
A Behavioral Characterization of Plausible Priors

Marciano Siniscalchi∗

Economics Department, Northwestern University,

302 Arthur Andersen Hall, 2001 Sheridan Rd., Evanston, IL 60208.

marciano@northwestern.edu

March 6, 2005

∗An earlier draft of this paper was circulated under the title “Expected Utility with Many Unique Priors.”
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Abstract

Recent decision theories represent ambiguity via multiple priors, interpreted as al-
ternative probabilistic models of the relevant uncertainty. This paper provides a robust
behavioral foundation for this interpretation. A prior P is “plausible” if preferences
over some subset of acts admit an expected utility representation with prior P , but not
with any other prior Q 6= P . Under suitable axioms, plausible priors can be elicited
from preferences, and fully characterize them; also, probabilistic sophistication implies
that there exists only one plausible prior; finally, “plausible posteriors” can be de-
rived via Bayesian updating. Several familiar decision models are consistent with the
proposed axioms.
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1 Introduction

Multiple priors, or sets of probabilities over relevant states of nature, are a distinguishing

feature of several decision models that depart from subjective expected utility maximization

(SEU) in order to account for perceived ambiguity; examples include the maxmin expected-

utility (MEU) model (Ellsberg [8]; Gilboa and Schmeidler [14]), and Hurwicz’ α-maxmin

expected utility criterion (α-MEU; see e.g. Luce and Raiffa [22], and Ghirardato, Maccheroni

and Marinacci [11]). Also, the Choquet Expected Utility model (CEU; Schmeidler [32]) does

not employ sets of priors, but admits a multiple-priors interpretation (see Section 2.4 below).

The literature suggests that sets of priors may reflect the decision-maker’s subjective

assessment of available information: if the latter is perceived as being sufficiently precise,

the decision-maker’s beliefs can be represented by a single probability distribution; but, if

information is subjectively ambiguous, the decision-maker may wish to consider multiple

possible probabilistic descriptions of the underlying uncertainty.1

This “intuitive” interpretation of sets of priors has played a central role in motivating both

the early literature and more recent seminal contributions on choice under ambiguity (cf.

footnote 1). It is also typically invoked in applications that adopt multiple-prior preferences.

In fact, the economic intuition underlying modeling assumptions and formal results often

builds directly upon this interpretation: see e.g. Mukerji [28, p. 1209], Hansen, Sargent

and Tallarini [16, p. 878], or Billot, Chateauneuf, Gilboa and Tallon [4, p. 686]. Finally,

the literature often also suggests that the decision criteria (functional forms) employed in

specific multiple-priors models may be viewed as reflecting the decision-maker’s attitudes

towards ambiguity. For instance, one can associate the use of the “min” operator in the

MEU model with “extreme” ambiguity aversion. The cited interpretation of priors is fully

consistent with this view: sets of probabilities are assumed to describe the individual’s

perception of ambiguity, independently of how they are used in order to rank alternative

prospects;2 consequently, specific functional representations reflect behavioral traits other

than “beliefs”—in particular, attitudes towards ambiguity.

However, existing axiomatic characterizations of specific decision models (e.g. [14], [32],

etc.) do not provide full support for the “intuitive” interpretation of sets of probabilities and

decision rules described above. Even in simple, canonical examples, preference relations ad-

mit multiple different representations, involving different sets of priors and decision criteria.

1 See e.g. Ellsberg [8, pp. 657 and 661]), Gilboa and Schmeidler [14, p. 142] and Schmeidler [32, p. 584];
also cf. Luce and Raiffa [22, pp. 304-305], and Bewley [3].

2In particular, Ellsberg [8, especially pp. 661-665] and (to a lesser extent) Gilboa and Schmeidler [14, p.
142] suggest this interpretation.
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For instance, a preference that satisfies the Gilboa-Schmeidler [14] axioms admits a MEU

representation; however, as will be demonstrated below, the same preference typically also

admits an α-MEU representation, and the sets of priors appearing in the two representations

are different. Thus, additional considerations must be invoked in order to determine which

of these sets, if any, comprises all possible probabilistic descriptions of the uncertainty, and

hence which decision criterion reflects the decision-maker’s attitudes towards ambiguity.

This paper proposes a definition of “plausible prior” that identifies probabilities directly

from preferences, without relying on a specific functional representation. The proposed defi-

nition is thus fully “behavioral”; furthermore, it is independent of the individual’s attitudes

towards ambiguity.

The main result of this paper shows that, under suitable axioms on preferences, a unique

collection of plausible priors can be identified. Moreover, under the same axioms:

• Plausible priors fully characterize preferences: there exists a unique decision criterion

that determines the ordering of any two acts as a function of their expected utilities

computed with respect to each plausible prior. Thus, the proposed definition yields a

more robust foundation for the intuitive interpretation of multiple-prior models. Pref-

erences that satisfy the proposed axioms will be deemed “plausible-priors preferences”.

• The class of plausible-priors preferences is closed under Bayesian updating. Consider

an “unconditional” plausible-priors preference, and a “conditional” preference that

is related to the latter by means of suitable consistency conditions. Then conditional

preferences also satisfy the axioms I propose; furthermore, the corresponding “plausible

posteriors” are derived from plausible priors by Bayesian updating.

• Finally, under appropriate regularity conditions, a plausible-prior preference is proba-

bilistically sophisticated in the sense of Machina and Schmeidler [24] if and only if it is

consistent with SEU—and hence admits a single plausible prior. Thus, a multiplicity

of plausible priors necessarily reflects the decision-maker’s perception of ambiguity.

The axioms I consider are compatible with a variety of known decision models, reflecting

a broad range of attitudes towards ambiguity: cf. Section 2.4 for examples.

A Motivating Example

In order to make the preceding discussion more concrete, consider Daniel Ellsberg’s cele-

brated three-color-urn experiment ([8]). An urn contains 30 red balls, and 60 green and blue

balls, in unspecified proportions; subjects are asked to rank bets on the realizations of a
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draw from the urn. Denote by r, g and b the possible realizations of the draw, in obvious

notation. The following, typical pattern of preferences suggests that subjects dislike ambi-

guity about the relative likelihood of g vs. b: ($10 if r, $0 otherwise) is strictly preferred

to ($10 if g, $0 otherwise), and ($10 if g or b, $0 otherwise) is strictly preferred to ($10 if r

or b, $0 otherwise). These rankings violate SEU, but are consistent with the MEU decision

model. According to the latter, for all “acts” f, g mapping realizations to prizes, f is weakly

preferred to g if and only if

min
p∈P

∫
u(f(s)) p(ds) ≥ min

p∈P

∫
u(g(s)) p(ds), (1)

where u is a utility index and P a set of priors. The preferences described above for the three-

color urn example are consistent with the MEU decision model in Eq. (1) if u($10) > u($0)

and, for instance, P is the set of all probability distributions p on {r, g, b} such that p(r) = 1
3

and 1
6
≤ p(g) ≤ 1

2
(other choices of priors are possible).

Now consider Hurwicz’ α-maxmin expected utility (α-MEU) model, which prescribes

that f be weakly preferred to g if and only if

α min
q∈Q

∫
u(f(s)) q(ds) + (1− α) max

q∈Q

∫
u(f(s)) q(ds) ≥ (2)

α min
q∈Q

∫
u(g(s)) q(ds) + (1− α) max

q∈Q

∫
u(g(s)) q(ds),

where Q is a set of priors and α ∈ [0, 1]. It is easy to see that, if α = 3
4

and Q comprises all

probabilities q over {r, g, b} such that q(r) = 1
3
, one obtains an alternative representation the

MEU preferences characterized by the set of priors P specified above. In other words, the

same preference ordering admits two representations: MEU with priors P , or 3
4
-MEU with

priors Q.3 Additional considerations are required to decide which of the two sets P and Q, if

any, consists of priors the decision-maker considers possible—hence, which decision criterion

reflects this individual’s attitudes towards ambiguity.

The proposed definition of “plausible priors”.

A probability P is deemed a plausible prior if there exists a subset C of acts with the

following properties: (i) when restricted to C, the decision-maker’s preferences are consistent

with SEU, i.e. conform to the Savage [31] or Anscombe-Aumann [2] axioms; and (ii) P is the

3A similar construction shows that these preferences admit α-MEU representations for any α ∈ [ 34 , 1].
Moreover, α-MEU-type representations featuring arbitrarily small subsets of P can also be constructed.
Section 6.2 in the Online Appendix shows that similar constructions are feasible for all MEU preferences.
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only probability that, jointly with a suitable utility function, provides a SEU representation

of preferences restricted to the set C.

Consider the three-color urn example. Let C1 be the set of acts f such that f(b) is weakly

preferred to f(g), and let C2 be the set of acts f for which f(g) is weakly preferred to f(b);

as above, consider MEU preferences with priors P . Then preferences restricted to C1 are

consistent with SEU, and uniquely identify the subjective probability P1 characterized by

P1(r) = 1
3

and P1(b) = 1
6

= 2
3
− P1(g); this is because P1 minimizes the expected utility of

any act in C1 over the set P , so the MEU evaluation of any such act is precisely
∫

u ◦ f dP1.

Similarly, preferences restricted to C2 are consistent with SEU, with unique prior P2, where

P2(r) = 1
3

and P2(g) = 1
6

= 2
3
−P2(b). Thus, P1 and P2 are plausible priors for this preference

(and they are the only ones). Finally, recall that the same preferences also admit a 3
4
-MEU

representation, with priors Q; but since the two representations are numerically identical, it

is still the case that the evaluation of an act f in C1 is given by
∫

u ◦ f dP1, and similarly

the evaluation of acts f ∈ C2 is
∫

u ◦ f dP2. Thus, the same plausible priors are obtained,

regardless of the overall representation of preferences one decides to work with.

To motivate the proposed definition, observe first that a decision-maker whose preferences

admit some form of multiple-prior representation, such as MEU or α-MEU, can be described

as (a) specifying a relevant collection of probabilities, and (b) evaluating any act according

to its expected utility, computed with respect to a suitably selected probability drawn from

this collection. Different acts may be evaluated using different probabilities; also, distinct

multiple-prior models differ in the way evaluation probabilities are selected for each acts.

In the three-color urn example, the pre-specified sets of priors are P for the MEU repre-

sentation of preferences, and Q for the α-MEU representation. In the MEU representation,

the prior pf used to evaluate an act f is selected so as to minimize the expected utility of

f over P . In the 3
4
-MEU representation, the act f is evaluated using the prior 3

4
qf + 1

4
Qf ,

where qf minimizes the expected utility of f over the set Q, and Qf maximizes it.4

This interpretation applies to a broad class of decision models that includes CEU.5 More-

over, it is fully consistent with the intuitive interpretation of priors discussed at the begin-

ning of this Introduction: it portrays an individual who is willing to entertain more than one

possible probabilistic description of the underlying uncertainty, and responds to perceived

4Note that 3
4qf + 1

4Qf ∈ Q, so it is appropriate to say that the α-MEU representation “selects” an element
of Q to evaluate each act.

5In particular, it applies to the “generalized α-MEU” class of preferences axiomatized by Ghirardato,
Maccheroni and Marinacci [11]; in their representation, the coefficient α is a function of the act being
evaluated. This class is characterized by the Gilboa-Schmeidler [14] axioms other than Uncertainty Aversion,
and includes all CEU preferences.
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ambiguity by evaluating different acts by means of different possible priors.

Now suppose that a multiple-prior representation of preferences is sought, but no set of

probabilities or decision criterion is specified a priori : the objective is to derive both from

preferences. In this respect, a plausible prior P is a strong candidate for inclusion in the set

of probabilities that characterize the decision-maker’s choices: by definition, the decision-

maker behaves as if P was the prior “selected” to evaluate acts in a set C. In other words,

although a set of probabilities is not specified a priori, the decision-maker behaves as if this

set contained P , and her decision criterion specified that P be used for acts in C.

This interpretation would be less compelling if there were another probability Q 6= P

that also yielded the correct evaluation of acts in the set C: in this case, the decision-maker

could also be said to behave as if Q, not P , was the prior “selected” for acts in the set C. The

uniqueness requirement in the definition of plausible priors guarantees that this possibility

does not arise; for this reason, this requirement is essential to the intended interpretation.

Finally, the above discussion suggests that, by repeatedly applying the proposed def-

inition, it may be possible to derive a multiple-prior representation of a given preference

relation, wherein the characterizing set of probabilities consists solely of plausible priors.

As noted above, under the proposed axioms, this is indeed the case. In the three-color urn

experiment, preferences admit a MEU representation, with plausible priors {P1, P2}.

I now briefly discuss additional important aspects of the definition of plausible prior.

First, the proposed definition is fully behavioral, as intended: it does not rely upon any

pre-specified functional representation of preferences. One consequence was noted above in

the analysis of the three-color urn example: regardless of which representation of preferences

one chooses to work with, the same plausible priors are obtained.

Second, the definition identifies plausible priors independently of the decision-maker’s

attitudes towards ambiguity (cf. Sec. 2.4). For instance, in the three-color-urn example, the

plausible priors for a decision-maker with maxmax -expected utility preferences and priors P
are also P1 and P2, even though this decision-maker is ambiguity-loving.

Third, a possible alternative to Condition (i) in the definition of plausible priors might

require that preferences on a subset C of acts be probabilistically sophisticated, but not

necessarily consistent with SEU. This leads to the arguably interesting alternative notion of

“plausible non-SEU prior”. However, expected utility is the key building block of decision

criteria such as MEU, α-MEU, and even CEU, as well as a central component of their

intuitive interpretation. Since this paper is motivated by the interpretation of such decision

models, it seems natural to adopt expected utility as basic building block, and defer non-SEU

extensions to future research; see Sec. 6.3 in the Online Appendix for further discussion.

Finally, as demonstrated in Section 2.4, the axiomatic framework adopted in this paper
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is consistent with a variety of decision models, and accommodates a broad range of attitudes

towards ambiguity. However, it does rule out certain interesting preferences, such as those

consistent with the second-order-probability model axiomatized by Klibanoff, Marinacci and

Mukerji [21]; see the discussion of Axiom 5 in Sec. 2.2.1. On the other hand, the definition of

plausible prior proposed here, as well as the key behavioral assumption of this paper (Axiom

6 in Sec. 2.2.4), are not a priori inconsistent with such preferences; extending the axiomatic

framework to accommodate them is another interesting direction for future research.

This paper is organized as follows. Section 2 introduces the decision framework, formu-

lates and motivates the axioms, presents the main characterization result, and applies it

to known decision models. Section 3 establishes the equivalence of probabilistic sophistica-

tion and SEU for plausible-priors preferences, and presents the characterization of Bayesian

updating. Section 4 discusses the related literature. All proofs are in the Appendix.

2 Model and Characterization

2.1 Decision-Theoretic Setup

I adopt a slight variant of the Anscombe-Aumann [2] decision framework. Consider a set of

states of nature S, endowed with a sigma-algebra Σ, a set X of consequences (prizes), the

set Y of (finite-support) lotteries on X. For future reference, a charge is a finitely, but not

necessarily countably additive measure on (S, Σ).

Acts are Σ-measurable maps from S into Y that are bounded in preference: cf. Gilboa and

Schmeidler [14], Sec. 4. I assume that preferences are defined over all such acts. Formally,

let �0 be a binary relation on Y ; say that a function f : S → Y is Σ-measurable if, for all

y ∈ Y , the sets {s : f(s) �0 y} and {s : f(s) �0 y} belong to Σ; then, let L be the collection

of all Σ-measurable maps f : S → Y for which there exist y, y′ ∈ Y such that y �0 f(s)

and f(s) �0 y′ for every s ∈ S. With the usual abuse of notation, denote by y the constant

act assigning the lottery y ∈ Y to each s ∈ S. Finally, denote by � a preference relation

on L that extends �0: that is, for all y, y′ ∈ Y , y � y′ if and only if y �0 y′. Denote the

asymmetric and symmetric parts of � by � and ∼ respectively.

Mixtures of acts are taken pointwise: if f, g ∈ L and α ∈ [0, 1], αf + (1− α)g is the act

assigning the compound lottery αf(s) + (1− α)g(s) to each state s ∈ S.

Finally, a notion of uniform convergence for sequences of acts will be introduced. Let

{fk} ⊂ L be a sequence of acts. Say that this sequence converges uniformly in preference

to the act f ∈ L, written “fk → f”, iff, for every α ∈ (0, 1) and y, y′ ∈ Y such that y � y′,
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there exists K ≥ 1 such that, for all k ≥ K, and for all s ∈ S,

αfk(s) + (1− α)y′ � αf(s) + (1− α)y and αf(s) + (1− α)y′ � αfk(s) + (1− α)y. (3)

To interpret this definition, fix α, y and y′ as above: this corresponds to fixing a neighborhood

of a point in a metric space. Suppose that k is large enough so that the above relations hold.

Consider the case fk(s) � f(s): then, loosely speaking, the first relation in Eq. 3 requires

that the preference for fk(s) over f(s) be weaker than the preference for y over y′. If instead

fk(s) ≺ f(s), then the second relation in Eq. 3 requires that the preference for f(s) over

fk(s) be weaker than the preference for y over y′. Thus, in either case, fk(s) and f(s) are

required to be “closer in preference” than y and y′, and this must hold uniformly in s.6

A sequence of constant acts, or lotteries, {yk} ⊂ Y such that yk → y ∈ Y according to

the preceding definition will be said simply to “converge in preference”.

The Anscombe-Aumann setup is adopted here merely for expository convenience. The

analysis can be equivalently carried out in a “fully subjective” framework, following e.g.

[5] or [12]. Specifically, let X be a “rich” (e.g. connected, separable topological) space of

prizes; define acts as bounded, measurable maps from S to X. Then, under appropriate

assumptions, preferences over prizes are represented by a utility function u such that u(X)

is a convex set; moreover, it is possible to define a “subjective” mixture operation ⊕ over

prizes such that, for all x, x′ ∈ X, and α ∈ [0, 1], u(αx⊕ (1− α)x′) = αu(x) + (1− α)u(x′).

All mixture axioms stated below can then be reformulated by replacing “objective” lottery

mixtures with subjective mixtures. Moreover, these axioms can be interpreted in a manner

that is consistent with both their “objective” and “subjective” formulation.

2.2 Axioms and Interpretation

I begin by introducing a set of basic structural axioms (Axioms 1–5 in §2.2.1). Next, the

notion of mixture neutrality is employed to provide a formal definition of plausible priors

(§2.2.2). Then, I discuss the notion of hedging against ambiguity and define robust mixture

neutrality (§2.2.3); the latter is finally employed to formulate the key axiom for preferences

that admit plausible priors: “No Local Hedging” (Axiom 6 in §2.2.4).

2.2.1 Basic Structural Axioms

Axioms 1–5 will be applied both to the set L of all acts, and to certain subsets of L. For this

reason, they are stated using intentionally vague expressions such as “for all acts f, g...”.

6Lemma 5.2 Part 1 shows that, under the basic structural axioms considered below, Eq. 3 is equivalent
to the condition |u(fk(s))− u(f(s))| ≤ 1−α

α [u(y)− u(y′)], where u : Y → R represents � on Y .
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Axioms 1–4 appear in “textbook” treatments of the Anscombe-Aumann characterization

result, as well as in [14] and [32]; Axiom 5 was introduced by Gilboa and Schmeidler [14].

Axiom 1 (Weak Order) � is transitive and complete.

Axiom 2 (Non-degeneracy) Not for all acts f, g, f � g.

Axiom 3 (Continuity) For all acts f, g, h such that f � g � h, there exist α, β ∈ (0, 1)

such that f � αf + (1− α)h � g and g � βf + (1− β)h � h.

Axiom 4 (Monotonicity) For all acts f, g, if f(s) � g(s) for all s ∈ S, then f � g.

Axiom 5 (Constant-act Independence) For all acts f, g, all y ∈ Y , and all α ∈ (0, 1):

f � g if and only if αf + (1− α)y � αg + (1− α)y.

While Axiom 5 is standard, it warrants some discussion. Recall that the usual Indepen-

dence axiom requires that the ranking of any two acts f and g be preserved under mixtures

with any third act h; Constant-act Independence restricts this requirement to mixtures with

lotteries, but allows for preference reversals when mixing with non-constant acts. This is

motivated by the observation that mixing f and g with non-constant acts may allow for

hedging against ambiguity, as was first suggested by Schmeidler [32]: also see §2.2.3 below.

On the other hand, mixtures with constant acts corresponds to changing the “scale and

location” of outcomes (in utility, or preference, terms), uniformly in each state and for both

acts f and g; Constant-act Independence thus reflects a form of invariance of preferences in

situations where no hedging can occur. However, it should be also noted that Constant-act

Independence also incorporates a notion of “constant ambiguity aversion”, as is discussed in

Klibanoff, Marinacci and Mukerji [21].

Observe that the interpretation provided here does not involve objective randomizations

in an essential way; the discussion is entirely stated in terms of changes in the outcome

profiles of acts. Hence, this interpretation applies equally well to the current Anscombe-

Aumann setup and to fully subjective settings, given a suitable mixture operation.

2.2.2 Mixture Neutrality and Plausible Priors

Recall that a prior P is deemed plausible if preferences are consistent with SEU on a subset

C ⊂ L of acts, and P is the only probability that yields a SEU representation of preferences
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on C. Under Axioms 1–5, consistency with SEU is characterized by one additional property,

Mixture Neutrality.7 This simplifies the formal definition of plausible priors.

Definition 2.1 (Mixture-neutral acts) Two acts f, g ∈ L are mixture-neutral (denoted

f ' g) iff,8 for every pair of lotteries y, y′ ∈ Y such that f ∼ y and g ∼ y′, and every

α ∈ [0, 1], αf + (1− α)g ∼ αy + (1− α)y′.

The connection between mixture neutrality and ambiguity is discussed in §2.2.3. The

following proposition confirms that mixture neutrality is the key property characterizing

SEU preferences in the class of preferences that satisfy Axioms 1–5. This is the case whether

axioms are applied to the entire set L of acts, or to an appropriate subset thereof.9

Proposition 2.2 Consider a preference relation � on L and a convex subset C of L that

contains all constant acts. Then the following statements are equivalent:

1. � satisfies Axioms 1-5 on C; furthermore, for all f, g ∈ C, f ' g.

2. there exists a probability charge P on (S, Σ), and a non-constant, affine function u : Y →
R, unique up to positive affine transformations, such that, for all acts f, g ∈ C, f � g if and

only if
∫

u(f(·)) dP ≥
∫

u(g(·)) dP.

Relative to the usual characterizations of SEU, an essential feature of Proposition 2.2

is the fact that uniqueness of the probability charge P is not guaranteed for arbitrary sets

C, even if preferences are non-degenerate (i.e. Axiom 2 holds). Instead, this is explicitly

required in the formal definition of plausible prior, which can finally be stated.

Definition 2.3 (Plausible Prior) Consider a preference relation � that satisfies Axioms

1–5 on L. A probability charge P on (S, Σ) is a plausible prior for � iff there exists a convex

subset C of L containing all constant acts and such that

(i) for all acts f, g ∈ C, f ' g;

(ii) P is the unique charge that provides a SEU representation of � on C.

7The Anscombe-Aumann characterization of SEU employs Axioms 1–4 plus the standard Independence
axiom; however, under Axioms 1–4, a preference satisfies the latter if and only if it satisfies Axiom 5 and
the Mixture Neutrality axiom, to be introduced momentarily.

8As usual, “iff” stands for “if and only if” in definitions.
9This result is standard if the set C in the statement equals L (or the collection of simple acts); for the

general case, see the comments following the proof of Lemma 5.11 in the Appendix.
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2.2.3 Hedging and Mixture Neutrality

Gilboa and Schmeidler [14] and Schmeidler [32] suggest that two acts f, g may fail to be

mixture-neutral if their mixtures provide a hedge against perceived ambiguity;10 conversely,

a decision-maker for whom all acts are mixture-neutral either does not perceive ambiguity,

or chooses not to respond to it.11 Consistently with this intuition, invoking Proposition 2.2

with C = L confirms that such an individual exhibits SEU preferences.

Decision models that depart from SEU to account for ambiguity differ widely in the

violations of mixture neutrality they allow; as a result, they capture a variety of different

attitudes towards ambiguity. Yet, as will be shown in §2.4, plausible priors exist for a rich

class of such models. The key behavioral assumption of this paper, “No Local Hedging”

(Axiom 6 in §2.2.4), is designed to identify preferences that admit plausible priors without

imposing a priori restrictions on ambiguity attitudes.

The basic intuition underlying the No Local Hedging axiom is close in spirit to the logic

behind Comonotonic Independence (Schmeidler [32]). As a first approximation, for a mixture

of two acts f and g to provide an effective hedge against perceived ambiguity, f should yield

“good” outcomes in states where g yields “bad” outcomes, and vice versa. If f and g yield

nearly equivalent outcomes in each state, i.e. if they are uniformly close to one another, their

mixtures arguably cannot provide an effective hedge. For this reason, Axiom 6 requires that,

loosely speaking, “nearby” act be mixture-neutral. Since it imposes only “local” restrictions

on preferences, Axiom 6 is compatible with a wide variety of “global” ambiguity attitudes,

as the results in §2.4 indicate.

This subsection motivates the formulation of Axiom 6 by fleshing out these considera-

tions. As noted above, the key observation is that the basic hedging intuition can lead to

many different patterns of departure from mixture neutrality, even for MEU preferences;

accommodating such diverse preference patters is a main desideratum of this paper.

In all examples, the set of prizes is X = {$0, $10}, and the state space S is finite. A

lottery y ∈ Y can thus be identified with the probability of receiving $10, and an act f is

represented by a tuple (f(s1), . . . , f(s|S|)) ∈ [0, 1]S: f(sn) is the probability of receiving $10

in state sn. By Axioms 1–5, the individual has EU preferences over Y , so such tuples can

10All considerations concerning MEU preferences in this subsection and the next apply to “maxmax EU”,
or 0-MEU, preferences as well (with the appropriate modifications).

11In the language of [14] and [32], mixture neutrality implies both “uncertainty aversion”and “uncertainty
appeal”, so this property may also be termed “uncertainty neutrality”. But some authors (e.g. [9]) note
that a preference for mixtures of acts vs. their certainty equivalents may not always be a good definition of
“uncertainty aversion”. For this reason, I adopt the less controversial terminology “mixture neutrality”.
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also be interpreted as utility profiles. Finally, ∆(S) is the probability simplex.

Example 1 (Ann) This is Ellsberg’s three-color-urn experiment described in the Intro-

duction, restated here for notational uniformity. Ann has MEU preferences, with priors

QA = {q ∈ ∆(S) : p(r) = 1
3
, 1

6
≤ p(g) ≤ 1

2
} (denoted P in the Introduction).

Consider the acts fg = (0, 1, 0) and fb = (0, 0, 1) and the intuitively ambiguous events

{g} and {b}. Note that fg(g) � fg(b) and fb(g) ≺ fb(b): that is, fg and fb respond in

complementary ways to realizations of the underlying uncertainty. By mixing f and g, Ann

can reduce variations in outcomes12 across the ambiguous states g and b; indeed, 1
2
fg + 1

2
fb

is constant on {g, b}. Consistently with the hedging intuition, fg 6' fb.

Example 2 (Bob) (cf. Klibanoff [20], Ex. 1). A ball is drawn from an urn containing an

equal, non-zero, but unspecified number of red and blue balls, and a non-zero, but unspecified

number of green balls; thus, S = {r, g, b}. Bob has MEU preferences, with priors QB = {q ∈
∆(S) : ε ≤ p(r) = p(b) ≤ 1−ε

2
}, for some ε > 0.

Let f = (.2, .3, .5) and f ′ = (.1, .4, .6). Note that there are no s, s′ ∈ S with f(s) � f(s′)

and f ′(s) ≺ f ′(s′): that is, f and f ′ are comonotonic (cf. [32]). Yet, f 6' f ′. This

may be intuitively explained as follows. Since the urn contains an equal (albeit unknown)

number of red and blue balls, it may be said that both f and f ′ yield the “expected”

outcome .35 conditional upon the event {r, b}; thus, abusing notation, f(g) � f({r, b}) and

f ′(g) ≺ f ′({r, b}). By analogy with Example 1, this suggests that mixtures of f and f ′

provide hedging opportunities relative to the intuitively ambiguous events {r, b} and {g}.

Informally, while Ann only cares about hedging outcomes across ambiguous states, Bob

also cares about hedging “conditional expected outcomes” across disjoint, ambiguous events.

Thus, to avoid restricting ambiguity attitudes, the proposed behavioral axiom should allow

eventwise as well as statewise hedging.

Moreover, formally defining “eventwise hedging” necessarily involves the notion of “con-

ditionally expected outcome”. If the individual’s conditional preferences are available, or

can be derived from her unconditional preferences via some updating rule, then it seems

sensible to stipulate that a lottery y(f, E) is a conditional expected outcome, or conditional

evaluation, of an act f given an event E if y(f, E) and f are indifferent conditional upon

E. Unfortunately, the literature considers several different updating rules, including prior-

by-prior Bayesian updating for MEU preferences (see Section 3.1 below for references) and

12More precisely, mixtures of f and g reduce variations in utilities—equivalently, they reduce “preference
variation” in outcomes.
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“h-Bayesian updating” for ambiguity-averse CEU preferences (Gilboa and Schmeidler [15]).

Each of these updating rules yields a potentially different notion of conditional evaluation.13

A characterization of plausible priors should arguably be robust to different choices of

updating and conditional evaluation rules. This can be achieved by restricting attention to

“nearby acts”. The basic intuition is easiest to explain if the state space is finite. Assume

that conditional preferences also satisfy Axioms 1–5, so that, in particular, if two acts f

and g are uniformly close in preference, then so are y(f, E) and y(g, E) for every event

E.14 It is then clear that, if two acts f, g are sufficiently (uniformly) close in preference,

there cannot be two events E, F such that y(f, E) � y(f, F ) and y(g, E) ≺ y(g, F ). In

other words, regardless of the notion of conditional evaluation one adopts, if two acts are

sufficiently close, they do not offer any opportunity for hedging across any pair of events.

This suggests the following assumption:

for any sequence {fk} of acts that converges to an act f uniformly in preference,

there is a subsequence {fk(`)} such that fk(`) ' fk(`′) for all `, `′.

Except for a modification that will be discussed in the next subsection, this is the content of

Axiom 6. As intended, this formulation accommodates both statewise and eventwise hedging,

and does not require committing to a specific conditional evaluation rule. It requires that

mixture neutrality hold only for pairs of acts that arguably offer no hedging opportunities.

If the state space S, and hence the sigma-algebra Σ, are infinite, it is no longer possible

to ensure that, in general, if two acts f and g are “close enough” they do not offer eventwise

hedging opportunities. However, if conditional preferences satisfy Axioms 1–5, it turns out

that the corresponding conditional evaluations converge uniformly in the conditioning event

E.15 As a consequence, if f and g are sufficiently close, but there exist disjoint events E, F

such that y(f, E) � y(f, F ) and y(g, E) ≺ y(g, F ), it must nevertheless be the case that

y(f, E) and y(f, F ) and, respectively, y(g, E) and y(g, F ) are nearly indifferent (i.e. “close

in preference”: cf. Footnote 12). Thus, Axiom 6 can be interpreted as requiring that mixture

neutrality hold when hedging opportunities are “small” (if they exist at all).

13In Example 2, the choice of QB ensures that 0.35 is the conditional evaluation of both f and f ′ given
{r, b} according to both prior-by-prior Bayesian updating, and to any h-Bayesian update rule.

14 This is true for most updating rules, under Axioms 1–5; see Sec. 6.4 of the Online Appendix for details.
15The last assertion of Lemma 5.1 in the Appendix implies that, if preferences conditional upon E satisfy

Axioms 1–5 (and agree with unconditional preferences on Y ), |u(y(fk, E))−u(y(f,E))| ≤ sups∈S |u(fk(s))−
u(f(s))|; this implies the claim.
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2.2.4 Robust Mixture Neutrality and the No Local Hedging Axiom

A final issue must be addressed before Axiom 6 can be formally stated. While mixture

neutrality is always associated with absence of hedging opportunities for MEU preferences,

this is not the case for more general preferences that satisfy Axioms 1–5.

Example 3 (Chloe) Consider draws from a four-color urn of unknown composition; let

S = {r, g, b, w}, where w is for “white”. Chloe has α-MEU preferences (cf. the Introduction),

with α = 3
4

and set of priors QC = ∆(S). These preferences satisfy Axioms 1–5.

Now let f =
(
1, 2

3
, 1

2
, 1

2

)
and f ′ =

(
1
2
, 1

2
, 1, 2

3

)
. Under a mild “consequentialism” condition

(cf. Axiom 7 in Sec. 3.1) that is satisfied by all the updating rules described after Ex. 2,

y(f, {r, g}) � y(f, {b, w}) and y(f ′, {r, g}) ≺ y(f ′, {b, w}); furthermore, the events {r, g} and

{b, w} are intuitively ambiguous.16 Hence, it seems plausible to expect violations of mixture

neutrality; yet, as may be verified, f ' f ′.

On the other hand, the mixture neutrality of f and f ′ is not “robust”. Consider for

instance a small perturbation of f , such as the act fε =
(
1− ε, 2

3
, 1

2
, 1

2

)
for a suitable small

ε > 0. As above, y(fε, {r, g}) � y(fε, {b, w}) and y(f ′, {r, g}) ≺ y(f ′, {b, w}); but now,

consistently with the hedging intuition, it may be verified that fε 6' f ′.

Example 3 indicates that non-MEU preferences allow for knife-edge instances of mixture-

neutrality for acts that do provide hedging opportunities according to the preceding discus-

sion. To rule out such instances, mixture neutrality must be robustified.

First of all, for two acts f and g to be “robustly” mixture-neutral, small perturbations

of f should not affect mixture neutrality with g: if hk → f , then hk ' g for k large.

Furthermore, note that f ' g implies that f ' γf + (1 − γ)g for all γ ∈ (0, 1). This

is consistent with the hedging interpretation: if mixtures of f and g provide no hedging

opportunities, then neither do mixtures of f and γf + (1 − γ)g. But if {hk} converges

uniformly to f in preference, for k large, hk and γf + (1− γ)g should also offer no hedging

opportunities; thus, it seems plausible to also require that hk ' γf + (1− γ)g for k large.

Definition 2.4 (Robustly mixture-neutral acts) Two acts f, g ∈ L are robustly mixture-

neutral (written f ≈ g) iff, for every sequence {hk} ⊂ L such that hk → f or hk → g, and

for every γ ∈ [0, 1], there exists K such that hk ' γf + (1− γ)g for all k ≥ K.

Notice that f ≈ g implies f ' g (consider the sequence {hk} given by hk = f for all k):

that is, robust mixture neutrality is a strengthening of mixture neutrality, as intended.

16 These events are ambiguous according to the definition provided by Ghirardato and Marinacci [13]. The
example can be modified to ensure that they are also ambiguous in the sense of Epstein and Zhang [10].
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The key behavioral axiom in this paper can finally be stated.

Axiom 6 (No Local Hedging) For all sequences {fk} ⊂ L and acts f ∈ L such that

fk → f , there exists a subsequence {fk(`)} such that fk(`) ≈ fk(`′) for all `, `′.

Axiom 5 (Constant-act Independence), the notion of mixture neutrality, and hence Axiom

6 all involve forms of invariance of certain preference patterns to mixtures. However, Axiom

5 entails a global restriction on preferences, whereas, for the reasons discussed above, Axiom

6 has a distinctly local character.

2.3 The Main Result

One last definition is required before stating the main result. The utility profile of an act

f ∈ L is an element of the space B(S, Σ) of bounded, Σ-measurable real functions on S.

Theorem 2.6 states that, under Axioms 1–5 and 6, B(S, Σ) can be covered by finitely many

sets C1, . . . , CN that satisfy certain algebraic and topological properties; to each such set

Cn is associated a unique probability charge Pn on (S, Σ); a representation of preferences

is obtained by associating to every act f whose utility profile u ◦ f lies in Cn the integral∫
u ◦ f dPn. For ease of reference, the properties of the sets C1, . . . , Cn are listed in Def. 2.5.

Definition 2.5 A finite collection C1, . . . , CN of subsets of B(S, Σ) is a proper covering iff

1.
⋃

n Cn = B(S, Σ);

2. for every n = 1, . . . , N , Cn is non-empty and equal to the closure of its interior; further-

more, for n, m ∈ {1, . . . , N} such that n 6= m, Cn ∩ Cm has empty interior;

3. for every n = 1, . . . , N , if a ∈ Cn, α, β ∈ R, and α ≥ 0, then αa + β ∈ Cn;

4. for every n = 1, . . . , N : every infinite subset C ⊂ Cn contains a countably infinite

collection {ak} such that, for all k and `, and all γ ∈ [0, 1], there exists ε > 0 such

that, for all b ∈ B(S, Σ),

min (‖b− ak‖, ‖b− a`‖) < ε, b ∈ Cn ⇒ ∀λ ∈ (0, 1), λb+(1−λ)[γak+(1−γ)a`] ∈ Cn.

(4)

Consider Property 4 first. The sets Cn are not required to be convex; indeed, in general,

for common multiple-priors decision models such as α-MEU with α ∈ (0, 1), they are not.

Property 4 instead requires a “local” version of convexity: every infinite subset of Cn contains
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a countable collection {ak} with the property that, for any k and `, the segment joining points

close to ak or a` with any point between ak and a` lies in Cn.

Two observations are in order. First, a simple sufficient condition for Property 4 to hold

can be provided: see Section 5.1.2 in the Appendix for the proof.

Remark 1 If a set Cn is a union of finitely many closed convex subsets of B(S, Σ), then it

satisfies Property 4.

As will be demonstrated in the next subsection, many known decision models consistent with

the axioms proposed here satisfy the simpler (stronger) sufficient condition in Remark 1.

Second, Property 4 is not particularly restrictive by itself. For instance, the set B(S, Σ)

can always be covered by uncountably many sets of the form {αa + β : a ∈ B(S, Σ), α, β ∈
R, α ≥ 0}: that is, cones of affinely related functions. Since these sets are convex, Remark

1 implies that each such set satisfies Property 4 in Definition 2.5.

Property 2 implies that each Cn has non-empty interior, which ensures that unique prob-

abilities can be identified. Also note that the interior of a convex set A in a linear topological

space is dense in A, if it is non-empty (Holmes [17], Theorem 11.A); this again suggests that

Def. 2.5 ensures that the sets Cn enjoy some of the properties of convex sets, even though

they may not actually be convex.

Property 3 states that every Cn is closed under non-negative affine transformations; in

particular, it contains all constant functions, and all non-negative multiples of its elements.

This corresponds to constant-linearity of the representation, and hence to Axiom 5.

The main result of this paper can finally be stated.

Theorem 2.6 Let � be a preference relation on L. The following statements are equivalent:

1. � satisfies Axioms 1–5 and 6;

2. There exist an affine function u : Y → R, a proper covering C1, . . . , CN , and a

collection of probability charges P1, . . . , PN such that, for all n, m ∈ {1, . . . , N}:
(i) n 6= m implies Pn 6= Pm; however, for all a ∈ Cn ∩ Cm,

∫
a dPn =

∫
a dPm;

(ii) for all f, g ∈ L, if u ◦ f ∈ Cn and u ◦ g ∈ Cm, then

f � g ⇐⇒
∫

u ◦ f dPn ≥
∫

u ◦ g dPm. (5)

Furthermore, in Statement 2:

(a) u is unique up to positive affine transformations;

(b) for every n ∈ {1, . . . , N}, if a probability charge Q is such that, for all f, g ∈ L with

u ◦ f, u ◦ g ∈ Cn, f � g iff
∫

u ◦ fdQ ≥
∫

u ◦ gdQ, then Q = Pn; and
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(c) if a proper convering D1, . . . , DM satisfies (i) and (ii) jointly with a collection of

probability charges Q1, . . . , QM , then M = N and there is a permutation {π(1), . . . , π(N)}
of {1, . . . , N} such that Dn = Cπ(n), hence Qn = Pπ(n), for all n = 1, . . . , N .

2.4 Corollaries and Interpretation

In light of Theorem 2.6, a proper covering may be viewed as a collection of “menus”; the

decision-maker has standard SEU preferences when comparing items on the same menu (i.e.

“locally”), but different considerations may guide her choices from different menus.17 By

claim (c) in Theorem 2.6, the proper covering C1, . . . , CN is uniquely determined (up to

relabeling) by properties (i) and (ii) in Statement 2, and hence ultimately by preferences.

Each probability charge Pn appearing in Statement 2 is a plausible prior. Claim (b) in

the Theorem asserts that every Pn is uniquely determined by preferences over acts whose

utility profile lies in Cn; moreover, the set Cn need not be convex, but it does contain convex

subsets that include all constant functions, as required by Def. 2.3. Furthermore, it can be

shown that no other charge on (S, Σ) can be a plausible prior for �:

Corollary 2.7 Under the equivalent conditions of Theorem 2.6, the plausible priors for �
are the charges P1, . . . , PN in Statement 2.

Henceforth, I will employ the expression plausible-priors preference to indicate a binary

relation � on L for which the equivalent statements of Theorem 2.6 are true.

As noted in the Introduction, a rich set of MEU, α-MEU and CEU preferences permit the

elicitation of plausible priors. Conceptually, this suggests that, within the class of preferences

that satisfy Axioms 1–5, Axiom 6 does not restrict attitudes towards ambiguity, and hence is

compatible with a variety of decision models. The following corollaries provide the details.

Corollary 2.8 Let � be an α-MEU preference, and let Q be the corresponding set of

priors. If Q is the weak∗-closed, convex hull of finitely many distinct probability charges

{Q1, . . . , QN}, then � satisfies Axioms 1–5 and 6; the converse is also true if α 6= 1
2
. Let

M⊂ {1, . . . ,M}2 be defined by

M =

{
(n, m) : Qn ∈ arg min

k

∫
a dQk, Qm ∈ arg max

k

∫
a dQk for some a ∈ B(S, Σ)

}
:

the set of plausible priors for � is {αQn + (1− α)Qm : (n, m) ∈M}.
17I owe this interpretation to Mark Machina.

18



In particular, a MEU preference satisfy Axioms 1–6 if and only if its set of priors is the

convex hull of finitely many charges Q1, . . . , QN ; the latter are its plausible priors.

CEU preferences (Schmeidler [32]) always satisfy the plausible-priors axioms, provided

the state space S is finite (this assumption is not necessary for α-MEU preferences). Let

v : 2S → [0, 1] be a capacity on S: that is, A ⊂ B ⊂ S imply v(A) ≤ v(B), and v(∅) =

0 = 1 − v(S). Assume that S = {s1, . . . , sM}, and let ΠM be the set of all permutations

(π1, . . . , πM) of {1, . . . ,M}. Recall that every permutation π identifies a maximal cone of

comonotonic functions: Cπ = {a ∈ B(S, Σ) : a(sπ1) ≥ . . . ≥ a(sπM
)}.

Corollary 2.9 Assume that S is finite and let Σ = 2S. Let � be a CEU preference over L,

and, for all permutations π ∈ ΠM , let Pπ be the probability distribution defined by

Pπ(sπi
) = v({sπ1 , . . . , sπi

})− v({sπ1 , . . . , sπi−1
}).

Then � satisfies Axioms 1–5 and 6, and {Pπ : π ∈ ΠM} is its collection of plausible priors.

As noted after Def. 2.5, each set Cn has non-empty interior. This is not a necessary conse-

quence of the definition of a plausible prior. On the other hand, it ensures that the plausible

priors in Theorem 2.6 can be interpreted as the outcome of an elicitation “procedure”.

Fix n ∈ {1, . . . , N}, let g ∈ L be such that u ◦ g is an interior point of Cn, and choose

prizes x, x′ ∈ X such that x � x′. For every E ∈ Σ, let bE be the binary act that yields prize

x at states s ∈ E, and prize x′ elsewhere. Since u ◦ g is in the interior of Cn, for α ∈ (0, 1)

sufficiently close to 1, u ◦ [αg + (1− α)bE] ∈ Cn; moreover, there exists πE ∈ [0, 1] such that

αg + (1− α)bE ∼ αg + (1− α)[πEx + (1− πE)x′]. It is then easy to see that πE = Pn(E).

The “procedure” just described should be viewed merely as a thought experiment: in

practice, identifying points in the interior of each set Cn seems non-trivial. This “procedure”

does suggest, however, a sense in which plausible priors obtained in Theorem 2.6 exhibit

familiar properties of standard SEU priors, even beyond the requirements of Definition 2.3.

The following Corollary confirms that, under the axioms proposed here, robust mixture

neutrality reflects a strong notion of absence of hedging opportunities: loosely speaking, if

f ≈ g, then f and g belong to a set of acts over which preferences are consistent with SEU.

Corollary 2.10 Under the equivalent conditions of Theorem 2.6, for all f, g ∈ L, f ≈ g

implies u ◦ f, u ◦ g ∈ Cn for some n ≥ 1.

Notice that the converse of this Corollary may be false: if some set Cn is not convex,

then it is possible to find f, g ∈ L such that u ◦ f, u ◦ g ∈ Cn, but the segment joining them

does not lie in Cn. This, in turn, implies that f 6≈ g.
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Finally, Theorem 2.6 also implies that preferences are fully determined by plausible priors.

To clarify this point, it is useful to construct a functional representation of overall preferences

on the basis of results in Theorem 2.6. Begin by noting the following Corollary:

Corollary 2.11 Under the equivalent conditions of Theorem 2.6, for all acts f, g ∈ L, if∫
u ◦ f dPn ≥

∫
u ◦ g dPn for all n = 1, . . . , N , then f � g.

Now let R = {(
∫

a dPn)n=1...N : a ∈ B(S, Σ)} be the collection of N -vectors of integrals

of functions with respect to each plausible prior obtained in Theorem 2.6. Notice that R is

a vector subspace of RN that includes the diagonal {(γ, . . . , γ) : γ ∈ R}.
Corollary 2.11 makes it possible to construct a representation of preferences that employs

the plausible priors P1, . . . , PN . Specifically, define a functional V : R→ R by

∀a ∈ B(S, Σ), V

((∫
a dPn

)
n=1...N

)
=

∫
a dPn∗ , (6)

where n∗ is such that a ∈ Cn∗ . Corollary 2.11 ensures that this definition is well-posed;

furthermore, by Property (i) in Statement 2 of Theorem 2.6, V is uniquely determined.18

Clearly, for all acts f, g ∈ L, f � g iff
((∫

u ◦ f dPn

)
n=1...N

)
≥ V

((∫
u ◦ g dPn

)
n=1...N

)
: that

is, the functional V and the plausible priors P1, . . . , Pn represent preferences.

In accordance with the discussion of multiple-prior decision rules in the Introduction,

the map V can be thought of as “selecting” which of the priors P1, . . . , PN can be used to

evaluate a given act f .19 Thus, consistently with the intuitive interpretation of multiple-

prior models, the selection criterion formalized by the map V can be viewed as reflecting the

individual’s attitudes towards ambiguity.

3 “SEU-like” properties of plausible-prior preferences

3.1 Prior-by-prior Bayesian updating

Plausible-priors preferences inherit a key property of SEU preferences: they are “closed under

Bayesian updating”. More precisely, consider an event E ∈ Σ; interpret it as information the

decision-maker may receive in the dynamic context under consideration.20 Correspondingly,

18Furthermore, V is normalized, i.e. V (1 . . . 1) = 1; monotonic: ϕn ≥ ψn for all n implies V (ϕ) ≥ V (ψ);
c-linear : for all α, β ∈ R with α ≥ 0, and ϕ ∈ R, V (αϕ+ β) = αV (ϕ) + β.

19In Examples 1 and 2, N = {1, 2} and V (ϕ) = minn ϕn. In Example 3, N = {1, . . . , 12}, and the
functional V can be explicitly described by enumerating the possible orderings of the components of the
vector ϕ, and associating with each such ordering the appropriate prior.

20For instance, E may correspond to the information that a given node in a decision tree has been reached.
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consider a conditional preference relation �E on the set L of acts; the ranking f �E g is

to be interpreted as stating that the decision-maker would prefer f to g, were she to learn

that E has occurred. This section provides an axiomatic connection between conditional and

unconditional preferences:21 if unconditional preferences satisfy the equivalent conditions of

Theorem 2.6, and if unconditional and conditional preferences satisfy two joint consistency

requirements, then: (1) conditional preferences are uniquely determined, and also satisfy the

equivalent conditions of Theorem 2.6; and (2) the set of “plausible posteriors” representing

conditional preferences is related to the set of plausible priors via Bayesian updating.

Additional notation will be needed. Given any pair of acts f, g ∈ L, let

fEg(s) =

{
f(s) if s ∈ E;

g(s) if s /∈ E.
(7)

As is the case for SEU preferences, updating is defined only for events that are “relevant” to

the decision-maker’s preferences. The following definition indicates the relevant restriction.

Definition 3.1 An event E ∈ Σ is non-null iff, for all acts f ∈ L, all outcomes y, y′ ∈ Y

such that y � y′, and all γ ∈ (0, 1), γf + (1− γ)[y E y′] � γf + (1− γ)y′.

Recall that an event E is Savage-null if, for all acts f, g, f(s) ∼ g(s) for all s 6∈ E implies

f ∼ g. If E satisfies Def. 3.1, it is also not Savage-null; but the converse is false in general.22

Turn now to the key behavioral restrictions, stated as assumptions regarding an arbitrary

conditional preference �E and the unconditional preference �. First, preferences conditional

upon the event E are not affected by outcomes at states outside E:

Axiom 7 (Consequentialism) For every pair of acts f, h ∈ L: f ∼E fEh.

Second, a weakening of the standard dynamic consistency axiom is imposed. Its inter-

pretation (and the relationship with other consistency axioms) is discussed at length in [33].

Loosely speaking, Axiom 8 imposes consistency in situations where hedging considerations

are arguably less likely to lead to preference reversals.

Axiom 8 (Dynamic c-Consistency) For every act f ∈ L and outcome y ∈ Y :

f �E y, f(s) � y ∀s ∈ Ec ⇒ f � y;

f �E y, f(s) � y ∀s ∈ Ec ⇒ f � y.

21The axioms and results are based on Siniscalchi [33].
22Let S = {s1, s2} and X = {0, 1}, and consider MEU preferences with priors ∆(S). Then {s1} is not

Savage-null, because, in the notation of the preceding Section, (0, 1) ≺ (1, 1); however, 1
2 (1, 0) + 1

2 (1, 0) =
(1, 0) ∼ ( 1

2 , 0) = 1
2 (1, 0) + 1

2 (0, 0), so {s1} does not satisfy Def. 3.1 for f = (1, 0), y = 1 and y′ = 0.
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Moreover, if the preference conditional on E is strict, then so is the unconditional preference.

The dominance conditions f(s) � y and f(s) � y are stated in terms of the unconditional

preference; equivalently, one could assume that conditional and unconditional preferences

agree on Y , and state the dominance conditions in terms of �Ec . Also note that strict

preference conditional on the event E is required to imply strict unconditional preference.

Theorem 3.2 Consider an event E ∈ Σ. Suppose the preference � satisfies Axioms 1–5 and

6, and assume that E is non-null. Let � be represented by u, C1, . . . , Cn and P1, . . . , PN as in

Theorem 2.6. Finally, assume that �E satisfies Axiom 1. Then the following are equivalent:

1. �E satisfies Axiom 7, and �, �E jointly satisfy Axiom 8;

2. �E satisfies the equivalent conditions of Theorem 2.6; in particular, there exists a

proper covering CE
1 , . . . , CE

K and a subset {n1, . . . , nK} ⊂ {1, . . . , N} of indices such that,

for all k, ` ∈ {1, . . . , K} and f, g ∈ L with u ◦ f ∈ CE
k and u ◦ g ∈ CE

` ,

f �E g ⇐⇒
∫

u ◦ f dPnk
(·|E) ≥

∫
u ◦ g dPn`

(·|E).

Moreover, for every k ∈ {1, . . . , K} and a ∈ CE
k ,

γ =

∫
a dPnk

(·|E) =⇒ ∀m s.t. 1Ea + 1Ecγ ∈ Cm,

∫
[1Ea + 1Ecγ] dPm = γ. (8)

A few remarks are in order. First, observe that no restriction is imposed on the uncon-

ditional plausible-priors preference �; furthermore, the unconditional preference �E is only

assumed to be a weak order. Thus, the Theorem ensures that every plausible-priors prefer-

ence relation can be uniquely updated in a manner consistent with Axioms 7 and 8; moreover,

the resulting conditional preference necessarily has an analogous “plausible-posteriors” rep-

resentation. Conceptually, this is perhaps the most important part of Theorem 3.2, because

it indicates that the class of plausible-priors preferences is closed under updating.

Second, every posterior is obtained by updating one of the priors P1, . . . , PN . However,

not every plausible prior generates a plausible posterior. Intuitively, certain ex-ante plausible

probabilistic models of the underlying uncertainty might have to be discarded.

Third, the condition in Eq. (8) characterizes the posterior evaluation of a function in

terms of the prior evaluation of a related function. To clarify, consider the set R and the

functional V : R → R defined after Corollary 2.11; let RE and VE : RE → R be the cor-

responding set and functional for the conditional preference �E. Thus, V ((
∫

a dPn)n=1,...,N)

is the unconditional evaluation of the function a, and VE((
∫

a dPnk
(·|E))k=1,...,K) is its eval-

uation conditional upon E. Then, Eq. (8) states that, for any function a ∈ B(S, Σ),
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γ = VE((
∫

a dPnk
(·|E))k=1,...,K) solves the equation

V

((∫
[1Ea + 1Ecγ] dPn

)
n=1,...,N

)
= γ (9)

(and, as shown in the Appendix, the solution is unique).

A similar “fixed point” condition has been used as a definition of posterior preferences in

order to derive Bayesian updating for sets of priors (cf. Jaffray [18], Pires [30] and references

therein). On the other hand, Theorem 3.2 shows that Eq. (8) is a result of consequentialism

and consistency axioms on prior and posterior preferences.

3.2 Probabilistic Sophistication implies SEU

According to the intuitive interpretation discussed in the Introduction, a multiplicity of

priors arises out of the decision-maker’s perception of ambiguity. However, as is well-known,

preferences that admit a non-degenerate multiple-prior representation may nevertheless be

probabilistically sophisticated in the sense of Machina and Schmeidler [24].23 This possibility

suggests that, for some preferences, a multiplicity of priors may reflect something other than

a concern for ambiguity—namely, a form of “probabilistic risk aversion”.

This section shows that, under suitable regularity conditions, this possibility does not

arise if the axioms proposed here hold: a probabilistically sophisticated plausible-prior pref-

erence is consistent with SEU. In other words, under the proposed axioms, a multiplicity of

priors can be safely interpreted as reflecting perceived ambiguity.

The main result of this section is true regardless of whether the decision setting under

consideration features (a) roulette lotteries à la Anscombe-Aumann and objective mixtures,

defined as convex combinations of such lotteries, or (b) a rich outcome space and subjective

mixtures, as discussed at the end of Sec. 2.1. However, the result is mainly of interest

in a fully subjective setting, as in (b): within the objective/subjective Anscombe-Aumann

decision framework, Axioms 1–5 imply that preferences over lotteries are consistent with EU

maximization, so a multiplicity of priors necessarily reflects ambiguity.24 Thus, throughout

23 For example, let S = [0, 1] and consider a CEU preference � represented by the capacity ν given by
ν(E) = [λ(E)]2 for all Borel sets E, where λ denotes Lebesgue measure; since ν is convex, � also admits
a MEU representation. Incidentally, λ might perhaps be viewed as a “plausible non-SEU prior” for � (i.e.
a plausible prior for a decision-maker with non-SEU risk attitudes). Thus, this example confirms that, for
reasons discussed in the Introduction, Def. 2.3 aims at capturing plausible SEU priors.

24Loosely speaking, a probabilistically-sophisticated decision-maker ranks acts by “reducing” them to
lotteries, and then ordering the latter by means of some preference functional V (see [25] for details). In the
Anscombe-Aumann setup, Axioms 1–5 imply that V is the EU functional.
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this section, we focus on a fully subjective environment where objective lotteries are not

available, and hence cannot be employed to pin down the decision-maker’s risk preferences

independently of her perception of and attitudes towards ambiguity. Formally:

Assumption 1 (i) Acts are maps from S to the set X of prizes; (ii) there exists a convex-

ranged function u : X → R, unique up to positive affine transformations, such that, for

all x, x′ ∈ X, x � x′ if and only if u(x) ≥ u(x′); (iii) there exists a mixture operator

⊕ : X × [0, 1] × X → X such that, for all α ∈ [0, 1] and x, x′ ∈ X, u(αx ⊕ (1 − α)x′) =

αu(x) + (1− α)u(x′).

As discussed in Sec. 2.1, under these assumptions, a characterization of plausible-priors

preferences is obtained simply by replacing objective mixtures with the subjective mixture

operator ⊕ in Axioms 1–5 and 6. Also, it is possible to interpret these axioms in a manner

consistent with both objective and subjective mixtures; in particular, this was explicitly done

in Section 2 for Axioms 5 and 6. For basic assumptions on preferences leading to properties

(ii) and (iii) in Assumption 1, see the references mentioned at the end of Sec. 2.1.

An act f ∈ L is deemed simple if {x : ∃s ∈ S, f(s) = x} is finite.

Definition 3.3 A preference relation � is probabilistically sophisticated (with respect to µ)

iff there exists a probability charge µ on (S, Σ) such that, for all simple acts f, g ∈ L,[
∀x ∈ X, µ({s : f(s) � x}) ≤ µ({s : g(s) � x})

]
⇒ f � g,

with strict preference if strict inequality holds for at least one x∗ ∈ X.

A probabilistically sophisticated decision-maker thus ranks acts in accordance with first-

order stochastic dominance with respect to a charge µ. In particular, she is indifferent among

acts that induce the same distribution over prizes given µ. Furthermore, the probability µ

represents her “qualitative beliefs”, as revealed by preferences over binary acts.

Finally, three regularity conditions are required. First, although Def. 3.3 does not require

this, the axiomatization of probabilistic sophistication provided by Machina and Schmeidler

[24] delivers a convex-ranged probability charge µ: that is, for every E ∈ Σ and α ∈ [0, 1],

there exists F ∈ Σ such that F ⊂ E and µ(F ) = αµ(E). Proposition 3.4 below requires

that µ be convex-ranged.25 Note that this implies that S is infinite.

25I emphasize that the assumption that µ is convex-ranged is essential for Proposition 3.4 to hold. However,
to the best of my knowledge, the only characterization of probabilistically sophisticated preferences that does
not deliver a convex-ranged charge is [25], which utilizes objective lotteries. As noted above, the claim is
trivially true under Axioms 1–5 in that setup.
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Second, it is necessary to ensure that both µ and the plausible priors P1, . . . , PN be

countably additive. To this end, a version of the standard monotone continuity axiom (cf.

e.g. Epstein and Zhang [10]) is assumed to hold. Say that a sequence of acts {fk}k≥1 ⊂ L

converges monotonely in preference to an act f ∈ L, denoted “fk ↓ f”, if and only if (i) for

all k, fk � fk+1, and (ii) for all y ∈ Y such that y � f , there is k such that y � fk.

Axiom 9 (Monotone Continuity) Consider a sequence of acts {fk}k≥1 ⊂ L and an act

f ∈ L. If fk(s) ↓ f(s) for all s, then fk ↓ f .

Third, a structural assumption on the measurable space (S, Σ) is required. Specifically,

(S, Σ) is assumed to be a standard Borel space (cf. e.g. Kechris [19], Def. 12.5): there exists a

separable and completely metrizable topology τ on S such that Σ is the Borel sigma-algebra

generated by τ . All Borel subsets of Euclidean space Rn are standard Borel spaces, as are

many spaces of functions that arise in the theory of continuous-time stochastic processes.

The main result of this section can now be stated.

Proposition 3.4 Suppose that (S, Σ) is a standard Borel space and Assumption 1 holds;

let � be a plausible-priors preference that satisfies Axiom 9. If � is probabilistically sophis-

ticated with respect to a convex-ranged probability charge µ, then µ is the only plausible

prior for �. Consequently, � is a SEU preference.

Marinacci [26] provides a related result for α-MEU preferences that satisfy a version of

Monotone Continuity. Specifically, he shows that, if all priors in the α-MEU representation

assign the same probability p ∈ (0, 1) to some event A, then preferences are probabilistically

sophisticated if and only if they are SEU. Thus, “collapses to SEU” can obtain for other

preferences that satisfy Axioms 1–5.

4 Discussion

4.1 Preferences without Plausible Priors

This subsection discusses an example of MEU preferences for which plausible priors cannot

be elicited, because the uniqueness requirement in Def. 2.3 cannot be satisfied. Notation

and assumptions about outcomes are as in the examples of Section 2.

Example 4 (Daphne) Let S = {s1, s2, s3}; Daphne is a MEU decision-maker with priors

Q = {q ∈ ∆(S) :
∑

i=1,2,3[q(si)− 1
3
]2 ≤ ε2} for ε ∈ (0, 1√

6
]. Graphically, Q is a circle of radius

ε in the simplex in R3, centered at the uniform distribution on S. Corollary 2.8 implies that
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� is not a plausible-priors preference, but a stronger statement is true: no plausible prior

can be elicited. Note that, for this preference, f ' g if and only if f and g are affinely

related, i.e. iff f(s) = αg(s) + β for some α, β ∈ R with α ≥ 0.26 Now let C be any maximal

collection of affinely related acts. Note that there is a unique prior qC ∈ Q that minimizes∫
f dq over Q for all f ∈ C. It is clear that C satisfies Part (i) in Def. 2.3; however, it does

not satisfy Part (ii): any probability q on S that satisfies
∫

f dq =
∫

f dqC for a non-constant

act f ∈ C also satisfies
∫

g dq =
∫

g dqC for any other act g ∈ C, because f and g are affinely

related. Thus, there exists a continuum of probabilities that represent preferences on C.

In this example f ' g (if and) only if f and g are affinely related, so it is easy to see that

only constant acts are robustly mixture neutral. Hence, Axiom 6 is violated in a relatively

trivial sense. However, the preferences in Example 4 also violate much weaker assumptions.

For instance, Axiom 6 implies that, whenever fk → f , there is K such that fk ' f for k ≥ K

(cf. Lemma 5.8 in the Appendix). Yet, Daphne’s preferences do not satisfy this property.

Since the state space is finite, the discussion preceding Axiom 6 suggests that consid-

erations other than hedging against ambiguity determine Daphne’s violations of mixture

neutrality. In any case, Daphne behaves very differently from a SEU decision-maker, even

“locally”: mixture neutrality is violated for any pair of acts that are not affinely related, no

matter how close in preference. By way of contrast, a plausible prior can only be elicited if

the individual behaves “as if” he had unique “local” SEU preferences.

I emphasize that, even if a preference does not admit plausible priors, it may allow

for alternative, behaviorally-based interpretations of sets of probabilities appearing in its

representation. For instance, Wang [34] axiomatizes an entropy-based multiple-priors model.

Other decision models (e.g. CEU) may have natural interpretations that are unrelated to

probabilistic priors, and as such are not affected by the considerations in the Introduction.

4.2 Related Literature

4.2.1 Probabilistic Representations of Ambiguity

Sets of probabilities provide an intuitively appealing representation of ambiguity in the α-

MEU decision model. Ghirardato, Maccheroni and Marinacci [11, GMM henceforth] and

Nehring [29] formalize this key insight, and show that it applies to a broader class of prefer-

ences. GMM take as primitive a preference relation over acts that satisfies Axioms 1–5, and

26In general, f and g are affinely related if u ◦ f = αu ◦ g + β, with α, β as above. But recall that, for all
examples, X = {$0, $10}, so Y can be identified with [0, 1] and it is w.l.o.g. to assume that u(y) = y.
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derive from it an auxiliary, incomplete relation �∗ that is intended to capture “unambigu-

ous” comparisons of acts; they then show that �∗ admits a representation à la Bewley [3]:

there exists a set Q of probability charges such that, for all acts f, g ∈ L,

f �∗ g ⇔ ∀Q ∈ Q,

∫
u ◦ f dQ ≥

∫
u ◦ g dQ. (10)

Loosely speaking, Nehring takes as primitive both a preference relation � on acts, and an

incomplete unambiguous likelihood relation D on events; he then axiomatically relates the

two, and provides a Bewley-style representation of D analogous to Eq. (10). Both papers

suggest that a non-singleton set Q is associated with ambiguity; GMM and Nehring then

develop these ideas in several, complementary directions.

Thus, both GMM and Nehring identify a set of probabilities that, as a whole, provides a

specific representation of “unambiguous” preferences and beliefs. This is appropriate for their

purposes, but does not achieve the objectives of the present paper: it is not intended to deliver

priors that can be deemed “plausible” according to the stringent behavioral criteria set forth

in Def. 2.3. Specifically, the identification issues highlighted in the Introduction for MEU

priors apply verbatim to sets of probabilities in the representation of Bewley preferences such

as�∗ (and, by analogy, D). Such sets are identified by the “functional-form” assumption that

they represent �∗ (or D) according to Eq. (10); but, just like a MEU preference, a Bewley

preference admits alternative representations, characterized by different sets of priors.27

These considerations do not invalidate the insight that ambiguity can be represented

via sets of probabilities, or the related developments that are the main focus of GMM and

Nehring. Moreover, it can be shown that, under the additional axioms provided in the

present paper, the sets identified by GMM and Nehring can be obtained as the weak∗ closed,

convex hull of the set of plausible priors delivered by Theorem 2.6. However, as in the case

of MEU preferences, if Axiom 6 does not hold, the intuitive interpretation of the elements

of Q as possible probabilistic models of the underlying uncertainty may be problematic.

Also, note that a probabilistically sophisticated preference may give rise to a non-singleton

set Q in the GMM setup. By Proposition 3.4, this is never the case if Axiom 6 and the

regularity conditions in Sec. 3.2 hold.

4.2.2 Other Related Literature

Castagnoli and Maccheroni [6] (see also [7]) explicitly assume that preferences satisfy the

Independence axiom when restricted to exogenously specified convex sets of acts, and derive a

27Section 6.2 in the Online Appendix discusses Bewley preferences and provides examples.
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representation analogous to Eq. (5); the corresponding probabilities are not unique. By way

of contrast, the approach adopted here entails deriving a proper covering from preferences,

and ensuring that the corresponding probabilities are unique.

Machina [23] investigates the robustness of “the analytics of the classical [i.e. SEU]

model... to behavior that departs from the probability-theoretic nature of the classical

paradigm.” [23, p. 1; italics added for emphasis]. Among other results, Machina shows

(Theorem 4, p. 34) that it is sometimes possible to associate with a specific act f0 a local

probability measure µf0 that represents the decision-maker’s “local revealed likelihood rank-

ings” and, jointly with a local utility function Uf0 , her response to event-differential changes

in the act being evaluated. However, he is careful to point out that “the existence of a local

probability measure µf0 at each f0 should not be taken to imply the individual has conscious

probabilistic beliefs that somehow depend upon the act(s) being evaluated.” (p. 35; italics in

the original). This is fully consistent with the point of view advocated in the present paper:

a probability µ can be a useful analytical tool to model certain properties (e.g. responses to

differential changes) of the mathematical representation of preferences; however, for µ to be

deemed a “plausible prior”, additional behavioral conditions must be met.

5 Appendix

5.1 Proof of Theorem 2.6.

5.1.1 Numerical Representation of preferences and restatement of the axioms

Most proofs for this subsection are in the Online Appendix.

Lemma 5.1 The preference relation � satisfies Axioms 1, 2, 3, 4 and 5 if and only if there

exists a non-constant affine function u : Y → R, unique up to positive linear transformations,

and a unique, normalized, monotonic and c-linear functional I : B(S, Σ) → R, such that, for

all f, g ∈ L, f � g iff I(u ◦ f) ≥ I(u ◦ g). Furthermore, u can be chosen so u(Y ) ⊃ [−1, 1].

Finally, for all a, b ∈ B(S, Σ), |I(a)− I(b)| ≤ ‖a− b‖.

Throughout the remainder of the appendix, u and I denote a utility function and, re-

spectively, a functional, with the properties indicated in Lemma 5.1.

Abusing notation, for functions a, b ∈ B(S, Σ), a ' b iff I(αa + (1− α)b) = αI(a) + (1−
α)I(b) for all α ∈ [0, 1]. Similarly, a ≈ b iff, for every sequence ck ⊂ B(S, Σ) that supnorm-

converges to either f or g, and all γ ∈ [0, 1], there exists K such that ck ' γf + (1− γ)g.

Lemma 5.2 Suppose� satisfies Axioms 1, 2, 3, 4 and 5, and let I, u be its representation.
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1. For all {fk} ⊂ L and f ∈ L, fk → f iff u ◦ fk → u ◦ f in B(S, Σ).

2. For all f, g ∈ L, f ' g iff u ◦ f ' u ◦ g.

3. For all a, b ∈ B(S, Σ), and α, β ∈ R with α ≥ 0: a ' b implies a ' αb + β.

4. For all a, b ∈ B(S, Σ) and α, β ∈ R with α, β ≥ 0: a ' b implies a ' αa + βb.

5. For all sequences {ak}, {bk} ⊂ B(S, Σ) such that ak → a and ak → b for a, b ∈ B(S, Σ):

ak ' bk for all k implies a ' b.

6. For all f, g ∈ L, f ≈ g iff u ◦ f ≈ u ◦ g.

7. For all a, b ∈ B(S, Σ): a ≈ b implies a ' b.

8. For all a, b ∈ B(S, Σ), and α, β ∈ R with α > 0: a ≈ b implies a ≈ αb + β.

9. For all a, b ∈ B(S, Σ), and λ ∈ (0, 1): a ≈ b implies λa + (1− λ)b ≈ b.

10. For all a, b ∈ B(S, Σ): a ≈ b iff, for every γ ∈ [0, 1], there exists ε > 0 such that

‖c− a‖ < ε or ‖c− b‖ < ε imply c ' γa + (1− γ)b.

Corollary 5.3 Under the conditions of Lemma 5.2, the relation � satisfies Axiom 6 if and

only if, for all {ak} ⊂ B(S, Σ) and a ∈ B(S, Σ) such that ak → a, there exists a subsequence

{ak(`)} such that ak(`) ≈ ak(`′) for all `, `′.

Proof. Suppose fk → f in L; then, by Part 1 in Lemma 5.2, u ◦ fk → u ◦ f in B(S, Σ);

if the property in the Corollary holds, there is a subsequence such that u ◦ fk(`) ≈ u ◦ fk(`′)

for all `, `′; by Part 6 in the Lemma, this implies fk(`) ≈ fk(`′).

In the opposite direction, consider ak → a in B(S, Σ). Since {ak} converges and a is

bounded, there exist γ, γ′ ∈ R such that γ ≥ ak(s) ≥ γ′ for all k and s, and similarly

γ ≥ a(s) ≥ γ′ for all s. There exists α > 0 such that αγ, αγ′ ∈ [−1, 1]; for this α, there

exists {fk} ⊂ L and f ∈ L such that u ◦ fk = αak for all k, and u ◦ f = αa. Clearly,

αak → αa; by Part 1 in the Lemma, this implies that fk → f . Now Axiom 6 implies that

there is a subsequence such that fk(`) ≈ fk(`′) , hence αak(`) ≈ αak(`′) by Part 6, for all `, `′.

Now Part 8 yields the required conclusion.

In light of the above Lemma and Corollary, the analysis will henceforth focus on the

properties and representation of the functional I on B(S, Σ). To streamline the exposition,

expressions such as “by Axiom 6 and the Corollary to Lemma 5.2, there exists a subsequence

{ak(`)} such that . . . ” will be shortened to “by Axiom 6, there exists a subsequence . . . ”.
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5.1.2 Proof of Remark 1. Necessity of the Axioms: preliminaries

Definition 5.4 (cf. Property 4 of Def. 2.5) A set C ⊂ B(S, Σ) is minimally convex iff

every infinite subset C ′ ⊂ C contains a countable collection {ak}k≥1 ⊂ C ′ with the property

that, for all k, ` ≥ 1 and γ ∈ [0, 1], there exists ε > 0 such that, for all b ∈ B(S, Σ),

min(‖b− ak‖, ‖b− a`‖) < ε, b ∈ C ⇒ ∀λ ∈ (0, 1), λb + (1− λ)[γak + (1− γ)a`] ∈ C.

Proof of Remark 1. Let Cn = Cn,1∪ . . .∪Cn,M , where each Cn,m is closed and convex.

Fix an infinite C ′ ⊂ Cn. The collection ⋂
m∈M

Cn,m ∩
⋂

m∈{1,...,M}\M

B(S, Σ) \ Cn,m : M⊂ {1, . . . ,M}


is a finite partition of B(S, Σ), so there is M ⊂ {1, . . . , N} such that the set {a ∈ C ′ : a ∈
Cn,m ⇔ m ∈M} is infinite. In turn, this set contains a countably infinite collection {ak}.

Now fix k, k′ and consider ak, ak′ . There exists ε > 0 such that ‖c− ak‖ < ε and c ∈ Cn

implies c ∈ Cn,m for some m ∈ M. To see this, suppose that, for all `, there is c` such

that ‖c` − ak‖ < 1
`

and c` ∈ Cn,m(`) for some m(`) 6∈ M. Then there is a subsequence of

{c`} that lies in some Cn,m with m 6∈ M, and this subsequence converges to ak 6∈ Cn,m; this

contradicts the fact that Cn,m is closed.

Fix such ε > 0 and c such that ‖c−a‖ < ε and c ∈ Cn, so c ∈ Cn,m for some m ∈M. By

construction, ak, ak′ ∈ Cn,m, so for all γ ∈ [0, 1], γak + (1− γ)ak′ ∈ Cn,m as Cn,m is convex;

hence, for the same reason, λc + (1− λ)[γak + (1− γ)ak′ ] ∈ Cn,m ⊂ Cn for all λ ∈ [0, 1].

Lemma 5.5 Suppose that C1, . . . , CN is a proper covering of B(S, Σ). Let a, b ∈ B(S, Σ).

Then, for some K ≥ 1, there exists a finite collection 0 = α0 < α1 < . . . < αK = 1 such

that, for each k = 0, ..., K − 1, there exists nk ∈ {1, . . . , N} such that αa + (1− α)b) ∈ Cnk

for all α ∈ [αk, αk+1].

Proof. Let α0 = 0. Proceeding by induction, assume that α0, . . . , αk−1 as above have

been defined, for some k > 0, and that αk−1 < 1. For every n = 1, . . . , N , let

A(n, k − 1) = {α′ ∈ [αk−1, 1] : ∀α ∈ [αk−1, α
′], αa + (1− α)b ∈ Cn}.

For every n, if A(n, k− 1) is non-empty, it is of the form [αk−1, αn,k] for some αn,k ≥ αk−1.
28

28It is clear that, if α′ ∈ A(n, k − 1), then [αk−1, α
′] ⊂ A(n, k − 1). Furthermore, since Cn is closed,

supA(n, k − 1) ∈ A(n, k − 1).
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There exists nk ∈ {1, . . . , N} such that A(nk, k−1) is non-empty, and indeed αn,k > αk−1.

To see this, consider the sequence {β`} defined by β` = 1
`
+(1− 1

`
)αk−1, so β` → αk−1. Then,

for some subsequence {β`(r)} and some nk ∈ {1, . . . , N}, β`(r)a + (1 − β`(r))b ∈ Cnk
for all

r. Minimal convexity implies that there is a further subsequence {β`(r(ρ))} such that, in

particular, for all λ ∈ [0, 1], and all ρ, ρ′, λ[β`(r(ρ))a + (1− β`(r(ρ)))b] + (1− λ)[β`(r(ρ′))a + (1−
β`(r(ρ′)))b] ∈ Cnk

.29 For any λ ∈ [0, 1], fixing ρ = 1 and letting ρ′ → ∞, since Cnk
is closed

and β`(r(ρ′)) → αk−1, one obtains λ[β`(r(1))a+(1−β`(r(1)))b]+(1−λ)[αk−1a+(1−αk−1b] ∈ Cnk
.

Hence, A(nk, k − 1) ⊃ [αk−1, β`(r(1))], so there exists αn,k ≥ β`(r(1)) > αk−1 such that

A(nk, k − 1) = [αk−1, αn,k]. Finally, define αk = maxn:A(n,k−1) 6=∅ A(n, k − 1); the argument

just given shows that αk > αk−1. Now suppose that αk < 1 for all k; then αk ↑ ᾱ ∈
[0, 1], so αka + (1 − αk)b → ᾱa + (1 − ᾱ)b. As above, there is a subsequence {αk(`)}
and an index n ∈ {1, . . . , N} such that αk(`)a + (1 − αk(`))b ∈ Cn for all `, and minimal

convexity yields a further subsequence {αk(`(r))} such that, for all λ ∈ [0, 1] and all r, r′,

λ[αk(`(r))a + (1−αk(`(r)))b] + (1−λ)[αk(`(r′))a + (1−αk(`(r′)))b] ∈ Cn; again, letting r = 1 and

r′ →∞, since Cn is closed, one gets λ[αk(`(1))a+(1−αk(`(1)))b] + (1−λ)[ᾱa+(1− ᾱ)b] ∈ Cn

for all λ; but this contradicts the fact that αk(`(1))+1 < ᾱ. This proves the claim.

5.1.3 Necessity of the Axioms: Completing the argument

Let u, C1, . . . , CN and P1, . . . , PN be as in Statement 2 of Theorem 2.6. Then u◦f ∈ Cn∩Cm

implies that
∫

u ◦ f dPn =
∫

u ◦ f dPm. Since every Cn is closed under non-negative affine

transformations (“affine” henceforth), this holds for all a ∈ B(S, Σ). Hence, one can define

I : B(S, Σ) → R by letting I(a) =
∫

a dPn for a ∈ Cn. Then (I, u) represent �. It is possible,

of course, to assume that u(Y ) ⊃ [−1, 1]. Furthermore, since each Pn is unique, so is I.

I is c-linear. Let a ∈ B(S, Σ), β ∈ R+ and γ ∈ R. Since each Cn is affine, βa + γ ∈ Cn

implies a = βa+γ
β

− γ
β
∈ Cn; hence, I(βa + γ) =

∫
(βa + γ) dPn = β

∫
a dPn + γ = βI(a) + γ.

I is monotonic. Let a, b ∈ B(S, Σ) be such that a(s) ≥ b(s) for all s; then
∫

a dPn ≥∫
b dPn for all n ∈ {1, . . . , N}. Let K, αk and nk be as in Lemma 5.5; then for k = 0, . . . , K−

1,
∫

[αka+(1−αk)b] dPnk
≤
∫

[αk+1a+(1−α)k+1b] dPnk
=
∫

[αk+1a+(1−α)k+1b] dPnk+1
: the

inequality follows from
∫

a dPnk
≥
∫

b dPnk
and αk < αk+1, and the equality holds because

αk+1a + (1− αk+1)b ∈ Cnk
∩ Cnk+1

. Thus, I(αka + (1− αk)b) ≤ I(αk+1a + (1− αk+1)b) for

all k = 0, . . . , K − 1; since α0 = 0 and αK = 1, I(b) ≤ I(a). Clearly, I is also normalized, so

Lemma 5.1 implies that I satisfies Axioms 1, 2, 3, 4, and 5.

29To clarify: in Def. 5.4, take “ak” and “a`” to be the mixtures corresponding to ρ and ρ′, let “b” be the
mixture corresponding to ρ, and let γ = 0. Then minimal convexity implies the claim for all λ ∈ (0, 1), and
since Cnk

is closed, the claim is also true for λ = 0, 1.
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To see that Axiom 6 holds, suppose ak → a in B(S, Σ). As in the proof of Remark 1,

since there are only finitely many intersections of distinct elements of the collection C =

{C1, . . . , CN}, there exists a subsequence {ak0(`)} such that, for all n = 1, . . . , N and `, `′,

ak0(`) ∈ Cn iff ak0(`′) ∈ Cn. Without loss of generality, suppose that ak0(1) ∈ C1 ∩ . . . ∩ CM ,

for some M ≤ N . Define further subsequences by induction, as follows. For n = 1, . . . , N ,

observe that {akn−1(`)} is an infinite subset of Cn; since Cn is minimally convex, there is

a subsequence {akn(`)} ⊂ {akn−1(`)} that satisfies the condition in Definition 5.4. After M

steps, this procedure defines a sequence {akM (`)}—a subsequence of {ak}. Now fix `, `′; let

b = akM (`) and b′ = akM (`′). To complete the proof, it must be shown that b ≈ b′.

Fix γ ∈ [0, 1] arbitrarily: by Lemma 5.2 Part 10, it is sufficient to show that there

exists ε > 0 such that ‖c − b‖ < ε implies c ' γb + (1 − γ)b′ [the argument for c such

that ‖c − b′‖ < ε is identical]. Notice first that there exists ε0 > 0 such that ‖c − b‖ < ε0

implies c ∈ Cn for some n ∈ {1, . . . ,M}; otherwise, as in the proof of Remark 1, one could

find m > M and a sequence {ck} ⊂ Cm such that ck → b; since ck 6∈ Cm, this would

contradict the fact that Cm is closed. Furthermore, due to the above construction, for every

n = 1, . . . ,M , there exists εn > 0 for which the property in Definition 5.4 holds for C = Cn.

Let ε = min(ε0, . . . , εM) > 0.

Finally, consider any c ∈ B(S, Σ) such that ‖c−b‖ < ε. Since ‖c−b‖ < ε0, c ∈ Cn for some

n ∈ {1, . . . ,M}; and since ‖c−b‖ < εn, it is the case that λc+(1−λ)[γb+(1−γ)b′] ∈ Cn for

all λ ∈ (0, 1), and therefore also for λ = 0, 1 because Cn is closed; that is, γb+(1−γ)b′ ∈ Cn.

But this implies that

I(λc + (1− λ)[γb + (1− γ)b′]) = Pn(λc + (1− λ)[γb + (1− γ)b′]) =

= λPn(c) + (1− λ)Pn(γb + (1− γ)b′) = λI(c) + (1− λ)I(γb + (1− γ)b′),

i.e. c ' γb + (1− γ)b′. Thus, Axiom 6 holds.

5.1.4 Sufficiency: first covering of B(S, Σ) and other implications of Axiom 6

Lemma 5.6 Assume that Axioms 1–5 and 6 hold. There exists a finite collection {c1, . . . , cN1} ⊂
B(S, Σ) such that 1. for all n, m ∈ {1, . . . , N1} such that n 6= m, cn 6≈ cm; and 2. for all

a ∈ B(S, Σ), there exists n ∈ {1, . . . , N1} such that a ≈ cn.

Proof. Consider the following procedure. At step 1, let c1 be an arbitrary point of

B(S, Σ). Now consider step n > 1 and assume that c1, . . . , cn−1 such that Property 1 above

holds have been defined. If, for all a ∈ B(S, Σ), there is m ∈ {1, . . . , n−1} such that a ≈ cm,

then stop; otherwise, let cn ∈ B(S, Σ) be such that cn 6≈ cm for all m ∈ {1, . . . , n− 1}. This

procedure must stop in finitely many steps. Suppose not: then the procedure yields a
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sequence {cn}; letting c′n = 1
n‖cn‖hn if cn 6= 0, and c′n = 0 otherwise, yields a sequence

converging to 0. Axiom 6 implies in particular that there are n, m such that c′n ≈ c′m;

by Lemma 5.2 Part 8, this implies cn ≈ cm. But this contradicts the construction of the

sequence {cn}, so the above procedure must terminate in finitely many steps, thereby yielding

a collection with the required properties.

Corollary 5.7 Let C1
n = {a ∈ B(S, Σ) : a ≈ cn}, n = 1, . . . , N1: then

⋃N1

n=1 C1
n = B(S, Σ).

Lemma 5.8 Assume that Axioms 1–5 and 6 hold. Then, if {ak} → a in B(S, Σ), there

exists K ≥ 1 such that k ≥ K implies ak ' a. Consequently, for all a, b, there is α ∈ (0, 1]

such that αa + (1− α)b ' b; furthermore, for all a ∈ B(S, Σ), a ≈ a.

Proof. Arguing by contradiction, suppose that, for every ` ≥ 1, there is k(`) ≥ ` such

that ak(`) 6' a. This yields a subsequence ak(`) → a. Axiom 6 implies that there is a further

subsequence {ak(`(r))} such that, for all r, r′, ak(`(r)) ≈ ak(`(r)). In particular, ak(`(1)) ≈ ak(`(r))

for all r > 1. By Part 7 in Lemma 5.2, this implies ak(`(1)) ' ak(`(r)) for all r > 1. Since

ak(`(r)) → a, by Part 5 in the same Lemma, this implies ak(`(1)) ' a. This is a contradiction,

because {ak(`(r))} is a subsequence of {ak(`)}, which was chosen so that ak(`) 6' a for all `.

The second claim follows by considering ak = 1
k
a + k−1

k
b → b. The third claim is clear

from the definition of ≈.

Remark 2 Assume that Axioms 1–5 and 6 hold. Then every set C1
n defined in Corollary

5.7 satisfies the following properties.

1. If a ∈ C1
n, α, β ∈ R, and α > 0, then αa + β ∈ C1

n.

2. cn ∈ C1
n; furthermore, for every a ∈ C1

n and α ∈ [0, 1], αa + (1− α)cn ∈ C1
n.

Proof. Part 1 follows from Lemma 5.2 Part 8. In Part 2, cn ∈ C1
n follows from Lemma

5.8, and the other claim follows from a ≈ cn and Lemma 5.2 Part 9.

5.1.5 Sufficiency: Representation of I on C1
n

The next step is to show that the restriction of I to each set C1
n coincides with the restriction

to the same set of some linear functional Pn. The following Lemma provides the key step.

Lemma 5.9 Assume � satisfies Axioms 1—5 and 6. For every n, if b1, . . . , bM ∈ C1
n and

a =
∑M

m=1 λmbm for weights λm > 0 such that
∑M

m=1 λm = 1, then there exists α ∈ (0, 1]

such that αa + (1− α)cn ' cn and I(αa + (1− α)cn) =
∑M

m=1 λmI(αbm + (1− α)cn).
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Corollary 5.10 If α′ ∈ (0, α), then α′a + (1 − α′)cn ' cn and I(α′a + (1 − α′)cn) =∑M
m=1 λmI(α′bm + (1− α′)cn).

Proof. Begin with the Corollary; let γ = α′

α
∈ (0, 1). Then α′a + (1 − α′)cn = γ[αa +

(1 − α)cn] + (1 − γ)cn and α′bm + (1 − α′)cn = γ[αbm + (1 − α)cn] + (1 − γ)cn; hence,

α′a + (1− α′)cn ' cn by Lemma 5.2 Part 4. Furthermore,

I(α′a + (1− α′)cn) = γI(αa + (1− α)cn) + (1− γ)I(cn) =

= γ
M∑

m=1

λmI(αbm + (1− α)cn) + (1− γ)I(cn) =

=
M∑

m=1

λm[γI(αbm + (1− α)cn) + (1− γ)I(cn)] =
M∑

m=1

λmI(α′bm + (1− α′)cn),

where the last equality follows from bm ≈ cn, hence bm ' cn by Lemma 5.2 Part 7, hence

αbm + (1− α)cn ' cn by Part 4 in the same Lemma.

Now turn to the proof of Lemma 5.9. The claim is true for M = 1: in this case, it

must be the case that λ1 = 1, so a ∈ C1
n, and hence a ≈ cn by definition; Lemma 5.2 Part

7 then implies that a ' cn, and the second claim in the Lemma is trivially true. Arguing

by induction, consider M > 1 and assume that the claim is true for M − 1. Consider

b1, . . . , bM ∈ C1
n and a =

∑M
m=1 λmbm as above; also, let b−1 =

∑M
m=2

λm

1−λ1
bm; by the induction

hypothesis, there exists α ∈ (0, 1] such that αb−1 +(1−α)cn ' cn and I(αb−1 +(1−α)cn) =∑M
m=2

λm

1−λ1
I(αbm+(1−α)cn). By Corollary 5.10, for every α′ ∈ (0, α], α′b−1+(1−α′)cn ' cn

and I(α′b−1 + (1− α′)cn) =
∑M

m=2
λm

1−λ1
I(α′bm + (1− α′)cn); furthermore, since b1 ≈ cn, for

any such α′, by Lemma 5.2 Part 9, α′b1 + (1− α′)cn ≈ cn. Finally, note that, for every α′,

λ1[α
′b1 + (1− α′)cn] + (1− λ1)[α

′b−1 + (1− α′)cn] =

= α′[λ1b1 + (1− λ1)b−1] + (1− α′)cn = α′a + (1− α′)cn;

therefore, by Lemma 5.8, for some sufficiently small such α′, λ1[α
′b1 + (1 − α′)cn] + (1 −

λ1)[α
′b−1+(1−α′)cn] ' cn. Thus, fix one such small α∗ ∈ (0, α). It is convenient to make the

following definitions to simplify the notation: B1 = α∗b1+(1−α∗)cn, B2 = α∗b−1+(1−α∗)cn,

and A = λ1B1 +(1−λ1)B2 = α∗a+(1−α∗)cn. Thus, we have B2 ' cn, A ' cn, and B1 ≈ cn.

Hence, for this α∗, the first claim of the Lemma holds, i.e. α∗a + (1 − α∗)cn = A ' cn.
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Similarly,

λ1I(B1) + (1− λ1)I(B2) = λ1I(α∗b1 + (1− α∗cn) + (1− λ1)I(α∗b−1 + (1− α∗)cn) =

=λ1I(α∗b1 + (1− α∗cn) + (1− λ1)
M∑

m=2

λm

1− λ1

I(α∗bm + (1− α∗)cn) =

=
M∑

m=1

λmI(α∗bm + (1− α∗)cn)

where the third equality follows from the induction hypothesis, as above; thus, to complete

the proof, it suffices to show that I(A) = λ1I(B1) + (1− λ2)I(B2).

Since B1 ≈ cn, there is β ∈ (0, 1) such that βB2 + (1− β)cn ' B1; that is,

I(γB1 + (1− γ)[βB2 + (1− β)cn]) = γI(B1) + (1− γ)I(βB2 + (1− β)cn) =

= γI(B1) + (1− γ)βI(B2) + (1− γ)(1− β)I(cn)

for all γ ∈ [0, 1], where the second equality uses the fact that α∗ above was chosen so that

B2 ' cn. Now consider γ such that γ
γ+(1−γ)β

= λ1, i.e. γ = λ1β
1−λ1+λ1β

∈ (0, 1); then, letting

Γ = γ + (1− γ)β ∈ (0, 1), we can rewrite the above equation as

I(Γ[λ1B1 + (1− λ1)B2] + (1− Γ)cn) = Γ[λ1I(B1) + (1− λ1)I(B2)] + (1− Γ)I(cn);

but, since λ1B1 + (1− λ1)B2 = A ' cn, we also have

I(Γ[λ1B1 + (1− λ1)B2] + (1− Γ)cn) = ΓI(λ1B1 + (1− λ1)B2) + (1− Γ)I(cn) :

thus, I(A) = I(λ1B1 + (1− λ1)B2) = λ1I(B1) + (1− λ1)I(B2), as required.

Remark 3 Assume that � satisfies Axioms 1–6. Consider a, b ∈ B(S, Σ) such that a =∑Ma

`=1 α`a` and b =
∑Mb

m=1 βmbm, where all a`, bm, α`, βm are as in Lemma 5.9, and a ≥ b.

Then
∑Ma

`=1 α`I(a`) ≥
∑Mb

m=1 βmI(bm).

Proof. By Lemma 5.9, there exist α, β ∈ (0, 1] such that I(αa+(1−α)cn) =
∑Ma

`=1 α`I(αa`+

(1 − α)cn) = α
∑Ma

`=1 α`I(a`) + (1 − α)I(cn), because as usual a` ' cn, and similarly

I(βb + (1− β)cn) = β
∑Mb

m=1 βmI(bm) + (1− β)I(cn).

Suppose α > β. Then, by Corollary 5.10, it is also the case that I(βa + (1 − β)cn) =

β
∑Ma

`=1 α`I(a`) + (1 − β)I(cn). Since a ≥ b, βa + (1 − β)cn ≥ βb + (1 − β)cn; since I is

monotonic, I(βa+(1−β)cn) ≥ I(βb+(1−β)cn), and therefore β
∑Ma

`=1 α`I(a`)+(1−β)I(cn) ≥∑Mb

m=1 βmI(bm) + (1− β)I(cn): and since β ∈ (0, 1),
∑Ma

`=1 α`I(a`) ≥
∑Mb

`=1 βmI(bm).
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The case α ≤ β is handled symmetrically; if α = β, Corollary 5.10 is not needed.

For any set C ⊂ B(S, Σ), let conv C and cl C denote the convex hull and sup-norm

closure of C respectively. It is now possible to state the main result of this subsection.

Lemma 5.11 Assume that � satisfies Axioms 1–5 and 6. For every n = 1, . . . , N1, there

exists a probability charge Pn on (S, Σ) such that, for all a ∈ C1
n, I(a) =

∫
a dPn.

In the following, it will be convenient to denote the integral
∫

a dPn simply by Pn(a).

Proof. For n = 1, . . . , N1, let C2
n = {γ : γ ∈ R} ∪ conv C1

n, where, with the usual

abuse of notation, constant functions are identified with scalars. Note that C2
n is convex:

in particular, suppose that a ∈ conv C1
n, so a =

∑
m λmbm for suitable points bm ∈ C1

n and

positive weights λm, with
∑

m λm = 1; then, for all α ∈ (0, 1) and γ ∈ R, αa + (1 − α)γ =

α (
∑

m λbm) + (1− α)γ =
∑

m λm[αbm + (1− α)γ] ∈ conv C1
n, because αbm + (1− α)γ ∈ C1

n

by Remark 2 Part 1. The latter result, together with the fact that 0 ∈ C2
n, also implies

that C2
n is closed under multiplication by a non-negative scalar, i.e. it is a wedge; therefore,

C2
n − C2

n = {a− b : a, b ∈ C2
n} is a linear subspace of B(S, Σ) (cf. Holmes [17], §5.A).

Now define a functional In : C2
n → R by In(γ) = γ for all γ ∈ R and

∀b1, . . . , bM ∈ C1
n, λ1, . . . , λM ∈ (0, 1] s.t.

∑
m

λm = 1, In(
∑
m

λmbm) =
∑
m

λmI(bm). (11)

The functional In is well-defined. First, Remark 3 ensures that
∑Ma

`=1 α`I(a`) =
∑Mb

m=1 βmI(bm)

whenever
∑Ma

`=1 α`a` =
∑Mb

m=1 βmbm and all a`, bm, α`, βm are as in Lemma 5.9. Second, sup-

pose
∑

m λmbm = γ (a constant function) for λm, bm as in Eq. 11; by Lemma 5.9, there is α ∈
(0, 1] such that I(αγ+(1−α)cn) =

∑
m λmI(αbm+(1−α)cn) = α

∑
m λmI(bm)+(1−α)I(cn),

where the last equality follows from bm ' cn, which is implied by bm ≈ cn; but by c-linearity

of I, this is readily seen to imply that
∑

m λmI(bm) = γ.

The functional In is positively homogeneous : for γ ∈ R and α ≥ 0, In(αγ) = αγ = αIn(γ);

for a =
∑

m λmbm (λm, bm as above) and α > 0, αa =
∑

m λmαbm and αbm ∈ C1
n by Remark

2 Part 1, so In(αa) =
∑

m λmI(αbm) = α
∑

m λmI(bm) = αIn(a), because I is positively

homogeneous. Finally, for a as above and α = 0, αa = 0, so In(αa) = In(0) = 0 = αIn(a).

The functional In is also additive. By definition, for γ, δ ∈ R, In(γ+β) = γ+β = In(γ)+

In(β). For a =
∑

m λmbm (λm, bm as above) and γ ∈ R, a+γ =
∑

m λm(bm +γ) and bm +γ ∈
C1

n by Remark 2 Part 1, so In(a + γ) =
∑

m λmI(bm + γ) =
∑

m λmI(bm) + γ = In(a) + γ,

because I is c-linear. Finally, if a =
∑

` α`a` and b =
∑

m βmbm for suitable α`, a`, βm, bm,

then 1
2
a+ 1

2
b =

∑
`

1
2
α`a`+

∑
m

1
2
βmbm (where some a` may be equal to some bm) and therefore
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In(1
2
a+ 1

2
b) =

∑
`

1
2
α`I(a`)+

∑
m

1
2
βmI(bm) = 1

2

∑
` α`I(a`)+ 1

2

∑
m I(bm) = 1

2
In(a)+ 1

2
In(b).

Since In is positively homogeneous, In(a + b) = In(a) + In(b).

Finally, the functional In is monotonic. Remark 3 implies that In(a) ≥ In(b) for a, b ∈
conv C1

n, and by definition this is also true if both a and b are constant acts. So, suppose

a =
∑

m λmbm, for λm, bm as in Eq. 11, and a ≥ γ for some γ ∈ R. Then a ≥ 1
2
a + 1

2
γ; since

1
2
a + 1

2
γ =

∑
m λm(1

2
bm + 1

2
γ) ∈ conv C1

n, invoking monotonicity on conv C1
n, and additivity

and positive homogeneity, one obtains In(a) ≥ In(1
2
a+ 1

2
γ) = In(1

2
a)+ In(1

2
γ) = 1

2
In(a)+ 1

2
γ;

this implies In(a) ≥ γ, as required. The case a ≤ γ is analogous.

To summarize, In is well-defined, positively homogeneous, additive and monotonic on

the convex wedge C2
n. Therefore, it has a unique extension to a positive (hence monotonic

and sup-norm continuous) linear functional Jn on the linear subspace C2
n − C2

n, given by

Jn(a−b) = Jn(a)−Jn(b) for a, b ∈ C2
n. It follows that Jn can be extended to a (not necessarily

unique) positive linear functional Pn on B(S, Σ) (cf. e.g. Holmes [17], §6.B; observe that

the constant function 1 belongs to the subspace C2
n − C2

n and is a core point of the cone

of non-negative functions). Furthermore, since Pn(1) = Jn(1) = In(1) = 1, ‖Pn‖ = 1; that

is, Pn can be represented by a probability charge on (S, Σ) (cf. e.g. [1], Theorem 11.32),

henceforth also denoted Pn. Clearly, for all a ∈ C1
n, Pn(a) = Jn(a) = In(a) = I(a).

Observation. The last paragraph provides the key step in the proof of Proposition 2.2.

If f ' g for all f, g ∈ C ⊂ L, then a ' b for all a, b ∈ D ≡ {αu ◦ f : α ≥ 0, f ∈ C}. Thus

I is positively homogeneous, additive and monotonic on the convex wedge D; as above, the

restriction of I to D has a unique positive linear extension J to the linear space D − D,

which in turn has a positive linear extension to all of B(S, Σ). Thus, there exists a probability

charge P such that I(a) =
∫

a dP for all a ∈ D. The converse is obvious.

5.1.6 Sufficiency: Uniqueness of the charges Pn

Henceforth, int C denotes the interior of the generic set C ⊂ B(S, Σ). For n = 1, . . . , N1, let

C2
n = cl int cl C1

n; (12)

note that,C2
n has non-empty interior if cl C1

n does, and is empty otherwise; moreover, since

int cl C1
n ⊂ C2

n, int cl C1
n ⊂ int C2

n, so C2
n is the closure of its interior.

Lemma 5.12 Assume that � satisfies Axioms 1–5 and 6. Then at least one of the sets

cl C1
1 , . . . , cl C

1
N1

has non-empty interior. Furthermore, assume w.l.o.g. that int cl C1
n 6= ∅,

hence int C2
n 6= ∅ and C2

n = cl int C2
n, for n = 1, . . . , N2 ≤ N1; then:

1. B(S, Σ) =
⋃N2

n=1 C2
n;
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2. For every n = 1, . . . , N2 and α, β ∈ R with α ≥ 0: a ∈ C2
n implies αa + β ∈ C2

n; in

particular, if α > 0 and a ∈ int C2
n, then αa + β ∈ int C2

n.

3. For every n = 1, . . . , N2, Pn(a) = I(a) for all a ∈ C2
n.

Proof. Since B(S, Σ) =
⋃N1

n=1 C1
n, a fortiori B(S, Σ) =

⋃N1

n=1 cl C1
n. That is, B(S, Σ) is

the union of finitely many closed sets; therefore,30
⋃N1

n=1 int cl C1
n is dense in B(S, Σ). Hence,

some cl C1
n’s have empty interior; assume w.l.o.g. that these are the first N2 ≤ N1.

For Part 1, consider a ∈ B(S, Σ) and {ak} ⊂
⋃N2

n=1 int cl C1
n such that ak → a. Since

there are finitely many sets cl C1
n with non-empty interior, there is n ∈ {1, . . . , N2} and a

subsequence {ak(`)} such that ak(`) ∈ int cl C1
n for all `; thus, a ∈ cl int cl C1

n = C2
n. Thus,

B(S, Σ) =
⋃N2

n=1 C2
n.

For Part 2, consider first the following subclaim: if C ⊂ B(S, Σ) is such that a ∈ C,

α, β ∈ R, and α > 0 imply αa + β ∈ C, then in particular a ∈ int C implies αa + β ∈ int C.

To see this, fix α, β and C as stated, and choose a ∈ int C. Then there exists ε > 0 such

that ‖b − a‖ < ε implies b ∈ C. Consider c ∈ B(S, Σ) such that ‖c − [αa + β]‖ < αε: then∥∥ c−β
α
− a
∥∥ = 1

α
‖c− β − αa‖ < 1

α
αε = ε, so c−β

α
∈ C, and therefore c ∈ C.

Now consider α, β ∈ R with α > 0 and recall that, by Remark 2 Part 1, a ∈ C1
n implies

αa+β ∈ C1
n; hence, the same is true for a ∈ cl C1

n. The above subclaim applied to C = cl C1
n

implies that a ∈ int cl C1
n implies αa + β ∈ int cl C1

n; consequently, a ∈ C2
n = cl int cl C1

n

implies αa + β ∈ C2
n. The subclaim, applied to C = C2

n, implies the last statement in Part

2. Finally, pick any a ∈ C2
n; for any β ∈ R, 1

k
a+β ∈ C2

n for all k ≥ 1 and 1
k
a+β → β. Since

C2
n is closed, it follows that β ∈ C2

n. Hence αa + β ∈ C2
n for α = 0 as well.

For Part 3, recall that Pn(a) = I(a) for all a ∈ C1
n. Consider a ∈ B(S, Σ) and {ak} ⊂ C1

n

such that ak → a: then Pn(a) = limk Pn(ak) = limk I(ak) = I(a), because both Pn and I are

sup-norm continuous functionals. Thus, Pn and I also agree on on cl C1
n, hence a fortiori on

C2
n = cl [int cl C1

n] ⊂ cl [cl C1
n] = cl C1

n.

Lemma 5.13 Assume that � satisfies Axioms 1–5 and 6. Then, for every n = 1, . . . , N2,

P 2
n is the only continuous linear functional that agrees with I on C2

n. In particular, every

charge Pn, n = 1, . . . , N2, is a plausible prior.

Proof. Fix n as above. Lemma 5.12 Part 3 states that Pn agrees with I on C2
n; further-

more, the latter set has non-empty interior. Thus, fix c ∈ int C2
n; by the second claim in Part

2, it is w.l.o.g. to assume that ‖c‖ ≤ 1
2

(if this is not the case, replace c by 1
2‖c‖c ∈ int C2

n).

30In any topological space T , the intersection of finitely many open dense sets is dense; this (cf. e.g. [1],
Theorem 3.34) implies that, if T =

⋃I
i=1 Fi and each Fi is closed, then

⋃I
i=1 intFi is dense in T .
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Also, there exists ε′ > 0 such that ‖a − c‖ < ε′ implies a ∈ C2
n. Finally, let ε = min(ε, 1

2
):

then ‖a− c‖ < ε implies a ∈ C2
n and ‖a‖ < 1, so that there exists f ∈ L with u ◦ f = a.

Now consider the set of acts C = {αf +(1−α)y : ‖u◦f − c‖ < ε, α ∈ [0, 1], y ∈ Y }. By

construction, C contains all lotteries; moreover, it is closed under mixtures. Consequently,

the set u ◦C = {u ◦ f : f ∈ C} is convex; furthermore, it contains the open ε–ball around c,

and by Lemma 5.12 Part 2, u ◦ C ⊂ C2
n. Therefore Pn agrees with I on u ◦ C, so f � g iff

Pn(u ◦ f) ≥ Pn(u ◦ g) for all f, g ∈ C; in particular, � satisfies Mixture Neutrality on C.

To complete the proof, it will be shown that Pn is the unique linear functional that agrees

with I on u ◦ C (hence on C2
n); this implies that Pn is a plausible prior. Consider another

linear functional Q such that Q(a) = I(a) for all a ∈ u ◦ C. Fix an arbitrary a ∈ B(S, Σ);

then there exists α ∈ (0, 1) such that ‖αa + (1 − α)c − c‖ = α‖a − c‖ < ε, and therefore

αa + (1−α)c ∈ u ◦C. This implies that αQ(a) + (1−α)Q(c) = Q(αa + (1−α)c) = I(αa +

(1− α)c) = Pn(αa + (1− α)c) = αPn(a) + (1− α)Pn(c). Furthermore, Q(c) = I(c) = Pn(c):

therefore, Q(a) = Pn(a). Since a was arbitrary, Q = Pn, so Pn is a plausible prior.

Lemma 5.14 Assume that � satisfies Axioms 1–5 and 6. Let D ⊂ B(S, Σ) be such that,

for some continuous linear functional Q on B(S, Σ), I(a) = Q(a) for all a ∈ D. Then there

exists n ∈ {1, . . . , N2} such that Q(a) = Pn(a) for all a ∈ D. Hence, the charges P1, . . . , Pn

are the only plausible priors for �.

Proof. Since I and Q are both norm-continuous, I(a) = Q(a) for all a ∈ cl D, so it

is w.l.o.g. to assume that D is itself closed. Note that D =
⋃N2

n=1(D ∩ C2
n), and every set

D ∩ C2
n is closed in the relative topology on D inherited from B(S, Σ). Furthermore, D is

a complete subspace of B(S, Σ). Therefore, arguing as in the proof of Lemma 5.12, not all

sets D ∩ C2
n have empty relative interior.

Thus, consider n such that D ∩ C2
n has non-empty relative interior; that is, there exists

c ∈ D ∩ C2
n and ε > 0 such that ‖a− c‖ < ε and a ∈ D imply a ∈ D ∩ C2

n.

Consider an arbitrary a ∈ D; then there exists α ∈ (0, 1) such that ‖αa + (1 − α)c −
c‖ = α‖a − c‖ < ε, and hence αa + (1 − α)c ∈ D ∩ C2

n: this implies that, for this α,

Q(αa + (1−α)c) = I(αa + (1−α)c) = Pn(αa + (1−α)c). Since in particular Q(c) = Pn(c),

it follows by linearity of Q and Pn that Q(a) = Pn(a).

5.1.7 Sufficiency: Construction of the proper covering

In general, a set C2
n may fail to be minimally convex; however, consider the following construc-

tion. First, assume w.l.o.g. that, for some N ≤ N1, (i) Pn 6= Pm for all n, m ∈ {1, . . . , N}
with n 6= m, and that (ii) for every m ∈ {N +1, . . . , N2} (if any), there exists n ∈ {1, . . . , N}
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such that Pm = Pn. Then, for n = 1, . . . , N , define

Cn =
⋃
{C2

m : Pm = Pn}. (13)

Thus, Cn is the union of C2
n and any other set C2

m for which Pm = Pn.

Lemma 5.15 Assume that � satisfies Axioms 1–5 and 6. Then, for all a, b ∈ B(Σ) such

that a ≈ b, and for every γ ∈ [0, 1], there is ε > 0 such that ‖c− a‖ < ε and c ∈ Cn for some

n = 1, . . . , N implies λc + (1− λ)[γa + (1− γ)b] ∈ Cn for all λ ∈ (0, 1).

Since each set Cn is closed, the conclusion of the Lemma also holds for λ = 0 (it is true

by assumption for λ = 1). By symmetry of ≈, an analogous statement is true for points

c ∈ B(S, Σ) such that ‖c − b‖ < ε. This result also implies that a ≈ b and a ∈ Cn implies

that λa + (1− λ)b ∈ Cn for all λ ∈ [0, 1].

Proof. Consider a ≈ b and suppose that the assertion fails for some γ ∈ [0, 1]. Let

b′ = γa + (1 − γ)b for notational simplicity. Then, in particular, for all integer k ≥ 1,

there is ck ∈ B(S, Σ) such that ‖ck − a‖ < 1
k
, ck ∈ Cn(k), and λkck + (1 − λk)b

′ 6∈ Cn(k)

for some λk ∈ (0, 1). Now ck ∈ C2
` for some ` ∈ {1, . . . , N2} such that P` = Pn(k), so ck

is the limit of points in int cl C1
` ⊂ int C2

` ⊂ int Cn(k). Note that, if c ∈ B(S, Σ) satisfies

‖c−ck‖ < 1
k
−‖ck−a‖, then ‖c−a‖ < 1

k
; furthermore, since the complement of Cn(k) is open

and λkc+(1−λk)b
′ → λkck +(1−λk)b

′ 6∈ Cn(k) as c → ck, it is possible to find c′k ∈ int Cn(k)

such that ‖c′k − a‖ < 1
k

and λkc
′
k + (1− λk)b

′ ∈ Cm(k), with m(k) 6= n(k).

Now λkc
′
k +(1−λk)b

′ is itself the limit of points in int cl C1
` ⊂ int C2

` ⊂ int Cm(k) for some

(different) ` ∈ {1, . . . , N2} with P` = Pm(k). Also, for any c ∈ B(S, Σ), the act c′′ = c−(1−λk)b′

λk

satisfies λkc
′′ + (1 − λk)b

′ = c, and as c approaches λkc
′
k + (1 − λk)b

′, c′′ approaches c′k.

Therefore, there exists c ∈ int Cm(k) close enough to λkc
′
k + (1 − λk)b

′ so that the act c′′k
defined by c = λkc

′′
k + (1− λk)b

′ satisfies c′′k ∈ int Cn(k) and ‖c′′k − a‖ < 1
k
.

To summarize, there exists c′′k ∈ int Cn(k) such that ‖c′′k − a‖ < 1
k

and λkc
′′
k + (1 −

λk)b
′ ∈ int Cm(k), where m(k) 6= n(k). Next, observe that there exist εm(k) > 0 such that

‖c− [λc′′k + (1− λk)b
′]‖ < εm(k) implies c ∈ int Cm(k), and εn(k) > 0 such that ‖c− c′′k‖ < εn(k)

implies c ∈ int Cn(k). Thus, let εk = min( 1
k
−‖c′′k− a‖, εn(k), εm(k)); then ‖c− c′′k‖ < εk implies

both c ∈ int Cn(k) and ‖c− a‖ < 1
k
, and furthermore

‖λkc + (1− λk)b
′ − λkc

′′
k − (1− λk)b

′‖ = λk‖c− c′′k‖ < λkεm(k) < εm(k),

hence λkc + (1− λk)b
′ ∈ int Cm(k).

Now consider the following preliminary subclaim: Suppose that a ' b and, for distinct

λ, λ′ ∈ [0, 1], λa + (1− λ)b, λ′a + (1− λ′)b ∈ Cn. Then Pn(a) = I(a) and Pn(b) = I(b).
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To prove the subclaim, note that λPn(a) + (1 − λ)Pn(b) = Pn(λa + (1 − λ)b) = I(λa +

(1 − λ)b) = λI(a) + (1 − λ)I(b) and similarly λ′Pn(a) + (1 − λ′)Pn(b) = λ′I(a) + (1 −
λ′)I(b). Subtracting the second equation from the first yields (λ − λ′)[Pn(a) − Pn(b)] =

(λ − λ′)[I(a) − I(b)], hence Pn(a) = Pn(b) + I(a) − I(b); substituting in the first equation

now yields λPn(b) + λI(a) − λI(b) + (1 − λ)Pn(b) = λI(a) + (1 − λ)I(b), i.e. Pn(b) = I(b),

and therefore also Pn(a) = Pn(b). [Note that the proof is trivial if one of λ, λ′ is zero or one].

Continuing with the proof of the main claim, observe that, since a ≈ b, there exists

K such that, for k ≥ K, it is the case that ‖c − a‖ < 1
k

implies c ' b′. Thus, choose

k ≥ K and consider any c ∈ B(S, Σ) such that ‖c− c′′k‖ < εk; then, by the choice of k and εk,

‖c−a‖ < 1
k
, so c ' b′, and c ∈ int Cn(k), so there exists λ < 1 such that λc+(1−λ)b′ ∈ Cn(k).

Hence, invoking the subclaim with the values 1 and λ, Pn(k)(c) = I(c) and Pn(k)(b
′) = I(b′).

Similarly, for such c, there exists λ 6= λk such that λc + (1− λ)b′ ∈ Cm(k), and the subclaim

implies that Pm(k)(c) = I(c) and Pm(k)(b
′) = I(b′).

Finally, consider an arbitrary c ∈ B(S, Σ) and the mixture αc+(1−α)c′′k. Since ‖αc+(1−
α)c′′k− c′′k‖ = α‖c− c′′k‖, by choosing α > 0 small one can ensure that this quantity is smaller

than εk; thus, Pn(k)(αc+(1−α)c′′k) = I(αc+(1−α)c′′k) = Pm(k)(αc+(1−α)c′′k); since clearly

also Pn(k)(c
′′
k) = Pm(k)(c

′′
k), it follows that Pn(k)(c) = Pm(k)(c). Therefore, Pn(k) = Pm(k),

which contradicts the construction of the sets Cn(k) and Cm(k).

Lemma 5.16 Assume that � satisfies Axioms 1–5 and 6. Then the sets C1, . . . , CN are

minimally convex, and constitute a proper covering.

Proof. It is clear that every set Cn is closed and has non-empty interior; that B(S, Σ) =⋃N
n=1 Cn, that a ∈ Cn implies αa+β ∈ Cn for α, β ∈ R with α ≥ 0, and that Pn(a) = I(a) for

all a ∈ Cn, because the corresponding C2
n’s satisfy these properties. Suppose a ∈ Cn, so a ∈

C2
` for some ` ∈ {1, . . . , N2} with P` = Pn; then a ∈ cl int C2

` ⊂ cl int Cn, i.e. Cn = cl int Cn.

Furthermore, suppose Cn ∩ Cm has non-empty interior, and consider a ∈ int Cn ∩ Cm. For

any b ∈ B(S, Σ), there is α ∈ (0, 1) such that αb + (1 − αa) ∈ int Cn ∩ Cm; therefore,

Pn(αb + (1 − α)a) = I(αb + (1 − α)a) = Pm(αb + (1 − α)a); since Pn(a) = Pm(a) as well,

Pn(b) = Pm(b). Thus, Pn = Pm, so n = m; hence, if n 6= m, Cn ∩ Cm has empty interior.

It remains to be shown that each set Cn is minimally convex. Consider an infinite subset

C ′ ⊂ Cn. This subset contains a countably infinite subset {ak}. Consider the sequence {bk}
defined by bk = 0 if ak = 0 and bk = 1

k‖ak‖
ak otherwise. Then bk → 0, so Axiom 6 implies

that there is a subsequence {bk(`)} for which bk(`) ≈ bk(`′) for all `, `′. Since, for every k, bk is

either equal to ak or to a positive multiple of ak, Lemma 5.2 Part 8 implies that ak(`) ≈ ak(`′)

for every `. Lemma 5.15 shows that, for this subsequence, and for every γ ∈ [0, 1], there is

ε > 0 such that ‖c− ak(`)‖ < ε and c ∈ Cm implies λc + (1− λ)[γak(`) + (1− γ)ak(`′)] for all
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λ ∈ (0, 1); in particular, this is the case for m = n.

To summarize: By Lemma 5.16, C1, . . . , CN is a proper covering; the associated proba-

bilities are all distinct, by construction, so property (i) in Statement 2 of Theorem 2.6 holds;

moreover, I(a) = Pn(a) for all a ∈ Cn, which (jointly with Lemma 5.1) implies that property

(ii) also holds. Uniqueness of u guaranteed by Lemma 5.1; uniqueness of each Pn is estab-

lished in Lemma 5.13. Finally, consider another proper covering D1, . . . , DN ′ , with associated

priors Q1, . . . , QN ′ , that satisfy properties (i) and (ii) in Statement 2 of Theorem 2.6: then

Lemma 5.14 implies that every Qn′ corresponds to some Pn, and vice versa, so N = N ′ and

it is wlog to assume that each Dn is associated with Pn. Moreover, if int Dn ∩ Cm 6= ∅ for

n 6= m, the argument in the proof of Lemma 5.16 implies that Pn = Pm, a contradiction;

thus, int Dn ⊂ Cn, and similarly int Cn ⊂ Dn. Thus, int Cn = int Dn. Since Cn = cl int Cn

and similarly for Dn, Cn = Dn. This completes the proof of Theorem 2.6.

Turn now to the Corollaries in the text. Consider first Corollary 2.7: Lemma 5.13 shows

that every Pn is a plausible prior, and Lemma 5.14 ensures that there are no other plausible

priors. Also, Lemma 5.15 implies that f ≈ g only if u ◦ f, u ◦ g ∈ Cn for some n.

To prove Corollary 2.8, it is sufficient to construct the proper covering corresponding to

the charges {αQn + (1 − α)Qm : (n, m) ∈ M}. Consider the sets of the form C(n, m) =

{a ∈ B(S, Σ) : Qn ∈ arg mink

∫
a dQk, Qm ∈ arg maxk

∫
a dQk}. Define a relation R on

the collection of such sets by stipulating that C(n, m) R C(n′, m′) iff αQn + (1 − α)Qm =

αQn′ + (1 − α)Qm′ . Then every element of the proper covering for α-MEU preferences is

the (finite) union of sets C(n, m) in the same equivalence class for R. In particular, since

every set C(n, m) is closed and convex, Remark 1 ensures that Property 4 in Def. 2.5 holds.

Necessity is proved in the Online Appendix, §6.6.3 (which also discusses the case α = 1
2
).

The construction of the proper covering in Corollary 2.9 is analogous to that of Corol-

lary 2.8: each element is a union of maximal comonotonic cones associated with the same

probability distribution. As above, since each such cone is convex, Remark 1 applies.

Finally, the fact that
∫

u ◦ fdPn ≥
∫

u ◦ gdPn for all n implies f � g is established in the

proof of necessity (see the argument for monotonicity of I). A related fact is used below.

Lemma 5.17 Under the equivalent conditions of Theorem 2.6, for all a, b ∈ B(S, Σ): if∫
a dPn =

∫
b dPn for all n ∈ {1, . . . , N} and b ∈ Cm for some m ∈ {1, . . . , N}, then a ∈ Cm.

Furthermore, if b ∈ int Cm, then a ∈ int Cm.

Proof. If Pn(a) = Pn(b) for all n, then for all λ ∈ [0, 1], Pn(a) = Pn(λa+(1−λ)b) = Pn(b)

for all n; hence I(a) = I(λa + (1− λ)b) = I(b).
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Furthermore, for any γ ∈ [0, 1], λ ∈ [0, 1], and c ∈ B(S, Σ), and for any n ∈ {1, . . . , N},

Pn(γa + (1− γ)c) = γPn(a) + (1− γ)Pn(c) = γPn(λa + (1− λ)b) + (1− γ)Pn(c) =

= Pn(γ[λa + (1− λ)b] + (1− γ)c),

and similarly Pn(γb + (1− γ)c) = Pn(γ[λa + (1− λ)b] + (1− γ)c), which, as above, implies

that I(γa + (1− γ)c) = I(γ[λa + (1− λ)b] + (1− γ)c) = I(γb + (1− γ)c). Therefore, a ' c

or b ' c imply λa + (1− λ)b ' c for all λ ∈ [0, 1].

Now suppose ck → a; then, by Lemma 5.8, ck ' a for large k; for such k, the argument

just given implies that also ck ' λa + (1− λ)b for all λ ∈ [0, 1]. The same argument applies

if ck → b, so a ≈ b. Since b ∈ Cm, as noted above, Lemma 5.15 implies that a ∈ Cm as well.

Finally, if b ∈ int Cm but a 6∈ int Cm, there is n 6= m such that a ∈ Cn.31 Since a ≈ b,

Lemma 5.15 implies b ∈ Cn; but then Cn ∩Cm has non-empty interior,32 a contradiction.

5.2 Proof of Theorem 3.2

5.2.1 Notation and Preliminary results

Let u, C1, . . . , CN and P1, . . . , PN represent �; as in §5.1.2, let I(a) =
∫

a dPn for all a ∈ Cn.

Recall that I is monotonic, normalized, and c-linear. Finally, assume that u(Y ) ⊃ [−1, 1],

and define aEb = 1Ea + 1Ecb for a, b ∈ B(S, Σ). Note that E ∈ Σ is non-null iff, for all

a, b ∈ B(S, Σ), a(s) = b(s) for s ∈ S \ E and a(s) > b(s) for all s ∈ E imply I(a) > I(b).

Lemma 5.18 An event E ∈ Σ is non-null for � if and only if, for all n ≥ 1, Pn(E) > 0.

Proof. Clearly, by c-linearity of I, E is non-null iff, for all a ∈ B(S, Σ), x, x′ ∈ R with

x > x′, and λ > 0, I(a + λ[x E x′]) > I(a + λx′), i.e. iff I(a + λ1E(x − x′)) > I(a), i.e. iff

I(a + λ1E) > I(a) for all λ > 0.

Suppose E is non-null; pick n ∈ {1, . . . , N} and a ∈ int Cn. Then there is ε > 0 such that

a + ε1E ∈ Cn. Thus, Pn(a + ε1E) > Pn(a), so Pn(E) > 0. Conversely, assume Pn(E) > 0 for

all n ∈ {1, . . . , N}, and consider a ∈ B(S, Σ) and ε > 0. Let p = minn Pn(E): then, for each

n, Pn(a + ε1E) ≥ Pn(a) + εp = Pn(a + εp), so I(a + ε1E) ≥ I(a + εp) = I(a) + εp > I(a).

31Every neighborhood of a contains a point not in Cm; form a sequence, and note that there is n such
that a subsequence lies entirely in Cn. Hence, so does its limit a.

32Suppose that b ∈ C2
` = cl int clC1

` for some ` such that P` = Pn, so that C2
` ⊂ Cn. Then there is a

subsequence {bk} ⊂ int clC1
` ⊂ intC2

` ⊂ intCn such that bk → b. Since b ∈ intCm, there is K such that
bk ∈ intCm for all k ≥ K; thus, there is εm such that ‖c − bK‖ < εm implies c ∈ Cm. Furthermore, since
bK ∈ intCn, there is εn > 0 such that ‖c − bK‖ < εn implies c ∈ Cn. Hence, the open ball {c : ‖c − bK‖ <
min(εn, εm)} is a subset of Cn ∩ Cm.
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Lemma 5.19 Assume that � satisfies Axioms 1–5, and suppose that E ∈ Σ is non-null.

Then, for every a ∈ B(S, Σ), there exists a unique solution x ∈ R to the equation

x = I(aEx). (14)

The map J : B(S, Σ) → R associating to each a ∈ B(S, Σ) the unique solution to Eq. (14)

is monotonic, c-linear and normalized.

Now define the relations 'E and ≈E on B(S, Σ) by a 'E b iff J(γa + (1 − γ)b) =

γJ(a) + (1− γ)J(b) and a ≈ b iff, for any sequence {ck} such that ck → a or ck → b, and for

any γ ∈ [0, 1], there is K such that k ≥ K implies ck 'E γa + (1− γ)b.

Corollary 5.20 If � additionally satisfies Axiom 6, then for all {ak} ⊂ B(S, Σ) and a ∈
B(S, Σ) such that ak → a, there exist {k(`)} such that ak(`) ≈E ak(`′) for all `, `′.

Proof. (Lemma 5.19): Let x1 = sups∈E a(s), x0 = infs∈E a(s); by monotonicity,

I(aEx1) − x1 ≤ 0 and I(aEx0) − x0 ≥ 0. By norm-continuity, there exists x ∈ [x0, x1]

such that x = I(aEx). Furthermore, suppose there are two such solutions x, x′, with x > x′.

Then I(aEx)−x = I(aEx′)−x′, i.e. I(1E(a−x)) = I(1E(a−x′)) = 0. But this contradicts

the fact that E is non-null, because 1E(s)[a(s)− x] = 1E(s)[a(s)− x′] = 0 for s ∈ S \E and

1E(s)[a(s)− x] = a(s)− x < a(s)− x′ = 1E(s)[a(s)− x′] for s ∈ E.

The other properties are easy to prove, so the arguments are omitted.

(Corollary:) Now suppose that ak → a; then J(ak) → J(a), which implies that ak E J(ak) →
a E J(a) as well. If � satisfies Axiom 6, then there exists a subset of indices {k(`)} such that

ak(`) E J(ak(`)) ≈ ak(`′) E J(ak(`′)) for all `, `′. Thus, to complete the proof of the last claim,

it is sufficient to show that, for any a, b ∈ B(S, Σ), if a E J(a) ≈ b E J(b), then a ≈E b.

First, it will be shown that, for all a, b ∈ B(S, Σ, a E J(a) ' b E J(b) implies a 'E b. To

see this, note that, for all γ ∈ [0, 1],

I([γa + (1− γ)b] E [γJ(a) + (1− γ)J(b)]) = I(γ[a E J(a)] + (1− γ)[b E J(b)]) =

= γI(a E J(a)) + (1− γ)I(b E J(b)) = γJ(a) + (1− γ)J(b);

since x = J(γa+(1−γ)b) is the only solution to the fixpoint equation I([γa+(1−γ)b] E x) =

x, this implies that J(γa + (1− γ)b) = γJ(a) + (1− γ)J(b), i.e. a 'E b.

Now assume a E J(a) ≈ b E J(b). Recall that this implies a E J(a) ' b E J(b), and hence

J(γa+(1−γ)b) = γJ(a)+(1−γ)J(b) for all γ ∈ [0, 1], as was just shown. Consider ck → a;

as above, this implies J(ck) → J(a), and hence ck E J(ck) → a E J(a). Then, for every
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γ ∈ [0, 1], there exists K such that k ≥ K implies

ck E J(ck) ' γ[a E J(a)] + (1− γ)[b E J(b)] = [γa + (1− γ)b] E [γJ(a) + (1− γ)J(b)] =

= [γa + (1− γ)b] E J(γa + (1− γ)b)),

and therefore ck 'E γa + (1− γ)b. Thus, a ≈E b, as claimed.

5.2.2 Necessity of the Axioms

Now turn to the proof of Theorem 3.2. To show that Statement 2 implies Statement 1,

consider a non-null E ∈ Σ and assume that �E is represented by u and the Bayesian updates

Pnk
(·|E), for k = 1, . . . , K and each nk ∈ {1, . . . , N} such that Eq. (8) holds; conditional

probabilities are well-defined by Lemma 5.18. Since Pnk
(S \E|E) = 0 for all k ∈ {1, . . . , K},

�E satisfies Axiom 7. It remains to be shown that �,�E jointly satisfy Axiom 8.

Fix an act f ∈ L such that u ◦ f ∈ CE
k ; then a lottery y ∈ Y satisfies f ∼E y, i.e. u(y) =∫

u ◦ f dPnk
(·|E), if and only if fEy ∼ y. “Only if”: assume f ∼E y and u ◦ [fEy] ∈ Cm

for some m ∈ {1, . . . , N}; then, by Eq. (8),
∫

u ◦ [fEy] dPm =
∫

u ◦ f E u(y) dPm = u(y),

i.e. fEy ∼ y. “If”: suppose fEy ∼ y and u ◦ [fEy] ∈ Cm, so u(y) solves the equation

I([u ◦ f ]Ex) = x; if f 6∼E y, then f ∼E y′ for some y′ 6∼E y. By the “only if” part, assuming

u ◦ [fEy′] ∈ Cm′ ,
∫

u ◦ [fEy′]dPm′ = u(y′), i.e. I([u ◦ f ]Eu(y′)) = u(y′); since u = uE,

u(y′) 6= u(y), so there are two distinct solutions to I(u ◦ fEx) = x, which contradicts

Lemma 5.19. Thus, fEy ∼ y implies f ∼E y. It follows that f �E g iff y � y′, where

fEy ∼ y and gEy′ ∼ y′.

Dynamic c-Consistency can now be verified. Suppose f �E y′ and f(s) � y′ for s ∈ Ec;

by Monotonicity of�, f � fEy′. Also, if y ∼ fEy, then y � y′; thus, by monotonicity again,

since I(1E[u◦ f −u(y)]) = 0, I(1E[u◦ f −u(y′)]) ≥ 0, or equivalently I(u◦ fEu(y′)) ≥ u(y′),

i.e. fEy′ � y′. Thus, f � y′, as needed. If instead f �E y′, then y � y′; as above,

I(1E[u ◦ f − u(y′)]) ≥ 0, but since, by Lemma 5.19, the solution to Eq. (14) is unique, it

must be the case that actually I(1E[u ◦ f − u(y′)]) > 0, or fEy′ � y′. Thus, f � y′, as

needed. The cases f �E y′ and f ≺E y′ are treated similarly.

5.2.3 Sufficiency of the Axioms

Claim 1: For all acts f and outcomes y, f �E y ⇔ fEy � y and f �E y ⇔ fEy � y.

Proof : suppose f �E y. By Axiom 7, fEy ∼E f �E y. Clearly, fEy(s) ∼ y for all

s ∈ Ec. Thus, by Axiom 8, fEy � y. If instead f ≺E y, the same argument shows that

fEy ≺ y, which proves the first part of the claim. The second is proved similarly.
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Claim 2: For all outcomes y, y′, y �E y′ ⇔ y � y.

Proof: The preceding claim implies that y �E y′ iff yEy′ � y′; that is, for some n ≥ 1,

u(y)Pn(E)+u(y′)Pn(Ec) ≥ u(y′). Since E is non-null, Pn(E) > 0, so the preceding expression

reduces to u(y) ≥ u(y′). This implies the claim.

Now, by Claim 2, u represents �E on Y . Also, by Claims 1 and 2, f �E g iff y � y′ for

all y, y′ such that fEy ∼ y and gEy′ ∼ y′. To see this, note that, by Claim 1, f ∼E y and

g ∼E y′; hence, f �E g iff y �E y′; by Claim 2, this is equivalent to y � y′, as required.

Thus, the unique, monotonic, c-linear, and normalized fixpoint map J defined in Lemma

5.19 represents�E: for all f, g ∈ L, f �E g iff J(u◦f) ≥ J(u◦g). Furthermore, Corollary 5.20

implies that � also satisfies Axiom 6; therefore, there exists a proper covering CE
1 , . . . , CE

K

of B(S, Σ), and probability charges PE
1 , . . . , PE

K such that, for all k = 1, . . . , K and a ∈ CE
k ,

J(a) =
∫

a dPE
k ≡ PE

k (a).

Clearly, PE
k (E) = 1 for all k. To see this, consider a ∈ int CE

k ; then, for ε > 0 small,

a + 1S\Eε ∈ int CE
k , so J(a + 1S\Eε) = PE

k (a + 1S\Eε) = PE
k (a) + εPE

k (S \ E); since J(a) =

J(a + 1S\Eε), it follows that PE
k (S \ E) = 0.

It must now be verified that, for every k ∈ {1, . . . , K}, Eq. (8) holds, and PE
k = Pnk

(·|E)

for some nk ∈ {1, . . . , N}. Fix k and consider the set Dk = {1E[a− J(a)] : a ∈ CE
k }. Then,

for all a ∈ CE
k , I(1E[a − J(a)]) = 0 = PE

k (1E[a − J(a)]), so by Lemma 5.14, there exists

nk ∈ {1, . . . , N} such that 0 = I(1E[a − J(a)]) =
∫

1E[a − J(a)] dPnk
for every a ∈ CE

k .

Therefore, for each such a, adding J(a) to each term yields

J(a) = I(aEJ(a)) =

∫
a E J(a) dPnk

= Pnk
(E)

∫
a dPnk

(·|E) + [1− Pnk
(E)]J(a);

since Pnk
(E) > 0, J(a) =

∫
a dPnk

(·|E). Also, for all a ∈ CE
k , if aEJ(a) ∈ Cm, then∫

aEJ(a) dPm = I(aEJ(a)) = J(a),

i.e Eq. (8) holds; finally, since PE
k is the unique measure representing �E on CE

k , PE
k =

Pnk
(·|E), and the proof of Theorem 3.2 is complete.

5.3 Proof of Proposition 3.4

Throughout this section, assume that � satisfies Axioms 1–5 and 6; to remind the reader of

this fact, the expression “Under the maintained assumptions” will be used in the statement

of intermediate results. Let I, u, C1, . . . , CN and P1, . . . , PN be as in Section 5.1. As in

46



§5.1.2, let I(a) =
∫

a dPn for all a ∈ Cn and n ∈ {1, . . . , N}; also write Pn(a) for
∫

a dPn.

By Assumption 1, u(X) is convex; assume w.l.o.g. that u(X) ⊃ [−1, 1], as in §5.1.2.

By assumption, (S, Σ) is a standard Borel space, and µ is convex-valued. Hence, singleton

sets are measurable, S is uncountable, and µ is continuous, i.e. µ({s}) = 0 for all s ∈ S.

With reference to Axiom 9, it is clear that fk ↓ f monotonely iff I(u ◦ fk) ↓ I(u ◦ f).

5.3.1 Countable Additivity of µ; Borel Isomorphisms

Lemma 5.21 Under the maintained assumptions, if� is probabilistically sophisticated with

respect to µ and satisfies Axiom 9, µ is continuous at ∅, hence countably additive.

Proof. Consider a sequence of events {Ak}k≥1 such that Ak ⊃ Ak+1 and
⋂

k≥1 Ak = ∅.
Let x1, x0 ∈ X be such that u(x1) = 1, u(x0) = 0. Then, by Axioms 4 and 9, for every

x ∈ X such that x � x0, there exists K ≥ 1 such that k ≥ K implies x � x1 Ak x0; moreover,

clearly x1 Ak x0 � x0. Now suppose µ(Ak) ↓ ε > 0. Since µ is convex-ranged, there exists

an event E such that µ(E) = ε; by Def. 3.3, since µ({s : x1Akx0(s) � x}) = 1 − µ(Ak) ≤
1 − µ(E) = µ({s : x1Ex0(s) � x}) for x1 � x � x0, x1Akx0 � x1Ex0. Similarly, for

x1 � x � x0, µ({s : x1Ex0(s) � x}) = 1 − µ(E) < 1 = µ({s : x0(s) � x}), so x1Ex0 � x0.

Since u(X) is convex and x1 � x1 E x0 � x0, there exists xε such that xε ∼ x1 E x0, and

hence x1Akx0 � xε � x0 for all k ≥ 1: contradiction. Thus, µ(Ak) ↓ 0.

Since µ is countably additive and continuous, the Borel isomorphism theorem for mea-

sures [19, Theorem 17.41] yields a bijection ϕ : S → [0, 1] such that ϕ and ϕ−1 are both

Borel measurable, and the Borel measure m on [0, 1] defined by m(E) = µ(ϕ−1(E)) for all

Borel sets E ⊂ [0, 1] is Lebesgue measure on [0, 1]. This implies that it is sufficient to prove

Proposition 3.4 for the case S = [0, 1], with Σ its Borel sigma-algebra.33

5.3.2 Countable additivity of P1, . . . , PN ; Continuous functions in int C1, . . . , int CN

Lemma 5.22 Under the maintained assumptions, � satisfies Axiom 9 if and only if, for

every n ∈ {1, . . . , N}, Pn is countably additive, and I(a) = Pn(a) for every a ∈ B(S, Σ) that

33Suppose (S,Σ) is any (uncountable) standard Borel space; given ϕ as above, consider the map Tϕ :
B(S,Σ) → B([0, 1],Σ[0,1]), where Σ[0,1] is the Borel sigma-algebra on [0, 1], given by Tϕa = a ◦ ϕ−1. Then
Tϕ is an isometric isomorphism between B(S,Σ) and B([0, 1],Σ[0,1]). Hence, if C1, . . . , CN is a proper
covering of B(S,Σ), then TϕC1, . . . , TϕCN is a proper covering of B([0, 1],Σ[0,1]). Also, for any probability
charge P on (S,Σ), consider the probability charge Q = P ◦ ϕ−1 on ([0, 1],Σ[0,1]); then, for any b ∈
B([0, 1],Σ[0,1]),

∫
[0,1]

b dQ =
∫

S
b ◦ ϕd(Q ◦ ϕ) =

∫
S
a ◦ ϕdP. Finally, let L′ be the set of acts from [0, 1] to X,

and define �′ over L′ by f ′ � g′ iff f ′ ◦ ϕ � g′ ◦ ϕ. Then �′ admits a representation as in Theorem 2.6; its
plausible priors Q1, . . . , QN are defined by Qn = Pn ◦ ϕ−1. Finally, if Qn = µ ◦ ϕ−1, then Pn = µ.
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is the pointwise limit of a monotonically decreasing sequence of elements of Cn.

Proof. (Only if): Fix n and a ∈ int Cn such that ‖a‖ < 1; thus, there exists ε > 0 such

that ‖b− a‖ < ε implies b ∈ Cn and ‖b‖ < 1, so there exists g ∈ L such that b = u ◦ g.

Now consider a sequence of events {Ak} such that Ak ⊃ Ak+1 for all k, and
⋂

k Ak = ∅.
For each k, let ak = a+ ε

2
1Ak

; then ‖ak−a‖ = ε
2

< ε, so ak ∈ Cn, and furthermore there exists

a sequence {fk} ⊂ L such that ak = u ◦ fk for all k. Clearly, ak(s) ≥ ak+1(s) for all k and

s, so I(ak) ≥ I(ak+1); also, fk(s) � fk+1(s) for all s. Furthermore, for every s ∈ S, there is

K(s) such that k ≥ K(s) implies ak(s) = a(s); thus, ak(s) ↓ a(s) for all s, hence fk(s) ↓ f(s)

for all s, and Axiom 9 implies that fk ↓ f , or equivalently I(ak) ↓ I(a). Therefore,

Pn(Ak) = Pn(1Ak
) =

2

ε
Pn(ak − a) =

2

ε
[Pn(ak)− Pn(a)] =

2

ε
[I(ak)− I(a)] ↓ 0,

i.e. Pn is continuous; thus, Pn is countably additive.

Now consider a sequence {ak} ⊂ Cn such that ak(s) ↓ a(s) for all s. Then I(a) =

limk I(ak) = limk P (ak) = P (a), where the first equality follows from Axiom 9, and the last

from Monotone Convergence.

(If): omitted (not required for the proof of Proposition 3.4).

Lemma 5.23 Under the maintained assumptions, if � satisfies Axiom 9, then, for every

n ∈ {1, . . . , N}, the interior of Cn contains a continuous function.

Proof. Since every Cn is affine, wlog restrict attention to Cn∩B1, where B1 denotes the

closed unit ball of B(S, Σ), viewed as the set of all Borel-measurable functions a : S → [−1, 1].

Also let C1 ⊂ B1 denote the continuous functions in B1. Begin with two preliminaries.

1. Let B1 be the set of pointwise limits of functions in C1. Then, by Kechris [19, Theorem

24.10 and Exercise 24.13], B1 is the set of functions of Baire class 1. Next, for any ordinal

ξ such that 1 < ξ < ω1 (where ω1 denotes the first uncountable ordinal), let Bξ be the set

of functions of Baire class ξ, i.e. pointwise limits of sequences {ak} ⊂ B1, where for each k,

ak ∈ Bξk
for some ξk < ξ. Then, by Kechris [19, Theorem 24.3], B1 =

⋃
ξ<ω1

Bξ. It is easy

to show by induction that every Baire class is closed under multiplication by a scalar.

2. Consider the linear operator T : B(S, Σ) → RN defined by T (a) = (P1(a), . . . , PN(a))

for all a ∈ B(S, Σ). Clearly, T (B(S, Σ)) ≡ R is a normed linear subspace of RN . Then

(e.g. Megginson [27, Exercise 1.46]) T is an open mapping, so for every n = 1, . . . , N ,

T (int (Cn ∩B1)) is open in R.

Now consider n ∈ {1, . . . , N}. For notational simplicity, let Vn ≡ int (Cn ∩ B1); observe

that that Vn 6= ∅, and that T (Vn) is open in R. Now suppose Vn does not contain any

continuous function. It will be shown that then Vn = ∅, a contradiction.
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Suppose first that there exists a ∈ B1 ∩ Vn; then there is a sequence {ak} ⊂ C1 such that

ak(s) → a(s) for all s ∈ S. Since ‖ak‖ ≤ 1, by Dominated Convergence Pm(ak) → Pm(a)

for all m ∈ {1, . . . , N}; that is, T (ak) → T (a). Since T (Vn) is open in R and {T (ak)} ⊂ R,

there is K such that T (ak) ∈ T (Vn) for all k ≥ K. In other words, for every such k, there is

bk ∈ Vn (not necessarily also in B1) such that T (ak) = T (bk), i.e. Pm(ak) = Pm(bk) for all m.

Lemma 5.17 then implies that also ak ∈ int Cn; hence, either ak or, if ‖ak‖ ≥ 1, e.g. ak

2‖ak‖
lie in int (Cn ∩B1) = Vn (cf. Lemma 5.12 Part 2) which contradicts the assumption that Vn

does not contain any continuous function. Thus, Vn ∩ B1 = ∅.
By induction, consider an ordinal ξ such that 1 < ξ < ω1 and suppose that Vn ∩ Bξ′ = ∅

for all 1 ≤ ξ′ < ξ. Suppose that a ∈ Vn ∩ Bξ, so there is a sequence ak → a such that

ak ∈ Bξk
and 1 ≤ ξk < ξ for each k. As above, T (ak) ∈ T (Vn) for large k, so by Lemma 5.17

either ak or e.g. ak

2‖ak‖
lie in Vn. But ak ∈ Bξk

, and similarly, if ‖ak‖ ≥ 1, ak

2‖ak‖
∈ Bξk

, which

contradicts the assumption that Vn ∩ Bξk
= ∅. Thus also Vn ∩ Bξ = ∅.

It follows that Vn ∩
⋃

ξ<ω1
Bξ =

⋃
ξ<ω1

(Vn ∩ Bξ) = ∅; since
⋃

ξ<ω1
Bξ = B1, it follows that

Vn = ∅, as claimed: contradiction.

5.3.3 Main Result

Fix n ∈ {1, . . . , N}. By Lemma 5.23, the interior of Cn contains a continuous function,

denoted c; by Lemma 5.12 Part 2, it is w.l.o.g. to assume that infs c(s) = 0 and sups c′(s) =

1 [e.g. consider any continuous c′ ∈ int Cn; if c′ is constant, let c = c′; otherwise, let

c = c′−infs c′

sups c′−infs c′
; the Lemma guarantees that this point will also lie in the interior of Cn].

Note also that, since S = [0, 1], minima and maxima are attained.

If c is constant, then � is easily seen to be a SEU preference.34 In particular, it admits

a unique plausible prior, and it is straightforward to show that this prior must coincide

with µ. Thus, assume c is nonconstant. Since c ∈ int Cn, there exists ε > 0 such that

sups∈T |a(s)− c(s)| = ‖a− c‖ < 2ε imply a ∈ Cn; fix such an ε > 0 throughout.

Also, since 0 ≤ c(s) ≤ 1 for all s ∈ S, c is the uniform limit of the sequence of step

functions {aM}M≥1 defined by

aM(s) =

{
1
M

(m− 1) s ∈ Em ≡ {s : c(s) ∈ [m−1
M

, m
M

)}, for m = 1, . . . ,M − 1
1
M

(M − 1) s ∈ EM ≡ {s : c(s) ∈ [M−1
M

, 1]}.

For M > 1
ε
, ‖aM−c‖ = 1

M
< ε (hence, aM ∈ Cn) and furthermore min{aM(s)−aM(t) : s, t ∈

T, aM(s) > aM(t)} = 1
M

< ε. Fix such a value of M throughout, and let f ∈ L be a simple

act such that u◦f = aM ; write f = (x1, E1; . . . xM , EM ;−1
2
, S\T ), where u(xm) = 1

M
(m−1).

34Suppose c = 1Sγ for some γ ∈ R; fix a ∈ B(S,Σ): since γ ∈ intCn, for some α ∈ (0, 1], αa+(1−α)γ ∈ Cn,
so αI(a) + (1− α)γ = I(αa+ (1− α)γ) = Pn(αa+ (1− α)γ) = αPn(a) + (1− α)γ, i.e. I = Pn.
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Since S = [0, 1] is connected and c is continuous, c([0, 1]) is connected; and since

maxs c(s) = 0 and mins c(s) = 1, c([0, 1]) = [0, 1]. Thus, for every m, the open set

c−1(m−1
M

, m
M

) ⊂ Em is non-empty; since µ has full support, µ(Em) > 0.

The remainder of the proof consists of two claims.

Claim 1. For any m ∈ {1, . . . ,M}, Pn(Em) > 0 and Pn(F ) = µ(F )
µ(Em)

Pn(Em) for all F ∈ Σ

such that F ⊂ Em.

Proof : Fix m, and let x ∈ X be such that u(x) = u(xm) + 1
M

. Define the act f ′ by

f ′(s) = f(s) for s 6∈ Em, and f ′(s) = x for s ∈ Em. Note that ‖u ◦ f ′ − c‖ ≤ ‖u ◦ f ′ − u ◦
f‖+ ‖u ◦ f − c‖ < 2ε, so u ◦ f ′ ∈ Cn.

Then Def. 3.3 implies that f ′ � f , because, for x′ such that xm � x′ ≺ x, µ({s : f ′(s) �
x′}) = µ(

⋃m−1
`=1 E`) < µ(

⋃m
`=1 E`) = µ({s : f(s) � x′}), and equality holds for all other x′.

Hence, Pn(u ◦ f ′) = I(u ◦ f ′) > I(u ◦ f) = Pn(u ◦ f), so Pn(Em) > 0 as needed.

Next, by range convexity of µ, for every K ≥ 1 there exists a partition {E1
m, ..., EK

m} of

Em such that µ(Ek
m) = 1

K
µ(Em) for all k = 1, . . . , K. For each such k, construct acts fk

such that fk(s) = f(s) for all s ∈ S \ Ek
m, and fk(s) = x for s ∈ Ek

m. Arguing as above,

u ◦ fk ∈ Cn; furthermore, Def. 3.3 implies that fk ∼ fh, hence Pn(u ◦ fk) = I(u ◦ fk) =

I(u ◦ fh) = Pn(u ◦ fh), for all k, h ∈ {1, . . . , K}. Since fk and fh only differ on Ek
m and

Eh
m, a simple calculation shows that Pn(Ek

m) = Pn(Eh
m), so Pn(Ek

m) = 1
K

Pn(Em). Hence, the

second part of the claim is true for all events F ⊂ Em such that µ(F )
µ(Em)

is rational.

Now assume µ(F )
µ(Em)

is irrational, and consider r ∈ Q∩ ( µ(F )
µ(Em)

, 1]. By range convexity of µ,

there exists Fr ∈ Σ such that Fr ⊂ Em \ F and µ(F )+µ(Fr)
µ(Em)

= r,35 so Pn(F ∪ Fr) = rPn(Em).

Thus, Pn(F ) ≤ rPn(Em) for all r ∈ Q∩ ( µ(F )
µ(Em)

, 1], which implies that Pn(F ) ≤ µ(F )
µ(Em)

Pn(Em).

Similarly, Pn(F ) ≥ µ(F )
µ(Em)

Pn(Em), so Claim 1 holds for all Borel F ⊂ E.

Claim 2. For any m ∈ {1, . . . ,M}, Pn(F ) = µ(F )
µ(

Sm
`=1 E`)

Pn(
⋃m

`=1 E`) for all F ∈ Σ such that

F ⊂
⋃m

`=1 E`. Thus, in particular, Pn = µ.

Proof : arguing by induction, the assertion follows from Claim 1 for m = 1; thus, assume

that it holds for m − 1 ≥ 1. Recall that µ(Em−1) > 0 and µ(Em) > 0; since µ is convex-

ranged, there exist events Gm−1 ⊂ Em−1 and Gm ⊂ Em such that µ(Gm−1) = µ(Gm) > 0

[e.g. if µ(Em−1) ≤ µ(Em), let Gm−1 = Em−1 and choose Gm so µ(Gm) = µ(Em−1), which is

possible by range convexity; similarly for µ(Em−1) > µ(Em).]

Now define an act f ′ by f ′(s) = f(s) for s ∈ S \ (Gm−1 ∪Gm), f ′(s) = xm for s ∈ Gm−1,

and f ′(s) = xm−1 for s ∈ Gm. Note that, by construction, u(xm) − u(xm−1) = 1
M

< ε,

35Equivalently, Fr must satisfy µ(Fr) = rµ(Em)−µ(F ) ≤ µ(Em)−µ(F ) = µ(Em \F ); so range convexity
implies that such Fr can be found.
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so ‖u ◦ f ′ − c‖ ≤ ‖u ◦ f ′ − u ◦ f‖ + ‖u ◦ f − c‖ < 2ε, hence f ′ ∈ Cn. Furthermore,

µ({s : f ′(s) = x`}) = µ({s : f(s) = x`}) for all ` = 1, ...,M . This is obvious for ` < m − 1

or ` > m; moreover, for ` = m− 1, by the choice of Gm−1 and Gm,

µ({s : f ′(s) = xm−1}) = µ([Em−1 \Gm−1]∪Gm) = µ(Em−1)−µ(Gm−1) +µ(Gm) = µ(Em−1),

and similarly for ` = m. Therefore, f ∼ f ′, which implies Pn(u ◦ f) = Pn(u ◦ f ′); since f, f ′

only differ on Gm−1∪Gm, a simple calculation shows that Pn(Gm) = Pn(Gm−1). By Claim 1,

Pn(Gm) = µ(Gm)
µ(Em)

Pn(Em); by the induction hypothesis, Pn(Gm−1) = µ(Gm−1)

µ(
Sm−1

`=1 E`)
Pn(
⋃m−1

`=1 E`).

Conclude that Pn(Em)
µ(Em)

=
Pn(

Sm−1
`=1 E`)

µ(
Sm−1

`=1 E`)
≡ α; thus,

α =
µ(Em)

µ(
⋃m

`=1E`)
Pn(Em)
µ(Em)

+
µ(
⋃m−1

`=1 E`)
µ(
⋃m

`=1E`)
Pn(
⋃m−1

`=1 E`)

µ(
⋃m−1

`=1 E`)
=

Pn(Em)
µ(
⋃m

`=1E`)
+
Pn(
⋃m−1

`=1 E`)
µ(
⋃m

`=1E`)
=
Pn(
⋃m

`=1E`)
µ(
⋃m

`=1E`)
.

Finally, consider an arbitrary F ⊂
⋃m

`=1 E`. Then

Pn(F ) = Pn(F ∩
m−1⋃
`=1

E`) + Pn(F ∩ Em) =
µ(F ∩

⋃m−1
`=1 E`)

µ(
⋃m−1

`=1 E`)
Pn(

m−1⋃
`=1

E`) +
µ(F ∩ Em)
µ(Em)

Pn(Em) =

= µ(F ∩
m−1⋃
`=1

E`) · α+ µ(F ∩ Em) · α = µ(F ) · α =
µ(F )

µ(
⋃m

`=1E`)
Pn(

m⋃
`=1

E`).

References

[1] C. Aliprantis, K. Border, Infinite Dimensional Analysis, Springer Verlag, Berlin, 1994.

[2] F. J. Anscombe, R. J. Aumann, A definition of subjective probability, Annals of Math-

ematical Statistics 34 (1963) 199–205.

[3] T. Bewley, Knightian decision theory: Part I, Decisions in Economics and Finance 25 (2)

(2002) 79–110, (first version 1986).

[4] A. Billot, A. Chateauneuf, I. Gilboa, J.-M. Tallon, Sharing beliefs: Between agreeing

and disagreeing, Econometrica 68 (2000) 685–694.

[5] R. Casadesus-Masanell, P. Klibanoff, E. Ozdenoren, Maxmin expected utility over sav-

age acts with a set of priors, J. Econ. Theory 92 (2000) 33–65.

[6] E. Castagnoli, F. Maccheroni, Restricting independence to convex cones, J. Math. Econ.

34 (2000) 215–223.

51



[7] E. Castagnoli, F. Maccheroni, M. Marinacci, Expected utility with multiple priors,
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