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Preliminaries

Fix a finite type structure T =
(
I, (S−i, Ti, βi)i∈I

)
and a probability µ ∈ ∆ (S × T ). Let

T µ =
(
I, (S−i, T

µ
i , β

µ
i )i∈I

)
be a type structure that admits µ as a common prior and

such that Tµi ⊆ Ti for every i.
Fix a player i and a type profile t∗ ∈ Tµ. Define

E1 (t∗i ) = {(s, t−i, t∗i ) : µ (s, t−i, t
∗
i |t∗i ) > 0}

Suppose Ek (t∗i ) has been defined for every 1 < k ≤ n and let

En+1 (t∗i ) =
{

(s, t) : ∃
(
s′, t′

)
∈ En, j ∈ I s.t. tj = t′j and µ

(
s, t−j , t

′
j |t′j

)
> 0
}

Let E (t∗i ) = ∪∞n=1E
n (t∗i ) and E (t∗) = ∪i∈IE (t∗i ).

Proposition. Let t∗i be in CPi (µ) and ν = µ (·|E (t∗i )). Define T νj = projTjE (t∗i )

for every j and let T ν =

(
I,
(
S−j , T

ν
j , β

ν
j

)
j∈I

)
be the type structure generated by the

common prior ν. Then t∗i is in CPi (ν). In particular, if µ is minimal for t∗i then ν = µ.

Proof. We first prove that for all j and all tj ∈ Tµj ,

ν
(
S × Tµ−j × {tj}

)
> 0 =⇒ margS−j×T−j

ν (·|tj) = margS−j×T−j
µ (·|tj) .

By definition, if µ
(
S × Tµ−j × {tj}

)
> 0 then

µ (s−j , t−j |tj) =
µ ((s−j , t−j)× Sj × {tj})∑

(s′−j ,t
′
−j)∈S−j×T−j

µ
((
s′−j , t

′
−j

)
× Sj × {tj}

)
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For every (s−j , t−j) ∈ S−j × T−j . If ν
(
S × Tµ−j × {tj}

)
> 0 then tj ∈ projTjE

k (t∗i ) for

some k. For every
(
s′−j , t

′
−j

)
∈ S−j × T−j , if

µ
((
s′−j , t

′
−j
)
× Sj × {tj}

)
> 0

then
(
s′−j , t

′
−j

)
× Sj × {tj} ⊆ Ek+1 (t∗i ) ⊆ E (t∗i ), thus

ν
((
s′−j , t

′
−j
)
× Sj × {tj}

)
=
µ
((
s′−j , t

′
−j

)
× Sj × {tj}

)
µ (E (t∗i ))

Therefore

µ (s−j , t−j |tj) =

1
µ(E(t∗i ))

1
µ(E(t∗i ))

µ ((s−j , t−j)× Sj × {tj})∑
(s′−j ,t

′
−j)∈S−j×T−j

µ
((
s′−j , t

′
−j

)
× Sj × {tj}

)
=

ν ((s−j , t−j)× Sj × {tj})∑
(s′−j ,t

′
−j)∈S−j×T−j

ν
((
s′−j , t

′
−j

)
× Sj × {tj}

)
= ν (s−j , t−j |tj)

We can conclude that for every j ∈ I, βνj (tj) = βµj (tj) for each tj ∈ T νj .
It remains to prove that ϕi (T ν) (t∗i ) = ϕi (T µ) (t∗i ). For every j, tj ∈ T νj and k ≥ 0,

let ϕkj (T ν) (tj) be the k-th order belief of type tj in the type structure T ν . Define
ϕkj (T µ) analogously. For every j ∈ I and tj ∈ T νj , we have βv (tj) = βµ (tj), hence
ϕ1
j (T ν) (tj) = ϕ1

j (T µ) (tj). Suppose ϕkj (T ν) (tj) = ϕkj (T µ) (tj) for all j, k ≤ K and
tj ∈ T νj . Then

βν (tj)
({

(s−j , t−j) : ϕK−j (T ν) (t−j) = hK−j
})

= βµ (tj)
({

(s−j , t−j) : ϕK−j (T µ) (t−j) = hK−j
})

for every hK−j ∈ ∆
(
XK−1
−j

)
. Therefore ϕK+1

j (T µ) (tj) = ϕK+1
j (T ν) (tj). Since this is

true for every K, we have ϕj (T µ) (tj) = ϕj (T ν) (tj) for every tj ∈ T νj , in particular, for
t∗i . This concludes the proof that t∗i is in CPi (ν).

An analogous result holds for type profiles. We omit the proof, which is an almost
exact replica of the proof of Proposition 1.

Proposition. Let t∗ be in CP (µ) and define ν = µ (·|E (t∗)). Define T νi = projTiE (t∗)

for every i ∈ I and let T ν =
(
I, (S−i, T

ν
i , β

ν
i )i∈I

)
be the type space generated by the

common prior ν. Then t∗ is in CP (ν). In particular, if µ is minimal for t∗ then ν = µ.
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Events across type structures

Let Rµ, BkRµ and CBRµ be the events corresponding to, respectively, “rationality”,
“k-th order belief in rationality” and “common belief in rationality” in the type structure
T µ. In the proofs we will not formally distinguish between CBR and CBRµ. This is
justified by the next result.

Proposition. If (si, ti) ∈ CPi (µ) ∩ CBRi, then (si, ti) ∈ CBRµi .

Proof. Let R∗, BkR∗ and CBR∗ be the events corresponding to, respectively, rationality,
k-th order belief in rationality and common belief in rationality in the universal type
structure H =

(
I, (S−i, Hi, fi)i∈I

)
. For every i, let ψi (T ) : Si × Ti → Si × Hi be the

map defined as
ψi (T ) (si, ti) = (si, ϕ (T ) (ti))

for every (si, ti). As is well known, BkR∗ and R∗ are measurable events, and ψi (T µ)

and ψi (T ) are measurable maps. Furthermore, for every i, every event E−i ⊆ S−i×H−i
and every type ti ∈ Ti,

fi (ϕi (T ) (ti)) (E−i) = βi (ti)
(
ψ−i (T )−1 (E−i)

)
where ψ−i (T ) =

∏
j 6=i ψj (T ). Define analogously the functions (ψi (T µ))i∈I .

Let ψ =
∏
i∈I ψi. It can be easily checked that R = ψ (T )−1 (R∗) and Rµ =

ψ (T µ)−1 (R∗). Suppose for every k ≤ K we have BkR = ψ (T )−1 (BkR∗
)
and BkRµ =

ψ (T µ)−1 (BkR∗
)
. It follows from

βi (ti)
(
BKR

)
= βi (ti)

(
ψ−i (T )−1 (BKR∗

))
= fi (ϕi (T ) (ti))

(
BKR∗

)
that (si, ti) ∈ Bi

(
BKR

)
if and only if (si, ϕ (T ) (ti)) ∈ Bi

(
BKR∗

)
. Equivalently,

Bi
(
BKR

)
= ψi (T )−1 (Bi (BKR∗

))
for every i. ThereforeB

(
BKR

)
= ψ (T )−1 (B (BKR∗

))
.

Hence

BK+1R = BKR∩B
(
BKR

)
= ψ (T )−1 (BKR∗

)
∩ψ (T )−1 (B (BKR∗

))
= ψ (T )−1 (BK+1R∗

)
By induction, we can conclude that BkRµ = ψ (T µ)−1 (BkR∗

)
for every k. Moreover,

CBR = ∩kBkR = ∩kψ (T )−1
(
BkR∗

)
= ψ (T )−1

(
∩kBkR∗

)
= ψ (T )−1 (CBR∗)

The exact same arguments apply to the type structure T µ, therefore we have CBRµ =
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ψ (T µ)−1 (CBR∗).
Let (si, ti) ∈ CPi (µ) ∩ CBRi. By applying the results above and the assumption

ϕ (T ) (ti) = ϕ (T µ) (ti), we can conclude

1 = βi (ti) (CBR)

= βi (ti)
(
ψ−i (T )−1 (CBR∗)

)
= fi (ϕi (T ) (ti)) (CBR∗)

= fi (ϕi (T µ) (ti)) (CBR∗)

= βµi (ti)
(
ψ−i (T µ)−1 (CBR∗)

)
= βµi (ti) (CBRµ)

therefore (si, ti) ∈ CBRµi .

Other events of interest which appear in the next proofs are CB ([φ]) and CB ([n]).
The argument behind the previous proposition can be easily adapted to show that we do
not need to distinguish between these events and their counterparts in the type structure
T µ.

Proof of Theorem 4

(1)

Claim. For every k, Ek (t∗i ) ⊆ CBR.

Proof. For every profile (s−i, t−i), if µ (s−i, t−i|t∗i ) > 0 then βµ (t∗i ) (s−i, t−i) > 0 and
since t∗i is in CBRi ⊆ Bi (CBR) then (s−i, t−i) ∈ CBR−i. Therefore E1 (t∗i ) ⊆ CBR.

Suppose the claim is proved for every k ≤ K. If (s, t) ∈ EK+1 (t∗i ) there exist
(s′, t′) ∈ EK (t∗i ) and a player j such that tj = t′j and βµ

(
t′j

)
(s−j , t−j) > 0. Since

t′j is in Bj (CBR) then (s−j , t−j) ∈ CBR−j . Therefore (s, t) ∈ CBR. Therefore, by
induction, we conclude that for every k, Ek (t∗i ) ⊆ CBR.

We now show that µ ∈ ∆ (S × T ) defines a correlated equilibrium. Let µ (sj , tj) > 0

for some player j and pair (sj , tj). Then (s−j , t−j , sj , tj) ∈ Ek (t∗i ) for some k and some
(s−j , t−j) ∈ S−j × T−j . Pick l 6= j. Then

µ (sj , tj |tl) = βµ (tl) (sj , tj) > 0
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Since tl is in CBRl ⊆ BlR then (sj , tj) ∈ Rj . Therefore sj is a best response to

margS−j
βµj (tj) = margS−j

µ (·|tj) = margS−j
µ (·|sj , tj)

where the last equality follows from AI independence. Therefore µ ∈ ∆ (S × T ) is a
correlated equilibrium.

(2)

Let ν ∈ ∆ (S) be a correlated equilibrium distribution. Then∑
s−i∈S−i

u (si, s−i) ν (s−i|si) ≥
∑

s−i∈S−i

u
(
s′i, s−i

)
ν (s−i|si)

for every s′i ∈ Si. Let Tµi = {si : ν (si) > 0} and Tµ =
∏
i∈I T

µ
i . Define the prior

µ ∈ ∆ (S × T ) as
µ (s, t) = ν (s)

if s = t and
µ (s, t) = 0

otherwise. Define βµ to be generated by µ, that is

βµi (ti) (s−i, t−i) = µ (s−i, t−i|ti)

for every i and every (s, t). We have a well defined type structure T µ =
(
I, (S−i, T

µ
i , β

µ
i )i∈I

)
admitting µ as a common prior. The prior satisfies Condition AI trivially, since for every
si and ti if µ (si, ti) > 0 then si = ti.

If µ (si, ti) > 0 then si = ti and si is a best response to ν (·|si), hence (si, ti) ∈ Ri.
Moreover, if βi (ti) (s−i, t−i) > 0 then µ (s−i, t−i) > 0 hence (s−i, t−i) ∈ R−i. Therefore,
if µ (s, t) > 0 then (s, t) ∈ RCBR.

Proof of Theorem 8

It is enough to prove that if (si, t
∗
i ) ∈ CPi (µ)∩CB ([n]) and µ is minimal for t∗i then µ

satisfies AI. As before, it is immediate to check that for every k, Ek (t∗i ) ⊆ CB ([n]).
Let µ (sj , tj) > 0. There exist (s−j , t−j) such that (s, t) ∈ Ek (t∗i ) for some k and

µ (s−j , t−j |sj , tj) > 0.
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Let l 6= j. Then µ (sj , tj |tl) > 0 and since (sj , tj) ∈ CB ([n]), then tl is in B ([n]), hence
sj = nj (tj). To conclude, if µ (sj , tj) > 0 then sj = nj (tj). Therefore µ satisfies AI.

Proof of Theorem 7

It is convenient to prove here a slightly stronger result.

Theorem. (7b) If there is a probability µ ∈ ∆ (S × T ), a tuple t∗ ∈ CP (µ) ∩ [φ] ∩
CB ([φ]) ∩ B (R) and ν = µ (·|E (t∗)) satisfies AI, then there exist σi ∈ ∆ (Si) for all i
such that σ = (σi)i∈I is a Nash Equilibrium and φi =

∏
k 6=i σk.

As in the proof of Theorem 2, if t∗ ∈ CB ([φ]) then for every i and every k, Ek (t∗i ) ⊆
CB ([φ]). The rest of the proof is based on Aumann and Brandenburger (1995).

Claim. For every (si, ti) if ν (si, ti) > 0 then ν (s−i) = ν (s−i|si, ti) = φi (s−i).

Proof. For every (si, ti), if ν (si, ti) > 0 then (s−i, t−i, si, ti) ∈ Ek (t∗) for some k. Since
Ek (t∗) ⊆ CB ([φ]) and Ek (t∗) ⊆ Ek+1 (t∗) then (si, ti) ∈ [φ]i. Hence

ν (s−i|si, ti) = ν (s−i|ti) = βν (ti) (s−i) = φi (s−i)

where the first equality follows from AI. Therefore

ν (s−i) =
∑

(si,ti)

ν (s−i|si, ti) ν (si, ti) =
∑

(si,ti)

φi (s−i) ν (si, ti) = φi (s−i) .

Claim. For every s, ν (s) =
∏I
i=1 ν (si).

Proof. Suppose for K < |I| and every s ∈ S and i ∈ I,

ν (s1, s2, .., sK , ..., sI) =
K∏
i=1

ν (si) ν (sK+1, ..., sI)

We know from the previous claim that this is true for K = 1. Suppose it is true for
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some K > 1. Then

ν (s1, ..., sI) = margS−(K+1)
ν (s1, ..., sK , sK+2, ..., sI |sK+1) ν (sK+1)

= margS−(K+1)
ν (s1, ..., sK , sK+2, ..., sI) ν (sK+1)

=
∑

s′K+1∈SK+1

ν
(
s1, ..., sK , s

′
K+1, sK+2, ..., sI

)
ν (sK+1)

=
∑

s′K+1∈SK+1

ν (s1) · · · ν (sK)margSK+1×...×SI
ν
(
s′K+1, sK+2, ..., sI

)
ν (sK+1)

= ν (s1) · · · ν (sK) ν (sK+1)
∑

s′K+1∈SK+1

margSK+1×...×SI
ν
(
s′K+1, sK+2, ..., sI

)
= ν (s1) · · · ν (sK+1) ν (sK+2, ..., sI)

Therefore the claim holds for every K ≤ I.

Claim. If ν (s−i) > 0 then φi (s−i) =
∏
k 6=i ν (sk)

Proof. By combining the previous two claims, if ν (si, ti) > 0 then

ν (s−i|si, ti) = φi (s−i) = ν (s−i) =
∏
k 6=i

ν (sk) .

Define σi = margSi
ν. Let σi (si) > 0. Fix a player j 6= i and the type t∗j in the tuple

t∗. By assumption t∗j ∈ [φ]j . By the claims above and AI independence,

ν
(
si|t∗j

)
= ν

(
si|sj , t∗j

)
= φj (si) = σ (si)

hence ν
(
si|t∗j

)
> 0. Let ti be a type such that ν

(
si, ti|t∗j

)
> 0. Since t∗j ∈ B (R)j ,

then si is a best response to the first order belief of type ti. Because t∗j ∈ CB ([φ])j ,
then ti ∈ [φ]i, i.e. the first order belief of ti is given by the conjecture φi =

∏
k 6=i σk. To

conclude, for every player i, every strategy in the support of σi is a best response to the
conjecture

∏
k 6=i σi. Therefore, σ is a Nash Equilibrium.

Proof of Theorem 9

Let t∗ belong to
CP (µ) ∩ [φ] ∩ CB ([φ]) ∩B (R) ∩ CB ([n])
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Notice that µ is not assumed to be minimal. Let ν = µ (·|E (t∗)). From Proposition 2,
we have that if t∗ ∈ CP (µ) then t∗ ∈ CP (ν). Therefore, t∗ is in

CP (ν) ∩ [φ] ∩ CB ([φ]) ∩B (R) ∩ CB ([n])

As before, it is immediate to check that for every i and every k, Ek (t∗i ) ⊆ CB ([n]). Let
ν (sj , tj) > 0. There exist (s−j , t−j) such that (sj , tj , s−j , t−j) ∈ Ek (t∗i ) for some k and
i, and

ν (s−j , t−j |sj , tj) > 0.

Let l 6= j. Then ν (sj , tj |tl) > 0 and since (sj , tj) ∈ CB ([n]), then tl is in B ([n]), hence
sj = nj (tj). To conclude, if ν (sj , tj) > 0 then sj = nj (tj). Therefore ν satisfies AI. We
can now apply Theorem 7b.

Proof of Theorem 14

By standard arguments, we can find two types (t̄1, t̄2) ∈
[
T Θ
]
∩CB

([
T Θ
])
∩CB ([ψ])∩

CB (Θ×R). Let t̄Θi = ϕi,Θ (t̄i) for every i.

Definition. A type tΘi of player i is reachable in N steps if there exists a sequence
tΘ,1i(1), ..., t

Θ,N
i(N)such that:

• tΘ,1i(1) = t̄Θi(1)

• i (N) = i and tΘi(N) = tΘi

• For all n ≤ N , βΘ
i(n−1)

(
tΘi(n−1)

)([
tΘi(n)

])
> 0

Let REN be the set of types reachable in N steps. Since the type structure T Θ is
minimal, every type is reachable in a finite number of steps.

We need to show that for every N every player i and type tΘi in REN , if ψi
(
tΘi
)

(si) >

0 then si is optimal to the conjecture φ
(
tΘi
)
defined as

φ
(
tΘi
)

(s−i) =
∑

tΘ−i∈TΘ
−i

βΘ
i

(
tΘi
) (
tΘ−i
)
ψ
(
tΘ−i
)

(s−i)

for every s−i ∈ S−i.
Let tΘi be in REN . Since T Θ is minimal, it is without loss of generality to assume

N > 2. Let t̄Θi(1), ..., t
Θ,N
i(N) be a sequence reaching tΘi in N -steps.

Claim. There exist a sequence t̄i(1), ti(2), ..., ti(N) in T such that i (N) = i, ϕi(n),Θ

(
ti(n)

)
=

ϕΘ
i(n)

(
tΘi(n)

)
for all n ≤ N and β

(
ti(n)

) ([
ti(n+1)

])
> 0 for every n ≤ N − 1.
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Proof. Since t̄Θi(1) = ϕi,Θ
(
t̄i(1)

)
and βΘ

i(1)

(
t̄Θi(1)

)([
tΘi(2)

])
> 0 then there must exist a

type ti(2) such that ϕi(2),Θ

(
ti(2)

)
= ϕΘ

i(2)

(
tΘi(2)

)
and βi(1)

(
ti(1)

) ([
ti(2)

])
> 0. A simple

argument by induction concludes the proof.

Claim. For every 2 < n ≤ N , ti(n) is in [ψ] ∩R ∩CB
([
T Θ
])
∩CB ([ψ]) ∩CB (Θ×R).

Proof. It can be easily proved by induction.

Suppose ψi
(
tΘi
)

(si) > 0. Since ti(N−1) is in B ([ψ]), then β
(
ti(N−1)

)
(ti, si) > 0.

Since ti(N−1) is in B (R) then si is a best response to the first order belief over strategies
of type ti, defined as the conjecture

φ (ti) (s−i) =
∑

t−i∈T−i

β (ti) (t−i, s−i)

For every s−i ∈ S−i.
Since ti is in B

([
T Θ
])
∩ B ([ψ]), for every (t−i, s−i) such that β (ti) (t−i, s−i) >

0 there is a type tΘ−i ∈ TΘ
−i such that ϕ−i,Θ (t−i) = ϕΘ

−i
(
tΘ−i
)
and s−i = ψ−i

(
tΘ−i
)
.

Therefore

φ (ti) (s−i) =
∑

t−i∈T−i

β
(
ti(N)

)
(t−i, s−i)

=
∑

tΘ−i∈TΘ
−i

∑
t−i:ϕ−i,Θ(t−i)=ϕΘ

−i(tΘ−i)

β (ti)
(
t−i, ψ

(
tΘ−i
))

=
∑

tΘ−i∈TΘ
−i

βΘ
i

(
tΘi
) (
tΘ−i
)
ψ
(
tΘ−i
)

(s−i)
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