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6 Online Appendix

This Online Appendix contains (i) additional results and discussion related to Axiom 6 and

the notion of plausible priors (Sec. 6.2–6.5), and (ii) proofs that have been omitted from the

main text in the interest of brevity (Sec. 6.6). See the paper for references to theorems, etc.,

as well as citations; also the numbering of sections and subsections continues the numbering

in the paper.

6.1 Observations on Robust Mixture Neutrality

6.1.1 Alternative Formulation of Axiom 6 and the role of subsequences

Axiom 6 requires that every uniformly convergent sequence fk → f admit a sub-sequence of

mutually robustly mixture-meutral acuts. In light of the foregoing discussion, the following

alternative formulation might seem appropriate: for all sequences fk → f , there exists K

such that fk ≈ f for all k ≥ K.

This alternative formulation is problematic whenever, intuitively, the limiting act f lies

in the intersection of sets of acts that the decision-maker evaluates employing different priors:

that is, whenever f ∈ Cn ∩ Cm for n 6= m, where Cn and Cm are elements of the proper

covering whose existence is asserted in Theorem 2.6. This may be seen even in the simple

setting of Ex. 1. Let f = (0, 1
2
, 1

2
) and, for all k ≥ 1, let

fk =

(
0,

1

2
+

(−1)k

k + 1
,
1

2

)
.

It is clear that fk → f . However, while fk ' f for all k, there is no K such that fk ≈ f for

all k ≥ K.On the other hand, it is clear that fk ≈ f` whenever k and ` are both even or both

odd. Thus, by employing subsequences, the issues highlighted here are circumvented, while

still capturing the intuition that acts that are uniformly close in preference do not provide

hedging opportunities.

Observe that the simpler, alternative formulation must be discarded mainly because ro-

bust mixture neutrality must be employed to correctly reflect the absence of hedging oppor-

tunities for non-MEU preferences: the issues highlighted here do not arise if simple mixture

neutrality is employed instead.
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6.2 Alternative “Multiple-Priors” Representations of MEU and

Bewley Preferences

The Introduction provides an example of a MEU preference (reproduced in Example 1) that

also admits an α-MEU representation, characterized by a larger set of priors. The main

message conveyed by the example is that, while, for any preference relation � satisfying

the Gilboa-Schmeidler [14] axioms, there exists a unique (weak∗-closed, convex) set of priors

that yields a MEU representation of �, there may be other sets of priors that yield different

representations of the same preferences.

This section illustrates that such alternative representations, involving different sets of

priors, can always be found for MEU preferences. To this end, I provide two constructions.

Consider a MEU preference represented by a set P of priors. The first construction delivers

α-MEU representations of the same preferences, characterized by strictly larger sets Qα of

priors. The second construction delivers another representation of the same preferences,

which employs strictly smaller sets of priors; in particular, if P is “symmetric” (defined

below), the second representation is a generalized, “hyper-pessimistic” α-MEU rule, where

the parameter α is allowed to take arbitrary positive values.

These results have implications for incomplete preferences that admit Bewley-type rep-

resentations. To clarify, suppose f � g if and only if
∫

u ◦ f dp ≥
∫

u ◦ g dp for all p ∈ P,

where P is a weak∗-closed, convex set of priors. This condition is clearly equivalent to

min
p∈P

∫
[u ◦ f − u ◦ g] dp ≥ 0.

Thus, both constructions described below can be immediately adapted to provide alternative

representations of Bewley preferences. For instance, if S is finite and the set P satisfies the

conditions of Proposition 6.1 below, for α < 1 sufficiently large, there exists a set of priors

Qα ) P such that f � g if and only if

α min
q∈Qα

∫
[u ◦ f − u ◦ g] dq + (1− α) max

q∈Qα

∫
[u ◦ f − u ◦ g] ≥ 0.

If P is symmetric and S is arbitrary, an analogous representation holds, and Qα can be made

arbitrarily small.

The first construction generalizes the intuition behind the example in the Introduction.

For simplicity, I assume that S is finite (and non-singleton), so Σ = 2S and B(S, Σ) = RS.

Denote by ∆(S) the set of probability distributions over S.

The following proposition states that all MEU preferences characterized by a set P strictly

positive priors admit a continuum of equivalent α-MEU preferences, each characterized by
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a strictly larger collection Qα of probabilities. If the set P is symmetric, in the sense that

there exists p0 ∈ P such that p ∈ P ⇒ p0 − (p− p0) ∈ P , the result is straightforward: the

appropriate construction is indicated in M. Siniscalchi, “Vector-Adjusted Expected Utility,”

Princeton Economic Theory Working Paper 01S3, 2001, Sec. 4.2.1; incidentally, this is the

case in the Ellsberg example, where p0 is the uniform distribution. Here, I show that the

symmetry condition can be dispensed with, although the construction of the appropriate set

Qα is somewhat less obvious.

Proposition 6.1 Consider the functional I : RS → R defined by

I(a) = min
p∈P

∫
a dp

where P ⊂ ∆(S). If, for some ε > 0, mins∈S,p∈P p(s) ≥ ε, then there exists a nonempty

interval (ᾱ, 1] such that, for all α ∈ (ᾱ, 1], there exists a set Qα ⊃ P of priors such that, for

all a ∈ RS,

I(a) = α min
q∈Qα

∫
a dq + (1− α) max

q∈Qα

∫
a dq. (15)

Proof. Note first that ε ≤ 1
2
, because S contains at least 2 points; thus, 1− ε ≥ 1

2
. I first

claim that, for any α ∈ (1 − ε, 1], and for any p, p′ ∈ P , there exist q, q′ ∈ ∆(S) such that

αq +(1−α)q′ = p and (1−α)q +αq′ = p′. To see this, let q = αp−(1−α)p′

2α−1
and q′ = αp′−(1−α)p

2α−1
.

Then q, q′ ∈ RS satisfy αq + (1− α)q′ = p, (1− α)q + αq′ = p′, and
∑

s q(s) =
∑

s q′(s) = 1.

Furthermore, for any s ∈ S, q(s) = αp(s)−(1−α)p′(s)
2α−1

> (1−ε)ε−εp′(s)
2α−1

= ε[1−ε−p′(s)]
2α−1

≥ 0: the

first inequality follows from α > 1 − ε and p(s) ≥ ε, whereas the second follows from the

assumption that there exists s′ ∈ S \ {s}, so 1− p′(s) ≥ p′(s′) ≥ ε. Similar calculations show

that q′(s) > 0; hence, q, q′ ∈ ∆(S), as claimed.

Now, for any α ∈ (1− ε, 1], consider the set Qα ⊂ RS defined by

Qα =
⋃ {

{q, q′} :
∑

s

q(s) =
∑

s

q′(s) = 1, αq + (1− α)q′ ∈ P , (1− α)q + αq′ ∈ P

}
.

The preceding claim implies that Qα ⊂ ∆(S), and clearly P ⊂ Qα, P = Q1 (let q = q′ = p

for any p ∈ P). Furthermore, Qα is convex: to see this, suppose that q, q̄ ∈ Qα, so that there

exist q′, q̄′ ∈ Qα such that αq + (1− α)q′ ∈ P , (1− α)q + αq′ ∈ P and also αq̄ + (1− α)q̄′ ∈
P , (1− α)q̄ + αq̄′ ∈ P . Then, for any λ ∈ [0, 1],

α[λq + (1− λ)q̄] + (1− α)[λq′ + (1− λ)q̄′] = λ[αq + (1− α)q′] + (1− λ)[αq̄ + (1− α)q̄′] ∈ P

and similarly

(1− α)[λq + (1− λ)q̄] + α[λq′ + (1− λ)q̄′] = λ[(1− α)q + αq′] + (1− λ)[(1− α)q̄ + αq̄′] ∈ P ,
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which imply that λq + (1 − λ)q̄, λq′ + (1 − λ)q̄′ ∈ Qα, as required. Finally, the set Qα

is closed: suppose {qn} ⊂ Qα has limit q ∈ RS; for every n, there is q′n ∈ Qα such that

αqn + (1− α)q′n, (1− α)qn + αq′n ∈ P . Possibly by considering a subsequence, q′n → q′ ∈ RS;

it is then clear that q, q′ ∈ Qα.

It remains to be shown that the representation in (15) holds, in particular for α ∈ (1−ε, 1).

To this end, fix a ∈ RS, and consider qa ∈ arg minq∈Qα

∫
a dq. Then there exists Qa ∈ Qα

such that pa ≡ αqa + (1 − α)Qa ∈ P and Pa ≡ (1 − α)qa + αQa ∈ P . I claim first that

pa ∈ arg minp∈P
∫

a dp. Suppose that
∫

a dp <
∫

a dpa for some p ∈ P . By the initial claim,

there exists q, q′ ∈ ∆(S) such that αq + (1 − α)q′ = p and (1 − α)q + αq′ = Pα. Note that

p = λq +(1−λ)Pα and pa = λqa +(1−λ)Pa, where λ = 2α−1
α

∈ (0, 1); thus,
∫

a dp <
∫

a dpa

implies that
∫

a dq <
∫

a dqa, which contradicts the choice of qa and proves the claim.

Next, I claim that Pa ∈ arg maxp∈P
∫

a dp. Again, suppose that there exists P ∈ P
such that

∫
a dP >

∫
a dPa, and let q, q′ ∈ ∆(S) such that αq + (1 − α)q′ = pa and

(1− α)q + αq′ = P . Now pa = λq + (1− λ)P = λqa + (1− λ)Pa, where λ = 2α−1
α

as above.

Since
∫

a dP >
∫

a dPa, it must be the case that
∫

a dq <
∫

a dqa, which again contradicts

the choice of qa.

Finally, I claim that Qa ∈ arg maxq∈Qα

∫
a dq. To see this, pick an element Q ∈

arg maxq∈Qα

∫
a dq. Then it is also the case that Q ∈ arg minq∈Qα

∫
(−a) dq, so the pre-

vious argument implies that there exists q such that αQ+(1−α)q ∈ arg minp∈P
∫

(−a) dp =

arg maxp∈P
∫

a dp and (1−α)Q+αq ∈ arg maxp∈P
∫

(−a) dp = arg minp∈P
∫

a dp. Therefore,∫
a d[αQ+(1−α)q] =

∫
a d[(1−α)qa+αQa] and

∫
a d[(1−α)Q+αa] =

∫
a d[αqa+(1−α)Qa],

which implies that
∫

a dQa =
∫

a dQ and
∫

a dqa =
∫

a dq, as required.

Therefore,

α min
q∈Qα

∫
a dq + (1− α) max

q∈Qα

∫
a dq = α

∫
a dqa + (1− α)

∫
a dQa =

=

∫
a d[αqa + (1− α)Qa] =

=

∫
a dpa =

= min
p∈P

∫
a dp =

= I(a).

The second construction applies to arbitrary state spaces, and is simple to describe. For

symmetric sets of priors, the representation one obtains has the functional form of the α-

5



MEU model, but α is allowed to take arbitrary non-negative values; it might be (informally!)

interpreted as suggesting a form of “hyper-pessimism”. For arbitrary sets of priors, it is a

linear combination of a minimum EU term with a reference expectation. The construction

is interesting mainly because it yields a strictly smaller set of priors than the one appearing

in the MEU representation. Indeed, this set can be made arbitrarily small.

Thus, assume S is a (finite or infinite) set, and Σ an algebra of subsets of S. As above,

let I : B(S, Σ) → R be defined by I(a) = minp∈P
∫

a dP for a weak∗-closed, convex set P of

probability charges on (S, Σ). Fix an arbitrary point p0 ∈ P , and an arbitrary α ∈ (0, 1); let

Qα = {αp + (1− α)p0 : p ∈ P}.

Clearly, Qα is weak∗-closed and convex; furthermore, Qα is a strict subset of P . Then:

1

α
min
q∈Qα

∫
a dq +

(
1− 1

α

) ∫
a dp0 =

=
1

α
min
p∈P

∫
a d[αp + (1− α)p0] +

(
1− 1

α

) ∫
a dp0 =

= min
p∈P

∫
a dp +

1− α

α

∫
a dp0 +

(
1− 1

α

) ∫
a dp0 =

= min
p∈P

∫
a dp = I(a).

The essential point is that, since p0 ∈ Qα, it is still the case that the representation

one obtains is based on a “multiple-priors” rule, in the sense that the collection of integrals

{
∫

a dq}q∈Qα fully determines the evaluation of a.

If the set P is symmetric around p0, then so isQα, and it can be shown that minq∈Qα

∫
a dq+

maxq∈Qα

∫
a dq = 2

∫
a dp0. In this case, the above representation reduces to a generalized

β-MEU rule, with Qα as set of priors and β = 1
2

+ 1
2α

.

6.3 Probabilistic Sophistication

As noted in the Introduction, an alternative definition of “plausible prior” might require

that preferences over acts in some subset C of L be consistent with some probabilistically

sophisticated non-EU preference functional.

While this is an interesting extension, certain difficulties must be addressed. Recall that

the intuitive interpretation of multiple-prior decision models suggests that individuals might

react to ambiguity by evaluating different acts using different priors; it does not suggest that

their risk attitudes should also change, depending on the act being evaluated. Indeed, holding
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risk attitudes fixed strengthens the intuitive connection between ambiguity and multiplicity

of priors.36

Hence, in order to properly extend this intuition while allowing for non-EU risk atti-

tudes, a two-step procedure seems necessary: given a preference relation �, first elicit a

suitable Machina-Schmeidler preference functional V over probability distributions on out-

comes; then, deem a probability charge P a V-plausible prior iff there is a set C ⊂ L such

that preferences over C are represented by associating with any (simple) act f in C the

number V(P ◦ f−1),37 and P is the only probability charge with this property.

If actual objective lotteries are available, as in the original Anscombe-Aumann frame-

work, the functional V can be derived from preferences over constant acts (cf. Machina and

Schmeidler [25]); this would at least make it possible to define V-plausible priors, as above.

But in a fully subjective decision framework, even this preliminary step is likely to prove

challenging. [Again, recall that objective lotteries do not play an essential role in the present

paper.] In either case, ensuring uniqueness of the plausible priors seems non-trivial.

6.4 Conditional Evaluations

The discussion in Section 2.2.3 involves the notion of “conditional evaluation” of an act given

a set E. In particular, the intuition for the key behavioral assumption of this paper, Axiom

6, invokes the assumption that conditional evaluations satisfy Axioms 1–5. Prior-by-prior

updating of MEU preferences clearly satisfies this condition; more generally, the discussion

following Theorem 3.2 implies that this is the case for prior-by-prior updating of general

plausible-priors preferences. This is also the case for h-Bayesian updating à la Gilboa and

Schmeidler [15].

One caveat to that discussion is that Bayesian updating, as well as h-Bayesian updating,

is well-defined for acts that are suitably “non-null”. For prior-by-prior updating, the relevant

notion is Def. 3.1; for all MEU and all plausible-priors preferences, this implies that P (E) > 0

for all probability charges P in the representation.

Now say that an event E is Savage-null if, for all f, g ∈ L, f(s) ∼ g(s) for all s 6∈ E

implies f ∼ g. Clearly, a Savage-null event is “not non-null” (“null” for short), but the

36On the other hand, contemplating changes in risk preferences is an intriguing possibility; Chew and Sagi
(“Small Worlds: Modelling Attitudes towards Sources of Uncertainty,” mimeo, October 2003) have recently
suggested that it may lead to a novel interpretation of the Ellsberg paradox and related phenomena. But
since the focus of the present paper is on the “traditional” view of such behavior patterns, it seems important
to hold risk preferences fixed.

37More explicitly, if f delivers the outcomes y1, . . . , yI , P ◦ f−1 is the distribution that assigns probability
P (f−1(yi)) to each yi, for i = 1, . . . , I.
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converse is not true. If a preference has a MEU or a plausible-priors representation, and E

is Savage-null, then P (E) = 0 for all relevant priors P .

It is intuitively clear that hedging opportunities w.r.to Savage-null events are irrelevant:

these events simply play no role in the decision-maker’s evaluation of acts. On the other

hand, events that are not Savage-null are, by definition, relevant for some comparisons of

acts; therefore, hedging with respect to such events may be behaviorally significant.

The objective of this subsection is to show that the characterization of Bayesian updating

in Section 3.1 can actually be extended to events that are null, but not Savage-null. In

particular, the resulting notion of conditional evaluation of acts is continuous; hence, the

discussion in Section 2.2.3 applies to hedging relative to such events as well.

As a final introductory note, while the analysis in this subsection focuses on Bayesian

updating, it is conceivable that similar constructions may be carried out for other updating

rules, under suitable conditions.

Section 3.1 characterizes Bayesian updating with respect to non-null events by means of

two axioms, Consequentialism (Axiom 7) and Dynamic Constant-act Consistency (Axiom 8);

incidentally, as noted in Footnote 14, while the analysis therein focuses on plausible-priors

preferences, the same characterization result applies to MEU preferences that do not satisfy

the plausible-priors axioms.

As the proof of Theorem 3.2 shows, conditional preferences that satisfy Axioms 7 and 8

can equivalently be described as follows: f is preferred to f ′ conditional upon E if and only

if y � y′, where

y ∼ fEy, y′ ∼ f ′Ey′.

In other words, conditional preferences are characterized by the above fixpoint conditions,

which may be viewed as a definition of conditional preferences given E, as well as of condi-

tional evaluations of the acts involved. Notice that the functional counterpart of the above

fixpoint condition for an arbitrary a ∈ B(S, Σ) is

x = I(aEx), or equivalently I(1E[a− x]) = 0,

where x ∈ R. For any unconditional preference that satisfies Axioms 1–5 (including all MEU,

α-MEU, and plausible-prior preferences), Lemma 5.19 shows that, if E is non-null, then the

equation I(1E[a− c]) = 0 has a unique solution: in other words, conditional preferences are

well-defined with respect to non-null events. Furthermore, this unique solution is monotonic,

normalized, and constant-linear, hence continuous, as a function of a: this means that

conditional preferences defined using the above fixpoint conditions will satisfy Axioms 1–

5, as required. This subsection argues that, for many preferences of interest, this fixpoint
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characterization of prior-by-prior Bayesian updating can be generalized to all non-Savage-

null events. Specifically, it will be shown that

1. for MEU (and, similarly, 0-MEU) preferences, a simple modification of the fixpoint con-

dition allows one to obtain a characterization of prior-by-prior updating with respect

to non-Savage-null, but possibly null events;

2. for α-MEU preferences, with α ∈ (0, 1), there is a unique solution to the fixpoint

condition even if the event E is null (but not Savage-null).

3. finally, for plausible-prior preferences, if the conditioning event is null, but not Savage-

null, it is possible to construct a selection from the correspondence associating with

each act the set of solutions to the fixpoint condition, so as to define a condit ional

preference that satisfies Axioms 1–5.

In all three cases, the corresponding notion of conditional evaluation satisfies all the prop-

erties referred to in Section 2.2.3, including the Consequentialism axiom invoked in Ex. 3.

For notational simplicity, as in the proof of Theorem 2.6, P (a) =
∫

a dP for any a ∈
B(S, Σ) and probability charge P on (S, Σ).

1. Consider a set Q of probability charges on (S, Σ), and an event E ⊂ Σ such that

Q∗(E) > 0 for some Q∗ ∈ Q. For a MEU (or 0-MEU, i.e. “maxmax”) preference � with

priors Q, it is possible to define preferences conditional upon E, denoted �E, simply by

letting QE = cl {Q(·|E) : Q ∈ Q, Q(E) > 0} (where the closure is taken w.r.to the weak∗

topology on ba(S, Σ)) and considering the MEU decision rule characterized by the set QE

of posterior probabilities. Similarly, conditional evaluations of functions a ∈ B(S, Σ) are

readily defined by x(a, E) = minQ∈QE

∫
a dQ.

Suppose that Q0(E) = 0 for some Q0 ∈ Q. I claim that then

x(a, E) = sup{x : I(1E(a− x)) = 0} and inf{x : I(1E(a− x)) = 0} = −∞

(for maxmax preferences, replace “sup” and “inf” with “inf” and “sup”, and “−∞” with

“+∞”). Note first that the proof of Lemma 5.19 shows that {x : I(1E(a − x)) = 0} is an

interval. Furthermore, this set is bounded above, because for x = sups∈E a(s) + 1, since

Q∗(E) > 0, I(1E(a−x)) ≤ Q∗(1E(a−x)) = −Q∗(E)+Q∗(1E(a− sups∈E a)) ≤ −Q∗(E) < 0.

Finally, since Q0(E) = 0, for any M > 0, if x = infs∈E a(s) −M then 1E(a − x) ≥ M > 0;

hence, I(1E(a − x)) = Q0(1E(a − x)) = 0, so there are arbitrarily small solutions to the

equation I(1E(a − x)). Thus, by continuity, {x : I(1E(a − x)) = 0} = (−∞, x], for some
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x < ∞. This proves the second claim, and it remains to be shown that x = x(a, E), as

defined above.

To see this, note that, for Q ∈ Q such that Q(E) > 0, 0 = I(1E(a−x)) ≤ Q(1E(a−x)) =

Q(1Ea) − Q(E)x, so x ≤ Q(a|E). If {Qk} ⊂ Q, Qk(E) > 0 for all k, and Qk(·|E) → QE

in the weak∗ topology, then QE(a) = limk Qk(a|E) ≥ x. Therefore, x ≤ minQ∈QE
Q(a) =

x(a, E). Moreover, if, for some ε > 0, x + ε ≤ Q(a|E) for all Q ∈ Q with Q(E) > 0, then

I(1E(a − (x + ε))) = Q0(1E(a − (x + ε))) = 0, which contradicts the definition of x. Thus,

x = infQ∈Q:Q(E)>0 Q(a|E) ≥ infQE∈QE
QE(a) = minQE∈QE

QE(a). Hence x = x(a, E).

2. Let Q, Q∗, Q0 be as above. Fix α ∈ (0, 1) and consider an α-MEU preference with

priors Q. Note that Q minimizes Q̄(aEx) iff it minimizes Q̄(1E(aEx)) for Q̄ ∈ Q, because

1E(aEx) = aEx−1Sx. Now suppose x = I(aEx) and x′ = I(aEx′), with x′ ≥ x, and denote

by q, Q respectively the minimizers and maximizers of Q̄(aEx); similarly, denote by q′, Q′

the minimizers and maximizers of Q̄(aEx′). Then

x = αq(aEx) + (1− α)Q(aEx)

x′ = αq′(aEx′) + (1− α)Q′(aEx′)

or equivalently

0 = αq(1E(a− x)) + (1− α)Q(1E(a− x))

0 = αq′(1E(a− x′)) + (1− α)Q′(1E(a− x′)).

Now suppose that q(1E(a − x)) > q′(1E(a − x′)). Then Q(1E(a − x)) < Q′(1E(a − x′)) ≤
Q′(1E(a− x)), which contradicts the fact that Q maximizes Q̄(1E(a− x)). Suppose instead

q(1E(a − x)) < q′(1E(a − x′)); now q(1E(a − x′)) ≤ q(1E(a − x)) < q′(1E(a − x′)), which

contradicts the fact that q′ minimizes Q̄(1E(a− x′)). Thus q(1E(a− x)) = q′(1E(a− x′)) ≤
q(1E(a−x′)), i.e. q(1Ea)− q(E)x ≤ q(1Ea)− q(E)x′, i.e. (x′−x)q(E) ≤ 0; hence, q(E) = 0,

which implies Q(1E(a− x)) = 0.

Thus, q(aEx) = Q(aEx) = x; now observe that, if Q̄(E) > 0 and Q̄(a|E) < x, then

Q̄(aEx) < x = q(aEx), a contradiction; similarly, if Q̄(E) > 0 and Q̄(a|E) > x, then

Q̄(aEx) > x = Q(aEx), also a contradiction. Hence, Q̄(a|E) = x for all Q̄ ∈ Q with

Q̄(E) > 0; in particular, Q∗(a|E) = x.

Moreover, q(E) = 0 also implies that q′(1E(a − x′) = q(1E(a − x)) = 0, and hence also

Q′(1E(a−x′)) = 0, so q′(aEx′) = Q′(aEx′) = x′. By the argument just given, Q∗(a|E) = x′.

But this contradicts the fact that x′ > x.

3. Turning to plausible-priors preferences, denote the relevant probabilities by P1, . . . , PN ,

and fix a non-Savage-null event E ∈ Σ.
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Observe that I(aEx) = x iff I((λa)E(λx)) = λx for all λ > 0; hence, it is wlog to restrict

attention to a ∈ B(S, Σ) such that ‖a‖ ≤ 1. For the purposes of this proof, it is useful

to restrict x(a, E) to the unit ball of B(S, Σ), and redefine it as x(a, E) = {x ∈ [−1, 1] :

I(aEx) = x}; this avoids notational complications that arise e.g. with MEU preferences, for

which x(a, E) may be unbounded.

Note first that, for all preferences satisfying Axioms 1–5, the correspondence a 7→ x(a, E) ⊂
R is closed- and convex-valued, as well as upper hemicontinuous. To see this, note that

if I(aExk) = xk ∈ [−1, 1] for all k and xk → x, then x ∈ [−1, , 1] and I(aEx) =

limk I(aExk) = limk xk = x; also, if x > x′ and I(1E(a − x)) = I(1E(a − x′)) = 0,

then for all x′′ ∈ [x′, x], 1E(a − x) ≤ 1E(a − x′′) ≤ 1E(a − x′), so by monotonicity of I,

I(1E(a − x′′)) = 0. Finally, if ak → a, xk → x, and I(akExk) = xk for all k, by continu-

ity of I, I(aEx) = limk I(akExk) = limk xk = x [because akExk → aEx in norm]. Thus,

x ∈ x(a, E); since X is compact-valued, it is upper hemicontinuous.

Next, for plausible-priors preferences, x(·, ·) is also lower -hemicontinuous. To see this,

suppose that ak → a, but there is x∗ ∈ x(a, E) such that, for all subsequences {k(`)},
{xk(`)} ⊂ [−1, 1] and xk(`) ∈ x(ak(`), E) for all ` implies xk(`) 6→ x∗.

Let x̄(a, E) = sup{x : ∃{k(`)}, {xk(`)} s.t. xk(`) ∈ x(ak(`), E), xk(`) → x} ∈ x(a, E), and

for definiteness, suppose x∗ > x̄(a, E). Then, for any λ ∈ (0, 1], λx∗ + (1 − λ)x̄(a, E) 6∈
x(ak, E), except possibly for finitely many k’s; otherwise, x̄(a, E) would not be the supremum

of all points in x(a, E) that are limits of points in x(ak, E).

Now let x1 = x∗ and consider the sequence {akEx1} → aEx1; there is n such that

ak1(`)Ex1 ∈ Cn for a suitable subsequence {ak1(`)}, and since ak1(`)Ex1 → aEx1, aEx1 ∈ Cn

as well: for notational simplicity, suppose n = 1. Then P1(E) > 0: otherwise, I(ak1(`)Ex1) =

P1(1Eak1(`)) + [1 − P (E)]x1 = x1, i.e. x1 ∈ x(ak1(`), E) for all `. Now, arguing by induc-

tion, suppose that, for m = 1, . . . , n, the points xm = 1
m

x∗ + (1 − 1
m

)x̄(a, E) have been

defined in such a way that aExm ∈ Cm, aExm 6∈ Cm′ for any m′ ∈ {1, . . . n} \ {m}, and

furthermore Pm(E) > 0 [as above, the assumption that the priors corresponding to each

x1, . . . , xn are P1, . . . , Pn is merely for notational simplicity]. To complete the inductive step,

consider xn+1. There is a subsequence {akn+1(`)} such that akn+1(`)Exn+1 ∈ Cn∗ for some

n∗ ∈ {1, . . . , N}; it must be the case that Pn∗(E) > 0, because otherwise I(akn+1(`)Exn+1) =

Pn∗(akn+1(`)Exn+1) = xn+1, which contradicts the fact that xn+1 6∈ x(akn+1(`), E). The key

observation is that, furthermore, n∗ 6∈ {1, . . . , n}. To see this, suppose that n∗ = m ∈
{1, . . . , n}; then aExm ∈ Cm and also aExn+1 ∈ Cm; since xm = I(aExm) = Pm(aExm) and

Pm(E) > 0, xm = Pm(a|E); similarly, xn+1 = I(aExn+1) = Pm(aExn+1) and Pm(E) > 0

imply xn+1 = Pm(a|E): since xm 6= xn+1, a contradiction is obtained. Thus, n∗ > n, and for

notational simplicity it can be assumed that n∗ = n + 1.
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To summarize, if x(·, ·) is not lower hemicontinuous, then there exists a procedure that,

for all n ≥ 1, selects a point xn ∈ x(a, E) such that aExn ∈ Cn and aExn 6∈ Cm for any

m 6= n. But this contradicts the fact that there are finitely many sets Cn.

Finally, consider the function x∗(a, E) : B(S, Σ) → R defined by a 7→ max x(a, E) ∩
[infE a(s), supE a(s)]. If a = 1, then I(1 E 1) = 1, so x∗(1, E) = 1, i.e. x∗(·, E) is normalized.

If a(s) ≥ b(s) for all s and ξ = x∗(b, E), then I(aEξ) ≥ I(bEξ) = ξ, so x∗(a, E) ≥ x∗(b, E),

i.e. x∗(·, E) is monotonic. Finally, it is clear that x∗(·, E) is also c-linear. Hence, if conditional

preferences are defined via x∗, they satisfy Axioms 1–5, as needed.

A simple preference definition of x∗ is as follows: y is the conditional evaluation of f iff

(i) y′ � f(s) � y′′ for all s implies y′ � y � y′′; (ii) y ∼ fEy; and (iii) if z satisfies (ii), then

y � z. [Of course, a dual definition, wherein “max” is replaced by “min” and condition (iii)

is suitably modified, is also possible]. I have not investigated a modification of Axiom 8 that

delivers (i)–(iii), although it should be possible to formulate one such axiom.

6.5 Alternative definitions of the set L of acts

Let BL(S, Σ) = {γu◦f : γ ≥ 0, f ∈ L}. Given the definition of L in the text, the assumption

that Σ is sigma-algebra ensures that B(S, Σ) = BL(S, Σ). If instead Σ is an algebra, then

BL(S, Σ is a (dense) proper subset of B(S, Σ). However, none of the results depends on the

fact that Σ is a sigma-algebra—except of course for Proposition 3.4, which explicitly assumes

that it is.

To clarify (cf. the proof of Lemma 5.1), recall that, if a preference relation � satisfies

Axioms 1–5) on the set L0 of simple Σ-measurable acts, then it has a unique extension to

the set L of Σ-measurable acts—and indeed, in case Σ is not a sigma-algebra, to the set of

all maps f : S → Y such that u◦f ∈ B(S, Σ). The question is whether the unique extension

of a preference that satisfies Axioms 1–5 and Axiom 6 on L0 extends to a preference that

also satisfies Axiom 6 on L. While I conjecture that this is the case, I have been unable to

provide a proof. Thus, while it would be sufficient to impose Axioms 1–5 on preferences over

L0, in order to obtain a representation over a suitably larger set of acts, Axiom 6 must be

required to hold for all acts in such set.

Now, if Σ is only an algebra, two approaches are possible. The first is to define L so as to

ensures that BL(S, Σ) = B(S, Σ); in this case, all results in the paper hold as stated. This

can be achieved as follows. First, define � as a relation on L0, and assume that it satisfies

Axioms 1–5 on that set. Then, say that a function f ∈ Y S is (Σ,�)-continuous iff, for all

y, y′ ∈ Y such that y � y′, there exists a finite partition F1, . . . , FI of S such that, for every

12



i = 1, . . . , I, Fi ∈ Σ and, for all s, s′ ∈ Fi,

1

2
f(s) +

1

2
y′ � 1

2
f(s′) +

1

2
y and

1

2
f(s′) +

1

2
y′ � 1

2
f(s) +

1

2
y

(cf. Eq. (3) in the text). Then let L be the set of all (Σ,�0)-continuous acts, and consider

the (unique) extension of � to L, also denoted � for simplicity. Finally, require that �
satisfy Axiom 6 on L.

This achieves the intended result: the set BL(S, Σ) corresponding to L is the collection of

all Σ-continuous functions a : S → R: that is, for every ε > 0, there exists a finite partition

{F1, . . . , FI} ⊂ Σ of S such that, for all i and ε > 0, s, s′ ∈ Fi implies |a(s) − a(s′)| < ε.

By Proposition 4.7.2 in K.P.S. Bhaskara Rao and M. Bhaskara Rao, Theory of Charges,

Academic Press, London, 1983, BL(S, Σ) = B(S, Σ). Thus, the analysis in the paper applies

verbatim, and all results hold as stated.

An alternative approach is to be content with representation on a smaller set of acts. If

Σ is an algebra and the definition of the set L of acts is as in the text, Theorem 2.6 (and

also Theorem 3.2) remains true as stated, provided B(S, Σ) is replaced by BL(S, Σ) in the

definition of proper covering; in particular, the closure and interior of sets are taken w.r.to

the relative topology. The proof given in the text is still valid, again provided the interior

and closure of sets are suitably reinterpreted.

Indeed, the same is true if L is replaced with the set L0 of simple Σ-measurable acts;

in this case, B(S, Σ) must be replaced with the set B0(S, Σ) of simple functions, i.e. linear

combinations of indicator functions of sets in Σ. Furthermore, since B0(S, Σ) is also dense

in B(S, Σ), the same plausible priors are elicited by restricting attention to L0 or L.

Thus, in any case, the analysis in the paper still applies. The formulation chosen for the

main text allows for simpler definitions and statement of the results.

6.6 Main Results: Omitted Proofs

6.6.1 Proof of Lemma 5.1 (sketch)

The “if” part is obvious. For the converse, Gilboa and Schmeidler [14], Lemmata 3.1-3.4

establish the existence of a non-constant, affine u and a unique, normalized, monotonic, c-

linear functional I that represents � on L0 ⊂ L. It is easy to see that I, u actually represent

� on the entire set L.38 For the last claim, see e.g. the proof of Lemma 3.4 in [14].

38Suppose I(u ◦ f) > I(u ◦ g) (the argument for the opposite strict inequality is symmetric). There exist
sequences {fn}n≥1, {gn}n≥1 ⊂ L0 such that u◦fn ↑ u◦f and u◦gn ↓ u◦g, so for n large, I(u◦fn) > I(u◦gn);
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6.6.2 Proof of Lemma 5.2

Begin with Part 1. In terms of the representation, fk → f is equivalent to

αu(fk(s)) + (1− α)u(y′) ≤ αu(f(s)) + (1− α)u(y)

αu(f(s)) + (1− α)u(y′) ≤ αu(fk(s)) + (1− α)u(y)

and rearranging terms yields

u(fk(s))− u(f(s)) ≤ 1−α
α

[u(y)− u(y′)],

u(f(s))− u(fk(s)) ≤ 1−α
α

[u(y)− u(y′)]

which is equivalent to

|u(fk(s)− u(f(s))| ≤ 1− α

α
[u(y)− u(y′)];

in turn, this holds for all s ∈ S if and only if

‖u ◦ fk − u ◦ f‖ ≤ 1− α

α
[u(y)− u(y′)].

Now suppose that fk → f . Fix ε > 0; by non-degeneracy, there exist y, y′ such that y � y′;

choose α so 1−α
α

[u(y) − u(y′)] = 1
2
ε, i.e. α = u(y)−u(y′)

1
2
ε+u(y)−u(y′)

∈ (0, 1), so fk → f implies that

‖u ◦ fk − u ◦ f‖ < ε for k large; that is, u ◦ fk → u ◦ f in B(S, Σ). Conversely, suppose the

latter assertion is true, and fix y, y′, α as in the definition. Since u ◦ fk → u ◦ f in norm, for

k large, ‖u ◦ fk − u ◦ f‖ < ε = 1−α
α

[u(y)− u(y′)], which implies that fk → f .

Part 2 is trivial. For 3, let γ ∈ (0, 1) and note that, by c-linearity of I, I(γa+(1−γ)[αb+

β]) = I(γa + (1− γ)αb) + (1− γ)β = ΓI( γ
Γ
a + (1−γ)α

Γ
b) + (1− γ)β = γI(a) + (1− γ)αI(b) +

(1− γ)β = γI(a) + (1− γ)I(αb + β), where Γ = γ + (1− γ)α > 0.

For 4, note that the claim is trivial for α = β = 0 because I is c-linear. Assuming that

one of α, β is positive, by Part 3 it is enough to consider the case β = 1− α. Let γ ∈ [0, 1];

then I(γa+(1−γ)[αa+(1−α)b) = I([γ+(1−γ)α)a+(1−γ)(1−α)b) = [γ+(1−γ)α]I(a)+

(1− γ)(1−α)I(b) = γI(a) + (1− γ)[αI(a) + (1−α)I(b)] = γI(a) + (1− γ)I(αa + (1−α)b),

where the third equality follows from γ + (1− γ)α = 1− (1− γ)(1− α) and a ' b, and the

fifth from a ' b.

since I, u represent � on L0, f � fn � gn � g. Next, suppose I(u ◦ f) = I(u ◦ g). Arguing by contradiction,
assume f � g (the case f ≺ g is symmetric). By C-Independence and Weak Order, if yf ∼ f and yg ∼ g, then
1
2f + 1

2yg ∼ 1
2g + 1

2yf . By the preceding result, I
(

1
2u ◦ f + 1

2u(yg)
)
∼ I

(
1
2u ◦ g + 1

2u(yf )
)
. By C-Linearity

and the assumption that I(u ◦ f) = I(u ◦ g), u(yf ) = u(yg); since u represents � on Lc, this implies yf ∼ yg,
a contradiction.
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For 5, note that, by the sup-norm continuity of I, for every α ∈ [0, 1], I(αa+(1−α)b) =

limk I(αak + (1− α)bk) = α limk I(ak) + (1− α) limk I(bk) = αI(a) + (1− α)I(b).

For 6, suppose u◦f ≈ u◦ g, consider γ ∈ [0, 1], and {hk} → f . Then {u◦hk} → u◦f , so

there exists K such that k ≥ K implies u ◦ hk ' γu ◦ f + (1− γ)u ◦ g = u ◦ [γf + (1− γ)g],

hence hk ' γf + (1− γ)g by Part 2, as required; similarly for hk → g. Next, suppose f ≈ g,

fix γ ∈ [0, 1], and consider {ck} → u ◦ f ; here we must consider two cases.

First, suppose f is degenerate, i.e. u ◦ f is constant. Since � is non-degenerate, there

exist y, y′ ∈ Y such that y � f � y′, y ∼ f � y′, or y � f ∼ y′. In the first subcase,

since ck → u ◦ f , for k large it must be the case that u(y) ≥ ck(s) ≥ u(y′) for all s ∈ S;

but then, for k large, there exists {hk} ⊂ L such that u ◦ hk = ck, and f ≈ g implies

hk ' γf + (1− γ)g for k large, hence ck ' γu ◦ f + (1− γ)u ◦ g by Part 2 and the fact that

u is affine. Next, consider the second subcase, i.e. y ∼ f � y′ (the third subcase can be

dealt with symmetrically). Since ck → u ◦ f , and u ◦ f is the constant function that assigns

u(y) to each state s, it must be the case that sup ck − inf ck → 0 [recall that sup and inf are

monotonic and constant-linear, hence sup-norm continuous functionals on B(S, Σ)]; hence,

for k large, sup ck − inf ck < u(y)− u(y′). For such large k, let c′k = ck − sup ck + u(y). Then

u(y) ≥ c′k(s) ≥ u(y′) for all s, so there exists hk such that u◦hk = c′k; furthermore, c′k → u◦f

[again because sup is continuous]. Therefore f ≈ g implies hk ' γf +(1−γ)g for k large; by

Part 2, c′k ' γu ◦ f + (1− γ)u ◦ g, and by Part 3, for every such k, ck ' γu ◦ f + (1− γ)u ◦ g,

as required. This completes the analysis of this case.

Now suppose f is not degenerate; then sup u ◦ f > inf u ◦ f , so for k large also sup ck >

inf ck, and for such k we can define

c′k(s) = inf u ◦ f + [sup u ◦ f − inf u ◦ f ]
ck(s)− inf ck

sup ck − inf ck

.

Now observe that inf c′k = inf f and sup c′k = sup f ; hence, since there exist y, y′ ∈ Y such

that y � f(s) � y′ for all s, it follows that also u(y) ≥ c′k(s) ≥ u(y′), so there exists hk ∈ L

such that c′k = u ◦ hk. Then f ≈ g implies that, for k large, hk ' γf + (1 − γ)g, Part 2

yields c′k ' γu ◦ f + (1− γ)u ◦ g, and Part 3 finally yields ck ' γu ◦ f + (1− γ)u ◦ g. This

concludes the proof of this part.

For 7, simply consider the constant sequence given by hk = f , and the constant sequence

given by hk = g.

For 8, suppose a ≈ b, fix γ, and consider {ck} → a. Let Γ = γ + (1 − γ)α > 0, and

consider γ′ = γ
Γ
∈ [0, 1]; then, for k large, ck ' γ′a + (1 − γ′)b = 1

Γ
[γa + (1 − γ)αb]; by

Part 3, this implies ck ' γa + (1 − γ)αb + (1 − γ)β = γa + (1 − γ)[αb + β]. Now consider

ck → αb+β, and again fix γ and define Γ, γ′ as above. Note that c′k = ck−β
α

→ b, so eventually

15



c′k ' γ′a + (1− γ′)b = 1
Γ
[γa + (1− γ)αb]. Apply Part 3 to get c′k ' γa + (1− γ)[αb + β], as

above; then apply it again to get ck ' γa + (1− γ)[αb + β], as required. Hence, a ≈ αb + β.

For Part 9, consider a, b, {ck} → a, λ ∈ (0, 1). Fix γ ∈ [0, 1], let b′ = γa + (1 − γ)b, and

let c′k be such that λc′k + (1− λ)b = ck, i.e. c′k = ck−(1−λ)b
λ

. Since a ≈ b, there is K such that

c′k ' b′ for k ≥ K. This implies that b′ ' λc′k + (1 − λ)b′ = ck − (1 − λ)b + (1 − λ)b = ck

for such k. Thus, in particular, for every c and γ′ ∈ [0, 1], taking γ = λγ′ it follows that

there is K such that ck ' γ[λa + (1 − λ)b] + (1 − γ)b for k ≥ K. Furthermore, for every

γ and {ck} → b, since a ≈ b, there is also K ′ such that ck ≈ γa + (1 − γ)b for all k ≥ K;

again taking γ = λγ′ we see that, for all γ′ ∈ [0, 1], ck ' γ′[λa + (1− λ)b] + (1− γ′)b. Hence

λa + (1− λ)b ≈ b.

Finally, for Part 10, it is clear that the property in the statement of the Lemma implies

a ≈ b. Conversely, fix γ, and suppose that for all ε > 0 there is c with ‖c − a‖ < ε and

c 6' γa+(1−γ)b. Then, for all k ≥ 1, there is ck such that ‖ck−a‖ < 1
k

but ck 6' γa+(1−γ)b.

Since ck → a, this contradicts a ≈ b.

6.6.3 Proof of necessity in Corollary 2.8 (α-MEU preferences)

Consider a plausible-prior preference�, with proper covering C1, . . . , CN and priors P1, . . . , PN .

For brevity, for any a ∈ B(S, Σ) and any probability charge Q, denote
∫

adQ simply by Q(a);

also, as in §5.1.2, for all n = 1, . . . , N and a ∈ Cn, let I(a) = Pn(a).

Suppose that � is also an α-MEU preference, with α 6= 1
2
: there exists a set C of

probability charges on (S, Σ) such that I(a) = α minQ∈C Q(a) + (1 − α) maxQ∈C Q(a). To

further simplify notation, let M(a) = minQ∈C Q(a); then I(a) = αM(a)− (1− α)M(−a).

For n, m ∈ {1, . . . , N}, let Cn,m = {a ∈ Cn : −a ∈ Cm}. Note that a ∈ Cn,m implies

γa + β ∈ Cn,m for all γ ≥ 0 and β ∈ R. Then a ∈ Cn,m implies I(a) = Pn(a) and I(−a) =

Pm(−a); hence αM(a) − (1 − α)M(−a) = Pn(a) and αM(−a) − (1 − α)M(a) = Pm(−a),

which implies that M(a) = αPn(a)−(1−α)Pm(a)
2α−1

for all a ∈ Cn,m. This implies that M is affine

on every Cn,m; since it is also positively homogeneous and monotonic, it has a unique positive

extension Jn,m to the linear subspace Cn,m − Cn,m (cf. Lemma 5.11).

Since
⋃N

n=1

⋃N
m=n Cn,m = B(S, Σ), there is a collection M of pairs (n, m) such that

N ≥ m ≥ n ≥ 1 and interior Cn,m 6= ∅; furthermore,
⋃

(n,m)∈M cl interior Cn,m = B(S, Σ)

(cf. the argument in Lemma 5.12). For every such (n,m), Cn,m − Cn,m = B(S, Σ), and the

functional Jn,m is characterized by a unique probability charge Qn,m.

Finally, let a ∈ interior Cn,m and b ∈ interior Cn′,m′ , where (n, m), (n′, m′) ∈ M and

(n,m) 6= (n′, m′). There exists γ ∈ (0, 1) such that γa + (1 − γ)b ∈ Cn′,m′ , so M(γa + (1 −
γ)b) = Jn′,m′(γa+(1−γ)b) = γJn′,m′(a)+(1−γ)Jn′,m(b′) = γJn′,m′(a)+(1−γ)M(b). On the

other hand, M(γa + (1− γ)b) ≥ γM(a) + (1− γ)M(b), so Jn′,m′(a) ≥ M(a) = Jn,m(a). By
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continuity, this is true whenever a ∈ cl interior Cn,m and b ∈ cl interior Cn′,m′ . That is, for

all a ∈ B(S, Σ), M(a) = min(n,m)∈M Jn,m(a), and therefore, since the maxmin representation

is unique, C must be the closed convex hull of the charges {Qn,m : (n,m) ∈M}.

The above construction clearly does not apply to the case α = 1
2
. The result is indeed

false in this case: for instance, let S = {s1, s2, s3} and Q = {q ∈ ∆(S) :
∑

s(q(r)−
1
3
)2 ≤ ε},

for ε ∈ (0, 1√
6
): the corresponding “1

2
-MEU” preferences can easily be seen to be SEU, with

a single, uniform prior on S; yet Q is not the convex hull of finitely many points.
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