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Abstract

We establish asymptotic normality and consistency for rank-based estimators of

autoregressive-moving average model parameters. The estimators are obtained by mini-

mizing a rank-based residual dispersion function similar to the one given in L.A. Jaeckel

[Estimating regression coefficients by minimizing the dispersion of the residuals, Ann.

Math. Statist. 43 (1972) 1449–1458]. These estimators can have the same asymptotic ef-

ficiency as maximum likelihood estimators and are robust. The quality of the asymptotic

approximations for finite samples is studied via simulation.
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1 Introduction

In this paper, we use a rank-based technique to estimate the parameters of autoregressive-moving average

(ARMA) models, the standard linear time series models for stationary data. The rank (R) estimators we

consider minimize the sum of mean-corrected model residuals weighted by a function of residual rank; they

are similar to the R-estimators proposed by Jaeckel (1972) for estimating linear regression parameters. As

discussed in Jurec̆ková and Sen (1996), R-estimators are, in general, robust and relatively efficient. We

show this is true in the case of ARMA parameter estimation. The estimation technique is robust because

the R-estimators of ARMA model parameters are consistent and asymptotically normal under very mild

conditions on the noise distribution. Since the weight function can be chosen so that R-estimation has the

same asymptotic efficiency as maximum likelihood (ML) estimation, the R-estimators are also relatively

efficient. The relative efficiency of the estimators extends to the unknown noise distribution case since R-

estimation with the Wilcoxon weight function (a linear weight function) is nearly as efficient as ML for

a large class of noise distributions. In addition, R-estimation compares favorably with classical Gaussian

quasi-ML estimation and least absolute deviations (LAD) estimation. We show that R-estimation with

the van der Waerden weight function (the inverse of the standard normal distribution function) uniformly

dominates Gaussian quasi-ML with respect to asymptotic efficiency, and we give a weight function for which

R-estimation is asymptotically equivalent to LAD estimation.

Because the R-objective function we use involves not only the residual ranks but also the residual values,

this is not pure R-estimation. Koul and Saleh (1993), Koul and Ossiander (1994), and Mukherjee and

Bai (2002) consider related rank-based estimation approaches for autoregressive (AR) model parameters. In

this paper, we consider R-estimation for ARMA models, which can have both an AR component and a moving

average (MA) component. Extending the AR results to ARMA models is not straightforward, particularly

since the objective function is convex only in the AR case. Rank-based estimation for ARMA models is

examined in Ferretti, Kelmansky, and Yohai (1991), but the authors are only able to establish asymptotic

normality for the estimators when the model is AR. Also, Allal, Kaaouachi, and Paindaveine (2001) examine
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pure R-estimation for ARMA model parameters based on correlations of weighted residual ranks. These

R-estimators of ARMA parameters are consistent and asymptotically normal, but under more stringent

conditions on the noise distribution than those given in this paper. For instance, Allal et al. require the

density function for the noise to be strongly unimodal, which does not hold for the Student’s t or multimodal

distributions.

The R-objective function we use is given in Section 2. In Section 3, asymptotic normality for R-estimators

of ARMA model parameters is established under mild conditions, and the asymptotic efficiency for R-

estimation is compared to the efficiencies for other estimation techniques. We also give a consistent estimator

for the covariance matrix of the limiting normal distribution. Proofs of the lemmas used in Section 3 are

relegated to the Appendix. The behavior of the R-estimators for finite samples is studied via simulation in

Section 4.

2 Preliminaries

Let B denote the backshift operator (BkXt = Xt−k, k ∈ {0,±1,±2, . . .}) and suppose {Xt} is the ARMA

process which satisfies the difference equations

φ0(B)Xt = θ0(B)Zt, (2.1)

where the AR polynomial φ0(z) := 1 − φ01z − · · · − φ0pz
p 6= 0 for |z| ≤ 1, the MA polynomial θ0(z) :=

1+θ01z+ · · ·+θ0qz
q 6= 0 for |z| ≤ 1, φ0(z) and θ0(z) have no common roots, φ0(z) 6= 1 or θ0(z) 6= 1, and {Zt}

is an independent and identically distributed (iid) sequence of random variables. We assume throughout

that Zt has mean zero, variance σ2 ∈ (0,∞), and distribution function F . Because φ0(z) 6= 0 for |z| ≤ 1,

Xt =

∞
∑

j=0

ψjZt−j (2.2)

for all t, where the coefficients {ψj}∞j=0 can be obtained from the Laurent series expansion of θ0(z)/φ0(z).

The AR filter φ0(B) is said to be causal since (2.2) is a function of only the past and present {Zt}. Because

θ0(z) 6= 0 for |z| ≤ 1, coefficients {πj}∞j=0 can be obtained from the Laurent series expansion of φ0(z)/θ0(z)
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for which

Zt =
∞
∑

j=0

πjXt−j (2.3)

for all t. The MA filter θ0(B) is said to be invertible since (2.3) is a function of only the past and present {Xt}.

Causality and invertibility are standard assumptions in time series analysis (see, for example, Brockwell and

Davis, 1991, Chapter 3).

From (2.1), Zt = Xt −φ01Xt−1 − · · ·−φ0pXt−p − θ01Zt−1 − · · ·− θ0qZt−q. Therefore, for arbitrary causal

AR(p) and invertible MA(q) polynomials φ(z) = 1 − φ1z − · · · − φpz
p and θ(z) = 1 + θ1z + · · · + θqz

q, we

define

Zt(α) =

{ 0, t ≤ p,

Xt − φ1Xt−1 − · · · − φpXt−p − θ1Zt−1(α) − · · · − θqZt−q(α), t = p+ 1, . . . , n,

where α := (φ1, . . . , φp, θ1, . . . , θq)
′. If α0 := (φ01, . . . , φ0p, θ01, . . . , θ0q)

′, note that {Zt(α0)}n
t=p+1 closely

approximates {Zt}n
t=p+1; the error is due to the initialization with zeros.

Suppose

A1 λ is a nonconstant and nondecreasing function from (0, 1) to IR.

For α ∈ IRp+q, we introduce the R-function

Dn(α) =
n
∑

t=p+1

λ

(

Rt(α)

n− p+ 1

)

[

Zt(α) − Z(α)
]

, (2.4)

where {Rt(α)}n
t=p+1 contains the ranks of {Zt(α)}n

t=p+1 and Z(α) := (n−p)−1
∑n

t=p+1 Zt(α). Dn is similar

to the R-function introduced in Jaeckel (1972) for estimating linear regression parameters. We, however,

consider a weighted sum of the mean-corrected residuals instead of a weighted sum of the residuals (as in

Jaeckel, 1972) to avoid assuming
∑n

t=p+1 λ((t−p)/(n−p+1)) = 0, which is required in Jaeckel (1972). Note

that, if {Z(t)(α)}n
t=p+1 is the series {Zt(α)}n

t=p+1 ordered from smallest to largest, (2.4) can also be written

as Dn(α) =
∑n

t=p+1 λ((t−p)/(n−p+1))[Z(t)(α)−Z(α)] and, if λ := (n−p)−1
∑n

t=p+1 λ((t−p)/(n−p+1)),

Dn(α) =
∑n

t=p+1[λ((t − p)/(n − p + 1)) − λ][Z(t)(α) − Z(α)]. Because it tends to be near zero when the

elements of {Z(t)(α)}n
t=p+1 are similar and gets larger as the values of {|Z(t)(α)−Z(α)|}n

t=p+1 increase, Dn
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is a measure of the dispersion of the residuals {Zt(α)}n
t=p+1. Given a realization of length n from (2.1),

{Xt}n
t=1, we estimate α0 by minimizing Dn. Choices for the weight function λ are discussed in Section 3.

We give some properties for Dn in the following theorem. From Jaeckel (1972), these same properties

hold in the linear regression case. It is particularly interesting that Dn is continuous on IRp+q, since λ is not

necessarily continuous on (0, 1) and the residual ranks {Rt(·)}n
t=p+1 are only piecewise continuous on IRp+q.

Theorem 2.1 Assume A1 holds. For any α ∈ IRp+q, if

{

P1(α), . . . , P(n−p)!(α)
}

=
{

{Z1,p+1(α), . . . , Z1,n(α)} , . . . ,
{

Z(n−p)!,p+1(α), . . . , Z(n−p)!,n(α)
}}

contains the (n− p)! permutations of the sequence {Zt(α)}n
t=p+1, then

Dn(α) = sup
j∈{1,...,(n−p)!}

n
∑

t=p+1

λ

(

t− p

n− p+ 1

)

[

Zj,t(α) − Z(α)
]

.

In addition, Dn is a nonnegative, continuous function on IRp+q. If q = 0, then Dn is also convex.

Proof: Recall that Dn(α) =
∑n

t=p+1[λ((t − p)/(n − p + 1)) − λ][Z(t)(α) − Z(α)], where λ =

(n− p)−1
∑n

t=p+1 λ((t− p)/(n− p+ 1)). Let an(t) = λ((t− p)/(n− p+ 1))− λ and zt(α) = Zt(α) − Z(α).

The results of this theorem follow from the proof of Theorem 1 in Jaeckel (1972), where properties are given

for
∑n

t=p+1 an(t)z(t)(α). 2

3 Asymptotic Results

In order to establish asymptotic normality for R-estimators of α0, we make the following assumptions:

A2 The weight function λ is left-continuous and bounded on (0, 1).

A3 F , the distribution function for the noise, is strictly increasing and differentiable on IR with uniformly

continuous density f .

Also, for causal AR(p) polynomial φ(z) = 1 − φ1z − · · · − φpz
p and invertible MA(q) polynomial θ(z) =

1+θ1z+ · · ·+θqz
q, let {Ut} and {Vt} be the autoregressive processes φ(B)Ut = Wt and θ(B)Vt = Wt, where
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{Wt} is iid with mean zero and variance one. If U := (U−1, . . . , U−p)
′ and V := (V−1, . . . , V−q)

′, then let

Γ(α) =









E{UU′} E{UV′}

E{VU′} E{VV′}









.

Theorem 3.1 If A1–A3 hold, then there exists a sequence of minimizers α̂
R
n of Dn(·) in (2.4) such that

n1/2
(

α̂
R
n − α0

)

d→ Y ∼ N(0,Σ), (3.1)

where Σ := J̃K̃−2σ−2Γ−1(α0), J̃ := Var{λ(F (Z1))}, and K̃ :=
∫∞

−∞ f(x) dλ(F (x)).

Proof: Dn(α)−Dn(α0) = Sn(
√
n(α−α0)), where Sn(·) is defined in Lemma 5.7 of the Appendix. Because

Y := −K̃−1σ−2Γ−1(α0)N minimizes the limit S(·) in Lemma 5.7, the result follows by Remark 1 in Davis,

Knight, and Liu (1992). 2

Remark 1: If the density function f is almost everywhere differentiable on IR, using integration by parts,

it can be shown that K̃ = −
∫∞

−∞ f ′(x)λ(F (x)) dx = −
∫ 1

0 [f ′(F−1(x))/f(F−1(x))]λ(x) dx.

Remark 2: When the ARMA model is purely AR (q = 0), the limiting result in (3.1) is the same as limiting

results given in Koul and Saleh (1993), Koul and Ossiander (1994), and Mukherjee and Bai (2002) for related

rank-based estimators of AR model parameters.

Remark 3: From Li and McLeod (1988), ML estimators of ARMA model parameters are asymptotically nor-

mal with mean α0 and covariance matrix n−1[
∫∞

−∞(f ′(x))2/f(x) dx]−1σ−2Γ−1(α0). The asymptotic relative

efficiency (ARE) of R-estimation with respect to ML estimation is therefore J̃−1K̃2[
∫∞

−∞(f ′(x))2/f(x) dx]−1;

this same property holds for R-estimators of linear regression parameters (Jurec̆ková and Sen, 1996, Sec-

tion 3.4). Because J̃−1K̃2 =
∫∞

−∞
(f ′(x))2/f(x) dx when the weight function is proportional to

−f ′(F−1(x))/f(F−1(x)) (Jurec̆ková and Sen, 1996, Section 3.4), R-estimation has the same asymptotic

efficiency as ML estimation when an optimal weight function λf (x) ∝ −f ′(F−1(x))/f(F−1(x)) is used.

Remark 4: When Zt ∼ N(0, σ2), an optimal weight function λf is given by the van der Waerden weight

function λ(x) = Φ−1(x), where Φ is the standard normal distribution function. Hence, in the case of Gaussian

noise, R-estimation with the van der Waerden weight function is asymptotically equivalent to ML estimation.
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From Brockwell and Davis (1991, Section 8.8), Gaussian ML estimators of ARMA model parameters are

consistent even when the noise distribution is non-Gaussian. These estimators are asymptotically normal

with mean α0 and covariance matrix n−1Γ−1(α0). When λ(x) = Φ−1(x), J̃K̃−2σ−2 ≤ 1, with equality if and

only if Zt is Gaussian (Chernoff and Savage, 1958; Gastwirth and Wolff, 1968). Consequently, R-estimation

with the van der Waerden weight function is at least as asymptotically efficient as Gaussian ML estimation,

and strictly more efficient when the noise distribution is non-Gaussian.

Note that Φ−1 does not satisfy assumption A2 since it is unbounded on (0, 1), but a bounded weight

function closely approximating Φ−1 which does satisfy the assumptions can be found. For example, let

λm(x) = Φ−1(x)I{1/m ≤ x ≤ 1 − 1/m} + Φ−1(1/m)I{x < 1/m} + Φ−1(1 − 1/m)I{x > 1 − 1/m}, (3.2)

where m > 2 and I{·} represents the indicator function. This weight function λm satisfies assumptions A1

and A2. In addition, as m → ∞, λm converges pointwise to Φ−1 on (0, 1) and, if J̃m := Var{λm(F (Z1))}

and K̃m :=
∫∞

−∞
f(x) dλm(F (x)), J̃m → Var{Φ−1(F (Z1))} and K̃m →

∫∞

−∞
f(x) dΦ−1(F (x)). Therefore,

m > 2 can be chosen so that the asymptotic efficiency of R-estimation with weight function λm is arbitrarily

close to the asymptotic efficiency of R-estimation with the van der Waerden weight function.

Remark 5: If µ̃ := median{Zt} is zero, LAD estimators of ARMA model parameters are asymptotically

normal with mean α0 and covariance matrix n−1[4f2(0)]−1σ−2Γ−1(α0) = n−1[4f2(µ̃)]−1σ−2Γ−1(α0) (Davis

and Dunsmuir, 1997). If Zt is Laplace (f(x) = exp(−
√

2|x|/σ)/(
√

2σ)), LAD estimation corresponds to ML

estimation. Also for Laplace noise, λf (x) ∝ −I{x ≤ 1/2} + I{x > 1/2} for x ∈ (0, 1/2) ∪ (1/2, 1) (λf does

not exist at x = 1/2). Therefore, when the noise distribution is Laplace, R-estimation with weight function

λ(x) = −I{x ≤ 1/2} + I{x > 1/2} is asymptotically equivalent to LAD/ML estimation. R-estimation with

this weight function is also asymptotically equivalent to LAD estimation in general since, for weight function

λ(x) = −I{x ≤ 1/2} + I{x > 1/2} and any noise distribution, J̃K̃−2 = [4f2(µ̃)]−1.

Remark 6: Another weight function commonly used for R-estimation is the Wilcoxon weight function

λ(x) = x−1/2, which is optimal when Zt is logistic (f(x) = π/(
√

3σ) exp(−xπ/(
√

3σ))/[1+exp(−xπ/(
√

3σ))]2).

The Wilcoxon weight function is also nearly optimal for Student’s t noise; optimal weight functions corre-
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ARE (R to ML)
Noise Distribution van der Waerden LAD-like Wilcoxon

Laplace 0.637 1.000 0.750
logistic 0.955 0.750 1.000
N(0, σ2) 1.000 0.637 0.955
t(3) 0.820 0.811 0.950
t(5) 0.915 0.769 0.993
t(7) 0.951 0.741 0.999
t(9) 0.968 0.723 0.998
t(12) 0.981 0.705 0.993
t(15) 0.987 0.693 0.988
t(20) 0.993 0.680 0.983
t(30) 0.997 0.666 0.975

0.6(t(3) − 2/3) + 0.4(t(5) + 1) 0.899 0.594 0.937

Table 3.1: AREs for R (with van der Waerden, LAD-like, and Wilcoxon weights) to ML for the Laplace,

logistic, N(0, σ2) distributions, the Student’s t-distribution with several different degrees of freedom, and the

asymmetric distribution 0.6(t(3) − 2/3) + 0.4(t(5) + 1).

sponding to the t-distribution do not satisfy the assumptions, however, since −f ′(F−1(x))/f(F−1(x)) is both

increasing and decreasing on (0, 1). The fourth column of Table 3.1 contains the AREs for R-estimation

with Wilcoxon weights with respect to ML estimation for the Student’s t-distribution with several different

degrees of freedom. Because the AREs for t noise are all very close to one, R-estimation is essentially as

efficient as ML.

AREs for R-estimation with Wilcoxon weights with respect to Gaussian ML estimation are ≥ 0.864

(Hodges and Lehmann, 1956), and sequences of distributions exist for which the AREs go to infinity. For

the Student’s t-distribution, ARE → ∞ as degrees of freedom ↓ 2, for example. Therefore, R-estimation

with the Wilcoxon weight function is overall superior to Gaussian ML estimation with regard to asymptotic

efficiency. R-estimation with the Wilcoxon weight function cannot be so easily compared to R-estimation

with the van der Waerden weight function λ(x) = Φ−1(x) or the LAD-like weight function λ(x) = −I{x ≤

1/2} + I{x > 1/2}, since distributions exist for which corresponding AREs are much smaller than 0.864.

However, as can be seen in Table 3.1, the Wilcoxon weight function performs nearly as well as ML for both

Gaussian and heavy-tailed distributions, and so the Wilcoxon function is often the recommended weight
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function for R-estimation when the noise distribution is unknown (see, for example, Hettmansperger and

McKean, 1998). For comparison, AREs corresponding to the van der Waerden and LAD-like weight functions

are also included in Table 3.1.

Remark 7: AREs for the noise distribution 0.6(t(3) − 2/3) + 0.4(t(5) + 1), which is moderately skewed

to the right, are given in Table 3.1 to demonstrate that the Wilcoxon function can perform relatively well

for asymmetric distributions. The Wilcoxon function is not particularly efficient for significantly skewed

distributions, however (see Choi and Öztürk, 2002). Weight functions that are relatively efficient when the

noise distribution is significantly skewed to the right or left are given in McKean and Sievers (1989) and

Choi and Öztürk (2002). McKean and Sievers (1989) give the optimal score function corresponding to the

generalized F -distribution, which can be skewed, and Choi and Öztürk (2002) consider a weight function

which they show is nearly optimal for generalized F noise and also relatively efficient for other skewed noise

distributions.

We now estimate the covariance matrix Σ = J̃K̃−2σ−2Γ−1(α0) in (3.1) so that confidence intervals can

be computed for the elements of α0. First, note that J̃ =
∫ 1

0
λ2(x) dx − (

∫ 1

0
λ(x) dx)2 is known. Because

α̂
R
n

P→ α0, it can be shown that

σ̂n :=

(

1

n

n
∑

t=p+1

Z2
t (α̂R

n )

)1/2

P→
(

E
{

Z2
1

})1/2
= σ;

similar results are established in Section 3.3.2 of Andrews (2003) and Section 3.2 of Andrews, Davis, and

Breidt (2007), so we omit the details here. Also, since Γ−1(·) is continuous at α0 (see Brockwell and

Davis, 1991, Section 8.8), Γ−1(α̂R
n ) is a consistent estimator of Γ−1(α0). A consistent estimator for K̃ is

given in the following corollary. For pure AR models (q = 0), other consistent estimators for K̃ can be found

in Section 7.3.3 of Koul (2002).

Corollary 3.1 Consider the empirical distribution function F̂n(x) := (n−p)−1
∑n

t=p+1 I{Zt(α̂
R
n ) ≤ x} and

the kernel density estimator of f

f̂n(x) :=
1

hnn

n
∑

t=p+1

κ

(

Zt(α̂
R
n ) − x

hn

)

, (3.3)
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where κ is a kernel density function on IR that satisfies condition A10 in Robinson (1987) and the bandwidth

sequence {hn} is chosen so that hn
P→ 0 and h3

nn
P→ ∞ as n→ ∞. If A1–A3 hold, then

K̂n :=

∫ ∞

−∞

f̂n(x) dλ(F̂n(x)) =
n
∑

t=p+1

f̂n

(

Z(t)(α̂
R
n )
)

[

λ

(

t− p

n− p

)

− λ

(

t− p− 1

n− p

)]

P→ K̃.

Proof: If F̃n(x) := (n − p)−1
∑n

t=p+1 I{Zt ≤ x}, then supx∈IR n1/2|F̂n(x) − F̃n(x)| P→ 0 by Theorem 1 of

Bai (1994). By Theorem 3 of Robinson (1987), supx∈IR |f̂n(x) − f(x)| P→ 0. As a result, K̂n
P→ K̃ follows

from the proof of Theorem 7.3.3 in Koul (2002). 2

Therefore, J̃K̂−2
n σ̂−2

n Γ−1(α̂R
n ) is a consistent estimator for Σ. Note that Gaussian densities can be used

for the kernel density function κ since they satisfy condition A10 in Robinson (1987).

4 Simulation Study

In this section, we give the results of a simulation study to assess the quality of the asymptotic approximations

for finite samples. For each of 1000 replicates, we simulated an ARMA series and found α̂
R
n by minimizing

Dn in (2.4). To reduce the possibility of the optimizer getting trapped at local minima, we used 200 random

starting values for each replicate. We evaluated Dn at each of the 200 candidate values and then reduced the

collection of initial values to the ten with the smallest values of Dn. Using these ten initial values as starting

points, we found optimized values by implementing the Nelder-Mead algorithm (Lagarias, Reeds, Wright,

and Wright, 1998). The optimized value for whichDn was smallest was chosen to be α̂
R
n . Confidence intervals

for the elements of α0 were constructed using (3.1) and J̃K̂−2
n σ̂−2

n Γ−1(α̂R
n ), the consistent estimator of Σ.

For the kernel density estimator (3.3), we used the standard Gaussian kernel density function and, because

of its recommendation in Silverman (1986, page 48), we used bandwidth hn = 0.9n−1/5 min{σ̂n, IQR/1.34},

where IQR is the interquartile range for {Zt(α̂
R
n )}n

t=p+1.

Results of simulations for the N(0,1) and t(3) noise distributions and van der Waerden (to be specific,
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Asymptotic Empirical
std. dev. mean std. dev. % coverage

n mean (N(0,1)/t(3)) (N(0,1)/t(3)) (N(0,1)/t(3)) (N(0,1)/t(3))
100 φ1 = 0.3 0.0954/0.0745 0.280/0.285 0.0966/0.0836 91.7/92.3
500 φ1 = 0.3 0.0427/0.0333 0.298/0.296 0.0405/0.0354 95.5/95.0
1500 φ1 = 0.3 0.0246/0.0192 0.299/0.300 0.0243/0.0196 94.8/94.6
100 θ1 = 0.4 0.0917/0.0716 0.394/0.398 0.0972/0.0829 89.9/90.5
500 θ1 = 0.4 0.0410/0.0320 0.398/0.399 0.0406/0.0330 95.5/94.7
1500 θ1 = 0.4 0.0237/0.0185 0.400/0.400 0.0232/0.0192 95.1/94.5
100 φ1 = 0.3 0.1526/0.1192 0.268/0.283 0.1538/0.1308 91.3/91.8

θ1 = 0.4 0.1466/0.1145 0.421/0.412 0.1587/0.1339 87.5/88.2
500 φ1 = 0.3 0.0683/0.0533 0.300/0.296 0.0694/0.0560 93.5/94.3

θ1 = 0.4 0.0656/0.0512 0.400/0.401 0.0661/0.0532 94.1/94.3
1500 φ1 = 0.3 0.0394/0.0308 0.299/0.299 0.0385/0.0326 96.3/94.2

θ1 = 0.4 0.0379/0.0296 0.400/0.401 0.0381/0.0307 94.7/94.2

Table 4.1: Empirical means, standard deviations, and percent coverages of nominal 95% confidence intervals

for R-estimates of ARMA model parameters. The N(0,1) and t(3) noise distributions and van der Waerden

weights were used.

weight function (3.2) was used, with m = 10, 000), LAD-like, and Wilcoxon weights are given in Tables 4.1–

4.3. We show the empirical means, standard deviations, and percent coverages of nominal 95% confidence

intervals for R-estimates of ARMA model parameters. Asymptotic means and standard deviations were ob-

tained using Theorem 3.1. Particularly when n = 1500, the R-estimates appear nearly unbiased, the asymp-

totic standard deviations fairly accurately reflect the true variability of the estimates, and the confidence

interval coverages are close to the nominal 95% level. Normal probability plots show that the R-estimates

are approximately normal in all cases. Simulation results in Li and McLeod (1988) indicate that asymptotic

approximations for ML estimates of ARMA model parameters are also fairly accurate for large sample sizes.

Therefore, it appears that the AREs in Table 3.1 for R-estimation with respect to ML are indicative of finite,

large sample behavior.
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Asymptotic Empirical
std. dev. mean std. dev. % coverage

n mean (N(0,1)/t(3)) (N(0,1)/t(3)) (N(0,1)/t(3)) (N(0,1)/t(3))
100 φ1 = 0.3 0.1196/0.0749 0.275/0.288 0.1210/0.0882 95.2/94.7
500 φ1 = 0.3 0.0535/0.0335 0.296/0.300 0.0538/0.0355 95.6/96.0
1500 φ1 = 0.3 0.0309/0.0193 0.300/0.299 0.0311/0.0195 95.5/95.8
100 θ1 = 0.4 0.1149/0.0720 0.392/0.403 0.1210/0.0847 92.9/94.1
500 θ1 = 0.4 0.0514/0.0322 0.400/0.399 0.0522/0.0345 94.7/95.9
1500 θ1 = 0.4 0.0297/0.0186 0.398/0.400 0.0294/0.0197 95.8/95.0
100 φ1 = 0.3 0.1913/0.1199 0.273/0.285 0.2000/0.1435 90.6/93.2

θ1 = 0.4 0.1838/0.1152 0.407/0.407 0.1984/0.1433 90.6/92.2
500 φ1 = 0.3 0.0855/0.0536 0.301/0.299 0.0870/0.0585 94.8/94.1

θ1 = 0.4 0.0822/0.0515 0.397/0.400 0.0838/0.0583 95.0/92.8
1500 φ1 = 0.3 0.0494/0.0310 0.300/0.300 0.0488/0.0305 95.6/96.3

θ1 = 0.4 0.0475/0.0297 0.399/0.400 0.0467/0.0301 95.5/95.9

Table 4.2: Empirical means, standard deviations, and percent coverages of nominal 95% confidence intervals

for R-estimates of ARMA model parameters. The N(0,1) and t(3) noise distributions and LAD-like weights

were used.

Asymptotic Empirical
std. dev. mean std. dev. % coverage

n mean (N(0,1)/t(3)) (N(0,1)/t(3)) (N(0,1)/t(3)) (N(0,1)/t(3))
100 φ1 = 0.3 0.0976/0.0692 0.282/0.288 0.0982/0.0764 94.8/94.4
500 φ1 = 0.3 0.0437/0.0310 0.296/0.298 0.0433/0.0330 96.0/93.7
1500 φ1 = 0.3 0.0252/0.0179 0.300/0.299 0.0252/0.0176 94.9/96.0
100 θ1 = 0.4 0.0938/0.0665 0.400/0.406 0.0988/0.0751 91.8/94.0
500 θ1 = 0.4 0.0419/0.0297 0.399/0.399 0.0413/0.0319 95.3/94.4
1500 θ1 = 0.4 0.0242/0.0172 0.400/0.399 0.0241/0.0178 95.1/94.7
100 φ1 = 0.3 0.1562/0.1107 0.283/0.285 0.1699/0.1308 91.3/92.8

θ1 = 0.4 0.1501/0.1064 0.406/0.406 0.1705/0.1236 89.9/93.7
500 φ1 = 0.3 0.0699/0.0495 0.296/0.296 0.0688/0.0533 94.9/92.8

θ1 = 0.4 0.0671/0.0476 0.403/0.403 0.0646/0.0509 94.8/94.2
1500 φ1 = 0.3 0.0403/0.0286 0.297/0.299 0.0401/0.0294 95.2/95.6

θ1 = 0.4 0.0387/0.0275 0.402/0.400 0.0387/0.0283 95.2/95.0

Table 4.3: Empirical means, standard deviations, and percent coverages of nominal 95% confidence intervals

for R-estimates of ARMA model parameters. The N(0,1) and t(3) noise distributions and Wilcoxon weights

were used.
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Appendix

This section contains proofs of the lemmas used to establish Theorem 3.1. Assume A1–A3 hold throughout.

First, from Section 8.11 of Brockwell and Davis (1991), for t ∈ {p+1, . . . , n} and α = (φ1, . . . , φp, θ1, . . . , θq)
′,

we have

∂Zt(α)

∂αj
=

−Xt−j

θ(B)
=

−θ0(B)Zt−j

θ(B)φ0(B)
, j ∈ {1, . . . , p}, and

∂Zt(α)

∂αj
=

−Zt+p−j(α)

θ(B)
, j ∈ {p+ 1, . . . , p+ q}.

Evaluating the partial derivatives at α0 and ignoring the effect of recursion initialization, we have

∂Zt(α0)

∂αj
=







−Zt−j/φ0(B), j ∈ {1, . . . , p}

−Zt+p−j(α0)/θ0(B), j ∈ {p+ 1, . . . , p+ q}

'







−Zt−j/φ0(B), j ∈ {1, . . . , p}

−Zt+p−j/θ0(B), j ∈ {p+ 1, . . . , p+ q}

=:
∂Z∗

t (α0)

∂αj
.

The expected value of ∂Z∗
t (α0)/∂α is zero, the covariance matrix is σ2Γ(α0), and, because φ0(B) is a

causal AR operator and θ0(B) is an invertible MA operator, ∂Z∗
t (α0)/∂αj ∈ σ(Zt−1, Zt−2, . . .) for all

j ∈ {1, . . . , p+ q}.

Now, let

∂Z(α)

∂α

=
1

n− p

n
∑

t=p+1

∂Zt(α)

∂α

and
∂Z∗(α)

∂α

=
1

n− p

n
∑

t=p+1

∂Z∗
t (α)

∂α

.

Lemma 5.1 As n→ ∞,

1√
n

n
∑

t=p+1

λ(F (Zt))

[

∂Zt(α0)

∂α

− ∂Z(α0)

∂α

]

d→ N ∼ N(0, J̃σ2Γ(α0)).

Proof: If the Laurent series expansion for 1/θ0(z) is given by
∑∞

j=0 βjz
j, then, for t ∈ {0, . . . , n− p− 1},

Zp+1+t =

∞
∑

j=0

βj (φ0(B)Xp+1+t−j) and Zp+1+t(α0) =

t
∑

j=0

βj (φ0(B)Xp+1+t−j) . (5.1)

Because there exist constants a > 0 and 0 < b < 1 such that |βj | < abj for all j ∈ {0, 1, . . .} (see Brockwell

and Davis, 1991, Section 3.3), it follows that
∑n

t=p+1 E|∂Zt(α0)/∂αj − ∂Z∗
t (α0)/∂αj | = O(1) for all j ∈
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{1, . . . , p+ q}. Therefore,

1√
n

n
∑

t=p+1

λ(F (Zt))

[

∂Zt(α0)

∂α

− ∂Z(α0)

∂α

]

=
1√
n

n
∑

t=p+1

λ(F (Zt))

[

∂Z∗
t (α0)

∂α

− ∂Z∗(α0)

∂α

]

+ op(1)

=
1√
n

n
∑

t=p+1

[λ(F (Zt)) − E{λ(F (Z1))}]
∂Z∗

t (α0)

∂α

−
(

1√
n

n
∑

t=p+1

[λ(F (Zt)) − E{λ(F (Z1))}]
)

∂Z∗(α0)

∂α

+ op(1).

(5.2)

By the central limit theorem, n−1/2
∑n

t=p+1 [λ(F (Zt)) − E{λ(F (Z1))}] d→ N(0, J̃) and, by the ergodic theo-

rem, ∂Z∗(α0)/∂α = (n− p)−1
∑n

t=p+1 ∂Z
∗
t (α0)/∂α

P→ 0. Thus, (5.2) equals

1√
n

n
∑

t=p+1

[λ(F (Zt)) − E{λ(F (Z1))}]
∂Z∗

t (α0)

∂α

+ op(1).

Let u ∈ IRp+q. By the Cramér-Wold device, it suffices to show n−1/2
∑n

t=p+1 Yt
d→ u′N ∼

N(0, J̃u′σ2Γ(α0)u), where Yt := [λ(F (Zt)) − E{λ(F (Z1))}]u′∂Z∗
t (α0)/∂α. Elements of the infinite order

moving average stationary sequence {Yt} can be truncated to create a finite order moving average station-

ary sequence. By applying a central limit theorem (Brockwell and Davis, 1991, Theorem 6.4.2) to each

truncation level, asymptotic normality can be deduced. The details are omitted. 2

For u ∈ IRp+q, define Zt,n(u) = Zt − Zt(α0 + n−1/2u).

Lemma 5.2 For any T ∈ (0,∞), as n→ ∞,

sup
‖u‖≤T, x∈IR

∣

∣

∣

∣

∣

1√
n

n
∑

t=p+1

u′ [I {Zt ≤ x+ Zt,n(u)} − I {Zt ≤ x} − F (x+ Zt,n(u)) + F (x)]

[

∂Zt(α0)

∂α

− ∂Z(α0)

∂α

] ∣

∣

∣

∣

∣

(5.3)

is op(1).

Proof: Observe that (5.3) is bounded above by

sup
‖u‖≤T, x∈IR

∣

∣

∣

∣

∣

1√
n

n
∑

t=p+1

u′ [I {Zt ≤ x+ Zt,n(u)} − I {Zt ≤ x} − F (x+ Zt,n(u)) + F (x)]
∂Zt(α0)

∂α

∣

∣

∣

∣

∣

(5.4)

+ sup
‖u‖≤T, x∈IR

∣

∣

∣

∣

∣

1√
n

n
∑

t=p+1

[I {Zt ≤ x+ Zt,n(u)} − I {Zt ≤ x} − F (x+ Zt,n(u)) + F (x)]

∣

∣

∣

∣

∣

(5.5)
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× sup
‖u‖≤T

∣

∣

∣

∣

∣

u′ ∂Z(α0)

∂α

∣

∣

∣

∣

∣

. (5.6)

Andrews (2003, see pages 56–57) shows that (5.5) is op(1) when the observed time series is an all-pass process.

A similar argument can be used to show that (5.5) is op(1) in the case of an ARMA process. By the ergodic

theorem, (5.6) is also op(1). Hence, following (5.1), the proof is complete if, for any j ∈ {1, . . . , p+ q},

sup
‖u‖≤T, x∈IR

∣

∣

∣

∣

∣

1√
n

n
∑

t=p+1

[I {Zt ≤ x+ Zt,n(u)} − I {Zt ≤ x} − F (x+ Zt,n(u)) + F (x)]
∂Z∗

t (α0)

∂αj

∣

∣

∣

∣

∣

(5.7)

is op(1).

Fix a nondecreasing sequence of positive integers {mn}∞n=1 such that mn ∼ n1/10 (n1/10/mn → 1 as

n→ ∞). (5.7) is bounded above by

sup
‖u‖≤T, x∈IR

∣

∣

∣

∣

∣

1√
n

mn
∑

t=p+1

[I {Zt ≤ x+ Zt,n(u)} − I {Zt ≤ x} − F (x+ Zt,n(u)) + F (x)]
∂Z∗

t (α0)

∂αj

∣

∣

∣

∣

∣

(5.8)

+ sup
‖u‖≤T, x∈IR

∣

∣

∣

∣

∣

1√
n

n
∑

t=mn+1

[I {Zt ≤ x+ Zt,n(u)} − I {Zt ≤ x} − F (x+ Zt,n(u)) + F (x)]
∂Z∗

t (α0)

∂αj

∣

∣

∣

∣

∣

, (5.9)

and, since mn/n
1/2 → 0, (5.8) is op(1). Now, fix ‖u‖ ≤ T and note that

Zt,n(u) = Zt − Zt

(

α0 +
u√
n

)

= Zt − Zt(α0) −
u′

√
n

∂Zt(α
∗
t,n(u))

∂α

, (5.10)

where α
∗
t,n(u) is between α0 and α0 + n−1/2u. Following Section 3.3 of Brockwell and Davis (1991), there

exists a geometrically decaying, non-negative, real-valued sequence {ψ̈k}∞k=1 such that
∣

∣

∣

∣

∣

u′
∂Zt(α

∗
t,n(u))

∂α

∣

∣

∣

∣

∣

≤
∞
∑

k=1

ψ̈k|Zt−k| ∀t ∈ {p+ 1, . . . , n}

for all n sufficiently large, and so maxmn+1≤t≤n |Zt,n(u)| = op(1). Because maxmn+1≤t≤n |Zt,n(u)| = op(1),

[

1

n−mn

n
∑

t=mn+1

(

∂Z∗
t (α0)

∂αj

)2
]1/2

P→
(

E

{

∂Z∗
1 (α0)

∂αj

}2
)1/2

, and
1√

n−mn
max

mn+1≤t≤n

∣

∣

∣

∣

∣

Z∗
t (α0)

∂αj

∣

∣

∣

∣

∣

P→ 0,

by Theorem 1.1 in Koul and Ossiander (1994),

sup
x∈IR

∣

∣

∣

∣

∣

1√
n

n
∑

t=mn+1

[I {Zt ≤ x+ Zt,n(u)} − I {Zt ≤ x} − F (x+ Zt,n(u)) + F (x)]
∂Z∗

t (α0)

∂αj

∣

∣

∣

∣

∣

P→ 0

for fixed u ∈ IRp+q. As discussed in the proof of Lemma 1.1 in Koul and Ossiander (1994), results in the

proof of Theorem 1.2 in Koul (1991) can be used to obtain uniformity with respect to ‖u‖ ≤ T , and so (5.9)

is op(1). 2



Rank-Based Estimation for ARMA Models 15

Lemma 5.3 For any T ∈ (0,∞), as n→ ∞,

sup
‖u‖≤T, x∈IR

∣

∣

∣

∣

∣

1√
n

n
∑

t=p+1

u′ [F (x+ Zt,n(u)) − F (x)]

[

∂Zt(α0)

∂α

− ∂Z(α0)

∂α

]

+ f(x)u′σ2Γ(α0)u

∣

∣

∣

∣

∣

(5.11)

is op(1).

Proof: (5.11) is bounded above by

sup
‖u‖≤T, x∈IR

∣

∣

∣

∣

∣

1√
n

n
∑

t=p+1

u′Zt,n(u)f(x)

[

∂Zt(α0)

∂α

− ∂Z(α0)

∂α

]

+ f(x)u′σ2Γ(α0)u

∣

∣

∣

∣

∣

(5.12)

+ sup
‖u‖≤T, x∈IR

∣

∣

∣

∣

∣

1√
n

n
∑

t=p+1

u′Zt,n(u)
[

f(x∗t,n(u)) − f(x)
]

[

∂Zt(α0)

∂α

− ∂Z(α0)

∂α

] ∣

∣

∣

∣

∣

, (5.13)

where x∗t,n(u) lies between x and x+ Zt,n(u). Following (5.10), (5.12) is bounded above by

(

sup
x∈IR

f(x)

)

sup
‖u‖≤T

∣

∣

∣

∣

∣

1√
n

n
∑

t=p+1

u′(Zt − Zt(α0))

[

∂Zt(α0)

∂α

− ∂Z(α0)

∂α

] ∣

∣

∣

∣

∣

(5.14)

+

(

sup
x∈IR

f(x)

)

sup
‖u‖≤T

∣

∣

∣

∣

∣

1

n

n
∑

t=p+1

u′
∂Zt(α

∗
t,n(u))

∂α

u′

[

∂Zt(α0)

∂α

− ∂Z(α0)

∂α

]

− u′σ2Γ(α0)u

∣

∣

∣

∣

∣

. (5.15)

Since f is uniformly continuous on IR, supx∈IR f(x) <∞, and so, using (5.1), it can be shown that (5.14) is

op(1). Because supp+1≤t≤n, ‖u‖≤T ‖α∗
t,n(u)−α0‖ = o(1) and ∂Z(α0)/∂α = (n−p)−1

∑n
t=p+1 ∂Zt(α0)/∂α =

op(1), (5.15) equals

(

sup
x∈IR

f(x)

)

sup
‖u‖≤T

∣

∣

∣

∣

∣

1

n

n
∑

t=p+1

[

u′ ∂Zt(α0)

∂α

]2

− u′σ2Γ(α0)u

∣

∣

∣

∣

∣

+ op(1)
P→ 0.

Thus, (5.12) is op(1). Using the uniform continuity of f , it can be shown similarly that (5.13) is also op(1).

2

For u ∈ IRp+q and x ∈ IR, let Fn(x,u) = (n−p+1)−1
∑n

t=p+1 I{Zt(α0 +n−1/2u) ≤ x} and, for y ∈ [0, 1],

let

F−1
n (y,u) =







inf {x : Fn(x,u) ≥ y} , 0 ≤ y ≤ n−p
n−p+1

+∞, n−p
n−p+1 < y ≤ 1.

(5.16)

Combining Lemmas 5.2 and 5.3, we get

sup
‖u‖≤T, y∈(0,1)

∣

∣

∣

∣

∣

1√
n

n
∑

t=p+1

u′
[

I
{

Zt ≤ F−1
n (y,u) + Zt,n(u)

}

− I
{

Zt ≤ F−1
n (y,u)

}]

[

∂Zt(α0)

∂α

− ∂Z(α0)

∂α

]

+f
(

F−1
n (y,u)

)

u′σ2Γ(α0)u

∣

∣

∣

∣

∣

P→ 0 (5.17)
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for any T ∈ (0,∞).

Lemma 5.4 For any T ∈ (0,∞), as n→ ∞,

sup
‖u‖≤T, y∈(0,1)

∣

∣

∣

∣

∣

1√
n

n
∑

t=p+1

u′
[

I
{

Zt ≤ F−1
n (y,u)

}

− I
{

Zt ≤ F−1(y)
}]

[

∂Zt(α0)

∂α

− ∂Z(α0)

∂α

] ∣

∣

∣

∣

∣

P→ 0. (5.18)

Proof: Choose arbitrary j ∈ {1, . . . , p+ q}. To prove this lemma, we show that

sup
‖u‖≤T, y∈(0,1)

∣

∣

∣

∣

∣

1√
n

n
∑

t=p+1

[

I
{

Zt ≤ F−1
(

F
(

F−1
n (y,u)

))}

− I
{

Zt ≤ F−1(y)
}]

[

∂Z∗
t (α0)

∂αj
− ∂Z∗(α0)

∂αj

] ∣

∣

∣

∣

∣

(5.19)

is op(1), where ∂Z∗(α)/∂αj = (n− p)−1
∑n

t=p+1 ∂Z
∗
t (α)/∂αj. First, for y ∈ [0, 1], let

T ∗
n(y) =

1√
n

n
∑

t=p+1

[

I
{

Zt ≤ F−1(y)
}

− y
]

[

∂Z∗
t (α0)

∂αj
− ∂Z∗(α0)

∂αj

]

.

Because (5.19) is bounded above by

sup
‖u‖≤T, y∈(0,1)

∣

∣

∣T ∗
n

(

F
(

F−1
n (y,u)

))

− T ∗
n (y)

∣

∣

∣ (5.20)

+ sup
‖u‖≤T, y∈(0,1)

∣

∣

∣F
(

F−1
n (y,u)

)

− y
∣

∣

∣ (5.21)

×
∣

∣

∣

∣

∣

1√
n

n
∑

t=p+1

[

∂Z∗
t (α0)

∂αj
− ∂Z∗(α0)

∂αj

] ∣

∣

∣

∣

∣

(5.22)

and (5.22) equals zero, the proof is complete if (5.21) is op(1) and, for any η > 0,

lim
δ→0+

lim sup
n→∞

P

(

sup
x,y∈[0,1], |x−y|≤δ

|T ∗
n(x) − T ∗

n(y)| > η

)

= 0.

Note that (5.21) equals sup‖u‖≤T, x∈IR |Fn(x,u) − F (x)|, which is bounded above by

sup
‖u‖≤T, x∈IR

∣

∣

∣

∣

∣

1

n− p+ 1

n
∑

t=p+1

[

I

{

Zt

(

α0 +
u√
n

)

≤ x

}

− I {Zt ≤ x}
]

∣

∣

∣

∣

∣

(5.23)

+ sup
x∈IR

∣

∣

∣

∣

∣

1

n− p+ 1

n
∑

t=p+1

I {Zt ≤ x} − F (x)

∣

∣

∣

∣

∣

. (5.24)

Following the proof of Lemma 3 on page 55 of Andrews (2003), (5.23) is op(1) and, by the Glivenko-Cantelli

theorem, (5.24) is also op(1).
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Now, for y ∈ [0, 1], let U∗
n(y) = n−1/2

∑n
t=p+1[I{F (Zt) ≤ y} − y]∂Z∗

t (α0)/∂αj, and consider

P

(

sup
x,y∈[0,1], |x−y|≤δ

|T ∗
n(x) − T ∗

n(y)| > η

)

≤ P

(

sup
x,y∈[0,1], |x−y|≤δ

|U∗
n(x) − U∗

n(y)| > η

2

)

(5.25)

+P

(

sup
x,y∈[0,1], |x−y|≤δ

∣

∣

∣

∣

∣

1√
n

n
∑

t=p+1

[I {F (Zt) ≤ x} − I {F (Zt) ≤ y} − x+ y]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂Z∗(α0)

∂αj

∣

∣

∣

∣

∣

>
η

2

)

. (5.26)

By Theorem 1.1 in Koul and Ossiander (1994), limδ→0+ lim supn→∞ of (5.25) is zero. If W ∗(·) denotes a

Brownian bridge on [0, 1], then, following Theorem 14.3 in Billingsley (1999),

sup
x,y∈[0,1], |x−y|≤δ

∣

∣

∣

∣

∣

1√
n

n
∑

t=p+1

[I {F (Zt) ≤ x} − I {F (Zt) ≤ y} − x+ y]

∣

∣

∣

∣

∣

d→ sup
x,y∈[0,1], |x−y|≤δ

|W ∗(x) −W ∗(y)|

for any δ > 0. Therefore, since ∂Z∗(α0)/∂αj = op(1), lim supn→∞ of (5.26) equals zero for any fixed δ > 0.

2

Lemma 5.5 For any T ∈ (0,∞), as n→ ∞,

sup
‖u‖≤T

∣

∣

∣

∣

∣

1√
n

n
∑

t=p+1

u′

[

λ

(

Rt

(

α0 + n−1/2u
)

n− p+ 1

)

− λ(F (Zt))

] [

∂Zt(α0)

∂α

− ∂Z(α0)

∂α

]

− K̃u′σ2Γ(α0)u

∣

∣

∣

∣

∣

(5.27)

is op(1).

Proof: If Rt,n(u) := Rt(α0 + n−1/2u) and V∗
t,n := ∂Zt(α0)/∂α− ∂Z(α0)/∂α, then (5.27) can be expressed

as

sup
‖u‖≤T

∣

∣

∣

∣

∣

1√
n

n
∑

t=p+1

u′

[

λ

(

Rt,n(u)

n− p+ 1

)

− λ(F (Zt))

]

V∗
t,n − K̃u′σ2Γ(α0)u

∣

∣

∣

∣

∣

.

Because the weight function λ is left-continuous, (5.27) equals

sup
‖u‖≤T

∣

∣

∣

∣

∣

∫ 1

0

(

1√
n

n
∑

t=p+1

u′

[

I

{

Rt,n(u)

n− p+ 1
≤ y

}

− I {F (Zt) ≤ y}
]

V∗
t,n + f(F−1(y))u′σ2Γ(α0)u

)

dλ(y)

∣

∣

∣

∣

∣

,

which is bounded above by

sup
‖u‖≤T, y∈(0,1)

∣

∣

∣

∣

∣

1√
n

n
∑

t=p+1

u′

[

I

{

Rt,n(u)

n− p+ 1
≤ y

}

− I {F (Zt) ≤ y}
]

V∗
t,n + f(F−1(y))u′σ2Γ(α0)u

∣

∣

∣

∣

∣

(5.28)

× [λ(1) − λ(0)]. (5.29)
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Since λ is bounded, the proof is complete if (5.28) is op(1).

Because f(F−1(·)) is uniformly continuous on [0, 1] and, from the proof of Lemma 5.4, (5.21) is op(1),

sup
‖u‖≤T, y∈(0,1)

∣

∣

∣f
(

F−1
n (y,u)

)

− f
(

F−1(y)
)

∣

∣

∣

P→ 0. (5.30)

Combining (5.17), (5.18), and (5.30),

sup
‖u‖≤T, y∈(0,1)

∣

∣

∣

∣

∣

1√
n

n
∑

t=p+1

u′
[

I
{

Zt ≤ F−1
n (y,u) + Zt,n(u)

}

− I {F (Zt) ≤ y}
]

V∗
t,n + f

(

F−1(y)
)

u′σ2Γ(α0)u

∣

∣

∣

∣

∣

is op(1). Therefore, all that remains is to show that

sup
‖u‖≤T, y∈(0,1)

∣

∣

∣

∣

∣

1√
n

n
∑

t=p+1

u′

[

I

{

Rt,n(u)

n− p+ 1
≤ y

}

− I
{

Zt ≤ F−1
n (y,u) + Zt,n(u)

}

]

V∗
t,n

∣

∣

∣

∣

∣

= sup
‖u‖≤T, y∈(0,1)

∣

∣

∣

∣

∣

1√
n

n
∑

t=p+1

u′

[

I

{

Rt,n(u)

n− p+ 1
≤ y

}

− I

{

Zt

(

α0 +
u√
n

)

≤ F−1
n (y,u)

}]

V∗
t,n

∣

∣

∣

∣

∣

(5.31)

is op(1). Observe that

Rt,n(u)

n− p+ 1

=
1

n− p+ 1





n
∑

j=p+1

I

{

Zj

(

α0 +
u√
n

)

≤ Zt

(

α0 +
u√
n

)}

−
n
∑

j=t+1

I

{

Zj

(

α0 +
u√
n

)

= Zt

(

α0 +
u√
n

)}





and, since Zt has a continuous distribution,

P



 sup
‖u‖≤T

n
∑

t=p+1

n
∑

j=t+1

I

{

Zj

(

α0 +
u√
n

)

= Zt

(

α0 +
u√
n

)}

> 1



 = 0

for all n. Hence, following the definition of F−1
n (·, ·) in (5.16), (5.31) is almost surely bounded above by

supp+1≤t≤n, ‖u‖≤T 2n−1/2|u′V∗
t,n|, which is op(1). 2

Now consider the mixed partial derivatives of Zt(·):

∂2Zt(α)

∂αj∂αk
=



















0, j, k ∈ {1, . . . , p},

Xt+p−j−k/θ
2(B), j ∈ {1, . . . , p}, k ∈ {p+ 1, . . . , p+ q},

2Zt+2p−j−k(α)/θ2(B), j, k ∈ {p+ 1, . . . , p+ q},
and so

∂2Zt(α0)

∂αj∂αk
=



















0, j, k ∈ {1, . . . , p},

Zt+p−j−k/[φ0(B)θ0(B)], j ∈ {1, . . . , p}, k ∈ {p+ 1, . . . , p+ q},

2Zt+2p−j−k(α0)/θ
2
0(B), j, k ∈ {p+ 1, . . . , p+ q}.



Rank-Based Estimation for ARMA Models 19

Also, define

∂2Z(α)

∂α∂α
′

=
1

n− p

n
∑

t=p+1

∂2Zt(α)

∂α∂α
′
.

Lemma 5.6 For any T ∈ (0,∞), as n→ ∞,

sup
‖u‖,‖v‖≤T

∣

∣

∣

∣

∣

1

n

n
∑

t=p+1

u′λ

(

Rt

(

α0 + n−1/2u
)

n− p+ 1

)[

∂2Zt(α0 + n−1/2v)

∂α∂α
′

− ∂2Z(α0 + n−1/2v)

∂α∂α
′

]

u

∣

∣

∣

∣

∣

P→ 0.

Proof: Following Lemmas 5.1 and 5.5, it can be shown that

sup
‖u‖≤T

∣

∣

∣

∣

∣

1

n

n
∑

t=p+1

u′λ(F (Zt))

[

∂2Zt(α0)

∂α∂α
′

− ∂2Z(α0)

∂α∂α
′

]

u

∣

∣

∣

∣

∣

P→ 0

and

sup
‖u‖≤T

∣

∣

∣

∣

∣

1

n

n
∑

t=p+1

u′

[

λ

(

Rt

(

α0 + n−1/2u
)

n− p+ 1

)

− λ(F (Zt))

] [

∂2Zt(α0)

∂α∂α
′

− ∂2Z(α0)

∂α∂α
′

]

u

∣

∣

∣

∣

∣

P→ 0.

Because it can also be shown that

sup
‖v‖≤T

1

n

n
∑

t=p+1

∣

∣

∣

∣

∣

∂2Zt(α0 + n−1/2v)

∂αj∂αk
− ∂2Zt(α0)

∂αj∂αk

∣

∣

∣

∣

∣

P→ 0 ∀j, k ∈ {1, . . . , p+ q}

(see Brockwell and Davis, 1991, Section 3.3), the proof is complete. 2

For u ∈ IRp+q and δ1, δ2 ∈ [0, 1], let

Ũn(u, δ1, δ2) =

n
∑

t=p+1

λ

(

Rt

(

α0 + n−1/2δ1u
)

n− p+ 1

)[

Zt

(

α0 +
δ2u√
n

)

− Z

(

α0 +
δ2u√
n

)

]

−
n
∑

t=p+1

λ

(

Rt

(

α0 + n−1/2δ1u
)

n− p+ 1

)[

Zt

(

α0 +
δ1u√
n

)

− Z

(

α0 +
δ1u√
n

)

]

and

Ṽn(u, δ1, δ2) =
n
∑

t=p+1

λ

(

Rt

(

α0 + n−1/2δ2u
)

n− p+ 1

)[

Zt

(

α0 +
δ2u√
n

)

− Z

(

α0 +
δ2u√
n

)

]

−
n
∑

t=p+1

λ

(

Rt

(

α0 + n−1/2δ2u
)

n− p+ 1

)[

Zt

(

α0 +
δ1u√
n

)

− Z

(

α0 +
δ1u√
n

)

]

.

(Recall that Z(α) = (n− p)−1
∑n

t=p+1 Zt(α).) Using Taylor series expansions,

Ũn(u, δ1, δ2)
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=
n
∑

t=p+1

λ

(

Rt

(

α0 + n−1/2δ1u
)

n− p+ 1

)[

Zt

(

α0 +
δ2u√
n

)

− Z

(

α0 +
δ2u√
n

)

− Zt(α0) + Z(α0)

]

−
n
∑

t=p+1

λ

(

Rt

(

α0 + n−1/2δ1u
)

n− p+ 1

)[

Zt

(

α0 +
δ1u√
n

)

− Z

(

α0 +
δ1u√
n

)

− Zt(α0) + Z(α0)

]

=
δ2 − δ1√

n

n
∑

t=p+1

u′λ

(

Rt

(

α0 + n−1/2δ1u
)

n− p+ 1

)[

∂Zt(α0)

∂α

− ∂Z(α0)

∂α

]

+
δ22
2n

n
∑

t=p+1

u′λ

(

Rt

(

α0 + n−1/2δ1u
)

n− p+ 1

)[

∂2Zt(α
∗
n(u, δ1, δ2))

∂α∂α
′

− ∂2Z(α∗
n(u, δ1, δ2))

∂α∂α
′

]

u

− δ21
2n

n
∑

t=p+1

u′λ

(

Rt

(

α0 + n−1/2δ1u
)

n− p+ 1

)[

∂2Zt(α
∗
n(u, δ1, δ1))

∂α∂α
′

− ∂2Z(α∗
n(u, δ1, δ1))

∂α∂α
′

]

u (5.32)

and, similarly,

Ṽn(u, δ1, δ2)

=
δ2 − δ1√

n

n
∑

t=p+1

u′λ

(

Rt

(

α0 + n−1/2δ2u
)

n− p+ 1

)[

∂Zt(α0)

∂α

− ∂Z(α0)

∂α

]

+
δ22
2n

n
∑

t=p+1

u′λ

(

Rt

(

α0 + n−1/2δ2u
)

n− p+ 1

)[

∂2Zt(α
∗
n(u, δ2, δ2))

∂α∂α
′

− ∂2Z(α∗
n(u, δ2, δ2))

∂α∂α
′

]

u

− δ21
2n

n
∑

t=p+1

u′λ

(

Rt

(

α0 + n−1/2δ2u
)

n− p+ 1

)[

∂2Zt(α
∗
n(u, δ2, δ1))

∂α∂α
′

− ∂2Z(α∗
n(u, δ2, δ1))

∂α∂α
′

]

u, (5.33)

where the values of α
∗
n(u, ·, ·) lie between α0 and α0 + n−1/2u.

Lemma 5.7 For u ∈ IRp+q, let Sn(u) = Dn(α0 + n−1/2u)−Dn(α0) and S(u) = u′N + 2−1K̃u′σ2Γ(α0)u,

where N ∼ N(0, J̃σ2Γ(α0)). Then Sn(·) d→ S(·) on C(IRp+q), the space of continuous functions on IRp+q

where convergence is equivalent to uniform convergence on every compact set.

Proof: Let u ∈ IRp+q and suppose m is any positive integer. Because

Sn(u) = Dn

(

α0 + n−1/2u
)

−Dn(α0) =

m
∑

k=1

[

Dn

(

α0 +
ku

m
√
n

)

−Dn

(

α0 +
(k − 1)u

m
√
n

)]

,

we have
m
∑

k=1

Ũn

(

u,
k − 1

m
,
k

m

)

≤ Sn(u) ≤
m
∑

k=1

Ṽn

(

u,
k − 1

m
,
k

m

)

(5.34)
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by Theorem 2.1. Using (5.32), (5.33), and Lemmas 5.1, 5.5, and 5.6,









































Ũn

(

u, 0, 1
m

)

...

Ũn

(

u, m−1
m , 1

)

Ṽn

(

u, 0, 1
m

)

...

Ṽn

(

u, m−1
m , 1

)









































d→









































1
mu′N + 0

m2 K̃u′σ2Γ(α0)u

...

1
mu′N + m−1

m2 K̃u′σ2Γ(α0)u

1
mu′N + 1

m2 K̃u′σ2Γ(α0)u

...

1
mu′N + m

m2 K̃u′σ2Γ(α0)u









































on IR2m. Hence,








∑m
k=1 Ũn

(

u, k−1
m , k

m

)

∑m
k=1 Ṽn

(

u, k−1
m , k

m

)









d→









u′N + m−1
2m K̃u′σ2Γ(α0)u

u′N + m+1
2m K̃u′σ2Γ(α0)u









on IR2. For any ε > 0, there exists an integer m large enough so that

u′N +
m− 1

2m
K̃u′σ2Γ(α0)u and u′N +

m+ 1

2m
K̃u′σ2Γ(α0)u

are both in an ε-neighborhood of S(u) = u′N + 2−1K̃u′σ2Γ(α0)u. Thus, for any u ∈ IRp+q, Sn(u)
d→ S(u).

It can be shown similarly that all finite-dimensional distributions of Sn(·) converge to those of S(·).

Using (5.34) and an argument in Andrews (2003, pages 84–86), it can be shown that

limδ→0+ lim supn→∞ P(sup
u,v∈K, ‖u−v‖≤δ |Sn(u) − Sn(v)| > η) = 0 for any η > 0 and any compact subset

K ⊂ IRp+q. Therefore, Sn(·) is tight on C(K) for any compact set K ⊂ IRp+q. It follows that Sn(·) d→ S(·)

on C(IRp+q) by Theorem 7.1 in Billingsley (1999). 2
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