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1 Introduction

John Harsanyi [19] introduced the formalism of type spaces to provide a simple and parsimonious rep-

resentation of belief hierarchies. He explicitly noted that his formalism was not limited to modeling a

player’s beliefs about payoff-relevant variables: rather, its strength was precisely the ease with wich Ann’s

beliefs about Bob’s beliefs about payoff variables, Ann’s beliefs about Bob’s beliefs about Ann’s beliefs

about payoff variables, etc. could be represented.

This feature plays a prominent role in the epistemic analysis of solution concepts (see the article by

Adam Brandenburger elsewhere in this volume), as well as in the literature on global games (Morris and

Shin [25]) and on robust mechanism design (Bergemann and Morris [7]). All these applications place

particular emphasis on the expressiveness of the type-space formalism. Thus, a natural question arises:

just how expressive is Harsanyi’s approach?

For instance, solution concepts such as Nash equilibrium or rationalizability can be characterized by

means of restrictions on the players’ mutual beliefs. In principle, these assumptions could be formulated

directly as restrictions on players’ hierarchies of beliefs; but, in practice, the analysis is mostly carried

out in the context of a type space à la Harsanyi. This is without loss of generality only if Harsanyi type

spaces do not themselves impose restrictions on the belief hierarchies that can be represented. Similar

considerations apply in the context of robust mechanism design.

A rich literature addresses this issue from different angles, and for a variety of basic representations

of beliefs. This article focuses on hierarchies of probabilistic beliefs; however, some extensions are also

mentioned. For simplicity, attention is restricted to two players, denoted “1” and “2” or “i ” and “−i .”
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2 Probabilistic Type Spaces and Belief Hierarchies

Begin with some mathematical preliminaries. A topology on a space X is deemed Polish if it is separable

and completely metrizable; in this case, X is itself deemed a Polish space. Examples include finite sets,

Euclidean spaceRn and closed subsets thereof. A countable product of Polish spaces, endowed with the

product topology, is itself Polish. For any topological space X , the notation∆(X ) indicates the set of Borel

probability measures on X . If the topology on X is Polish, then the weak∗ topology on∆(X ) is also Polish

(e.g. Aliprantis and Border [4, Theorem 14.15]). A sequence {µk }k≥1 in ∆(X ) converges in the weak∗

sense to a measure µ ∈ ∆(X ), written µk w ∗−→ µ, if and only if, for every bounded, continuous function

ψ : X → R,
∫

X
ψdµk →
∫

X
ψdµ. The weak∗ topology on ∆(X ) is especially meaningful and convenient

when X is a Polish space: see [4, Chap. 14] for an overview of its properties. Finally, if µ is a measure on

some product space X ×Y , the marginal of µ on X is denoted marg Xµ.

The basic ingredient of the players’ hierarchical beliefs is a description of payoff-relevant or funda-

mental uncertainty. Fix two sets S1 and S2, hereinafter called the uncertainty domains; the intended

interpretation is that S−i describes aspects of the strategic situation that Player i is uncertain about.

For example, in an independent private-values auction, each set Si could represent bidder i ’s possible

valuations of the object being sold, which is not known to bidder−i . In the context of interactive episte-

mology, Si is usually taken to be Player i ’s strategy space. It is sometimes convenient to let S1 =S2 ≡S; in

this case, the formalism introduced below enables one to formalize the assumption that each player ob-

serves different aspects of the common uncertainty domain S (for instance, different signals correlated

with the common, unknown value of an object offered for sale).

An (S1,S2)-based type space is a tuple T = (Ti , g i )i=1,2 such that, for each i = 1, 2, Ti is a Polish space

and g i : Ti →∆(S−i ×T−i ) is continuous. As noted above, type spaces can represent hierarchies of beliefs;

it is useful to begin with an example. Let S1 = S2 = {a ,b} and consider the type space defined in Tab. 1.

To interpret, for every i = 1, 2, the entry in the row corresponding to t i and (s−i , t−i ) is g i (t i )({(s−i , t−i )}).
Thus, for instance, g 1(t1)({(a , t ′2)}) = 0; g 2(t2)({b}×T1) = 0.5.

T1 a , t2 a , t ′2 b , t2 b , t ′2 T2 a , t1 a , t ′1 b , t1 b , t ′1
t1 1 0 0 0 t2 0 0.5 0.5 0

t ′1 0 0.3 0 0.7 t ′2 0 0 0 1

Table 1: A type space

Consider type t1 of Player 1. She is certain that s2 = a ; furthermore, she is certain that Player 2

believes that s1 = a and s1 =b are equally likely. Taking this one step further, type t1 is certain that Player

2 assigns probability 0.5 to the event that Player 1 believes that s2 =b with probability 0.7.

These intuitive calculations can be formalized as follows. Fix an (S1,S2)-based type spaceT = (Ti , g i )i=1,2;
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for every i = 1, 2, define the set X 0
−i and the function h1

i : Ti →∆(X−i
0 ) by

X 0
−i =S−i and ∀t i ∈ Ti , h1

i (t i ) =marg S−i
g i (t i ). (1)

Thus, h1
i (t i ) represents the first-order beliefs of type t i in type spaceT—her beliefs about the uncertainty

domain S−i . Note that each X 0
−i =S−i is Polish. Proceeding inductively, assuming that X 0

−i , . . . , X k−1
−i and

h1
i , . . . , hk

i have been defined up to some k > 0 for i = 1, 2, and that all sets X `−i , `= 0, . . . , k −1 are Polish,

define the set X k
−i and the functions hk+1

i : Ti →∆(X k
−i ) for i = 1, 2 by

X k
−i =X k−1

−i ×∆(X
k−1
i ) and ∀t i ∈ Ti , hk+1

i (t i )(E ) = g i (t i )
�

�

(s−i , t−i )∈S−i ×T−i : (s−i , hk
−i (t−i ))∈ E
	

�

(2)

for every Borel subset E of X k
−i . Thus, h2

1(t1) represents the second-order beliefs of type t1—her beliefs

about both the uncertainty domain S2 =X 0
2 and Player 2’s beliefs about S1, which by definition belong to

the set∆(X 0
1 ) =∆(S1). Similarly, hk+1

i (t i ) represents type t i ’s (k +1)-th order beliefs.

Observe that type t1’s second-order beliefs are defined over X 0
2 ×∆(X

0
1 ) =S2×∆(S1), rather than just

over ∆(X 0
1 ) = ∆(S1); a similar statement holds for her (k + 1)-th order beliefs. This is crucial in many

applications. For instance, a typical assumption in the literature on epistemic foundations of solution

concepts is that Player 1 believes that Player 2 is rational. Letting Si be the set of actions or strategies of

Player i in the game under consideration, this can be modeled by assuming that the support of h2
1(t1)

consists of pairs (s2,µ1) ∈ S2 ×∆(S1) wherein s2 is a best response to µ1. Clearly, such an assumption

could not be formalized if h2
1(t1) only conveyed information about type t1’s beliefs on Player 2’s first-

order beliefs: even though type t1’s beliefs about the action played by Player 2 could be retrieved from

h1
1(t1), it would be impossible to tell whether each action that type t1 expects to be played is matched

with a belief that rationalizes it.

Note that, since X k−1
i and X k−1

−i are assumed Polish, so are ∆(X k−1
i ) and X k

−i . Also, each function hk
i

is continuous.

Finally, it is convenient to define a function that associates to each type t i ∈ Ti an entire belief hierar-

chy: to do so, define the set Hi and, for i = 1, 2, the function h i : Ti →Hi by

Hi =
∏

k≥0

∆(X k
−i ) and ∀t i ∈ Ti , h i (t i ) =

�

h1
i (t i ), . . . , hk+1

i (t i ), . . .
�

. (3)

Thus, Hi is the set of all hierarchies of beliefs; notice that, since each X k
−i is Polish, so is Hi .

3 Rich Type Spaces

The preceding construction suggests a rather direct way to ask how expressive Harsanyi’s notion of a type

space is: can one construct a type space that generates all hierarchies in Hi ?
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A moment’s reflection shows that this question must be refined. Fix a type space (Ti , g i )i=1,2 and a

type t i ∈ Ti ; recall that, for reasons described above, the first- and second-order beliefs of type t i satisfy

h1
i (t i ) ∈ ∆(S−i ) and h2

i (t i ) ∈ ∆(X 0
−i ×∆(X

0
i )) = ∆(S−i ×∆(Si )) respectively. This, however, creates the

potential for redundancy or even contradiction, because both h1
i (t i ) and marg S−i

h2
i (t i ) can be viewed as

“type t i ’s beliefs about S−i .” A similar observation applies to higher-order beliefs. Fortunately, it is easy

to verify that, for every type space (Ti , g i )i=1,2 and type t i ∈ Ti , the following coherency condition holds:

∀k > 1, marg X k−2
−i

hk
i (t i ) = hk−1

i (t i ); (4)

to interpret, recall that hk
i (t i )∈∆(X k−1

−i ) =∆(X
k−2
−i ×∆(X

k−2
−i )). Thus, in particular, marg S−i

h2
i (t i ) = h1

i (t i ).

Since Hi is defined as the set of all hierarchies of beliefs for Player i , some (in fact, “most”) of its

elements are not coherent. As noted above, no type space can generate incoherent hierarchies; more

importantly, coherency can be viewed as an integral part of the interpretation of interactive beliefs. How

could an individual simultaneously hold (infinitely) many distinct first-order beliefs? Which of these

should be used, say, to verify whether she is rational? This motivates restricting attention to coherent

hierarchies, defined as follows:

H c
i =
n

(µ1
i ,µ2

i , . . .)∈Hi : ∀k > 1, marg X k−2
−i
µk

i =µ
k−1
i

o

. (5)

Since marg X k−2
−i

:∆(X k−1
−i )→∆(X

k−2
−i ) is continuous, H c

i is a closed, hence Polish subspace of Hi .

Brandenburger and Dekel [10, Proposition 1] show that there exist homeomorphisms g c
i : H c

i →
∆(S−i ×H−i ): that is, every coherent hierarchy corresponds to a distinct belief over the uncertainty domain

and the hierarchies of the opponent, and conversely. Furthermore, this homeomorphism is canonical, in

the following sense. Note that S−i ×H−i =S−i ×
∏

k≥0∆(X
k
i ) = X k

−i ×
∏

`>k ∆(X
`
i ). Then it can be shown

that, if µi = (µ1
i ,µ2

i , . . .) ∈H c
i , then marg X k

−i
g c

i (µi ) = µk+1
i . Intuitively, the marginal belief associated with

µi over the first k orders of the opponent’s beliefs is precisely what it should be, namely µk+1
i . The proof

of these results builds upon Kolmogorov’s Extension Theorem, as may be suggested by the similarity of

the coherency condition in Eq. (5) with the notion of Kolmogorov consistency: cf. e.g. [4, Theorem

14.26].

This result does not quite imply that all coherent hierarchies can be generated in a suitable type

space; however, it suggests a way to obtain this result. Notice that the belief on S−i ×H−i associated by

the homeomorphism g c
i to a coherent hierarchyµi may include incoherent hierarchies ν−i ∈H−i \H c

−i in

its support. This can be interpreted in the following terms: if Player i ’s hierarchical beliefs are given byµi ,

then she is coherent, but she is not certain that her opponent is. On the other hand, consider a type space

(Ti , g i )i=1,2; as noted above, for every player i , each type t i ∈ Ti generates a coherent hierarchy h i (t i ) ∈
H c

i . So, for instance, if (s1, t1) is in the support of g 2(t2), then t1 also generates a coherent hierarchy.

Thus, not only is type t2 of Player 2 coherent: he is also certain (believes with probability one) that Player
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1 is coherent. Iterating this argument suggests that hierarchies of beliefs generated by type spaces display

common certainty of coherency.

Motivated by these considerations, let

H 0
i =H c

i and ∀k > 0, H k
i = {µi ∈H k−1

i : g c
i (µi )(S−i ×H k−1

−i ) = 1}. (6)

Thus, H 0
i is the set of coherent hierarchies for Player i ; H 1

i is the set of hierarchies that are coherent

and correspond to beliefs that display certainty of the opponent’s coherency; and so on. Finally, let

H ∗i =
⋂

k≥0 H k
i . Each element of H ∗i is intuitively consistent with coherency and common certainty of

coherency.

Brandenburger and Dekel [10, Proposition 2] show that the restriction g ∗i of g c
i to H ∗i is a homeo-

morphism between H ∗i and∆(S−i ×H ∗−i ); furthermore, it is canonical in the sense described above. This

implies that the tuple (H ∗i , g ∗i )i=1,2 is a type space in its own right—the (S1,S2)-based universal type space.

The existence of a universal type space fully addresses the issue of richness. Since the homeomor-

phism g ∗i is canonical, it is easy to see that the hierarchy generated as per Eqs. (1) and (2) by any “type”

t i = (µ1,µ2, . . .) ∈ H ∗i in the universal type space (H ∗i , g ∗i )i=1,2 is t i itself; thus, since H ∗i consists of all hi-

erarchies that are coherent and display common certainty of consistency, the universal type space also

generates all such hierarchies.

The type space (H ∗i , g ∗i )i=1,2 is rich in two additional, related senses. First, as may be expected, every

belief hierarchy for Player i generated by an arbitrary type space is an element of H ∗i ; this implies that

every type space (Ti , g i )i=1,2 can be uniquely embedded in (H ∗i , g ∗i )i=1,2 as a “belief-closed” subset: see

Battigalli and Siniscalchi [5, Proposition 3.8]. Call a type space terminal if, like (H ∗i , g ∗i )i=1,2, it embeds all

other type spaces as belief-closed subsets.

Second, since each function g ∗i is a homeomorphism, in particular it is a surjection (i.e. onto). Call

a type space (Ti , g i )i=1,2 complete if every map g i is onto. (This should not be confused with the topo-

logical notion of completeness). Thus, the universal type space (H ∗i , g ∗i )i=1,2 is complete. It is often the

case that, when a universal type space is employed in the epistemic analysis of solution concepts, the

objective is precisely to exploit its completeness. Furthermore, for certain representations of beliefs,

it is not known whether universal type spaces can be constructed; however, the existence of complete

type spaces can be established, and is sufficient for the purposes of epistemic analysis. The next Section

provides examples.

4 Alternative Constructions and Extensions

The preceding discussion adopts the approach proposed by Brandenburger and Dekel [10], which has

the virtue of relying on familiar ideas from the theory of stochastic processes. However, the first con-
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structions of universal type spaces consisting of hierarchies of beliefs are due to Armbruster and Böge

[2], Böge and Eisele [9] and Mertens and Zamir [24].

From a technical point of view, Mertens and Zamir [24] assume that the state space S is compact

Hausdorff and beliefs are regular probability measures. Heifetz and Samet [21] instead drop topological

assumptions altogether: in their approach, both the underlying set of states and the sets of types of

each player are modeled as measurable spaces. They show that a terminal type space can be explicitly

constructed in this environment.

In all the contributions mentioned so far, beliefs are modeled as countably additive probabilities.

The literature has also examined other representations of beliefs, broadly defined.

A partitional structure (Aumann [3]) is a tuple (Ω, (σi , Pi )i=1,2), where Ω is a (typically finite) space of

“possible worlds,” every σi : Ω→ Si indicates the realization of the basic uncertainty corresponding to

each element of Ω, and every Pi is a partition of Ω. The interpretation is that, at any worldω ∈ Ω, Player

i is only informed that the true world lies in the cell of the partition Pi containingω, denoted Pi (ω). The

knowledge operator for Player i can then be defined as

∀E ⊂Ω, K i (E ) = {ω∈Ω : Pi (ω)⊆ E }.

Notice that no probabilistic information is provided in this environment (although it can be easily added).

Heifetz and Samet [20] show that a terminal partitional structure does not exist. This result was ex-

tended to more general “possibility” structures by Meier [23]. Brandenburger and Keisler [12] establish

related non-existence results for complete structures. However, recent contributions show that topo-

logical assumptions, which play a key role in the constructions of Mertens and Zamir [24] and Bran-

denburger and Dekel [10], can also deliver existence results in non-probabilistic settings. For instance,

Mariotti, Meier and Piccione [22] construct a structure that is universal, complete and terminal for pos-

sibility structures.

Other authors investigate richer probabilistic representations of beliefs. Battigalli and Siniscalchi [5]

construct a universal, terminal, and complete type space for conditional probability system, or collec-

tions of probability measures indexed by relevant conditioning events (such as histories in an extensive

game) and related by a version of Bayes’ Rule. This type space is used in [6] to provide an epistemic

analysis of forward induction. Brandenburger, Friedenberg and Keisler [11] construct a complete type

space for lexicographic sequences, which may be thought of as an extension of lexicographic probabil-

ity systems (Blume, Brandenburger and Dekel [8]) for infinite domains. They then use it to provide an

epistemic characterization of iterated admissibility.

Non-probabilistic representations of beliefs that reflect a concern for ambiguity (Ellsberg [14]) have

also been considered. Heifetz and Samet [21] observe that their measure-theoretic construction extends

to beliefs represented by continuous capacities, i.e. non-additive set functions that preserve monotonic-
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ity with respect to set inclusion. Motivated by the multiple-priors model of Gilboa and Schmeidler [17],

Ahn [1] constructs a universal type space for sets of probabilities.

Epstein and Wang [15] approach the richness issue taking preferences, rather than beliefs, as primitive

objects. In their setting, an S-based type space is a tuple (Ti , g i )i=1,2, where, for every type t i , g i (t i ) is a

suitably regular preference over acts defined on the set S×T−i . The analysis in the preceding section can

be viewed as a special case of [15], where preferences conform to expected-utility theory. Epstein and

Wang construct a universal type space in this framework; see also Di Tillio [13].

Finally, constructions analogous to that of a universal type space appear in other, unrelated contexts.

For instance, Epstein and Zin [16] develop a class of recursive preferences over infinite-horizon temporal

lotteries; to construct the domain of such preferences, they employ arguments related to Mertens and

Zamir’s. Gul and Pesendorfer [18] employ analogous techniques to analyze self-control preferences over

infinite-horizon consumption problems.
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