,v) −W ∗
n(u,v)

=
n∑

t=p+1

ln f

(

Zt

(

θ0 +
u

n1/α0
, s0

)

; τ 0 +
v√
n

)

−
n∑

t=p+1

ln f



Zt + n−1/α0

∑

j 6=0

cj(u)Zt−j ; τ 0





− v′

√
n

n∑

t=p+1

∂ ln f (Zt; τ 0)

∂τ
+ (n− p) ln

∣
∣
∣
∣
∣

θ0p + n−1/α0up

θ0p

∣
∣
∣
∣
∣
I{s0 > 0},

Wn(u,v) −W ∗
n(u,v) + 2−1v′I(τ 0)v = op(1) on C(IRp+4) by Lemmas A.4–

A.7. So, the proof is complete if W ∗
n(u,v)

L→W (u) + v′N on C(IRp+4).
For u ∈ IRp, let

W †
n(u) =

n∑

t=p+1



ln f



Zt + n−1/α0

∑

j 6=0

cj(u)Zt−j ; τ 0



− ln f(Zt; τ 0)



(3.8)

and, for v ∈ IR4, let

(3.9) Tn(v) =
v′

√
n

n∑

t=p+1

∂ ln f (Zt; τ 0)

∂τ
.

By Lemma A.8, for fixed u and v, (W †
n(u), Tn(v))′

L→ (W (u),v′N)′ on
IR2, with W (u) and v′N independent. Consequently, W ∗

n(u,v) = W †
n(u) +

Tn(v)
L→ W (u) + v′N on IR. It can be shown similarly that the finite di-

mensional distributions of W ∗
n(u,v) converge to those of W (u) + v′N, with

W (·) and N independent. For any compact set K1 ⊂ IRp, {W †
n(·)} is tight

on C(K1) by Lemma A.12 and, for any compact set K2 ⊂ IR4, {Tn(·)} is
tight on C(K2) since Tn(v) is linear in v. Therefore, by Theorem 7.1 in

Billingsley [2], W ∗
n(u,v) = W †

n(u)+Tn(v)
L→ W (u)+v′N on C(IRp+4).

Proof of Theorem 3.2. Since Wn(u,v)
L→W (u)+v′N− 2−1v′I(τ 0)v

on C(IRp+4), ξ uniquely maximizes W (·) almost surely, and Y = I−1(τ 0)N
uniquely maximizes v′N − 2−1v′I(τ 0)v, from Remark 1 in Davis, Knight,
and Liu [12], there exists a sequence of maximizers of Wn(·, ·) which con-
verges in distribution to (ξ′,Y′)′. The result (3.5) follows because L(η, s0)−
L(η0, s0) = Wn(n1/α0(θ − θ0), n

1/2(τ − τ 0)). By Theorem 3.3, ξ and Y are
independent.
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Using the mean value theorem,

n1/α0(φ̂ML − φ0) = n1/α0(g(θ̂ML, s0) − g(θ0, s0))

=








∂g1(θ
∗

1,s0)
∂θ1

· · · ∂g1(θ
∗

1,s0)
∂θp

...
. . .

...
∂gp(θ

∗

p,s0)

∂θ1
· · · ∂gp(θ

∗

p,s0)

∂θp







n1/α0(θ̂ML − θ0),(3.10)

where θ∗
1, . . . ,θ

∗
p lie between θ̂ML and θ0. Since θ̂ML

P→ θ0 and Σ(·) is

continuous at θ0, (3.10) equals Σ(θ0)n
1/α0(θ̂ML − θ0) + op(1). Therefore,

the result (3.6) follows from (3.5).
Since the forms of the limiting distributions for θ̂ML and φ̂ML in (3.5)

and (3.6) are intractable, we recommend using the bootstrap procedure to
examine the distributions for these estimators. Davis and Wu [15] give a
bootstrap procedure for examining the distribution of M-estimates for the
parameters of causal, heavy-tailed AR processes; we consider a similar proce-
dure here. Given observations {Xt}n

t=1 from (2.1), θ̂ML from (3.5), and cor-
responding residuals {Zt(θ̂ML, s0)}n

t=p+1 obtained via (2.11), the procedure
is implemented by first generating an iid sequence {Z∗

t }mn
t=1 from the empiri-

cal distribution for {Zt(θ̂ML, s0)}n
t=p+1. A bootstrap replicate X∗

1 , . . . ,X
∗
mn

is then obtained from the fitted AR(p) model

(3.11) θ̂†ML(B)θ̂∗ML(B)X∗
t = Z∗

t ,

where θ̂†ML(z) := 1− θ̂1,MLz−· · ·− θ̂r0,MLz
r0 and θ̂∗ML(z) := 1− θ̂r0+1,MLz−

· · ·− θ̂r0+s0,MLz
s0 (let Z∗

t = 0 for t /∈ {1, . . . ,mn}). Finally, with Z∗
t (θ, s) :=

(1−θ1B−· · ·−θrB
r)(1−θr+1B−· · ·−θr+sB

s)X∗
t for θ = (θ1, . . . , θp)

′ ∈ IRp

and r+s = p, a bootstrap replicate θ̂
∗
mn

of θ̂ML can be found by maximizing

L∗
mn

(θ, s0) :=
mn∑

t=p+1

[ln f(Z∗
t (θ, s0); τ̂ML) + ln |θp|I{s0 > 0}]

with respect to θ. The limiting behavior of θ̂
∗
mn

, along with that of φ̂
∗
mn

:=

g(θ̂
∗
mn
, s0) (a bootstrap replicate of φ̂ML), is considered in Theorem 3.4.

To give a precise statement of the results, we let Mp(IR
p) represent the

space of probability measures on IRp and we use the metric dp from Davis
and Wu [15] (page 1139) to metrize the topology of weak convergence on

Mp(IR
p). For random elements Qn, Q of Mp(IR

p), Qn
P→ Q if and only

if dp(Qn, Q)
P→ 0 on IR, which is equivalent to

∫

IRp hj dQn
P→ ∫

IRp hj dQ
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12 B. ANDREWS, M. CALDER AND R.A. DAVIS

on IR for all j ∈ {1, 2, . . .}, where {hj}∞j=1 is a dense sequence of bounded,

uniformly continuous functions on IRp. By Theorem 3.4, P(m
1/α̂ML
n (θ̂

∗

mn
−

θ̂ML) ∈ ·|X1, . . . ,Xn) converges in probability to P(ξ ∈ ·) on Mp(IR
p)

(ξ represents the unique maximizer of W (·)), and a similar result holds for

m
1/α̂ML
n (φ̂

∗

mn
− φ̂ML).

Theorem 3.4. If, as n → ∞, mn → ∞ with mn/n → 0, then there

exists a sequence of maximizers θ̂
∗
mn

of L∗
mn

(·, s0) such that

P
(

m1/α̂ML
n (θ̂

∗
mn

− θ̂ML) ∈ ·
∣
∣
∣X1, . . . ,Xn

)
P→ P (ξ ∈ ·)

on Mp(IR
p) and, if φ̂

∗
mn

= g(θ̂
∗
mn
, s0), then

(3.12) P
(

m1/α̂ML
n (φ̂

∗

mn
− φ̂ML) ∈ ·

∣
∣
∣X1, . . . ,Xn

)
P→ P (Σ(θ0)ξ ∈ ·)

on Mp(IR
p) (Σ(·) was defined in (3.7)).

Proof. Since Z∗
t (θ, s) = (1 − θ1B − · · · − θrB

r)(1 − θr+1B − · · · −
θr+sB

s)X∗
t , following (3.1), for u = (u1, . . . , up)

′ ∈ IRp,

u′ ∂Z
∗
t (θ̂ML, s0)

∂θ
= −u1θ̂

∗
ML(B)X∗

t−1 − · · · − ur0
θ̂∗ML(B)X∗

t−r0

−ur0+1θ̂
†
ML(B)X∗

t−1 − · · · − upθ̂
†
ML(B)X∗

t−s0

= −u1(1/θ̂
†
ML(B))Z∗

t−1 − · · · − ur0
(1/θ̂†ML(B))Z∗

t−r0

−ur0+1(1/θ̂
∗
ML(B))Z∗

t−1 − · · · − up(1/θ̂
∗
ML(B))Z∗

t−s0
.

We define the sequence {ĉj(u)}∞j=−∞ so that

(3.13)
∞∑

j=−∞

ĉj(u)Z∗
t−j = u′∂Z

∗
t (θ̂ML, s0)

∂θ
.

Also for u ∈ IRp,

W̃ †
mn

(u) :=
mn∑

t=p+1



ln f



Z∗
t +m−1/α0

n

∑

j 6=0

ĉj(u)Z∗
t−j ; τ 0



− ln f (Z∗
t ; τ 0)





(3.14)

and

(3.15) W̃mn(u) := L∗
mn

(θ̂ML +m−1/α0

n u, s0) − L∗
mn

(θ̂ML, s0).
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Now let Mp(C(IRp)) represent the space of probability measures on C(IRp),
and let d0 metrize the topology of weak convergence on Mp(C(IRp)). That is,

for random elements Ln, L of Mp(C(IRp)), Ln
P→ L if and only if d0(Ln, L)

P→
0 on IR, and there exists a dense sequence {h̃j}∞j=1 of bounded, continuous

functions on C(IRp) such that d0(Ln, L)
P→ 0 is equivalent to

∫

C(IRp
) h̃j dLn

P→
∫

C(IRp
) h̃j dL on IR for all j ∈ {1, 2, . . .}. We now show that, if Ln(·) :=

P(W̃mn ∈ ·|X1, . . . ,Xn) and L†
n(·) := P(W̃ †

mn
∈ ·|X1, . . . ,Xn), then Ln −

L†
n

P→ 0 on Mp(C(IRp)). Following the proof of Theorem 2.1 in [15], it
suffices to show that for any subsequence {nk} there exists a further sub-
sequence {nk′} for which Lnk′

− L†
nk′

a.s.→ 0 relative to the metric d0, which

holds if, for almost all realizations of {Xt}, W̃mn
k′

(·) − W̃ †
mn

k′
(·) P→ 0 on

C(IRp). By Lemma A.13, for any subsequence, any T ∈ {1, 2, . . .}, and any
κ ∈ {1, 1/2, 1/3, . . .}, there exists a further subsequence {nT,κ

k′ } for which

P(sup‖u‖≤T |W̃m
n

T,κ

k′

(u) − W̃ †
m

n
T,κ

k′

(u)| > κ|X1, . . . ,XnT,κ

k′
)

a.s.→ 0. Using a di-

agonal sequence argument, it follows that there exists a subsequence {nk′}
of {nk} for which P(sup‖u‖≤T |W̃mn

k′
(u)−W̃ †

mn
k′

(u)| > κ|X1, . . . ,Xnk′
) → 0

for almost all {Xt} and any T, κ > 0 and, thus, W̃mn
k′

(·) − W̃ †
mn

k′
(·) P→ 0

on C(IRp) for almost all {Xt}.
Following the proof of Theorem 3.1 in [15], L†

n(·) =

P(W̃ †
mn

∈ ·|X1, . . . ,Xn)
P→ P(W ∈ ·) on Mp(C(IRp)), and so Ln(·) =

P(W̃mn ∈ ·|X1 . . . Xn)
P→ P(W ∈ ·) on Mp(C(IRp)) also. Therefore, be-

cause L∗
mn

(θ, s0) − L∗
mn

(θ̂ML, s0) = W̃mn(m
1/α0
n (θ − θ̂ML)) and ξ uniquely

maximizes W (·) almost surely, it can be shown that there exists a se-

quence of maximizers θ̂
∗
mn

of L∗
mn

(·, s0) such that P(m
1/α0
n (θ̂

∗
mn

− θ̂ML) ∈
·|X1 . . . ,Xn)

P→ P(ξ ∈ ·) on Mp(IR
p) (the proof is similar to that of Theo-

rem 2.2 in [15]). Since

m1/α̂ML
n (θ̂

∗
mn

− θ̂ML) −m1/α0

n (θ̂
∗
mn

− θ̂ML)

= −
(

m
1/α∗

n
n ln(mn)

m
1/α0
n (α∗

n)2

)

(α̂ML − α0)m
1/α0

n

(

θ̂
∗
mn

− θ̂ML

)

,

where α∗
n lies between α̂ML and α0, and n1/2(α̂ML − α0) = Op(1),

P(‖(m1/α̂ML
n − m

1/α0
n )(θ̂

∗

mn
− θ̂ML)‖ > κ|X1, . . . ,Xn)

P→ 0 for any κ > 0.

Hence, P(m
1/α̂ML
n (θ̂

∗
mn

− θ̂ML) ∈ ·|X1, . . . ,Xn)
P→ P(ξ ∈ ·) on Mp(IR

p). The
mean value theorem can be used to show that (3.12) holds.
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14 B. ANDREWS, M. CALDER AND R.A. DAVIS

Thus, m
1/α̂ML
n (θ̂

∗
mn

− θ̂ML) and m
1/α̂ML
n (φ̂

∗
mn

− φ̂ML), conditioned on

{Xt}n
t=1, have the same limiting distributions as n1/α0(θ̂ML − θ0) and

n1/α0(φ̂ML − φ0) respectively. If n is large, these limiting distributions

can, therefore, be approximated by simulating bootstrap values of θ̂
∗

mn

and φ̂
∗

mn
, and looking at the distributions for m

1/α̂ML
n (θ̂

∗

mn
− θ̂ML) and

m
1/α̂ML
n (φ̂

∗
mn

−φ̂ML). In principle, one could also examine the limiting distri-

butions for n1/α0(θ̂ML−θ0) and n1/α0(φ̂ML−φ0) by simulating realizations
of W (·), with the true parameter values θ0 and τ 0 replaced by estimates,
and by finding the corresponding values of the maximizer ξ, but this pro-
cedure is much more laborious than the bootstrap. Confidence intervals for
the elements of θ0 and φ0 can be obtained using the limiting results for θ̂ML

and φ̂ML in (3.5) and (3.6), bootstrap estimates of quantiles for the limiting
distributions, and the estimate α̂ML of α0.

For the elements of τ 0, confidence intervals can be directly obtained from
the limiting result for τ̂ML in (3.5). Because I−1(·) is continuous at τ 0 and

τ̂ML
P→ τ 0, I−1(τ̂ML) is a consistent estimator for I−1(τ 0) which can be

used to compute standard errors for the estimates.

4. Numerical Results.

4.1. Simulation Study. In this section, we describe a simulation exper-
iment to study the behavior of the ML estimators for finite samples. We
did these simulations in MATLAB, using John Nolan’s STABLE library
(http://academic2.american.edu/∼jpnolan/stable/stable.html) to generate
stable noise and evaluate stable densities. The STABLE library uses the al-
gorithm in Chambers, Mallows, and Stuck [9] to generate stable noise and
the algorithm in Nolan [30] to evaluate stable densities.

For each of 300 replicates, we simulated an AR series of length n = 500

with stable noise and then found η̂ML = (θ̂
′
ML, τ̂

′
ML)′ by maximizing the

log-likelihood L in (2.12) with respect to both s ∈ {0, . . . , p} and η. To
reduce the possibility of the optimizer getting trapped at local maxima, for
each s ∈ {0, . . . , p}, we used 1200 randomly chosen starting values for η.
We evaluated the log-likelihood at each of the candidate values and, for
each s ∈ {0, . . . , p}, reduced the collection of initial values to the eight
with the highest likelihoods. Optimized values were found using the Nelder-
Mead algorithm (see, for example, Lagarias, Reeds, Wright, and Wright [23])
and the 8(p + 1) initial values as starting points. The optimized value for
which the likelihood was highest was chosen to be η̂ML, and then φ̂ML was
computed using (2.13). In all cases, L was maximized at s = s0, so the true
order of noncausality for the AR model was always correctly identified.
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Asymp. Empirical Asymp. Empirical
std.dev. mean std.dev. std.dev. mean std.dev.

φ01 = 0.5 0.500 0.001 φ01 = 0.5 0.500 0.001
α0 = 0.8 0.051 0.795 0.040 α0 = 0.8 0.049 0.799 0.035
β0 = 0.0 0.067 0.000 0.064 β0 = 0.5 0.058 0.504 0.060
σ0 = 1.0 0.077 0.996 0.068 σ0 = 1.0 0.074 0.995 0.075
µ0 = 0.0 0.054 0.003 0.057 µ0 = 0.0 0.062 -0.002 0.066

φ01 = 0.5 0.498 0.019 φ01 = 0.5 0.500 0.018
α0 = 1.5 0.071 1.499 0.069 α0 = 1.5 0.070 1.500 0.066
β0 = 0.0 0.137 0.012 0.142 β0 = 0.5 0.121 0.491 0.121
σ0 = 1.0 0.048 0.997 0.050 σ0 = 1.0 0.047 0.996 0.047
µ0 = 0.0 0.078 -0.002 0.074 µ0 = 0.0 0.078 0.005 0.082

φ01 = 2.0 2.000 0.004 φ01 = 2.0 2.000 0.004
α0 = 0.8 0.051 0.797 0.041 α0 = 0.8 0.049 0.795 0.037
β0 = 0.0 0.067 0.000 0.066 β0 = 0.5 0.058 0.499 0.060
σ0 = 1.0 0.077 1.004 0.072 σ0 = 1.0 0.074 0.996 0.072
µ0 = 0.0 0.054 0.004 0.055 µ0 = 0.0 0.062 0.000 0.063

φ01 = 2.0 2.003 0.074 φ01 = 2.0 2.013 0.073
α0 = 1.5 0.071 1.505 0.074 α0 = 1.5 0.070 1.497 0.069
β0 = 0.0 0.137 0.008 0.138 β0 = 0.5 0.121 0.504 0.119
σ0 = 1.0 0.048 1.000 0.056 σ0 = 1.0 0.047 0.996 0.061
µ0 = 0.0 0.078 -0.006 0.077 µ0 = 0.0 0.078 0.004 0.079

φ01 = −1.2 -1.200 0.004 φ01 = −1.2 -1.200 0.004
φ02 = 1.6 1.600 0.004 φ02 = 1.6 1.600 0.004
α0 = 0.8 0.051 0.798 0.041 α0 = 0.8 0.049 0.800 0.039
β0 = 0.0 0.067 -0.001 0.068 β0 = 0.5 0.058 0.502 0.056
σ0 = 1.0 0.077 0.997 0.073 σ0 = 1.0 0.074 0.997 0.071
µ0 = 0.0 0.054 -0.002 0.057 µ0 = 0.0 0.062 -0.004 0.064

φ01 = −1.2 -1.212 0.083 φ01 = −1.2 -1.204 0.078
φ02 = 1.6 1.605 0.065 φ02 = 1.6 1.598 0.062
α0 = 1.5 0.071 1.502 0.069 α0 = 1.5 0.070 1.499 0.071
β0 = 0.0 0.137 0.010 0.128 β0 = 0.5 0.121 0.509 0.128
σ0 = 1.0 0.048 0.999 0.066 σ0 = 1.0 0.047 0.997 0.056
µ0 = 0.0 0.078 -0.006 0.078 µ0 = 0.0 0.078 0.000 0.083

Table 1

Empirical means and standard deviations for ML estimates of AR model parameters.
The asymptotic standard deviations were computed using Theorem 3.2 and Nolan [31].
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16 B. ANDREWS, M. CALDER AND R.A. DAVIS

We obtained simulation results for the causal AR(1) model with param-
eter φ0 = 0.5, the noncausal AR(1) model with parameter φ0 = 2.0, and
the AR(2) model with parameter φ0 = (−1.2, 1.6)′. The AR(2) polynomial
1 + 1.2z − 1.6z2 equals (1 − 0.8z)(1 + 2z), and so it has one root inside
and the other outside the unit circle. Results of the simulations appear in
Table 1, where we give the empirical means and standard deviations for the
parameter estimates. The asymptotic standard deviations were obtained us-
ing Theorem 3.2 and values for I−1(τ 0) in Nolan [31]. (Values for I−1(·) not
given in Nolan [31] can be computed using the STABLE library.) Results
for symmetric stable noise are given on the left-hand side of the table, and
results for asymmetric stable noise with β0 = 0.5 are given on the right-
hand side. In Table 1, we see that the MLEs are all approximately unbiased
and that the asymptotic standard deviations fairly accurately reflect the
true variability of the estimates α̂ML, β̂ML, σ̂ML, and µ̂ML. Note that the
values of φ̂ML, α̂ML, β̂ML, and µ̂ML are less disperse when the noise dis-
tribution is heavier-tailed (ie., when α0 = 0.8), while the values of σ̂ML are
more disperse when the noise distribution has heavier tails. Note also that
the finite sample results for τ̂ML do not appear particularly affected by the
value of φ0, which is not surprising since φ̂ML and τ̂ML are asymptotically
independent.

Normal qq-plots show that, in all cases, α̂ML, β̂ML, σ̂ML, and µ̂ML have
approximately Gaussian distributions. To examine the distribution for
n1/α0(φ̂ML − φ0), in Figure 1, we give kernel estimates for the density of
n1/α0(φ̂1,ML−φ01) when (φ01, α0, β0, σ0, µ0) is (0.5, 0.8, 0, 1, 0), (0.5, 0.8, 0.5,
1, 0), (0.5, 1.5, 0, 1, 0), and (0.5, 1.5, 0.5, 1, 0). For comparison, we also in-
cluded normal density functions in Figure 1; the means and variances for
the normal densities are the corresponding means and variances for the val-
ues of n1/α0(φ̂1,ML − φ01). The distribution of n1/α0(φ̂1,ML − φ01) appears
more peaked and heavier-tailed than Gaussian, but closer to Gaussian as α0

approaches two. Similar behavior is exhibited by other estimators φ̂j,ML.

4.2. Autoregressive Modeling. Figure 2 shows the natural logarithms of
the volumes of Wal-Mart stock traded daily on the New York Stock Ex-
change from December 1, 2003 to December 31, 2004. Sample autocorre-
lation and partial autocorrelation functions for the series are given in Fig-
ure 3. Note that, even if a process has infinite second-order moments, the
sample correlations and partial correlations can still be useful for identify-
ing a suitable model for the data (see, for example, Adler, Feldman, and
Gallagher [1]). Because the sample partial autocorrelation function is ap-
proximately zero after lag two and the data appear “spiky,” it is reasonable
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Fig 1. Kernel estimates of the density for n1/α0(φ̂1,ML −φ01) when (φ01, α0, β0, σ0, µ0) is
(a) (0.5, 0.8, 0, 1, 0), (b) (0.5, 0.8, 0.5, 1, 0), (c) (0.5, 1.5, 0, 1, 0), and (d) (0.5, 1.5, 0.5, 1, 0),
and normal density functions with the same means and variances as the corresponding
values for n1/α0(φ̂1,ML − φ01).
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Fig 2. The natural logarithms of the volumes of Wal-Mart stock traded daily on the New
York Stock Exchange from December 1, 2003 to December 31, 2004.
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Fig 3. (a) The sample autocorrelation function for {Xt} and (b) the sample partial auto-
correlation function for {Xt}.

to try modeling this series {Xt}274
t=1 as an AR(2) process with non-Gaussian

stable noise. Additionally, Akaike’s information criterion (AIC) is smallest at
lag two. This supports the suitability of an AR(2) model for {Xt}. Note that
AIC is a consistent order selection criterion for heavy-tailed, infinite vari-
ance AR processes (Knight [22]), even though it is not in the finite variance
case.

We fit an AR(2) model to {Xt} by maximizing L in (2.12) with re-
spect to both η and s. The ML estimates are η̂ML = (θ̂1, θ̂2, α̂, β̂, σ̂, µ̂)′ =
(0.7380,−2.8146, 1.8335, 0.5650, 0.4559, 16.0030)′ , with s = 1. Hence, the fit-
ted AR(2) polynomial has one root inside and one root outside the unit
circle. The residuals from the fitted noncausal AR(2) model

(4.1) (1− 0.7380B)(1 + 2.8146B)Xt = (1 + 2.0766B − 2.0772B2)Xt = Zt,

and sample autocorrelation functions for the absolute values and squares
of the mean-corrected residuals, are shown in Figure 4(a)–(c). The bounds
in (b) and (c) are approximate 95% confidence bounds which we obtained
by simulating 100,000 independent sample correlations for the absolute val-
ues and squares of 272 mean-corrected iid stable random variables with
τ = (1.8335, 0.5650, 0.4559, 16.0030)′ . Based on these graphs, the residu-
als appear approximately iid, and so we conclude that (4.1) is a satis-
factory fitted model for the series {Xt}. A qq-plot, with empirical quan-
tiles for the residuals plotted against theoretical quantiles of the stable
τ = (1.8335, 0.5650, 0.4559, 16.0030)′ distribution, is given in Figure 4(d).
Because the qq-plot is remarkably linear, it appears reasonable to model the
iid noise {Zt} in (4.1) as stable with parameter τ = (1.8335, 0.5650, 0.4559,

imsart-aos ver. 2007/09/18 file: mle_ar.tex date: July 28, 2008



ML ESTIMATION FOR α-STABLE AR PROCESSES 19

0 50 100 150 200 250

14
16

18
20

(a) Zt

t

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) ACF of Absolute Values

Lag

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) ACF of Squares

Lag

14 15 16 17 18 19 20

14
16

18
20

(d) Stable QQ−Plot 

Theoretical Quantiles

Em
pi

ric
al

 Q
ua

nt
ile

s

Fig 4. (a) The residuals {Zt}, (b) the sample autocorrelation function for the absolute
values of mean-corrected {Zt}, (c) the sample autocorrelation function for the squares of
mean-corrected {Zt}, and (d) the stable qq-plot for {Zt}.

16.0030)′ . Following the discussion at the end of Section 3, approximate 95%
bootstrap confidence intervals for φ01 and φ02 are (−2.2487,−1.8116) and
(1.8120, 2.2439) (these were obtained from 100 iterations of the bootstrap
procedure with mn = 135), and approximate 95% confidence intervals for
α0, β0, σ0, and µ0, with standard errors computed using I−1(τ̂ML), are
(1.6847, 1.9823), (−0.1403, 1), (0.4093, 0.5025), and (15.9102, 16.0958).

In contrast, when we fit a causal AR(2) model to {Xt} by maximizing L
with s = 0 fixed, we obtain η̂ = (θ̂1, θ̂2, α̂, β̂, σ̂, µ̂)′ = (0.4326, 0.2122, 1.7214,
0.5849, 0.1559, 5.6768)′ . The sample autocorrelation functions for the ab-
solute values and squares of the mean-corrected residuals from this fitted
causal model are given in Figure 5. Because both the absolute values and
squares have large lag one correlations, the residuals do not appear indepen-
dent, and so the causal AR model is not suitable for {Xt}.

APPENDIX

In this final section, we give proofs of the lemmas used to establish the
results of Section 3.
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Fig 5. The sample autocorrelation functions for the absolute values and squares of the
mean-corrected residuals from the fitted causal AR(2) model.

Lemma A.1. For any fixed u ∈ IRp and for Zk,j(u) between Zk,j and

Zk,j + [c̃(α0)]
1/α0σ0cj(u)δkΓ

−1/α0

k ,

(A.1)
∞∑

k=1

∑

j 6=0

|cj(u)|Γ−1/α0

k

∣
∣
∣
∣
∣

∂ ln f(Zk,j(u); τ 0)

∂z
− ∂ ln f(Zk,j; τ 0)

∂z

∣
∣
∣
∣
∣

is finite a.s.

Proof. Since equation (A.1) equals
∑∞

k=1

∑

j 6=0 |cj(u)|Γ−1/α0

k |Zk,j(u) −
Zk,j||∂2 ln f(Z∗

k,j(u); τ 0)/∂z
2|, where Z∗

k,j(u) is between Zk,j and Zk,j(u),
(A.1) is bounded above by

(A.2) [c̃(α0)]
1/α0σ0 sup

z∈IR

∣
∣
∣
∣
∣

∂2 ln f(z; τ 0)

∂z2

∣
∣
∣
∣
∣

∞∑

k=1

Γ
−2/α0

k

∑

j 6=0

c2j (u).

By (2.5) and the continuity of ∂2 ln f(·; τ 0)/∂z
2 on IR,

supz∈IR |∂2 ln f(z; τ 0)/∂z
2| < ∞. Now suppose k† ∈ {2, 3, . . .} such that

k† > 2/α0. It follows that E{∑∞
k=k† Γ

−2/α0

k } =
∑∞

k=k† Γ(k − 2/α0)/Γ(k) <
(constant)

∑∞
k=k† k−2/α0 < ∞. Consequently, since 0 < [c̃(α0)]

1/α0σ0 < ∞,
∑

j 6=0 c
2
j (u) <∞ by (3.3), and

∑k†−1
k=1 Γ

−2/α0

k <∞ a.s., (A.2) is finite a.s.

Lemma A.2. For any fixed u ∈ IRp,

(A.3)
∞∑

k=1

∑

j 6=0

∣
∣
∣
∣
∣
cj(u)

(

Γ
−1/α0

k − k−1/α0

) ∂ ln f(Zk,j; τ 0)

∂z

∣
∣
∣
∣
∣
<∞ a.s.
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Proof. The left-hand side of (A.3) is bounded above by

supz∈IR |∂ ln f(z; τ 0)/∂z|
∑∞

k=1 |Γ
−1/α0

k − k−1/α0 |∑j 6=0 |cj(u)|. By (2.6),
supz∈IR |∂ ln f(z; τ 0)/∂z| < ∞, by (3.3),

∑

j 6=0 |cj(u)| < ∞, and, from the

proof of Proposition A.3 in Davis, Knight, and Liu [12],
∑∞

k=1 |Γ
−1/α0

k −
k−1/α0 | <∞ a.s. Thus, (A.3) holds.

Lemma A.3. For any fixed u ∈ IRp, |∑∞
k=1

∑

j 6=0 cj(u)δkk
−1/α0×

[∂ ln f(Zk,j; τ 0)/∂z]| <∞ a.s.

Proof. The sequence {∑j 6=0 cj(u)δkk
−1/α0 [∂ ln f(Zk,j; τ 0)/∂z]}∞k=1 is a

series of independent random variables which, by dominated convergence,
all have mean zero, since

∑

j 6=0 |cj(u)| <∞, supz∈IR |∂ ln f(z; τ 0)/∂z| <∞,
and E{∂ ln f(Zk,j; τ 0)/∂z} =

∫∞
−∞(∂f(z; τ 0)/∂z) dz = 0. Therefore, because

∞∑

k=1

Var







∑

j 6=0

cj(u)δkk
−1/α0

∂ ln f(Zk,j; τ 0)

∂z







≤
(

sup
z∈IR

∣
∣
∣
∣
∣

∂ ln f(z; τ 0)

∂z

∣
∣
∣
∣
∣

)2



∑

j 6=0

|cj(u)|




2
∞∑

k=1

k−2/α0

< ∞,

the result holds by the Kolmogorov convergence theorem (see, for example,
Resnick [33], page 212).

Lemma A.4. For u ∈ IRp and v ∈ IR4,

(A.4)

n∑

t=p+1

ln f

(

Zt

(

θ0 +
u

n1/α0
, s0

)

; τ 0 +
v√
n

)

−
n∑

t=p+1

ln f



Zt + n−1/α0

∞∑

j=−∞

cj(u)Zt−j ; τ 0 +
v√
n



 ,

with Zt(·, ·) as defined in (2.11), converges in probability to zero on C(IRp+4)
as n→ ∞.

Proof. Let T > 0. We begin by showing that (A.4) is op(1)
on C([−T, T ]p+4). Since {Zt(θ0, s0)} = {Zt}, and following (3.2),
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equation (A.4) equals

n∑

t=p+1

{

∂ ln f(Z∗
t,n(u); τ 0 + v/

√
n)

∂z

×
[

Zt

(

θ0 +
u

n1/α0
, s0

)

− Zt(θ0, s0) −
u′

n1/α0

∂Zt(θ0, s0)

∂θ

]}

,(A.5)

where Z∗
t,n(u) lies between Zt(θ0 + n−1/α0u, s0) and Zt+

n−1/α0u′∂Zt(θ0, s0)/∂θ. Equation (A.5) can be expressed as

1

2n2/α0

n∑

t=p+1

∂ ln f
(

Z∗
t,n(u); τ 0 + v/

√
n
)

∂z
u′∂

2Zt(θ
∗
t,n(u), s0)

∂θ∂θ′ u,

with θ∗
t,n(u) between θ0 and θ0+n−1/α0u. Following (3.1), the mixed partial

derivatives of Zt(θ, s) are given by

∂2Zt(θ, s)

∂θj∂θk
=







0, j, k = 1, . . . , r,

Xt+r−j−k, j = 1, . . . , r, k = r + 1, . . . , p,

0, j, k = r + 1, . . . , p,

and so we have

sup
(u′,v′)′∈[−T,T ]p+4

1

2n2/α0

∣
∣
∣
∣
∣

n∑

t=p+1

∂ ln f
(

Z∗
t,n(u); τ 0 + v/

√
n
)

∂z
u′∂

2Zt(θ
∗
t,n(u), s0)

∂θ∂θ′ u

∣
∣
∣
∣
∣

≤ sup
z∈IR, v∈[−T,T ]4

∣
∣
∣
∣
∣

∂ ln f (z; τ 0 + v/
√
n)

∂z

∣
∣
∣
∣
∣

× sup
u∈[−T,T ]p

1

2n2/α0

n∑

t=p+1

∣
∣
∣
∣
∣
u′∂

2Zt(θ
∗
t,n(u), s0)

∂θ∂θ′ u

∣
∣
∣
∣
∣

≤ sup
z∈IR, v∈[−T,T ]4

∣
∣
∣
∣
∣

∂ ln f (z; τ 0 + v/
√
n)

∂z

∣
∣
∣
∣
∣

T 2p2

n2/α0

n∑

t=p+1

p
∑

j=2

|Xt−j |

≤ sup
z∈IR, v∈[−T,T ]4

∣
∣
∣
∣
∣

∂ ln f (z; τ 0 + v/
√
n)

∂z

∣
∣
∣
∣
∣

T 2p2

n2/α0

n∑

t=p+1

p
∑

j=2

∞∑

k=−∞

|ψkZt−j−k|

(A.6)

(recall that Xt =
∑∞

j=−∞ ψjZt−j). By (2.6), supz∈IR, v∈[−T,T ]4 |∂ ln f(z; τ 0+

v/
√
n)/∂z| = O(1) as n → ∞. Now let ǫ > 0 and κ1 = (3/4)α0I{α0 ≤
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1} + I{α0 > 1}, and observe that E|Z1|κ1 < ∞ and 0 < κ1 ≤ 1. Using the
Markov inequality,

P








1

n2/α0

n∑

t=p+1

p
∑

j=2

∞∑

k=−∞

|ψkZt−j−k|




κ1

> ǫκ1





≤
(

1

ǫn2/α0

)κ1

E







n∑

t=p+1

p
∑

j=2

∞∑

k=−∞

|ψkZt−j−k|







κ1

≤
(

1

ǫn2/α0

)κ1

E







n∑

t=p+1

p
∑

j=2

∞∑

k=−∞

|ψkZt−j−k|κ1







≤ ǫ−κ1n1−2κ1/α0pE|Z1|κ1

∞∑

k=−∞

|ψk|κ1

n→∞→ 0.

Consequently, (A.6) is op(1) on IR, and so (A.4) is op(1) on C([−T, T ]p+4).
Since T > 0 was arbitrarily chosen, for any compact set K ⊂ IRp+4, (A.4) is
op(1) on C(K), and it therefore follows that (A.4) is op(1) on C(IRp+4).

Lemma A.5. For u ∈ IRp and v ∈ IR4,

n∑

t=p+1

ln f



Zt + n−1/α0

∞∑

j=−∞

cj(u)Zt−j ; τ 0 +
v√
n





−
n∑

t=p+1

ln f



Zt + n−1/α0

∞∑

j=−∞

cj(u)Zt−j ; τ 0



(A.7)

− v′

√
n

n∑

t=p+1

∂ ln f(Zt; τ 0)

∂τ
+

1

2
v′I(τ 0)v

converges in probability to zero on C(IRp+4) as n→ ∞.

Proof. Using a Taylor series expansion about τ 0, equation (A.7) equals

v′

√
n

n∑

t=p+1

[

∂ ln f(Zt + n−1/α0
∑∞

j=−∞ cj(u)Zt−j ; τ 0)

∂τ
− ∂ ln f(Zt; τ 0)

∂τ

]

(A.8)

+
v′

2n

n∑

t=p+1

∂2 ln f(Zt + n−1/α0
∑∞

j=−∞ cj(u)Zt−j ; τ
∗
n(v))

∂τ∂τ ′
v +

1

2
v′I(τ 0)v,

(A.9)
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where τ ∗
n(v) is between τ 0 and τ 0 + v/

√
n. Let T > 0. We will show that

sup
u∈[−T,T ]p of

∣
∣
∣
∣
∣

1√
n

n∑

t=p+1

[

∂ ln f(Zt + n−1/α0
∑∞

j=−∞ cj(u)Zt−j ; τ 0)

∂α
− ∂ ln f(Zt; τ 0)

∂α

] ∣
∣
∣
∣
∣

(A.10)

is op(1). It can be shown similarly that sup(u′,v′)′∈[−T,T ]p+4 of (A.8) is op(1),
and, using the ergodic theorem, sup(u′,v′)′∈[−T,T ]p+4 of (A.9) is op(1). Since

T > 0 was arbitrarily chosen, it follows that (A.7) is op(1) on C(IRp+4).
Observe that sup

u∈[−T,T ]p of (A.10) equals

(A.11) sup
u∈[−T,T ]p

∣
∣
∣
∣
∣

1

n1/2+1/α0

n∑

t=p+1

∂2 ln f(Z∗∗
t,n(u); τ 0)

∂z∂α

∞∑

j=−∞

cj(u)Zt−j

∣
∣
∣
∣
∣
,

where Z∗∗
t,n(u) is between Zt and Zt + n−1/α0

∑∞
j=−∞ cj(u)Zt−j . Follow-

ing (3.2), there must exist constants C1 > 0 and 0 < D1 < 1 such that

(A.12) sup
u∈[−T,T ]p

|cj(u)| ≤ C1D
|j|
1 ∀j ∈ {. . . ,−1, 0, 1, . . .},

and so (A.11) is bounded above by

(A.13) sup
z∈IR

∣
∣
∣
∣
∣

∂2 ln f(z; τ 0)

∂z∂α

∣
∣
∣
∣
∣

C1

n1/2+1/α0

n∑

t=p+1

∞∑

j=−∞

D
|j|
1 |Zt−j |.

By (2.7), supz∈IR |∂2 ln f(z; τ 0)/(∂z∂α)| < ∞. Now let ǫ > 0 and κ2 =
α0(1+α0/3)/(1+α0/2)I{α0 ≤ 1}+ I{α0 > 1}, so that κ2(1/2+1/α0) > 1,
E|Z1|κ2 <∞, and 0 < κ2 ≤ 1. Since

P








1

n1/2+1/α0

n∑

t=p+1

∞∑

j=−∞

D
|j|
1 |Zt−j |





κ2

> ǫκ2





≤ ǫ−κ2n1−κ2(1/2+1/α0)E|Z1|κ2

∞∑

j=−∞

(Dκ2

1 )|j|

and n1−κ2(1/2+1/α0) → 0, (A.13) is op(1) and therefore sup
u∈[−T,T ]p of (A.10)

must also be op(1).
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Lemma A.6. For u ∈ IRp,

n∑

t=p+1

ln f



Zt + n−1/α0

∞∑

j=−∞

cj(u)Zt−j ; τ 0





−
n∑

t=p+1

ln f



Zt + n−1/α0

∑

j 6=0

cj(u)Zt−j ; τ 0



(A.14)

−
n∑

t=p+1

[

ln f

(

Zt +
c0(u)

n1/α0
Zt; τ 0

)

− ln f(Zt; τ 0)

]

converges in probability to zero on C(IRp) as n→ ∞.

Proof. Equation (A.14) equals

(A.15)
c0(u)

n1/α0

n∑

t=p+1

Zt

[

∂ ln f(Z̃∗
t,n(u); τ 0)

∂z
−
∂ ln f(Z̃∗∗

t,n(u); τ 0)

∂z

]

,

where Z̃∗
t,n(u) is between Zt + n−1/α0

∑∞
j=−∞ cj(u)Zt−j and Zt+

n−1/α0
∑

j 6=0 cj(u)Zt−j , and Z̃∗∗
t,n(u) is between Zt and (1 + n−1/α0c0(u))Zt.

For T > 0, sup
u∈[−T,T ]p of the absolute value of (A.15) is bounded above by

sup
u∈[−T,T ]p

∣
∣
∣
∣
∣

c0(u)

n2/α0

n∑

t=p+1

Zt

∑

j 6=0

cj(u)Zt−j

∂2 ln f(Z∗∗∗
t,n (u); τ 0)

∂z2

∣
∣
∣
∣
∣

(A.16)

+ sup
u∈[−T,T ]p

c20(u)

n2/α0

n∑

t=p+1

∣
∣
∣
∣
∣
Z2

t

∂2 ln f(Z∗∗∗
t,n (u); τ 0)

∂z2

∣
∣
∣
∣
∣
,(A.17)

where Z∗∗∗
t,n (u) = Zt +n−1/α0λ†t,n(u)c0(u)Zt +n−1/α0λ∗t,n(u)

∑

j 6=0 cj(u)Zt−j

for some λ†t,n(u), λ∗t,n(u) ∈ [0, 1]. To complete the proof, we show that (A.16)
and (A.17) are op(1).

Following (A.12), equation (A.16) is bounded above by

supz∈IR |∂2 ln f(z; τ 0)/∂z
2|n−2/α0C2

1

∑n
t=p+1 |Zt|

∑

j 6=0D
|j|
1 |Zt−j |. If κ3 :=

(3/4)α0I{α0 ≤ 1} + I{α0 > 1}, then, for any ǫ > 0,

P








1

n2/α0

n∑

t=p+1

|Zt|
∑

j 6=0

D
|j|
1 |Zt−j |





κ3

> ǫκ3





≤ ǫ−κ3n1−2κ3/α0 (E|Z1|κ3)2
∑

j 6=0

(Dκ3

1 )|j|,

which is o(1), and thus (A.16) is op(1).
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Equation (A.17) is bounded above by

sup
u∈[−T,T ]p

c20(u)

n2/α0

n∑

t=p+1

Z2
t

∣
∣
∣
∣
∣

∂2 ln f([1 + λ†t,n(u)c0(u)/n1/α0 ]Zt; τ 0)

∂z2

∣
∣
∣
∣
∣

(A.18)

+ sup
u∈[−T,T ]p

c20(u)

n2/α0

n∑

t=p+1

Z2
t

∣
∣
∣
∣
∣

∂2 ln f(Z∗∗∗
t,n (u); τ 0)

∂z2

−
∂2 ln f([1 + λ†t,n(u)c0(u)/n1/α0 ]Zt; τ 0)

∂z2

∣
∣
∣
∣
∣
,(A.19)

and (A.18) is bounded above by supz∈IR |z2[∂2 ln f(z; τ 0)/∂z
2]|×

sup
u∈[−T,T ]p n

−2/α0c20(u)
∑n

t=p+1(1+n
−1/α0λ†t,n(u)c0(u))−2. Since n1−2/α0 →

0, sup
u∈[−T,T ]p |c0(u)| <∞, and, from (2.5), supz∈IR |z2[∂2 ln f(z; τ 0)/∂z

2]| <
∞, (A.18) is op(1). An upper bound for (A.19) is

sup
u∈[−T,T ]p

c20(u)

n3/α0

n∑

t=p+1

Z2
t

∣
∣
∣
∣
∣

∂3 ln f(Z̃t,n(u); τ 0)

∂z3

∑

j 6=0

cj(u)Zt−j

∣
∣
∣
∣
∣

≤ sup
z∈IR

∣
∣
∣
∣
∣

∂3 ln f(z; τ 0)

∂z3

∣
∣
∣
∣
∣

(
C1

n1/α0

)3 n∑

t=p+1

Z2
t

∑

j 6=0

D
|j|
1 |Zt−j |,

where Z̃t,n(u) is between Z∗∗∗
t,n (u) and [1 + λ†t,n(u)c0(u)/n1/α0 ]Zt. If κ4 :=

3α0/8, then, for any ǫ > 0,

P








1

n3/α0

n∑

t=p+1

Z2
t

∑

j 6=0

D
|j|
1 |Zt−j |





κ4

> ǫκ4





≤ ǫ−κ4n1−3κ4/α0E{Z2κ4

1 }E|Z1|κ4

∑

j 6=0

(Dκ4

1 )|j|

n→∞→ 0.

Since supz∈IR |∂3 ln f(z; τ 0)/∂z
3| < ∞ (see DuMouchel [17]), it follows

that (A.19) is also op(1).

Lemma A.7. For u = (u1, . . . , up)
′ ∈ IRp,

(A.20)

n∑

t=p+1

[

ln f

(

Zt +
c0(u)

n1/α0
Zt; τ 0

)

− ln f(Zt; τ 0)

]

+ (n− p) ln

∣
∣
∣
∣
∣

θ0p + n−1/α0up

θ0p

∣
∣
∣
∣
∣
I{s0 > 0}
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converges in probability to zero on C(IRp) as n→ ∞.

Proof. If s0 = 0, the result is trivial since, from (3.2), c0(u) =
upθ

−1
0p I{s0 > 0}, and so, when s0 = 0, equation (A.20) equals zero for

all u ∈ IRp. Now consider the case s0 > 0. Choose arbitrary T > 0 and note
that sup

u∈[−T,T ]p of the absolute value of (A.20) equals

sup
u∈[−T,T ]p

∣
∣
∣
∣
∣

n∑

t=p+1

[

c0(u)

n1/α0
Zt
∂ ln f(Zt; τ 0)

∂z
+

c20(u)

2n2/α0
Z2

t

∂2 ln f(Z†
t,n(u); τ 0)

∂z2

]

+ (n− p) ln

∣
∣
∣
∣
∣

θ0p + n−1/α0up

θ0p

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
,(A.21)

where Z†
t,n(u) is between Zt and [1 + n−1/α0c0(u)]Zt. Equation (A.21) is

bounded above by

sup
u∈[−T,T ]p

∣
∣
∣
∣
∣

c0(u)

n1/α0

n∑

t=p+1

[

1 + Zt
∂ ln f(Zt; τ 0)

∂z

]
∣
∣
∣
∣
∣

(A.22)

+ sup
u∈[−T,T ]p

∣
∣
∣
∣
∣
(n− p)

[

c0(u)

n1/α0
− ln

∣
∣
∣
∣
∣

θ0p + n−1/α0up

θ0p

∣
∣
∣
∣
∣

] ∣
∣
∣
∣
∣

(A.23)

+ sup
u∈[−T,T ]p

∣
∣
∣
∣
∣

c20(u)

2n2/α0

n∑

t=p+1

Z2
t

∂2 ln f(Z†
t,n(u); τ 0)

∂z2

∣
∣
∣
∣
∣
;(A.24)

we complete the proof by showing that each of these three terms is op(1).
Since {1+Zt[∂ ln f(Zt; τ 0)/∂z]} is an iid sequence with mean zero (which

can be shown using integration by parts) and finite variance,

E







1

n1/α0

n∑

t=p+1

[

1 + Zt
∂ ln f(Zt; τ 0)

∂z

]






2

=
1

n2/α0

n∑

t=p+1

E

{

1 + Zt
∂ ln f(Zt; τ 0)

∂z

}2

,

which is o(1). Therefore, because sup
u∈[−T,T ]p |c0(u)| < ∞, (A.22) is op(1).

Next, (A.23) equals sup
u∈[−T,T ]p |(n−p)[n−1/α0upθ

−1
0p −ln |1+n−1/α0upθ

−1
0p |]|,

which is o(1). And finally, (A.24) is bounded above by

sup
z∈IR

∣
∣
∣
∣
∣
z2 ∂

2 ln f(z; τ 0)

∂z2

∣
∣
∣
∣
∣

sup
u∈[−T,T ]p

c20(u)

2n2/α0

n∑

t=p+1

[

Zt

Z†
t,n(u)

]2

≤ sup
z∈IR

∣
∣
∣
∣
∣
z2 ∂

2 ln f(z; τ 0)

∂z2

∣
∣
∣
∣
∣
n1−2/α0 sup

u∈[−T,T ]p

c20(u)

2

[

1 −
|upθ

−1
0p |

n1/α0

]−2

,

imsart-aos ver. 2007/09/18 file: mle_ar.tex date: July 28, 2008



28 B. ANDREWS, M. CALDER AND R.A. DAVIS

which, since supz∈IR |z2[∂2 ln f(z; τ 0)/∂z
2]| <∞, is also o(1).

Lemma A.8. For any fixed u ∈ IRp and v ∈ IR4, (W †
n(u), Tn(v))′

L→
(W (u),v′N)′ on IR2 as n → ∞, with W (u) and v′N independent. (W †

n(·),
Tn(·), and W (·) were defined in equations (3.8), (3.9), and (3.4), respec-
tively, and, from Theorem 3.3, N ∼ N(0, I(τ 0)).)

Before proving this result, we introduce some notation and three addi-
tional lemmas which will be used in the proof. First, define a set function
εx(·) as follows: εx(A) = I{x ∈ A}, and, for m ≥ 1, let

e1 = (0, . . . , 0,
︸ ︷︷ ︸

m times

1, 0, . . . , 0
︸ ︷︷ ︸

m−1 times

), . . . , em = ( 0, . . . , 0,
︸ ︷︷ ︸

2m−1 times

1)

and
e−1 = ( 0, . . . , 0,

︸ ︷︷ ︸

m−1 times

1, 0, . . . , 0
︸ ︷︷ ︸

m times

), . . . , e−m = (1, 0, . . . , 0
︸ ︷︷ ︸

2m−1 times

).

Now define

Sm,n(·) =
n∑

t=p+1

ε(Zt,[c̃(α0)]−1/α0σ−1

0
n−1/α0 (Zt+m,...,Zt+1,Zt−1,...,Zt−m))(·)

and

Sm(·) =
∞∑

k=1

m∑

j=1

(

ε
(Zk,−j , e−jδkΓ

−1/α0
k

)
(·) + ε

(Zk,j , ejδkΓ
−1/α0
k

)
(·)
)

.

By the following lemma, Sm,n(·) can converge in distribution to Sm(·).

Lemma A.9. For any fixed relatively compact subset A of IR×(IR
2m\{0})

(a subset A for which the closure A is compact; note that a compact subset of

IR
2m \ {0} = [−∞,∞]2m \ {0} is closed and bounded away from the origin)

of the form

A = (a0, b0] × (a−m, b−m] × · · · × (a−1, b−1] × (a1, b1] × · · · × (am, bm],

aj, bj 6= 0 ∀|j| ∈ {1, . . . ,m},(A.25)

and for any fixed v ∈ IR4, (Sm,n(A), Tn(v))′
L→ (Sm(A),v′N)′ on IR2 as

n→ ∞, with Sm(A) and v′N independent.
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Proof. Let λ1, λ2 ∈ IR. Following Theorem 3 on page 37 of Rosen-
blatt [34], this lemma holds if cumk(λ1Sm,n(A) + λ2Tn(v)) →
cumk(λ1Sm(A) + λ2v

′N) for all k ≥ 1, where cumk(X) is the kth order
joint cumulant of the random variable X. So,

cumk(X) = cum(X, . . . ,X
︸ ︷︷ ︸

k times

).

Note that since Sm(A) and v′N are independent, cumk(λ1Sm(A)+λ2v
′N) =

λk
1cumk(Sm(A)) + λk

2cumk(v
′N).

Fix k ≥ 1 and denote the kth order joint cumulant of i Xs and j Y s
(i+ j = k) as cumi,j(X,Y ). So,

cumi,j(X,Y ) = cum(X, . . . ,X
︸ ︷︷ ︸

i times

, Y, . . . , Y
︸ ︷︷ ︸

j times

).

Then, by linearity,

cumk(λ1Sm,n(A) + λ2Tn(v))

= λk
1cumk(Sm,n(A)) + λk

2cumk(Tn(v))

+
k−1∑

j=1

(

k
j

)

λj
1λ

k−j
2 cumj,k−j(Sm,n(A), Tn(v)).

Also by linearity, for j ∈ {1, . . . , k − 1},

cumj,k−j(Sm,n(A), Tn(v))

=
n∑

t1=p+1

· · ·
n∑

tk=p+1

cum
(

Vt1,n, . . . , Vtj ,n,Wtj+1,n, . . . ,Wtk ,n

)

,(A.26)

where Vt,n := ε(Zt,[c̃(α0)]−1/α0σ−1

0
n−1/α0 (Zt+m,...,Zt+1,Zt−1,...,Zt−m))(A) and

Wt,n := n−1/2v′∂ ln f(Zt; τ 0)/∂τ . Due to the limited dependence between
the variables {Vt,n}n

t=p+1, {Wt,n}n
t=p+1, equation (A.26) equals

n∑

t1=p+1

∑

|t2−t1|≤2jm

· · ·
∑

|tj−t1|≤2jm

∑

|tj+1−t1|≤(2j+1)m

· · ·
∑

|tk−t1|≤(2j+1)m

cum
(

Vt1,n, . . . , Vtj ,n,Wtj+1,n, . . . ,Wtk ,n

)

;(A.27)

this sum is made up of (n−p)(4jm+1)j−1([4j+2]m+1)k−j terms. Therefore,
since |Vt,n| ≤ 1, and E|Wt,n|ℓ < ∞ for all ℓ ≥ 1 and all n, (A.27) is o(1) if

imsart-aos ver. 2007/09/18 file: mle_ar.tex date: July 28, 2008



30 B. ANDREWS, M. CALDER AND R.A. DAVIS

k−j ≥ 3 (as a result of the scaling by n−(k−j)/2). Equation (A.27) is also o(1)
for k − j ∈ {1, 2} if nE|Vt1,nWt2,n| = o(1) and nE|Vt1,nWt2,nWt3,n| = o(1)
for any t1, t2, t3. We will show the limit is zero in one case; convergence to
zero can be established similarly in all other cases.

Since A is a relatively compact subset of IR × (IR
2m \ {0}), at least

one of the intervals (a−m, b−m], . . . , (a−1, b−1], (a1, b1], . . . , (am, bm] does
not contain zero. We assume (a−1, b−1] does not contain zero and show
that nE|V1,nW2,n| = o(1). First, from (2.5)–(2.10), there exist constants
Cv,Dv < ∞ such that |v′∂ ln f(z; τ 0)/∂τ | ≤ Cv + Dv|z|α0/4 ∀z ∈ IR.
Hence, because V1,n = ε(Z1,[c̃(α0)]−1/α0σ−1

0
n−1/α0 (Z1+m,...,Z2,Z0,...,Z1−m))(A) and

W2,n = n−1/2v′∂ ln f(Z2; τ 0)/∂τ ,

nE|V1,nW2,n|

≤ n1/2E

∣
∣
∣
∣
∣
I
{

[c̃(α0)]
−1/α0σ−1

0 n−1/α0Z2 ∈ (a−1, b−1]
}(

v′∂ ln f(Z2; τ 0)

∂τ

)
∣
∣
∣
∣
∣

≤ Cvn
1/2P

(

|Z2| ≥ n1/α0ζ
)

+Dvn
1/2E

{

|Z2|α0/4I{|Z2| ≥ n1/α0ζ}
}

,

where ζ := [c̃(α0)]
1/α0σ0 min{|a−1|, |b−1|}. By (2.3), since ζ > 0,

n1/2P(|Z2| ≥ n1/α0ζ) → 0, and, using Karamata’s theorem (see, for exam-
ple, Feller [19], page 283), n1/2E{|Z2|α0/4I{|Z2| ≥ n1/α0ζ}} ≤ (constant)×
n1/2(n1/α0ζ)α0/4P(|Z2| ≥ n1/α0ζ), which is o(1) by (2.3).

It has therefore been established that cumk(λ1Sm,n(A) + λ2Tn(v)) =
λk

1cumk(Sm,n(A))+λk
2cumk(Tn(v))+o(1) for arbitrary k ≥ 1. Following the

proof of Lemma 16 in Calder [7], it can be shown that cumk(Sm,n(A)) →
cumk(Sm(A)). Note that, from Davis and Resnick [13], Sm,n(A)

L→ Sm(A)
on IR and Sm(A) is a Poisson random variable, so all cumulants are finite.
It is relatively straightforward to show that cumk(Tn(v)) → cumk(v

′N)
(see the proof of Lemma 16 in [7] for details), which is not surprising

since Tn(v)
L→ v′N on IR by the central limit theorem. Consequently,

cumk(λ1Sm,n(A) + λ2Tn(v)) → λk
1cumk(Sm(A)) + λk

2cumk(v
′N), and the

proof is complete.

Lemma A.10. Let U−
t,n(u) = n−1/α0

∑∞
j=1 c−j(u)Zt+j , U+

t,n(u) =

n−1/α0
∑∞

j=1 cj(u)Zt−j , and Iλ,λ,M
t,n = I{|Zt| ≤ M}I{(|U−

t,n(u)| >

λ) ∪ (|U+
t,n(u)| > λ)}. For any fixed u ∈ IRp and any κ > 0,
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limλ→0+ limM→∞ lim supn→∞ of

P





∣
∣
∣
∣
∣

n∑

t=p+1

{[

ln f
(

Zt + U−
t,n(u) + U+

t,n(u); τ 0

)

− ln f (Zt; τ 0)
]

×
[

1 − Iλ,λ,M
t,n

]}
∣
∣
∣
∣
∣
> κ

)

(A.28)

is zero.

Proof. Note that, for any t ∈ {p + 1, . . . , n} and any n, ln f(Zt +
U−

t,n(u)+U+
t,n(u); τ 0)− ln f(Zt; τ 0) = [U−

t,n(u)+U+
t,n(u)][∂ ln f(Zt; τ 0)/∂z]+

[U−
t,n(u) + U+

t,n(u)]2[∂2 ln f(Z∗
t,n; τ 0)/∂z

2]/2, where Z∗
t,n lies between Zt and

Zt + U−
t,n(u) + U+

t,n(u). Note also that

1 − Iλ,λ,M
t,n

= I{|U−
t,n(u)| ≤ λ}I{|U+

t,n(u)| ≤ λ} + I{|Zt| > M}I{|U−
t,n(u)| > λ}

+ I{|Zt| > M}I{|U+
t,n(u)| > λ}

−I{|Zt| > M}I{|U−
t,n(u)| > λ}I{|U+

t,n(u)| > λ}.

Consequently, (A.28) is bounded above by

P





∣
∣
∣
∣
∣

n∑

t=p+1

[(

U−
t,n(u) + U+

t,n(u)
) ∂ ln f(Zt; τ 0)

∂z
I{|U−

t,n(u)| ≤ λ}

× I{|U+
t,n(u)| ≤ λ}

]
∣
∣
∣
∣
∣
>
κ

5

)

+ P



 sup
z∈IR

∣
∣
∣
∣
∣

∂2 ln f(z; τ 0)

∂z2

∣
∣
∣
∣
∣

n∑

t=p+1

[∣
∣
∣U−

t,n(u) + U+
t,n(u)

∣
∣
∣

2
I{|U−

t,n(u)| ≤ λ}

× I{|U+
t,n(u)| ≤ λ}

]

>
κ

5

)

+ P





n⋃

t=p+1

{

(|Zt| > M) ∩
(

|U−
t,n(u)| > λ

)}





+ 2P





n⋃

t=p+1

{

(|Zt| > M) ∩
(

|U+
t,n(u)| > λ

)}



 .

The proof of Proposition A.2(a)–(c) in Davis, Knight, and Liu [12] can be
used to show that limλ→0+ limM→∞ lim supn→∞ of each of the four sum-
mands is zero.
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Lemma A.11. Let Iλ,M
k,j = I{|Zk,j | ≤M}I{|[c̃(α0)]

1/α0σ0cj(u)δkΓ
−1/α0

k | >
λ}. For any fixed u ∈ IRp,

∞∑

k=1

∑

j 6=0

[{

ln f
(

Zk,j + [c̃(α0)]
1/α0σ0cj(u)δkΓ

−1/α0

k ; τ 0

)

− ln f (Zk,j; τ 0)
}

×
(

1 − Iλ,M
k,j

)]

(A.29)

converges in probability to zero as λ→ 0+ and M → ∞.

Proof. The absolute value of (A.29) is bounded above by

[c̃(α0)]
1/α0σ0 supz∈IR |∂ ln f(z; τ 0)/∂z|

∑∞
k=1 Γ

−1/α0

k

∑

j 6=0 |cj(u)|. If α0 < 1,
∑∞

k=1 Γ
−1/α0

k < ∞ a.s., since E{Γ−1/α0

k } = O(k−1/α0) for k > 1/α0. Thus,
the result holds if α0 < 1.

For α0 ≥ 1, the proof of this lemma is similar to the proof of Lemma A.10.
We omit the details.

We now use Lemmas A.9–A.11 to prove Lemma A.8.

Proof of Lemma A.8. By Lemma A.9, for any relatively compact

subset A of IR × (IR
2m \ {0}) of the form (A.25) and for any v ∈ IR4,

(Sm,n(A), Tn(v))′
L→ (Sm(A),v′N)′ on IR2, with Sm(A) and v′N indepen-

dent. It can be shown similarly that, for any ℓ ≥ 1 and any relatively compact

subsets A1, . . . , Aℓ of IR × (IR
2m \ {0}) of the form (A.25),

(A.30) (Sm,n(A1), . . . , Sm,n(Aℓ), Tn(v))′
L→
(

Sm(A1), . . . , Sm(Aℓ),v
′N
)′

on IRℓ+1, with (Sm(A1), . . . , Sm(Aℓ))
′ and v′N independent. Now, for

fixed u ∈ IRp, let S̃n(·) =
∑n

t=p+1 ε(Zt,U
−
t,n(u),U+

t,n(u))(·), with U−
t,n(u) =

n−1/α0
∑∞

j=1 c−j(u)Zt+j and U+
t,n(u) = n−1/α0

∑∞
j=1 cj(u)Zt−j , and let

S̃(·) =
∞∑

k=1

∞∑

j=1

(

ε
(Zk,−j , [c̃(α0)]1/α0σ0c−j(u)δkΓ

−1/α0
k

, 0)
(·)

+ ε
(Zk,j , 0, [c̃(α0)]1/α0σ0cj(u)δkΓ

−1/α0
k

)
(·)
)

.

Following the proof of Theorem 2.4 in Davis and Resnick [13], using (A.30),
the mapping

(zt, zt+m, . . . , zt+1, zt−1, . . . , zt−m)

→


zt, [c̃(α0)]
1/α0σ0

m∑

j=1

c−j(u)zt+j , [c̃(α0)]
1/α0σ0

m∑

j=1

cj(u)zt−j



 ,
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and by letting m→ ∞, it can be shown that

(A.31)
(

S̃n(Ã1), . . . , S̃n(Ãℓ), Tn(v)
)′ L→

(

S̃(Ã1), . . . , S̃(Ãℓ),v
′N
)′

on IRℓ+1, with (S̃(Ã1), . . . , S̃(Ãℓ))
′ and v′N independent, for any relatively

compact subsets Ã1, . . . , Ãℓ of IR × (IR
2 \ {0}).

Since (S̃n(Ã1), . . . , S̃n(Ãℓ))
′ L→ (S̃(Ã1), . . . , S̃(Ãℓ))

′ on IRℓ for arbitrary

ℓ ≥ 1 and arbitrary relatively compact subsets Ã1, . . . , Ãℓ of IR× (IR
2 \{0}),

n∑

t=p+1

g̃(Zt, U
−
t,n(u), U+

t,n(u))

L→
∞∑

k=1

∞∑

j=1

(

g̃(Zk,−j, [c̃(α0)]
1/α0σ0c−j(u)δkΓ

−1/α0

k , 0)(A.32)

+g̃(Zk,j, 0, [c̃(α0)]
1/α0σ0cj(u)δkΓ

−1/α0

k )
)

on IR for any continuous function g̃ on IR × (IR
2 \ {0}) with

compact support (see Davis and Resnick [13]). Because it is almost

everywhere continuous on IR × (IR
2 \ {0}) with compact support, we

will use g̃(x, y, z) = [ln f(x+ y + z; τ 0) − ln f(x; τ 0)] I{|x| ≤ M}I{(|y| >
λ) ∪ (|z| > λ)}, where M,λ > 0. By Lemma A.10, for any κ > 0,
limλ→0+ limM→∞ lim supn→∞ P(|W †

n(u) −∑n
t=p+1 g̃(Zt, U

−
t,n(u), U+

t,n(u))| >
κ) = 0 and, by Lemma A.11,

∞∑

k=1

∞∑

j=1

(

g̃(Zk,−j, [c̃(α0)]
1/α0σ0c−j(u)δkΓ

−1/α0

k , 0)

+g̃(Zk,j, 0, [c̃(α0)]
1/α0σ0cj(u)δkΓ

−1/α0

k )
)

P→ W (u)

as λ → 0+ and M → ∞ (W †
n(·) and W (·) were defined in equations (3.8)

and (3.4), respectively). Therefore, by Theorem 3.2 in Billingsley [2], it fol-

lows from (A.32) that W †
n(u)

L→ W (u) on IR for fixed u ∈ IRp, and conse-
quently the result of this lemma follows from (A.31).

Lemma A.12. For any T > 0 and any κ > 0,

(A.33) lim
ǫ→0+

lim sup
n→∞

P

(

sup
‖u‖,‖v‖≤T, ‖u−v‖≤ǫ

|W †
n(u) −W †

n(v)| > κ

)

= 0.

(W †
n(·) was defined in equation (3.8).)
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Proof. For u,v ∈ IRp,

|W †
n(u) −W †

n(v)|

=

∣
∣
∣
∣
∣

1

n1/α0

n∑

t=p+1




∑

j 6=0

cj(u − v)Zt−j




∂ ln f(Z∗

t,n(u,v); τ 0)

∂z

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

1

n1/α0

n∑

t=p+1




∑

j 6=0

cj(u − v)Zt−j




∂ ln f(Zt; τ 0)

∂z

∣
∣
∣
∣
∣

+

(

sup
z∈IR

∣
∣
∣
∣
∣

∂2 ln f(z; τ 0)

∂z2

∣
∣
∣
∣
∣

)

× 1

n2/α0

n∑

t=p+1

∣
∣
∣
∣
∣

∑

j 6=0

cj(u− v)Zt−j

∣
∣
∣
∣
∣





∣
∣
∣
∣
∣

∑

j 6=0

cj(u)Zt−j

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∑

j 6=0

cj(v)Zt−j

∣
∣
∣
∣
∣



 ,

where Z∗
t,n(u,v) lies between Zt + n−1/α0

∑

j 6=0 cj(u)Zt−j and

Zt + n−1/α0
∑

j 6=0 cj(v)Zt−j . Following the proof of Theorem 2.1 in
Davis, Knight, and Liu [12] (see page 154), if {π̃j}j 6=0 is
a geometrically decaying sequence, then it can be shown
that n−1/α0

∑n
t=p+1(

∑

j 6=0 π̃jZt−j)[∂ ln f(Zt; τ 0)/∂z] = Op(1) and

n−2/α0
∑n

t=p+1(
∑

j 6=0 |π̃jZt−j |)2 = Op(1). Therefore, by (A.12) and because
cj(u) is linear in u for all j, (A.33) holds.

Lemma A.13. If, as n → ∞, mn → ∞ with mn/n → 0, then for any
T > 0 and any κ > 0,

(A.34) P

(

sup
‖u‖≤T

|W̃mn(u) − W̃ †
mn

(u)| > κ
∣
∣
∣X1 . . . ,Xn

)

P→ 0.

(W̃ †
mn

(·) and W̃mn(·) were defined in equations (3.14) and (3.15).)

Proof. Choose arbitrary T, κ > 0, and let the sequence {ψ̂j}∞j=−∞ con-

tain the coefficients in the Laurent series expansion of 1/[θ̂†ML(z)θ̂∗ML(z)].

From (3.11), for t ∈ {1, . . . ,mn}, θ̂†ML(B)θ̂∗ML(B)X∗
t = Z∗

t , and so X∗
t =

∑∞
j=−∞ ψ̂jZ

∗
t−j . From Brockwell and Davis [6] (see Chapter 3), there exist

C2 > 0, 0 < D2 < 1, and a sufficiently small δ > 0 such that, whenever

‖θ̂ML − θ0‖ < δ, |ψ̂j | ≤ C2D
|j|
2 and also sup‖u‖≤T |ĉj(u)| ≤ C2D

|j|
2 for all

j ∈ {. . . ,−1, 0, 1, . . .} (the ĉj(u)s were defined in (3.13)). Now observe that
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the left-hand side of (A.34) is bounded above by

P

(

sup
‖u‖≤T

|W̃mn(u) − W̃ †
mn

(u)| > κ
∣
∣
∣X1 . . . ,Xn

)

I
{

‖θ̂ML − θ0‖ < δ
}

+ I
{

‖θ̂ML − θ0‖ ≥ δ
}

,(A.35)

and that I{‖θ̂ML−θ0‖ ≥ δ} is op(1) since θ̂ML
P→ θ0. For u = (u1, . . . , up)

′ ∈
IRp,

W̃mn(u) − W̃ †
mn

(u)

=
mn∑

t=p+1

[

ln f

(

Z∗
t

(

θ̂ML +
u

m
1/α0
n

, s0

)

; τ̂ML

)

− ln f (Z∗
t ; τ̂ML)

]

−
mn∑

t=p+1



ln f



Z∗
t +m−1/α0

n

∑

j 6=0

ĉj(u)Z∗
t−j ; τ 0



− ln f (Z∗
t ; τ 0)





+ (mn − p) ln

∣
∣
∣
∣
∣

θ̂p,ML +m
−1/α0
n up

θ̂p,ML

∣
∣
∣
∣
∣
I{s0 > 0},

and so, using arguments similar to those given in the proofs of Lemmas A.4–
A.7, it can be shown that the first summand of (A.35) is also op(1) if, for
any ǫ > 0,

P




C2

m
2/α0
n

mn∑

t=p+1

∞∑

j=−∞

D
|j|
2 |Z∗

t−j | > ǫ
∣
∣
∣X1, . . . ,Xn



 ,(A.36)

P





[

sup
i∈{1,...,4}

|τ̂i,ML − τ0i|
]

C2

m
1/α0
n

mn∑

t=p+1

∞∑

j=−∞

D
|j|
2 |Z∗

t−j | > ǫ
∣
∣
∣X1, . . . ,Xn



 ,

(A.37)

P




C2

m
2/α0
n

mn∑

t=p+1

|Z∗
t |
∑

j 6=0

D
|j|
2 |Z∗

t−j | > ǫ
∣
∣
∣X1, . . . ,Xn



 ,(A.38)

P




C2

m
3/α0
n

mn∑

t=p+1

(Z∗
t )2

∑

j 6=0

D
|j|
2 |Z∗

t−j | > ǫ
∣
∣
∣X1, . . . ,Xn



 ,(A.39)

and

(A.40) P












1

m
1/α0
n

mn∑

t=p+1

[

1 + Z∗
t

∂ ln f(Z∗
t ; τ 0)

∂z

]






2

> ǫ
∣
∣
∣X1, . . . ,Xn
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are all op(1). To complete the proof, we show that (A.36) and (A.40) are
both op(1). Since n1/2(τ̂ML − τ 0) = Op(1) and mn/n → 0, using the proof
of Lemma A.5, it can be shown similarly that (A.37) is op(1). The proof of
Lemma A.6 can be used to show that (A.38) and (A.39) are op(1).

Recall, from the proof of Lemma A.4, that κ1 = (3/4)α0I{α0 ≤ 1} +
I{α0 > 1}. By the Markov inequality, equation (A.36) is bounded above by

(
C2

ǫ

)κ1

m1−2κ1/α0

n





∞∑

j=−∞

(Dκ1

2 )|j|



E
{

|Z∗
t |κ1

∣
∣
∣X1, . . . ,Xn

}

;

this is op(1) since m
1−2κ1/α0
n → 0 and, using θ̂ML

P→ θ0 and E|Z1|κ1 <∞, it

can be shown that E{|Z∗
t |κ1|X1, . . . ,Xn} = (n−p)−1∑n

t=p+1 |Zt(θ̂ML, s0)|κ1

is Op(1).
We now consider (A.40), which is bounded above by

ǫ−1m1−2/α0

n E

{(

1 + Z∗
t
∂ ln f(Z∗

t ; τ 0)

∂z

)2 ∣
∣
∣X1, . . . ,Xn

}

(A.41)

+ ǫ−1m
2
n −mn

m
2/α0
n

[

E

{

1 + Z∗
t

∂ ln f(Z∗
t ; τ 0)

∂z

∣
∣
∣X1, . . . ,Xn

}]2

.(A.42)

Since m
1−2/α0
n → 0 and, by (2.6), supz∈IR |z[∂ ln f(z; τ 0)/∂z]| < ∞, (A.41)

is op(1). Now consider

E

{

1 + Z∗
t

∂ ln f(Z∗
t ; τ 0)

∂z

∣
∣
∣X1, . . . ,Xn

}

(A.43)

=
1

n− p

n∑

t=p+1

(

1 + Zt
∂ ln f(Zt; τ 0)

∂z

)

(A.44)

+
1

n− p





n∑

t=p+1

Zt(θ̂ML, s0)
∂ ln f(Zt(θ̂ML, s0); τ 0)

∂z

−
n∑

t=p+1

Zt
∂ ln f(Zt; τ 0)

∂z



 .(A.45)

By the central limit theorem, (A.44) is Op(n
−1/2). In addition, since Zt =

Zt(θ0, s0), (A.45) equals

(θ̂ML − θ0)
′

n− p

n∑

t=p+1

[
∂ ln f(Zt(θ

∗
n, s0); τ 0)

∂z

+Zt(θ
∗
n, s0)

∂2 ln f(Zt(θ
∗
n, s0); τ 0)

∂z2

]

∂Zt(θ
∗
n, s0)

∂θ
,(A.46)
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with θ∗
n between θ̂ML and θ0, and, because supz∈IR |[∂ ln f(z; τ 0)/∂z] +

z[∂2 ln f(z; τ 0)/∂z
2]| < ∞, the absolute value of (A.46) is bounded above

by

(A.47) (constant) sup
i∈{1,...,p}




|θ̂i,ML − θ0i|

n− p

n∑

t=p+1

∣
∣
∣
∣
∣

∂Zt(θ
∗
n, s0)

∂θi

∣
∣
∣
∣
∣



 .

Recall, from the proof of Lemma A.5, that κ2 = α0(1+α0/3)/(1+α0/2)I{α0 ≤
1} + I{α0 > 1}. For i ∈ {1, . . . , p} and ǫ > 0,

P








1

(n− p)1/2+1/α0

n∑

t=p+1

∣
∣
∣
∣
∣

∂Zt(θ
∗
n, s0)

∂θi

∣
∣
∣
∣
∣
I{‖θ̂ML − θ0‖ < δ}





κ2

> ǫκ2





≤ ǫ−κ2(n− p)1−κ2(1/2+1/α0)E







∣
∣
∣
∣
∣

∂Zt(θ
∗
n, s0)

∂θi

∣
∣
∣
∣
∣

κ2

I{‖θ̂ML − θ0‖ < δ}






,

which can be shown to be o(1) for sufficiently small δ > 0 since κ2(1/2 +
1/α0) > 1 and E|Z1|κ2 < ∞. Therefore, since n1/α0(θ̂ML − θ0) = Op(1),
it follows that (A.47), and hence (A.45) and (A.46), are op(n

−1/2), and
so (A.43) is Op(n

−1/2). Since mn/n → 0, (A.42) must be op(1), and so the
proof is complete.

ACKNOWLEDGEMENTS

We wish to thank two anonymous reviewers for their helpful comments.

REFERENCES

[1] Adler, R.J., Feldman, R.E., and Gallagher, C. (1998). Analysing stable time series.
In A Practical Guide to Heavy Tails (R.J. Adler, R.E. Feldman, M.S. Taqqu, eds.)
133–158. Birkhäuser, Boston.
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