Epistemic Game Theory: Online Appendix

Eddie Dekel Luciano Pomatto Marciano Siniscalchi

July 18, 2014

Preliminaries

Fix a finite type structure $\mathcal{T} = (I, (S_{-i}, T_i, \beta_i)_{i \in I})$ and a probability $\mu \in \Delta(S \times T)$. Let $\mathcal{T}^{\mu} = (I, (S_{-i}, T_i^{\mu}, \beta_i^{\mu})_{i \in I})$ be a type structure that admits μ as a common prior and such that $T_i^{\mu} \subseteq T_i$ for every *i*.

Fix a player *i* and a type profile $t^* \in T^{\mu}$. Define

$$E^{1}(t_{i}^{*}) = \{(s, t_{-i}, t_{i}^{*}) : \mu(s, t_{-i}, t_{i}^{*} | t_{i}^{*}) > 0\}$$

Suppose $E^{k}(t_{i}^{*})$ has been defined for every $1 < k \leq n$ and let

$$E^{n+1}(t_i^*) = \left\{ (s,t) : \exists (s',t') \in E^n, j \in I \text{ s.t. } t_j = t'_j \text{ and } \mu (s,t_{-j},t'_j|t'_j) > 0 \right\}$$

Let $E(t_i^*) = \bigcup_{n=1}^{\infty} E^n(t_i^*)$ and $E(t^*) = \bigcup_{i \in I} E(t_i^*)$.

Proposition. Let t_i^* be in $CP_i(\mu)$ and $\nu = \mu(\cdot|E(t_i^*))$. Define $T_j^{\nu} = proj_{T_j}E(t_i^*)$ for every j and let $\mathcal{T}^{\nu} = \left(I, \left(S_{-j}, T_j^{\nu}, \beta_j^{\nu}\right)_{j \in I}\right)$ be the type structure generated by the common prior ν . Then t_i^* is in $CP_i(\nu)$. In particular, if μ is minimal for t_i^* then $\nu = \mu$. *Proof.* We first prove that for all j and all $t_j \in T_j^{\mu}$,

$$\nu\left(S \times T^{\mu}_{-j} \times \{t_j\}\right) > 0 \implies \operatorname{marg}_{S_{-j} \times T_{-j}} \nu\left(\cdot | t_j\right) = \operatorname{marg}_{S_{-j} \times T_{-j}} \mu\left(\cdot | t_j\right).$$

By definition, if $\mu\left(S \times T^{\mu}_{-j} \times \{t_j\}\right) > 0$ then

$$\mu(s_{-j}, t_{-j}|t_j) = \frac{\mu((s_{-j}, t_{-j}) \times S_j \times \{t_j\})}{\sum_{(s'_{-j}, t'_{-j}) \in S_{-j} \times T_{-j}} \mu\left(\left(s'_{-j}, t'_{-j}\right) \times S_j \times \{t_j\}\right)}$$

For every $(s_{-j}, t_{-j}) \in S_{-j} \times T_{-j}$. If $\nu \left(S \times T_{-j}^{\mu} \times \{t_j\} \right) > 0$ then $t_j \in \operatorname{proj}_{T_j} E^k(t_i^*)$ for some k. For every $\left(s'_{-j}, t'_{-j}\right) \in S_{-j} \times T_{-j}$, if

$$\mu\left(\left(s_{-j}',t_{-j}'\right)\times S_j\times\{t_j\}\right)>0$$

then $(s'_{-j}, t'_{-j}) \times S_j \times \{t_j\} \subseteq E^{k+1}(t_i^*) \subseteq E(t_i^*)$, thus

$$\nu\left(\left(s_{-j}',t_{-j}'\right)\times S_{j}\times\{t_{j}\}\right) = \frac{\mu\left(\left(s_{-j}',t_{-j}'\right)\times S_{j}\times\{t_{j}\}\right)}{\mu\left(E\left(t_{i}^{*}\right)\right)}$$

Therefore

$$\mu(s_{-j}, t_{-j}|t_j) = \frac{\overline{\mu(E(t_i^*))}}{\mu(E(t_i^*))} \frac{\mu((s_{-j}, t_{-j}) \times S_j \times \{t_j\})}{\sum_{(s'_{-j}, t'_{-j}) \in S_{-j} \times T_{-j}} \mu\left(\left(s'_{-j}, t'_{-j}\right) \times S_j \times \{t_j\}\right)}$$

$$= \frac{\nu((s_{-j}, t_{-j}) \times S_j \times \{t_j\})}{\sum_{(s'_{-j}, t'_{-j}) \in S_{-j} \times T_{-j}} \nu\left(\left(s'_{-j}, t'_{-j}\right) \times S_j \times \{t_j\}\right)}$$

$$= \nu(s_{-j}, t_{-j}|t_j)$$

We can conclude that for every $j \in I$, $\beta_{j}^{\nu}(t_{j}) = \beta_{j}^{\mu}(t_{j})$ for each $t_{j} \in T_{j}^{\nu}$.

It remains to prove that $\varphi_i(\mathcal{T}^{\nu})(t_i^*) = \varphi_i(\mathcal{T}^{\mu})(t_i^*)$. For every $j, t_j \in T_j^{\nu}$ and $k \ge 0$, let $\varphi_j^k(\mathcal{T}^{\nu})(t_j)$ be the k-th order belief of type t_j in the type structure \mathcal{T}^{ν} . Define $\varphi_j^k(\mathcal{T}^{\mu})$ analogously. For every $j \in I$ and $t_j \in T_j^{\nu}$, we have $\beta^v(t_j) = \beta^{\mu}(t_j)$, hence $\varphi_j^1(\mathcal{T}^{\nu})(t_j) = \varphi_j^1(\mathcal{T}^{\mu})(t_j)$. Suppose $\varphi_j^k(\mathcal{T}^{\nu})(t_j) = \varphi_j^k(\mathcal{T}^{\mu})(t_j)$ for all $j, k \le K$ and $t_j \in T_j^{\nu}$. Then

$$\beta^{\nu}(t_{j})\left(\left\{\left(s_{-j}, t_{-j}\right) : \varphi_{-j}^{K}\left(\mathcal{T}^{\nu}\right)\left(t_{-j}\right) = h_{-j}^{K}\right\}\right) = \beta^{\mu}(t_{j})\left(\left\{\left(s_{-j}, t_{-j}\right) : \varphi_{-j}^{K}\left(\mathcal{T}^{\mu}\right)\left(t_{-j}\right) = h_{-j}^{K}\right\}\right)$$

for every $h_{-j}^{K} \in \Delta\left(X_{-j}^{K-1}\right)$. Therefore $\varphi_{j}^{K+1}\left(\mathcal{T}^{\mu}\right)\left(t_{j}\right) = \varphi_{j}^{K+1}\left(\mathcal{T}^{\nu}\right)\left(t_{j}\right)$. Since this is true for every K, we have $\varphi_{j}\left(\mathcal{T}^{\mu}\right)\left(t_{j}\right) = \varphi_{j}\left(\mathcal{T}^{\nu}\right)\left(t_{j}\right)$ for every $t_{j} \in T_{j}^{\nu}$, in particular, for t_{i}^{*} . This concludes the proof that t_{i}^{*} is in $CP_{i}\left(\nu\right)$.

An analogous result holds for type profiles. We omit the proof, which is an almost exact replica of the proof of Proposition 1.

Proposition. Let t^* be in $CP(\mu)$ and define $\nu = \mu(\cdot|E(t^*))$. Define $T_i^{\nu} = proj_{T_i}E(t^*)$ for every $i \in I$ and let $\mathcal{T}^{\nu} = (I, (S_{-i}, T_i^{\nu}, \beta_i^{\nu})_{i \in I})$ be the type space generated by the common prior ν . Then t^* is in $CP(\nu)$. In particular, if μ is minimal for t^* then $\nu = \mu$.

Events across type structures

Let R^{μ} , $B^{k}R^{\mu}$ and CBR^{μ} be the events corresponding to, respectively, "rationality", "k-th order belief in rationality" and "common belief in rationality" in the type structure \mathcal{T}^{μ} . In the proofs we will not formally distinguish between CBR and CBR^{μ} . This is justified by the next result.

Proposition. If $(s_i, t_i) \in CP_i(\mu) \cap CBR_i$, then $(s_i, t_i) \in CBR_i^{\mu}$.

Proof. Let R^* , $B^k R^*$ and CBR^* be the events corresponding to, respectively, rationality, k-th order belief in rationality and common belief in rationality in the universal type structure $\mathcal{H} = (I, (S_{-i}, H_i, f_i)_{i \in I})$. For every i, let $\psi_i(\mathcal{T}) : S_i \times T_i \to S_i \times H_i$ be the map defined as

$$\psi_i(\mathcal{T})(s_i, t_i) = (s_i, \varphi(\mathcal{T})(t_i))$$

for every (s_i, t_i) . As is well known, $B^k R^*$ and R^* are measurable events, and $\psi_i(\mathcal{T}^{\mu})$ and $\psi_i(\mathcal{T})$ are measurable maps. Furthermore, for every *i*, every event $E_{-i} \subseteq S_{-i} \times H_{-i}$ and every type $t_i \in T_i$,

$$f_{i}\left(\varphi_{i}\left(\mathcal{T}\right)\left(t_{i}\right)\right)\left(E_{-i}\right) = \beta_{i}\left(t_{i}\right)\left(\psi_{-i}\left(\mathcal{T}\right)^{-1}\left(E_{-i}\right)\right)$$

where $\psi_{-i}(\mathcal{T}) = \prod_{j \neq i} \psi_j(\mathcal{T})$. Define analogously the functions $(\psi_i(\mathcal{T}^{\mu}))_{i \in I}$.

Let $\psi = \prod_{i \in I} \psi_i$. It can be easily checked that $R = \psi(\mathcal{T})^{-1}(R^*)$ and $R^{\mu} = \psi(\mathcal{T}^{\mu})^{-1}(R^*)$. Suppose for every $k \leq K$ we have $B^k R = \psi(\mathcal{T})^{-1}(B^k R^*)$ and $B^k R^{\mu} = \psi(\mathcal{T}^{\mu})^{-1}(B^k R^*)$. It follows from

$$\beta_{i}(t_{i})\left(B^{K}R\right) = \beta_{i}(t_{i})\left(\psi_{-i}(\mathcal{T})^{-1}\left(B^{K}R^{*}\right)\right)$$
$$= f_{i}\left(\varphi_{i}\left(\mathcal{T}\right)\left(t_{i}\right)\right)\left(B^{K}R^{*}\right)$$

that $(s_i, t_i) \in B_i(B^K R)$ if and only if $(s_i, \varphi(\mathcal{T})(t_i)) \in B_i(B^K R^*)$. Equivalently, $B_i(B^K R) = \psi_i(\mathcal{T})^{-1}(B_i(B^K R^*))$ for every *i*. Therefore $B(B^K R) = \psi(\mathcal{T})^{-1}(B(B^K R^*))$. Hence

$$B^{K+1}R = B^{K}R \cap B(B^{K}R) = \psi(\mathcal{T})^{-1}(B^{K}R^{*}) \cap \psi(\mathcal{T})^{-1}(B(B^{K}R^{*})) = \psi(\mathcal{T})^{-1}(B^{K+1}R^{*})$$

By induction, we can conclude that $B^k R^{\mu} = \psi \left(\mathcal{T}^{\mu} \right)^{-1} \left(B^k R^* \right)$ for every k. Moreover,

$$CBR = \bigcap_{k} B^{k}R = \bigcap_{k} \psi(\mathcal{T})^{-1} \left(B^{k}R^{*} \right) = \psi(\mathcal{T})^{-1} \left(\bigcap_{k} B^{k}R^{*} \right) = \psi(\mathcal{T})^{-1} (CBR^{*})$$

The exact same arguments apply to the type structure \mathcal{T}^{μ} , therefore we have $CBR^{\mu} =$

 $\psi\left(\mathcal{T}^{\mu}\right)^{-1}(CBR^*).$

Let $(s_i, t_i) \in CP_i(\mu) \cap CBR_i$. By applying the results above and the assumption $\varphi(\mathcal{T})(t_i) = \varphi(\mathcal{T}^{\mu})(t_i)$, we can conclude

$$1 = \beta_i (t_i) (CBR)$$

$$= \beta_i (t_i) \left(\psi_{-i} (\mathcal{T})^{-1} (CBR^*) \right)$$

$$= f_i (\varphi_i (\mathcal{T}) (t_i)) (CBR^*)$$

$$= f_i (\varphi_i (\mathcal{T}^{\mu}) (t_i)) (CBR^*)$$

$$= \beta_i^{\mu} (t_i) \left(\psi_{-i} (\mathcal{T}^{\mu})^{-1} (CBR^*) \right)$$

$$= \beta_i^{\mu} (t_i) (CBR^{\mu})$$

therefore $(s_i, t_i) \in CBR_i^{\mu}$.

Other events of interest which appear in the next proofs are $CB([\phi])$ and CB([n]). The argument behind the previous proposition can be easily adapted to show that we do not need to distinguish between these events and their counterparts in the type structure \mathcal{T}^{μ} .

Proof of Theorem 4

(1)

Claim. For every $k, E^k(t_i^*) \subseteq CBR$.

Proof. For every profile (s_{-i}, t_{-i}) , if $\mu(s_{-i}, t_{-i}|t_i^*) > 0$ then $\beta^{\mu}(t_i^*)(s_{-i}, t_{-i}) > 0$ and since t_i^* is in $CBR_i \subseteq B_i(CBR)$ then $(s_{-i}, t_{-i}) \in CBR_{-i}$. Therefore $E^1(t_i^*) \subseteq CBR$.

Suppose the claim is proved for every $k \leq K$. If $(s,t) \in E^{K+1}(t_i^*)$ there exist $(s',t') \in E^K(t_i^*)$ and a player j such that $t_j = t'_j$ and $\beta^{\mu}(t'_j)(s_{-j},t_{-j}) > 0$. Since t'_j is in $B_j(CBR)$ then $(s_{-j},t_{-j}) \in CBR_{-j}$. Therefore $(s,t) \in CBR$. Therefore, by induction, we conclude that for every $k, E^k(t_i^*) \subseteq CBR$.

We now show that $\mu \in \Delta(S \times T)$ defines a correlated equilibrium. Let $\mu(s_j, t_j) > 0$ for some player j and pair (s_j, t_j) . Then $(s_{-j}, t_{-j}, s_j, t_j) \in E^k(t_i^*)$ for some k and some $(s_{-j}, t_{-j}) \in S_{-j} \times T_{-j}$. Pick $l \neq j$. Then

$$\mu\left(s_{j}, t_{j} | t_{l}\right) = \beta^{\mu}\left(t_{l}\right)\left(s_{j}, t_{j}\right) > 0$$

Since t_l is in $CBR_l \subseteq B_lR$ then $(s_j, t_j) \in R_j$. Therefore s_j is a best response to

$$\operatorname{marg}_{S_{-j}}\beta_{j}^{\mu}(t_{j}) = \operatorname{marg}_{S_{-j}}\mu\left(\cdot|t_{j}\right) = \operatorname{marg}_{S_{-j}}\mu\left(\cdot|s_{j},t_{j}\right)$$

where the last equality follows from AI independence. Therefore $\mu \in \Delta(S \times T)$ is a correlated equilibrium.

(2)

Let $\nu \in \Delta(S)$ be a correlated equilibrium distribution. Then

$$\sum_{s_{-i} \in S_{-i}} u(s_i, s_{-i}) \nu(s_{-i}|s_i) \ge \sum_{s_{-i} \in S_{-i}} u(s'_i, s_{-i}) \nu(s_{-i}|s_i)$$

for every $s'_i \in S_i$. Let $T^{\mu}_i = \{s_i : \nu(s_i) > 0\}$ and $T^{\mu} = \prod_{i \in I} T^{\mu}_i$. Define the prior $\mu \in \Delta(S \times T)$ as

$$\mu\left(s,t\right) = \nu\left(s\right)$$

if s = t and

 $\mu\left(s,t\right)=0$

otherwise. Define β^{μ} to be generated by μ , that is

$$\beta_{i}^{\mu}(t_{i})(s_{-i},t_{-i}) = \mu(s_{-i},t_{-i}|t_{i})$$

for every *i* and every (s, t). We have a well defined type structure $\mathcal{T}^{\mu} = (I, (S_{-i}, T_i^{\mu}, \beta_i^{\mu})_{i \in I})$ admitting μ as a common prior. The prior satisfies Condition AI trivially, since for every s_i and t_i if $\mu(s_i, t_i) > 0$ then $s_i = t_i$.

If $\mu(s_i, t_i) > 0$ then $s_i = t_i$ and s_i is a best response to $\nu(\cdot|s_i)$, hence $(s_i, t_i) \in R_i$. Moreover, if $\beta_i(t_i)(s_{-i}, t_{-i}) > 0$ then $\mu(s_{-i}, t_{-i}) > 0$ hence $(s_{-i}, t_{-i}) \in R_{-i}$. Therefore, if $\mu(s, t) > 0$ then $(s, t) \in RCBR$.

Proof of Theorem 8

It is enough to prove that if $(s_i, t_i^*) \in CP_i(\mu) \cap CB([n])$ and μ is minimal for t_i^* then μ satisfies AI. As before, it is immediate to check that for every $k, E^k(t_i^*) \subseteq CB([n])$.

Let $\mu(s_j, t_j) > 0$. There exist (s_{-j}, t_{-j}) such that $(s, t) \in E^k(t_i^*)$ for some k and

$$\mu(s_{-j}, t_{-j}|s_j, t_j) > 0.$$

Let $l \neq j$. Then $\mu(s_j, t_j | t_l) > 0$ and since $(s_j, t_j) \in CB([n])$, then t_l is in B([n]), hence $s_j = n_j(t_j)$. To conclude, if $\mu(s_j, t_j) > 0$ then $s_j = n_j(t_j)$. Therefore μ satisfies AI.

Proof of Theorem 7

It is convenient to prove here a slightly stronger result.

Theorem. (7b) If there is a probability $\mu \in \Delta(S \times T)$, a tuple $t^* \in CP(\mu) \cap [\phi] \cap CB([\phi]) \cap B(R)$ and $\nu = \mu(\cdot|E(t^*))$ satisfies AI, then there exist $\sigma_i \in \Delta(S_i)$ for all i such that $\sigma = (\sigma_i)_{i \in I}$ is a Nash Equilibrium and $\phi_i = \prod_{k \neq i} \sigma_k$.

As in the proof of Theorem 2, if $t^* \in CB([\phi])$ then for every *i* and every *k*, $E^k(t_i^*) \subseteq CB([\phi])$. The rest of the proof is based on Aumann and Brandenburger (1995).

Claim. For every (s_i, t_i) if $\nu(s_i, t_i) > 0$ then $\nu(s_{-i}) = \nu(s_{-i}|s_i, t_i) = \phi_i(s_{-i})$.

Proof. For every (s_i, t_i) , if $\nu(s_i, t_i) > 0$ then $(s_{-i}, t_{-i}, s_i, t_i) \in E^k(t^*)$ for some k. Since $E^k(t^*) \subseteq CB([\phi])$ and $E^k(t^*) \subseteq E^{k+1}(t^*)$ then $(s_i, t_i) \in [\phi]_i$. Hence

$$\nu(s_{-i}|s_i, t_i) = \nu(s_{-i}|t_i) = \beta^{\nu}(t_i)(s_{-i}) = \phi_i(s_{-i})$$

where the first equality follows from AI. Therefore

$$\nu(s_{-i}) = \sum_{(s_i, t_i)} \nu(s_{-i} | s_i, t_i) \nu(s_i, t_i) = \sum_{(s_i, t_i)} \phi_i(s_{-i}) \nu(s_i, t_i) = \phi_i(s_{-i}).$$

Claim. For every $s, \nu(s) = \prod_{i=1}^{I} \nu(s_i)$.

Proof. Suppose for K < |I| and every $s \in S$ and $i \in I$,

$$\nu(s_1, s_2, ..., s_K, ..., s_I) = \prod_{i=1}^{K} \nu(s_i) \nu(s_{K+1}, ..., s_I)$$

We know from the previous claim that this is true for K = 1. Suppose it is true for

some K > 1. Then

$$\begin{split} \nu\left(s_{1},...,s_{I}\right) &= \max_{S_{-(K+1)}} \nu\left(s_{1},...,s_{K},s_{K+2},...,s_{I}|s_{K+1}\right) \nu\left(s_{K+1}\right) \\ &= \max_{S_{-(K+1)}} \nu\left(s_{1},...,s_{K},s_{K+2},...,s_{I}\right) \nu\left(s_{K+1}\right) \\ &= \sum_{s'_{K+1}\in S_{K+1}} \nu\left(s_{1},...,s_{K},s'_{K+1},s_{K+2},...,s_{I}\right) \nu\left(s_{K+1}\right) \\ &= \sum_{s'_{K+1}\in S_{K+1}} \nu\left(s_{1}\right)\cdots\nu\left(s_{K}\right) \max_{S_{K+1}\times...\times S_{I}} \nu\left(s'_{K+1},s_{K+2},...,s_{I}\right) \nu\left(s_{K+1}\right) \\ &= \nu\left(s_{1}\right)\cdots\nu\left(s_{K}\right) \nu\left(s_{K+1}\right) \sum_{s'_{K+1}\in S_{K+1}} \max_{S_{K+1}\times...\times S_{I}} \nu\left(s'_{K+1},s_{K+2},...,s_{I}\right) \\ &= \nu\left(s_{1}\right)\cdots\nu\left(s_{K+1}\right) \nu\left(s_{K+2},...,s_{I}\right) \end{split}$$

Therefore the claim holds for every $K \leq I$.

Claim. If $\nu(s_{-i}) > 0$ then $\phi_i(s_{-i}) = \prod_{k \neq i} \nu(s_k)$

Proof. By combining the previous two claims, if $\nu(s_i, t_i) > 0$ then

$$\nu (s_{-i}|s_i, t_i) = \phi_i (s_{-i}) = \nu (s_{-i}) = \prod_{k \neq i} \nu (s_k).$$

Define $\sigma_i = \text{marg}_{S_i} \nu$. Let $\sigma_i(s_i) > 0$. Fix a player $j \neq i$ and the type t_j^* in the tuple t^* . By assumption $t_j^* \in [\phi]_j$. By the claims above and AI independence,

$$\nu\left(s_{i}|t_{j}^{*}\right) = \nu\left(s_{i}|s_{j},t_{j}^{*}\right) = \phi_{j}\left(s_{i}\right) = \sigma\left(s_{i}\right)$$

hence $\nu\left(s_i|t_j^*\right) > 0$. Let t_i be a type such that $\nu\left(s_i, t_i|t_j^*\right) > 0$. Since $t_j^* \in B(R)_j$, then s_i is a best response to the first order belief of type t_i . Because $t_j^* \in CB([\phi])_j$, then $t_i \in [\phi]_i$, i.e. the first order belief of t_i is given by the conjecture $\phi_i = \prod_{k \neq i} \sigma_k$. To conclude, for every player *i*, every strategy in the support of σ_i is a best response to the conjecture $\prod_{k \neq i} \sigma_i$. Therefore, σ is a Nash Equilibrium.

Proof of Theorem 9

Let t^* belong to

$$CP(\mu) \cap [\phi] \cap CB([\phi]) \cap B(R) \cap CB([n])$$

Notice that μ is not assumed to be minimal. Let $\nu = \mu(\cdot|E(t^*))$. From Proposition 2, we have that if $t^* \in CP(\mu)$ then $t^* \in CP(\nu)$. Therefore, t^* is in

$$CP(\nu) \cap [\phi] \cap CB([\phi]) \cap B(R) \cap CB([n])$$

As before, it is immediate to check that for every i and every k, $E^k(t_i^*) \subseteq CB([n])$. Let $\nu(s_j, t_j) > 0$. There exist (s_{-j}, t_{-j}) such that $(s_j, t_j, s_{-j}, t_{-j}) \in E^k(t_i^*)$ for some k and i, and

$$\nu(s_{-j}, t_{-j}|s_j, t_j) > 0.$$

Let $l \neq j$. Then $\nu(s_j, t_j | t_l) > 0$ and since $(s_j, t_j) \in CB([n])$, then t_l is in B([n]), hence $s_j = n_j(t_j)$. To conclude, if $\nu(s_j, t_j) > 0$ then $s_j = n_j(t_j)$. Therefore ν satisfies AI. We can now apply Theorem 7b.

Proof of Theorem 14

By standard arguments, we can find two types $(\bar{t}_1, \bar{t}_2) \in [\mathcal{T}^{\Theta}] \cap CB([\mathcal{T}^{\Theta}]) \cap CB([\psi]) \cap CB(\Theta \times R)$. Let $\bar{t}_i^{\Theta} = \varphi_{i,\Theta}(\bar{t}_i)$ for every *i*.

Definition. A type t_i^{Θ} of player *i* is *reachable in N steps* if there exists a sequence $t_{i(1)}^{\Theta,1}, ..., t_{i(N)}^{\Theta,N}$ such that:

• $t_{i(1)}^{\Theta,1} = \overline{t}_{i(1)}^{\Theta}$

•
$$i(N) = i$$
 and $t^{\Theta}_{i(N)} = t^{\Theta}_i$

• For all $n \leq N$, $\beta_{i(n-1)}^{\Theta} \left(t_{i(n-1)}^{\Theta} \right) \left(\left[t_{i(n)}^{\Theta} \right] \right) > 0$

Let RE^N be the set of types reachable in N steps. Since the type structure \mathcal{T}^{Θ} is minimal, every type is reachable in a finite number of steps.

We need to show that for every N every player i and type t_i^{Θ} in RE^N , if $\psi_i(t_i^{\Theta})(s_i) > 0$ then s_i is optimal to the conjecture $\phi(t_i^{\Theta})$ defined as

$$\phi\left(t_{i}^{\Theta}\right)\left(s_{-i}\right) = \sum_{\substack{t_{-i}^{\Theta} \in T_{-i}^{\Theta}}} \beta_{i}^{\Theta}\left(t_{i}^{\Theta}\right)\left(t_{-i}^{\Theta}\right)\psi\left(t_{-i}^{\Theta}\right)\left(s_{-i}\right)$$

for every $s_{-i} \in S_{-i}$.

Let t_i^{Θ} be in RE^N . Since \mathcal{T}^{Θ} is minimal, it is without loss of generality to assume N > 2. Let $\overline{t}_{i(1)}^{\Theta}, ..., t_{i(N)}^{\Theta,N}$ be a sequence reaching t_i^{Θ} in N-steps.

Claim. There exist a sequence $\bar{t}_{i(1)}, t_{i(2)}, ..., t_{i(N)}$ in T such that $i(N) = i, \varphi_{i(n),\Theta}(t_{i(n)}) = \varphi_{i(n)}^{\Theta}(t_{i(n)}^{\Theta})$ for all $n \leq N$ and $\beta(t_{i(n)})([t_{i(n+1)}]) > 0$ for every $n \leq N - 1$.

Proof. Since $\bar{t}_{i(1)}^{\Theta} = \varphi_{i,\Theta}(\bar{t}_{i(1)})$ and $\beta_{i(1)}^{\Theta}(\bar{t}_{i(1)}^{\Theta})([t_{i(2)}^{\Theta}]) > 0$ then there must exist a type $t_{i(2)}$ such that $\varphi_{i(2),\Theta}(t_{i(2)}) = \varphi_{i(2)}^{\Theta}(t_{i(2)}^{\Theta})$ and $\beta_{i(1)}(t_{i(1)})([t_{i(2)}]) > 0$. A simple argument by induction concludes the proof.

Claim. For every $2 < n \le N$, $t_{i(n)}$ is in $[\psi] \cap R \cap CB\left(\left[\mathcal{T}^{\Theta}\right]\right) \cap CB\left([\psi]\right) \cap CB\left(\Theta \times R\right)$.

Proof. It can be easily proved by induction.

Suppose $\psi_i(t_i^{\Theta})(s_i) > 0$. Since $t_{i(N-1)}$ is in $B([\psi])$, then $\beta(t_{i(N-1)})(t_i, s_i) > 0$. Since $t_{i(N-1)}$ is in B(R) then s_i is a best response to the first order belief over strategies of type t_i , defined as the conjecture

$$\phi(t_i)(s_{-i}) = \sum_{t_{-i} \in T_{-i}} \beta(t_i)(t_{-i}, s_{-i})$$

For every $s_{-i} \in S_{-i}$.

Since t_i is in $B([\mathcal{T}^{\Theta}]) \cap B([\psi])$, for every (t_{-i}, s_{-i}) such that $\beta(t_i)(t_{-i}, s_{-i}) > 0$ there is a type $t_{-i}^{\Theta} \in T_{-i}^{\Theta}$ such that $\varphi_{-i,\Theta}(t_{-i}) = \varphi_{-i}^{\Theta}(t_{-i}^{\Theta})$ and $s_{-i} = \psi_{-i}(t_{-i}^{\Theta})$. Therefore

$$\begin{split} \phi\left(t_{i}\right)\left(s_{-i}\right) &= \sum_{t_{-i}\in T_{-i}}\beta\left(t_{i(N)}\right)\left(t_{-i}, s_{-i}\right) \\ &= \sum_{t_{-i}^{\Theta}\in T_{-i}^{\Theta}}\sum_{t_{-i}:\varphi_{-i},\Theta\left(t_{-i}\right)=\varphi_{-i}^{\Theta}\left(t_{-i}^{\Theta}\right)}\beta\left(t_{i}\right)\left(t_{-i},\psi\left(t_{-i}^{\Theta}\right)\right) \\ &= \sum_{t_{-i}^{\Theta}\in T_{-i}^{\Theta}}\beta_{i}^{\Theta}\left(t_{i}^{\Theta}\right)\left(t_{-i}^{\Theta}\right)\psi\left(t_{-i}^{\Theta}\right)\left(s_{-i}\right) \end{split}$$