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1. Introduction

Consider the following choice problem, known as “Ellsberg’s three-color urn example”, or simply the
“Ellsberg Paradox” (Ellsberg [7]). An urn contains 30 red balls, and 60 green and blue balls, in unspecified
proportions; subjects are asked to compare (i) a bet on a red draw vs. a bet on a green draw, and (ii) a bet
on a red or blue draw vs. a bet on a green or blue draw. If the subject wins a bet, she receives 10 dollars;
otherwise, she receives 0. To model this situation as a problem of choice under uncertainty, let the state
space be {sr, sg, sb}, in obvious notation, and consider the bets in Table 1.

Table 1. Ellsberg’s three-color urn.

sr sg sb

fr 10 0 0
fg 0 10 0
frb 10 0 10
fgb 0 10 10

The modal preferences in this example are fr � fg and frb ≺ fgb, where “�” denotes strict preference.1

A common rationalization runs as follows: betting on red is “safer” than betting on green, because the urn
may actually contain zero green balls; on the other hand, betting on green or blue is “safer” than betting
on red or blue, because the urn may contain zero blue balls. Equivalently, when evaluating fr and fgb, the
fact that the relative likelihood of green vs. blue balls is unspecified is irrelevant; on the other hand, this
consideration looms large when evaluating the acts fg and frb.

While these preferences seem plausible, they are inconsistent with subjective expected utility maximization
(SEU henceforth). Indeed, they are inconsistent with the weaker assumption that the decision-maker’s (DM)
qualitative beliefs, as revealed by her betting behavior, can be numerically represented by a probability
measure. Note that fr � fg indicates that r is deemed strictly more likely than g, so any probability P
that represents the individual’s likelihood ordering of events must satisfy P ({r}) > P ({g}); on the other
hand, frb ≺ fgb indicates that {r, b} is strictly less likely than {g, b}, which would require P ({r})+P ({b}) =
P ({r, b}) < P ({g, b}) = P ({g}) + P ({b}), hence P ({r}) < P ({g}).

The key to Ellsberg’s example is the fact that the composition of the urn is incompletely specified: the
relative likelihood of a green vs. a blue draw is “ambiguous”. More generally, in the words of Daniel Ellsberg,
ambiguity is

a quality depending on the amount, type, reliability and ‘unanimity’ of information, and
giving rise to one’s ‘degree of confidence’ in an estimate of relative likelihoods ([7, p. 657]).

Borrowing Ellsberg’s terminology, the modal preferences fr � fg and frb ≺ fgb indicate that the DM would
rather have the ultimate outcome of her choices (i.e. whether she receives 10 or 0) depend upon events whose
relative likelihood she is more confident about. In other words, these preferences denote ambiguity aversion.

Over the last twenty years, several decision models that can accommodate ambiguity and ambiguity
aversion (or appeal) have been axiomatized; other contributions have addressed the behavioral manifestations
and implications of ambiguity, as well as updating and dynamic choice. Furthermore, there is an ever-growing
collection of applications to contract theory, auctions, finance, macroeconomics, political economy, insurance
and other areas of economic inquiry.

1Ellsberg did not conduct actual experiments, but similar patterns of behavior have been reported in subsequent experimental

studies; see Camerer and Weber [4] for an exhaustive survey.
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The following Section reviews two of the most influential models of ambiguity-sensitive preferences in a
static setting. Section 3 briefly discusses additional models, updating, and dynamic choice.

2. “Classical” Models of Ambiguity-Sensitive Preferences

2.1. Preliminaries. Fix a finite or infinite state space S and an algebra Σ of its subsets. A probability
charge is set function P : Σ → [0, 1] that satisfies P (S) = 1 and P (E ∪ F ) = P (E) + P (F ) for all E,F ∈ Σ
with E ∩ F = ∅; that is, P is normalized and finitely additive. The set of probability charges on (S, Σ) is
denoted ∆(S, Σ).

The decision models discussed in this section were first axiomatized in the framework introduced by
Anscombe and Aumann [2]; it is convenient to adopt the same setup here.2 Fix a set of prizes X, and
let ∆(X) be the collection of all lotteries (probability distributions) on X with finite support. An act is
a Σ-measurable map f : S → ∆(X). The set ∆(X) is closed under mixtures, i.e. convex combinations;
mixtures of acts are then defined pointwise, so that the set F of all acts is also closed under mixtures.3

A preference is a binary relation � on F ; its symmetric and asymmetric parts are denoted by ∼ and �
respectively. It is customary to identify every lottery p ∈ ∆(X) with the constant act that yields p in every
state.

A (von Neumann-Morgenstern, or Bernoulli) utility function is a map u : ∆(X) → R that satisfies
u(αp + (1 − α)q) = αu(p) + (1 − α)u(q) for all α ∈ [0, 1] and p, q ∈ ∆(X). All axiomatizations discussed
below ensure that preferences over lotteries can be represented by a utility function.

A function a : S → R is simple if its range is finite; write a = (a1, E1; . . . ; an, En), where a1, . . . aN ∈ R
and E1, . . . , EN is a partition of S, to indicate that, for all n = 1 . . . , N , a(s) = an for all s ∈ En. An act is
simple if its range can be partitioned into finitely many indifference classes. The set of simple Σ-measurable
acts is denoted by F0.

Virtually all substantive decision-theoretic issues can be analyzed restricting attention to preferences over
F0; the reader is urged to consult the references cited for a discussion of preferences over non-simple acts.

2.2. Capacities and Choquet-Expected Utility. The modal preferences in the three-color urn example
are inconsistent with a probabilistic representation of beliefs essentially because probabilities are finitely
additive. Specifically, if the probability charge P represents the individual’s qualitative beliefs, frb ≺ fgb

requires that P ({r, b}) < P ({g, b}); since P is additive, this implies P ({r}) < P ({g}). However, fr � fg im-
plies the reverse inequality. Thus, the Ellsberg paradox can be formally “resolved” if a weaker, non-additive
representation of the individual’s qualitative beliefs is allowed. This approach is pursued in Schmeidler
[24, 25].

A capacity is a set function v : Σ → [0, 1] such that v(S) = 1 and v(A) ≤ v(B) for all events A,B ∈ Σ
such that A ⊆ B. Thus, a capacity is not required to be additive, although it must satisfy a monotonicity
property that has a natural interpretation in terms of qualitative beliefs: “larger” events are “more likely”.

To define expectation with respect to capacities, a suitable notion of integration is required. Consider a
simple function a = (a1, E1; . . . ; aN , EN ), with a1 > a2 > . . . > aN . The Choquet integral of a with respect
to a capacity v (Choquet [5]) is the quantity

(2.1)
∫

a dP =
N−1∑
n=1

(an − an+1)v

(
n⋃

m=1

Em

)
+ aN .

With the convention that ∪0
m=1Em = ∅, Eq. (2.1) can be rewritten as follows:

(2.2)
∫

a dP =
N∑

n=1

an

[
v

(
n⋃

m=1

Em

)
− v

(
n−1⋃
m=1

Em

)]
.

Thus, Choquet integration performs a “weighted average” of the values a1, . . . , aN , with non-negative weights
v(E1), v(E1 ∪E2)− v(E1), . . . , 1− v(E1 ∪ . . .∪EN−1) that add up to one. If v is additive, Eq. (2.1) reduces
to
∫

a dP =
∑N

n=1 anv(En). However, in general, the ordering of the values a1, . . . , aN affects the decision

2Alternative axiomatizations that do not rely on lotteries have also been obtained: see e.g. Gilboa [15], Ghirardato et al.

[13] and references therein.
3That is: for all α ∈ [0, 1] and all f, g ∈ F0, αf +(1−α)g is the act that yields the lottery αf(s)+(1−α)g(s) in state s ∈ S.
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weights: for instance, suppose a = (α, E;β, S \ E), with α 6= β: then
∫

a dv equals αv(E) + β[1 − v(E)] if
α > β, and βv(S \E) + α[1− v(S \E)] if β > α. These expressions are different unless v(E) + v(S \E) = 1.

A preference admits a Choquet-Expected Utility (CEU) representation if there exists a utility function u
and a capacity v such that, for all simple acts f, g ∈ F0, f � g if and only if

∫
u(f(s)) dv ≥

∫
u(g(s)) dv,

where the integrals are as in Eq. (2.1).
Preferences in the Ellsberg paradox are consistent with CEU. Let u satisfy u(10) > u(0), and observe that

fr � fg requires v({r}) > v({g}), whereas frb ≺ fgb implies that v({r, b}) < v({g, b}); since v is not required
to be additive, these inequalities can be mutually consistent: for instance, let

(2.3) v({r}) = v({r, b}) = v({r, g}) =
1
3
, v({b}) = v({g}) = 0, and v({b, g}) =

2
3
.

Recall that the key axiom in the Anscombe-Aumann axiomatization of SEU is Independence: for all
triples of (simple) acts f, g, h, and all α ∈ (0, 1), f � g implies αf + (1− α)h � αg + (1− α)h. Schmeidler
[25] shows that CEU preferences are instead characterized by a weaker independence property. Say that two
acts f and g are comonotonic if there is no pair of states s, s′ such that f(s) � f(s′) and g(s) ≺ g(s′); the
key axiom in Schmeidler’s characterization of CEU preferences, Comonotonic Independence, requires that
f � g ⇒ αf + (1− α)h � αg + (1− α)h only if f, g, h are pairwise comonotonic.

To illustrate the rationale behind this weakening of Independence, consider the acts fr and fg in the
Ellsberg paradox, and define a third act fb by fb(r) = fb(g) = 0 and fb(b) = 10. For the CEU preferences
defined above, fr � fg, but 1

2fr + 1
2fb ≺ 1

2fg + 1
2fb. This is consistent with the notion that the DM dislikes

ambiguity, and hence would rather have the ultimate outcome of her choices depend upon events whose
relative likelihood she is more confident about; in particular, notice that the mixture 1

2fg + 1
2fb yields the

same outcome in states g and b, so the DM need not worry about her lack of confidence in her assessment
of their relative likelihood.

This example also suggests that mixtures of non-comonotonic acts can be appealing for an individual who
might informally be described as “ambiguity-averse”. As was just noted, mixtures of fg and fb can reduce
or eliminate the dependence of the final outcome upon the realization of g rather than b, and hence provide
a hedge against ambiguity. The DM under consideration finds this appealing: 1

2fg + 1
2fb � fg ∼ fb.

Schmeidler [25] suggests that this “preference for mixtures” may be taken as a behavioral definition of
ambiguity aversion. Formally, say that an individual is ambiguity-averse if, for all f, g ∈ F0, f � g implies
αf+(1−α)g � g. Schmeidler then shows that a CEU individual is ambiguity-averse if and only if the capacity
representing her preferences is convex : that is, for all events E,F ∈ Σ, v(E ∪F ) + v(E ∩F ) ≥ v(E) + v(F ).
For instance, the capacity in Eq. (2.3) is convex.

2.3. Multiple Priors and Maxmin Expected Utility. Gilboa and Schmeidler [16] propose an alternative
rationalization of the preferences fr � fg and frb ≺ fgb in the Ellsberg paradox:

One conceivable explanation of this phenomenon which we adopt here is as follows: ...the
subject has too little information to form a prior. Hence (s)he considers a set of priors as
possible. Being [ambiguity] averse, s(he) takes into account the minimal expected utility
(over all priors in the set) while evaluating a bet ([16, p. 142]).4

Formally, preferences admit a maxmin expected utility (MEU) representation if, given a utility function u
and a weak∗ closed (cf. [1, p. 207]), convex set C of probability charges on S, for all f, g ∈ F0, f � g if and
only if

min
P∈C

∫
u(f) dP ≥ min

P∈C

∫
u(g) dP.

The modal rankings in the Ellsberg paradox are consistent with MEU, with u(10) > u(0) and, for example,

(2.4) C =
{

P ∈ ∆(S, Σ) : P ({r}) =
1
3

}
.

Gilboa and Schmeidler’s axiomatization of the MEU decision rule features two key axioms: C-Independence
and Ambiguity Aversion. The latter was stated in the previous subsection; C-Independence requires that, for
all acts f, g ∈ F0 and all constant acts, or lotteries, p ∈ ∆(X), f � g if and only if αf+(1−α)p � αg+(1−α)p.

4For a formal analysis of this interpretation of multiple priors, see Siniscalchi[26].
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Thus, relative to the full Independence axiom, preference reversals are ruled out only for mixtures with con-
stant acts.

Intuitively, mixing an act with a constant does not provide any hedging opportunities; rather, such
mixtures only change the “scale and location” of an act’s utility profile. Thus, the requirement formalized
by C-Independence is consistent with the discussion in the preceding subsection; indeed, CEU preferences
satisfy C-Independence. On the other hand, MEU preferences may violate Comonotonic Independence (see
Klibanoff [19] for an example and further discussion).

Ambiguity-averse CEU preferences satisfy both C-Independence and Ambiguity Aversion (in addition to
other structural axioms); thus, they are MEU preferences. Schmeidler [25] shows that, in particular, the
convex capacity v representing an ambiguity-averse CEU preference is the core of the set C of priors in the
MEU representation of the same preferences: that is, C = {P ∈ ∆(S, Σ) : ∀E ∈ Σ, P (E) ≥ v(E)}. For
instance, the capacity v in Eq. (2.3) is the core of the set C in Eq. (2.4).

3. Other Models, Updating, and Dynamic Choice

A generalization of the MEU model, related to Hurwicz’ α-maxmin criterion (cf. [21, p. 304]), sometimes
appears in applications; given a utility function u, a weak∗-closed, convex set C of priors, and a number
α ∈ [0, 1], f � g if and only if

α min
P∈C

∫
u(f) dP + (1− α) max

P∈C

∫
u(f) dP ≥ α min

P∈C

∫
u(g) dP + (1− α) max

P∈C

∫
u(g) dP ;

thus, MEU corresponds to the case α = 1. An axiomatization is provided in Ghirardato, Maccheroni and
Marinacci [12].

Truman Bewley [3] proposes an alternative approach to ambiguity. In both the CEU and MEU models, the
DM responds to ambiguity by essentially evaluating different acts using different “decision weights”. Bewley
instead suggests that preferences may simply be incomplete in the presence of ambiguity. He axiomatizes
the following partial decision rule: for a given utility function u and weak∗ closed, convex set C of priors,
f � g if and only if

∀P ∈ C,

∫
u(f) dP ≥

∫
u(g) dP.

For instance, in Ellsberg’s three-color-urn example, if the set C is chosen as above, the DM is unable to rank
the acts fr and fg, as well as the acts frb and fgb. Notice that preferences satisfy the Independence axiom
in Bewley’s model: ambiguity manifests itself solely through incompleteness.

Ambiguity can also be modeled introducing second-order probabilities. For instance, Klibanoff, Marinacci
and Mukerji [20] axiomatize the following decision rule:

∀f, g ∈ F0, f � g ⇔
∫

∆(S)

ϕ

(∫
S

u(f) dP

)
dµ ≥

∫
∆(S)

ϕ

(∫
S

u(g) dP

)
dµ,

where µ is a probability measure over the set ∆(S) of probability charges on the finite state space S, and ϕ
is a “second-order utility function”. A notion of ambiguity aversion is characterized by concavity of ϕ. See
also Ergin and Gul [11].

Recent contributions aim at characterizing ambiguity without restricting attention to specific decision
models, and without relying on functional-form considerations. Epstein and Zhang [10] propose a definition
of “unambiguous event” that is based solely on preferences. Under suitable structural axioms, preferences
over acts that are measurable with respect to such “subjectively unambiguous” events are probabilistically
sophisticated in the sense of Machina and Schmeidler [22]; this indicates that the proposed behavioral
definition characterizes absence of ambiguity. See also Epstein [8] for a related assessment of Schmeidler’s
definition of ambiguity aversion.

Ghirardato, Maccheroni and Marinacci [12] note that, in models such as CEU and MEU, ambiguity
manifests itself via violations of the Anscombe-Aumann Independence axiom. Thus, they propose to deem
an act f “unambiguously preferred” to an act g if αf + (1 − α)h � αg + (1 − α)h for all α ∈ (0, 1] and all
h ∈ F0. They show that unambiguous preference admits a Bewley-style representation, characterized by a
set C of priors which is a singleton if and only if the original preference is SEU. In light of this result, they
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suggest that the DM perceives ambiguity whenever C is not a singleton. See also Ghirardato and Marinacci
[14].

To highlight the differences between these definitions, consider a probabilistically sophisticated, non-SEU
preference. According to the Epstein-Zhang definition, all events are subjectively unambiguous, whereas the
Ghirardato-Maccheroni-Marinacci approach concludes that some ambiguity is perceived.

The modal preferences in the Ellsberg paradox constitute a violation of the Sure-Thing Principle, which
is arguably the centerpiece of Leonard Savage’s axiomatization of SEU [23]; indeed, this was a main focus
of Ellsberg’s seminal article. However, the Sure-Thing Principle also plays a key role in ensuring that
conditional preferences are well-defined and “dynamically consistent”; finally, it provides a foundation for
Bayesian updating. Thus, since ambiguity leads to violations of the Sure-Thing Principle, defining updating
and ensuring a suitable form of dynamic consistency for MEU, CEU and similar decision model presents
some challenges.

Gilboa and Schmeidler [17] axiomatize Dempster-Shafer updating of capacities (cf. Dempster [6]) and
“maximum-likelihood updating” of multiple priors for ambiguity-averse CEU preferences. Prior-by-prior
updating for MEU preferences is axiomatized in Jaffray [18].

These updating rules may lead to “dynamic inconsistencies”, i.e. preference reversals: the ranking of two
acts may change after learning that a (typically ambiguous) event has occurred. Epstein and Schneider [9]
instead axiomatize a model of recursive MEU preferences by explicitly imposing dynamic consistency with
respect to a pre-specified filtration. Note that dynamic consistency imposes some restrictions on the set of
MEU priors: see [9] for further discussion. Dynamic choice under ambiguity is currently an area of active
research.
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