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Preliminaries

Fix a finite type structure 7 = (I, (S_:, T3, ﬁi)z‘el) and a probability p € A (S x T). Let
TH = (1,(S-i, TF', By
such that T} C T; for every i.

Fix a player ¢ and a type profile t* € T#. Define

) be a type structure that admits p as a common prior and

E! (t:) = {(sat—lﬁt;) CH (sat—lﬁtﬂtf) > 0}
Suppose E¥ (tf) has been defined for every 1 < k < n and let
E"TL (1) = {(s;t):3(s,¥') e E",jeIst. t; = ti and p (s,t,j,t;»|t'j) >0}
Let E (tf) = U2, E™ (tf) and E (t*) = Ujer E (t]).
Proposition. Let t7 be in CF;(n) and v = p(-|E (7). Define T} = projp, E ()

for every j and let TV = <I, (S_j,T;»’,ﬂ;-’) . I> be the type structure generated by the
Jje

common prior v. Then t is in CP; (v). In particular, if pu is minimal for t} then v = pu.

Proof. We first prove that for all j and all ¢; € T]“ ,
v (S X T’_‘j X {tj}> >0 = margg_ .7 v (-|t;) =margg . p(:[t;).
By definition, if p (S x TH, % {tj}> > 0 then

p((s—j t—5) x S5 x {t;})
Z(s/ ¢ )eS_;xT_; H ((‘SI—j’t/—j) X Sj % {tj})

7]‘7 7]

p(s—j t—jlt;) =



For every (s_j,t—;) € S—; xT_;. If v (S X Tﬁj X {tj}> > 0 then t; € projTjEk (t¥) for
some k. For every (s’_j,t’_j) €S_j xT_j,if

(550t 5) % S5 % {t)) > 0

then (s;,t2;) x 85 x {t;} € EM1 (1) € B (1), thus
1oy /1,(( —J’t/ ) X Sj X {tj}>
V((sﬁ7 ) x S x {t; }) W (B )
Therefore
1
(s tjlty) = w(E(1)) p (-, t—5) < Sj x {t;})
m Z( ot )ES_jxT_; H (( s_ it ) X S x {tj})

v ((s—j,t—5) x S5 x {t;})
E(sgj,tgj)es,ij,j v ((SLj’tLj> X Sj x {tj}>

= V(s t-jlty)

We can conclude that for every j € I, 87 (t;) = ﬁ]“ (t;) for each t; € T}

It remains to prove that ¢; (T") (t]) = @i (T#) (t]). For every j, t; € Ty and k > 0,
let cp;? (T") (t;) be the k-th order belief of type t; in the type structure 7”. Define
(p? (T*) analogously. For every j € I and t; € T}, we have 8°(t;) = " (t;), hence
0 (TY) (t;) = @} (T*) (t;). Suppose f (T¥) (t;) = @§ (T#) (t;) for all j, k < K and
tj € Ty. Then

BY (1) ({(s—5,t-5) = %5 (T") ( W5 }) = 87 (1) ({ (s, t—5) = 05 (TH) ( hE})

for every hI_{j €A (ij_l). Therefore @KH (TH) (t;) = g0]K+1 (T") (t;). Since this is
true for every K, we have ¢; (T#) (t;) = ¢; (T") (t;) for every t; € T}, in particular, for
t¥. This concludes the proof that ¢ is in CP; (v). O

An analogous result holds for type profiles. We omit the proof, which is an almost

exact replica of the proof of Proposition 1.

Proposition. Let t* be in CP () and define v = p (-|E (t*)). Define T} = projp, E (t*)
for every i € I and let TV = (I, (S_Z-,T;’,ﬁ;’)id) be the type space generated by the

common prior v. Then t* is in CP (v). In particular, if p is minimal for t* then v = p.



Events across type structures

Let R*, BFR" and CBR* be the events corresponding to, respectively, “rationality”,
“k-th order belief in rationality” and “common belief in rationality” in the type structure
T#. In the proofs we will not formally distinguish between CBR and C BR*. This is
justified by the next result.

Proposition. If (s;,t;) € CP; (1) N CBR;, then (s;,t;) € CBRY.

Proof. Let R*, B¥R* and C BR* be the events corresponding to, respectively, rationality,
k-th order belief in rationality and common belief in rationality in the universal type
structure H = (I, (S_i,Hi,fi)iGI). For every i, let ¢; (T) : S; x T; — S; x H; be the
map defined as

Vi (T) (sisti) = (i, (T) (1))

for every (s;,t;). As is well known, B¥R* and R* are measurable events, and ; (T*)
and 1; (T) are measurable maps. Furthermore, for every i, every event E_; C S_; x H_;

and every type t; € T,
Fi s (T) (#) (=) = i (8) (- (T) 7" (B-))

where ¢_; (T) = [];4; ¢ (T). Define analogously the functions (¢; (7"))c;-

Let ¢ = J[;c;%i- It can be easily checked that R = Y (T)H(R*) and R* =
¥ (T*)~" (R*). Suppose for every k < K we have BFR =1 (7)™ (B*R*) and B*R* =
Y (T~ (B*R*). 1t follows from

Bi(t) (BXR) = Bi(t) (v-s(T) " (B¥RY))
= fi(ei (T) (1)) (BXR")
that (si,t;) € B; (BXR) if and only if (s;,¢(T) (t;)) € B; (BXR*). Equivalently,
B; (BXR) =; (T)™" (B; (B¥R¥)) for every i. Therefore B (BXR) =4 (T)™" (B (BKR¥)).
Hence
BEHIR = BERNB (BXR) = ¢(T)"" (BXR*)nw (T) " (B (BXR*)) = ¢ (T)™" (BXT'RY)
By induction, we can conclude that BFR* = ¢ ('7‘“)71 (BkR*) for every k. Moreover,

CBR = niB*R = Ny (T) ™} (BkR*> =y (7)™ (ﬂkBkR*) = ¢ (T)"' (CBR)

The exact same arguments apply to the type structure 7#, therefore we have CBR! =



¥ (T*)~' (CBRY).
Let (si,t;) € CP;(n) N CBR;. By applying the results above and the assumption
o (T) (t;) = ¢ (TH")(t;), we can conclude

~
s
N

¢ (1) (CBR"))
T) (t)) (CBRY)
Tﬂ)( ) (CBR")

(T (CBRY))
(C’BR“)

©
~.

therefore (s;,t;) € CBR!'". O

Other events of interest which appear in the next proofs are CB ([¢]) and CB ([n]).
The argument behind the previous proposition can be easily adapted to show that we do

not need to distinguish between these events and their counterparts in the type structure

TH.

Proof of Theorem 4

(1)
Claim. For every k, E* (tf) C CBR.

Proof. For every profile (s_;,t—;), if p(s—;,t—;|t;) > 0 then S* (t}) (s—;,t—;) > 0 and
since ¢} is in CBR; C B; (CBR) then (s_;,t_;) € CBR_;. Therefore E! (t;) C CBR.
Suppose the claim is proved for every k < K. If (s,t) € EXTL(¢f) there exist
(s',¢) € EX(t) and a player j such that t; = t; and p# (t;) (s—j,t—j) > 0. Since
ti is in Bj (CBR) then (s_j,t—;) € CBR_;. Therefore (s,t) € CBR. Therefore, by
induction, we conclude that for every k, E* (t/) C CBR. O

We now show that © € A (S x T') defines a correlated equilibrium. Let p (s;,t5) >0
for some player j and pair (sj,t;). Then (s_;,t_;,s;j,t;) € E¥ () for some k and some
(S_j,t_j) S S_j X T_j. Pick [ # j. Then

w (s tilt)) = B* (t) (s5,t5) >0



Since t; is in CBR; C BjR then (sj,t;) € R;. Therefore s; is a best response to

margg B (t;) = margs  pu(-|t;) = margs i (:|s;,t;)

where the last equality follows from Al independence. Therefore p € A (S xT) is a

correlated equilibrium.

(2)
Let v € A (S) be a correlated equilibrium distribution. Then

Z u(si, $—i) v (s—i|si) > Z w (sf, i) v (s—i|si)

5—i€5-; S_;€S5_;
for every s; € S;. Let T/ = {s;:v(s;) >0} and T = [[,.; T/". Define the prior
peASxT) as
K (Sat) =V (8)
if s =1t and
p(s,t)=0

otherwise. Define S to be generated by u, that is

Bt (ti) (s—ist—i) = p (i, t—i|ts)

for every ¢ and every (s,t). We have a well defined type structure 7+ = (I, (S_,TF, Bzu)zel)
admitting p as a common prior. The prior satisfies Condition Al trivially, since for every
s; and t; if p (s, t;) > 0 then s; = t;.

If p(si,t;) > 0 then s; = t; and s; is a best response to v (+|s;), hence (s;,t;) € R;.
Moreover, if ; (t;) (s—;,t—;) > 0 then u (s—;,t—;) > 0 hence (s_;,t_;) € R_;. Therefore,
if (s,t) > 0 then (s,t) € RCBR.

Proof of Theorem 8

It is enough to prove that if (s;,t7) € CP; (1) N CB ([n]) and p is minimal for ¢} then p
satisfies AL. As before, it is immediate to check that for every k, E¥ (t/) C CB ([n]).
Let 11 (s;,t;) > 0. There exist (s_j,t_;) such that (s,t) € E* (t}) for some k and

2 (S*j7t*j|sjatj) > 0.



Let [ # j. Then p (sj,t]t;) > 0 and since (s;,t;) € CB ([n]), then ¢; is in B ([n]), hence
sj = n;j (tj). To conclude, if 11 (s5,t;) > 0 then s; = n; (t;). Therefore u satisfies Al
Proof of Theorem 7

It is convenient to prove here a slightly stronger result.

Theorem. (7b) If there is a probability p € A(S xT), a tuple t* € CP (u) N [p] N
CB([¢])) N B(R) and v = p(-|E (t*)) satisfies Al, then there exist o; € A (S;) for all i
such that o = (0i);c; is a Nash Equilibrium and ¢; = [];_; o%-

As in the proof of Theorem 2, if t* € CB ([¢]) then for every i and every k, E* (t7) C
CB ([¢]). The rest of the proof is based on Aumann and Brandenburger (1995).

Claim. For every (s;,t;) if v (s;,t;) > 0 then v (s_;) = v (s—i|si, ti) = @i (5-i)-
Proof. For every (s;,t;), if v (si,t;) > 0 then (s_;,t_;, s;,t;) € E¥ (t*) for some k. Since
E* (") C CB([¢]) and E* (t*) C E*1 (¢*) then (s;,t;) € [¢],. Hence

v (s—ilsi, ti) = v (s—ilt:) = B (t:) (5—i) = ¢i (5-4)

where the first equality follows from AI. Therefore

vi(s—)= > vissilsit)v(sit) =Y ¢i(s_i)v(siti)=¢i(s5_:).

(si5ti) (si5ti)

Claim. For every s, v (s) = Hfil v(8;).
Proof. Suppose for K < |I| and every s € S and i € I,

K

V(81,82 SKy ..y SI) = HI/ (i) V (SK41, -5 SI)
i=1

We know from the previous claim that this is true for K = 1. Suppose it is true for



some K > 1. Then

V(81,0 81) = margs_(K+1)V(51a---a5K75K+27'--751‘5K+1)V(5K+1)
= ma’rgs,(K+1)V (81’ <y SKySK425 445 SI) v (5K+1)

/
= E V(317"’7SK7SK+17SK+2?"'781)V(SK-i-l)
S}(+1ESK+1

= Z v (s1) "'V(SK)margSKHx...xSIV(3,K+173K+27---731)V(5K+1)
S’K+1ESK+1

= v(s1) -v(sg)v(sk+1) Z MArgg, . x.. x5,V (8/1(+1,5K+2,---,51)
S’K+1€SK+1

= v(s1) Vv (Sk+1) V(SK+2, s SI)
Therefore the claim holds for every K < I. O
Claim. If v (s—;) > 0 then ¢; (s—;) =[] v (sk)
Proof. By combining the previous two claims, if v (s;,t;) > 0 then
v (s—ilsiyti) = ¢i(s-i) = v (s—i) = [[ v (ss).
ki

O]

Define 0; = margg,v. Let 0; (s;) > 0. Fix a player j # i and the type t7 in the tuple
t*. By assumption ¢; € [¢],. By the claims above and Al independence,

v (silt5) = v (siss, 1) = 05 () = o (50

hence v (82|t;) > 0. Let t; be a type such that v <5i,t¢]t;) > 0. Since t; € B(R);,
then s; is a best response to the first order belief of type t;. Because t; € CB([¢]);,
then ¢; € [¢];, i.e. the first order belief of ¢; is given by the conjecture ¢; = Hk# or. To
conclude, for every player i, every strategy in the support of ¢; is a best response to the

conjecture [ [, 4 Oi- Therefore, o is a Nash Equilibrium.

Proof of Theorem 9

Let t* belong to
CP ()N [¢]NCB([¢]) N B (R)NCB([n])



Notice that p is not assumed to be minimal. Let v = p (-|E (¢*)). From Proposition 2,
we have that if t* € CP (u) then t* € CP (v). Therefore, t* is in

CP(v)NglNCB([¢]) N B(R)NCB([n])

As before, it is immediate to check that for every i and every k, E¥ (t/) C CB ([n]). Let
v (sj,t;) > 0. There exist (s_j,t_;) such that (s;,tj,s_j,t_;) € E¥ (tf) for some k and
1, and

v(s—j,t—jlsj,t;) > 0.

Let [ # j. Then v (s;,t;|t;) > 0 and since (s;,t;) € CB ([n]), then ¢; is in B ([n]), hence
s; =n; (tj). To conclude, if v (sj,t;) > 0 then s; = n; (t;). Therefore v satisfies AI. We
can now apply Theorem 7b.

Proof of Theorem 14

By standard arguments, we can find two types (f1,%2) € [T®]NCB ([T®])NCB ([¥])N
CB (0 x R). Let t? = p; o (L;) for every i.

Definition. A type ti@ of player ¢ is reachable in N steps if there exists a sequence

0,1 o,N i
ti(l), - ti(N)such that:

0,1 _ 70
* Lo =iy

e i(N)=14and th) =t

e Foralln < N, Bi(?n—l) (tiezn—l)) ([tz%z)]) >0

Let REN be the set of types reachable in N steps. Since the type structure 7 is
minimal, every type is reachable in a finite number of steps.

We need to show that for every IV every player ¢ and type ti@ in REN | if 4 (tle) (si) >
0 then s; is optimal to the conjecture ¢ (t?) defined as

¢ (t2) (s—i) = Z B (t2) (t2;) v (%)) (s-s)

(] ]
t9,eT®,

for every s_; € S_;.

Let t? be in REYN. Since T7© is minimal, it is without loss of generality to assume
N > 2. Let f%), o tl%\]]\; be a sequence reaching t? in N-steps.
Claim. There exist a sequence 1), tj(2), ..., t;(n) in T such that i (N) = i, 9;n).0 (ti(n)) =

gpfgn) (tﬁn» for all n < N and S8 (ti(n)) ([ti(nJrl)]) > 0 for every n < N — 1.

8



Proof. Since fl%) = gie (ti1)) and /BZ%) (ﬁ%)) ([t%)b > 0 then there must exist a

type tl(?) such that @1(2)7@ (tl(Q)) = @32) (t22)> and Bz(l) (tz(l)) ([tl(Q)]) > 0. A Slmple
argument by induction concludes the proof. O

Claim. For every 2 <n < N, t;,y isin )] NRNCB ([T®])NCB(W])NCB (O x R).
Proof. It can be easily proved by induction. O

Suppose ; (tze) (SZ) > (. Since ti(Nfl) is in B ([1/1]), then (ti(Nfl)) (t’iasi) > 0.
Since t;y_1) is in B (R) then s; is a best response to the first order belief over strategies

of type t;, defined as the conjecture

¢ (t:) (si) = Y B(t:)(t-i,5-0)

t_;€T_;

For every s_; € 5_;.
Since t; is in B ([T®]) N B ([¢)]), for every (t_;,s_;) such that 8 (t;) (t—;,5-;) >
0 there is a type t?i € Tg such that ¢_; e (t—;) = ga(:)i (t?i) and s_; = ¥ (t(:)i).

Therefore

¢ (ti) (s—) = Z B (tiny) (t—is 5—i)

t_,e€T_;

- ¥ > B (t:) (t-i, v (t2))

€T t iz i 0(t—i)=¢%,(t2;)

= >0 BP() () v (t2) ()

(S} ]
t©,eT®,



