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Abstract

The analysis of dynamic games hinges on assumptions about players’ actions and be-

liefs at information sets that are not expected to be reached during game play. However,

under the standard assumption that players are sequentially rational, these assumptions

cannot be tested on the basis of observed, on-path behavior. This paper introduces a novel

optimality criterion, structural rationality, which addresses this concern. In any dynamic

game, structural rationality implies sequential rationality. If players are structurally ratio-

nal, assumptions about on-path beliefs concerning off-path actions, as well as off-path

beliefs, can be tested via suitable “side bets.” Structural rationality can also be character-

ized via trembles, or belief perturbations. Finally, structural rationality is consistent with

experimental evidence about play in the extensive and strategic form, and justifies the use

of the strategy method (Selten, 1967) in experiments.
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1 Introduction

Solution concepts for dynamic games, such as subgame-perfect, sequential, or perfect Bayesian

equilibrium, often predict that certain information sets will not be reached during game play.

At the same time, these concepts aim to ensure that on-path play is sustained by “credible

threats:” players believe that the (optimal) continuation play following any deviation from

the predicted path would lead to a lower payoff.

A credible threat involves two types of assumptions about beliefs. The first pertains to

on-path beliefs about off-path play: what is the threat? The second pertains to beliefs at off-

path information sets about subsequent play: why is the threatened course of action credible?

What is it a best reply to? The assumptions placed on such beliefs are an important dimen-

sion in which solution concepts differ. A key conceptual aspect of Savage (1954)’s founda-

tional analysis of expected utility (EU) is to argue that the psychological notion of “belief” can

and should be related to observable behavior. The objective of this paper is to characterize

the behavioral content of assumptions on players’ beliefs at both on-path and off-path infor-

mation sets. The motivation is both methodological and practical: the results in this paper

strengthen the behavioral foundations of dynamic game theory, but also broaden the range

of game-theoretic predictions that can be tested experimentally.

In a single-person decision problem, the individual’s beliefs can be elicited by offering her

“side bets” on the relevant uncertain events, with the stipulation that both the choice in the

original problem and the side bets contribute to the overall payoff. Similarly, in a game with si-

multaneous moves, a player’s beliefs can be elicited by offering side bets on her opponents’ ac-

tions (Luce and Raiffa, 1957, §13.6); for game-theoretic experiments implementing side bets,

see e.g. Nyarko and Schotter (2002), Costa-Gomes and Weizsäcker (2008), Rey-Biel (2009), and

Blanco, Engelmann, Koch, and Normann (2010).1

However, in a dynamic game, the fact that certain information sets may be off the predicted

1For related approaches, see Aumann and Dreze, 2009 and Gilboa and Schmeidler, 2003.
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Figure 1: The Battle of the Sexes with an Outside Option

path of play poses additional challenges. For instance, the game of Figure 1 (cf. Ben-Porath

and Dekel, 1992) has a subgame-perfect equilibrium in which Ann chooses Out at the initial

node, under the threat that the Nash profile (S ,S ) would prevail in the subgame following In.

Suppose an experimenter wishes to verify that, if Ann played In, Bob would indeed expect her

to continue with S . (It turns out that testing Ann’s initial beliefs is also problematic; since the

discussion is more subtle, I defer it to Section 5.2.) If the simultaneous-move subgame was

reached, the experimenter could offer Bob side bets on Ann’s actions B vs. S . However, Ann

is expected to play Out at the initial node, so the subgame is never actually reached. Alter-

natively, the experimenter could attempt to elicit Bob’s conditional beliefs (i.e., the beliefs he

would hold following In) from suitable betting choices observed at the beginning of the game.

I now argue that, under textbook rationality assumptions, this approach, too, is not feasible;

however, the discussion motivates the approach taken in the present paper.

In the game of Figure 2, before Ann chooses between In and Out, Bob can either secure a

betting payoff of p close to but smaller than 1, or b et on Ann choosing S in the subgame, in

which case his betting payoff is 1 for a correct guess and 0 otherwise. (All payoffs are denom-

inated in “utils.”) If Ann chooses Out, the bet is “called off,” and Bob’s betting payoff is 0. At

every terminal node, a coin toss determines whether Bob receives his game payoff (which is as

in Figure 1) or his betting payoff; these are displayed as an ordered pair in Figure 2. Ann’s pay-
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Figure 2: Eliciting Bob’s conditional on In with ex-ante side bets.

off is as in Figure 1, independently of Bob’s betting choice.2 If Bob assigns positive probability

to In, then it is optimal for him to bet on S if and only if he assigns probability greater than p

to Ann’s move S conditional on her playing In. However, if Bob is certain that Ann will choose

Out, the standard assumption of sequential rationality (Kreps and Wilson, 1982) places no re-

striction on his initial betting choice.3 In fact, there is a sequential equilibrium in which Bob

chooses p at the initial node, Ann plays Out at I , and both would play S following In.

Whether in a game or in a single-person choice problem, assumptions about beliefs can-

not be tested without also assuming a specific form of rationality, which relates beliefs to ob-

servable choices. The example suggests that the joint assumption that a player is sequentially

rational and holds a given belief at an off-path information set may be intrinsically untestable—

even in a simple game played “in the lab.” The reason is that sequential rationality only re-

quires that the action taken at an information set (such as b vs. p at the initial node of Figure 2)

be optimal given the beliefs the player holds at that point in the game; it does not require that

2This is a simplified version of the elicitation mechanism formally analyzed in Section 5.2.

3This choice-based argument corresponds to the observation that, if Bob assigns positive probability to the

event that Ann chooses In, his beliefs in the subgame can be derived by first eliciting his prior beliefs, and then

conditioning on this event; however, this is not possible if Bob is certain of Out.

4



the player also take into account the beliefs she would hold at subsequent, zero-probability

information sets (such as J and K in Figure 2). Hence, on-path choices cannot convey any

information about off-path beliefs.

With this motivation, the present paper proposes a novel optimality criterion, structural

rationality. Loosely speaking, this criterion requires that every action choice take into account

both a player’s current beliefs, and the beliefs she would hold following unexpected moves by

coplayers (Definitions 5 and 8). In Figure 2, structural rationality implies that Bob must play

b at the initial node if he is certain of S at J and K (Section 5.2.1). A structurally rational

player is sequentially rational (Theorem 1), but in addition, her on-path betting choices fully

pin down her beliefs, when a suitable implementation of side bets is employed (Theorem 2).

Yet, for generic payoff assignments at terminal nodes, structural and sequential rationality

coincide (Theorem 2 in Online Appendix C). Indeed, the objective of structural rationality is

to provide only a “minimal” refinement of sequential rationality that enables the elicitation of

conditional beliefs: see Example 2, and Sections 6.F and 6.G.

Structural rationality can also be seen as arising from “trembles,” or belief perturbations.

For instance, in Figure 2, Bob should play b if he assigns arbitrarily small but positive proba-

bility to In. Theorem 4 shows that structural rationality is fully characterized by a novel class

of belief perturbations that, loosely speaking, assign positive probability to every information

set but preserve the relative likelihood of strategies whenever they are positive and finite.

Finally, structural preferences can account for experimental evidence on the strategy method

(Selten, 1967). This evidence suggests that, when confronted with a dynamic game, subjects

make qualitatively similar choices when they play the game directly and when they are instead

required to commit to extensive-form strategies, which the experimenter then implements

(Brandts and Charness, 2011; Fischbacher, Gächter, and Quercia, 2012; Schotter, Weigelt, and

Wilson, 1994). Unlike sequential rationality, structural rationality predicts that, under a suit-

able implementation of the strategy method, subjects should indeed exhibit the same behav-

ior as in the original game: see Corollary 1 in Section 5.2. This provides a theoretical rationale

5



for the strategy method. (Conversely, the cited evidence provides a degree of indirect support

in favor of structural rationality.) At the same time, structural rationality reduces to EU max-

imization in games with simultaneous moves; hence, in general, it has different behavioral

predictions for dynamic games and for their strategic form. This, too, is in accordance with

experimental evidence: see (Cooper, DeJong, Forsythe, and Ross, 1993; Schotter et al., 1994;

Cooper and Van Huyck, 2003; Huck and Müller, 2005).4

The companion paper Siniscalchi (2016) provides an axiomatization of structural ratio-

nality, taking as primitive a preference relation over acts à la Anscombe and Aumann (1963).

Thus, the present paper and Siniscalchi (2016) jointly establish proper choice-theoretic foun-

dations for dynamic game theory, comparable to the foundations that exist for the theory of

games with simultaneous moves.

The present paper does not introduce specific restrictions on beliefs, or analyze particular

solution concepts. Rather, it studies structural rationality as a notion of best response to given

beliefs. In on-going work (available upon request), I incorporate structural rationality into

equilibrium and non-equilibrium solution concepts.

Organization. Section 2 introduces notation. Section 3 defines structural preferences for

dynamic games in which information sets satisfy a regularity condition. This class includes

several games of interest in applications and experiments, and permits a simpler definition

of structural preferences. Section 4 generalizes this definition to arbitrary dynamic games.

Section 5 contains the main results. Section 6 discusses the related literature and extensions.

All proofs are in the Appendix. The Online Appendix contains additional results, some omitted

proofs, equivalent characterizations of structural preferences, as well as several alternative

definitions that do not achieve the intended objectives.

4 To the best of my knowledge, no known theory of play can accommodate both findings. Sequential ratio-

nality predicts different behavior in the strategic and extensive form, but—as noted above—also in the strategy

method and under direct play. The invariance hypothesis (Kohlberg and Mertens, 1986) predicts that behavior

should be the same in all presentations of the game.
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2 Basic notation and definitions

This paper considers dynamic games with imperfect information. The analysis only requires

that certain familiar reduced-form objects be defined. Online Appendix C describes how these

objects are derived from a complete description of the underlying game, as e.g. in Osborne

and Rubinstein (1994, Def. 200.1, pp. 200-201; OR henceforth) Section 6 indicates how to

extend the notation to allow for incomplete information as well.

A dynamic game will be represented by a tuple
�

N , (Si ,Ii ,Ui )i∈N ,S (·)
�

, where:

• N is the set of players.

• Si is the set of strategies of player i .

• Ii is the collection of information sets of player i ; it is convenient to assume that the

root,φ, is an information set for all players.

• Ui :
∏

j∈N Sj →R is the reduced-form payoff function for player i (see Section 6).

• For every i ∈N and I ∈Ii , S (I ) is the set of strategy profiles (s j ) j∈N ∈
∏

j Sj that reach I .

In particular, for every i ∈N , S (φ) = S .

I adopt the usual conventions for product sets: S−i =
∏

j 6=i Sj and S = Si×S−i . I assume that the

game has perfect recall, as per Def. 203.3 in OR. In particular, this implies that, for every i ∈N

and I ∈ Ii , S (I ) = Si (I )×S−i (I ), where Si (I ) = projSi
S (I ) and S−i (I ) = proj S−i

S (I ). If s−i ∈ S−i (I ),

say that s−i allows I .5 The range of the map proj S−i
S :Ii → 2S−i plays an important role:

S−i (Ii ) = {S−i (I ) : I ∈Ii }. (1)

Finally, for every player i ∈N and information set I ∈ Ii , the set S (I ) is required to satisfy

strategic independence (Mailath, Samuelson, and Swinkels, 1993, Def. 2): for every si , ti ∈

Si (I ) there is ri ∈ Si (I ) such thatUi (ri , s−i ) =Ui (ti , s−i ) for all s−i ∈ S−i (I ), andUi (ri , s−i ) =Ui (si , s−i )

for all s−i ∈ S−i \S−i (I ). Intuitively, ri is the strategy that coincides with si everywhere except

5That is: if i ’s coplayers follow the profile s−i , I can be reached; whether it is reached depends upon whether

or not i plays a strategy in Si (I ).
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at I and all subsequent information sets, where it coincides with ti : see Remark 2 in Online

Appendix C.1, or Theorem 1 in Mailath et al. (1993).

Section 3 restricts attention to games that satisfy an additional regularity condition. While

this requirement rules out many games of interest (see Section 4), it does allow for a simple

definition of structural preferences and structural rationality.

Definition 1 A dynamic game
�

N , (Si ,Ii ,Ui )i∈N ,S (·)
�

has nested strategic information if

∀i ∈N , I , J ∈Ii : either S−i (I )∩S−i (J ) = ; or S−i (I )⊆ S−i (J ) or S−i (J )⊆ S−i (I ). (2)

In a game with nested strategic information, either every strategy profile that allows I (resp.

J ) set also allows J (resp. I ), or no strategy profile allows both I and J . The games in Figure

1 and 2 satisfy this condition. All signaling games, and, more broadly, all games in which

each player moves only once on each path of play, have nested strategic information. So do

centipede game forms, and ascending-clock auctions.

At any information set I ∈ Ii , player i ’s beliefs about the past and future moves of her

coplayers are represented by a probability distribution over S−i . These beliefs are conditional

upon the (possibly partial) information she has at I about coplayers’ previous moves; this

information is represented by the event S−i (I ). Collectively, player i ’s beliefs are required to

satisfy the chain rule of conditioning: starting with the prior, player i updates her beliefs in the

usual way “whenever possible”—that is, until a zero-probability event occurs. Then, player i

formulates a new belief, but from that point on, she again applies the updating formula, until

a new, zero-probability event is observed; and so on.

Definition 2 below takes as given an arbitrary collection Ci of conditioning events. The

preceding paragraph suggests the specification Ci = S−i (Ii ); this is sufficient to define se-

quential rationality, and is also enough to define structural rationality in the class of games

considered in Section 3. The general definition of structural rationality requires a richer set of

conditioning events; see Section 4. Myerson (1986) considers the caseCi = 2S−i \ {;}.
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Definition 2 (Rényi, 1955; Myerson, 1986; Ben-Porath, 1997; Battigalli and Siniscalchi, 1999,

2002) Fix a dynamic game
�

N , (Si ,Ii ,Ui )i∈N ,S (·)
�

, a player i ∈N , and a non-empty collectionCi

of non-empty subsets of S−i . A conditional probability system (CPS) on (S−i ,Ci ) is a collection

µi ≡
�

µi (·|F )
�

F ∈Ci
such that:

(1) for every F ∈Ci , µi (·|F ) ∈∆(S−i ) and µi (F |F ) = 1;

(2) for every E ⊆ S−i and F,G ∈Ci such that E ⊆ F ⊆G ,

µi (E |G ) =µi (E |F ) ·µi (F |G ). (3)

The set of CPS on (S−i ,Ci ) is denoted by ∆(S−i ,Ci ). For any probability distribution π ∈

∆(S−i ) and function a : S−i →R, let Eπa =
∑

s−i∈S−i
a (s−i )π(s−i ).

Following Reny (1992), Rubinstein (1991), and Battigalli and Siniscalchi (2002), I define se-

quential rationality to mean that a strategy is optimal at every information set that it does not

preclude. This imposes no restrictions on actions at information sets that the strategy itself

precludes. One implication is that this definition does not distinguish between realization-

equivalent strategies.6 Structural rationality (Definitions 5 and 8) has the same feature.

Definition 3 (Sequential rationality) Fix a dynamic game
�

N , (Si ,Ii ,Ui )i∈N ,S (·)
�

, a player i ∈

N , and a CPS µ ∈∆(S−i ,S−i (Ii )) for player i . Strategy si ∈ Si is sequentially rational given µ if,

for every I ∈Ii such that si ∈ Si (I ), and all ti ∈ Si (I ), Eµ(·|S−i (I ))Ui (si , ·)≥ Eµ(·|S−i (I ))Ui (ti , ·).

3 Structural preferences under nested strategic information

To streamline definitions and results, throughout this section, fix a dynamic game with nested

strategic information
�

N , (Si ,Ii ,Ui )i∈N ,S (·)
�

, a player i ∈N , and a CPS µ ∈∆(S−i ,S−i (Ii )).

6 More precisely, it does not distinguish between payoff -equivalent strategies: if Ui (si , s−i ) =Ui (ti , s−i ) for all

s−i ∈ S−i , then si is sequentially rational given a CPS µ if and only if ti is.
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Recall the notions of “structural” and “lexicographic consistency” put forth by Kreps and

Wilson (1982, p. 873) to motivate their definition of consistent assessments7:

Fix a player i . His “primary hypothesis” as to how the game will be played is P =

µ(·|S−i ), and if his beliefs obey Eq. (3), then he applies P to compute µ(·|S−i (I ))

whenever possible. We might assume that when P does not apply—when he comes

to an information set I with P (S−i (I )) = 0—then he has a “second most likely hy-

pothesis” P ′ that he attempts to apply. If that fails, he tries his “third most likely

hypothesis” P ′′, and so on.

Structural rationality, as put forth in the present paper, identifies and partially orders a

player’s probabilistic “hypotheses” on the basis of her conditional beliefs at every informa-

tion set—i.e. her CPS µ ∈∆(S−i ,S−i (Ii )). It then defines best replies using a generalized lexi-

cographic criterion formulated in terms of these alternative probabilistic hypotheses.

In games with nested strategic information, one can identify the player’s alternative hy-

potheses leveraging Equation (3). Fix an information set I ∈ Ii ; by Equation (3), if there

is J ∈ Ii such that S−i (J ) ⊃ S−i (I ) and µ(S−i (I )|S−i (J )) > 0, then µ(·|S−i (I )) is derived from

µ(·|S−i (I )) by updating. If instead µ(S−i (I )|S−i (J )) = 0 for every information set J ∈ Ii such

that S−i (J )⊃ S−i (I ), then µ(·|S−i (I )) cannot be derived from any other element of the CPS µ by

updating. Hence, µ(·|S−i (I )) can be regarded as one of player i ’s alternative hypotheses:

Definition 4 An information set I ∈Ii is basic forµ (orµ-basic) if, for all J ∈Ii , S−i (J )⊃ S−i (I )

implies µ(S−i (I )|S−i (J )) = 0. If I ∈Ii is basic for µ, then µ(·|S−i (I )) is a (µ-) basic belief of player

i , and S−i (I ) is a µ-basic (conditioning) event.

7In this quotation, I have adapted the notation to that of the present paper. The actual definition of structural

and lexicographic consistency in Kreps and Wilson (1982) uses a different formalism and is tailored to equilib-

rium analysis; it also incorporates additional independence assumptions that play no role in the present paper.

See Kreps and Ramey (1987) and Battigalli (1994) for further details.

10



The priorµ(·|S−i ) is always basic: it is the player’s primary hypothesis. Moreover, under nested

strategic information, for every information set I , there is a unique µ-basic belief µ(·|S−i (J ))

that can generate µ(·|S−i (I )) by updating (see Corollary 3 and Observation 2 in the Appendix).

Player i ’s CPSµ also reveals the relative plausibility of specific pairs ofµ-basic beliefs. Con-

sider two µ-basic information sets I , J ∈ Ii such that S−i (I ) ⊃ S−i (J ). Then µ(S−i (I )|S−i (J )) =

1 > 0, so the belief µ(·|S−i (J )) is a possible hypothesis at I , in the sense that it is consistent

with reaching I . Appealing to the logic of lexicographic consistency, the fact that player i ’s

beliefs at I are µ(·|S−i (I )) and not µ(·|S−i (J ))8 suggests that i deems µ(·|S−i (I )) a more plausible

hypothesis than µ(·|S−i (J )). While this logic yields a partial, rather than a complete ordering

of µ-basic beliefs, this is sufficient for the present purposes: see Example 2 and Section 6.F.

Finally, to define best replies, I use a generalized lexicographic criterion9 wherein µ-basic

beliefs are partially ordered by set inclusion of the corresponding conditioning events.

Definition 5 For any two strategies si , ti ∈ Si , si is (weakly) structurally preferred to ti givenµ

(si ¼µ ti ) iff, for anyµ-basic I ∈Ii such that Eµ(·|S−i (I ))Ui (si , ·)< Eµ(·|S−i (I ))Ui (ti , ·), there is aµ-basic

J ∈Ii , with S−i (J )⊃ S−i (I ), such that Eµ(·|S−i (J ))Ui (si , ·)> Eµ(·|S−i (J ))Ui (ti , ·).

A strategy si ∈ Si is structurally rational for µ if there is no ti ∈ Si such that ti �µ si .10

In words, si ¼µ ti means that, if ti yields a strictly higher payoff given a hypothesis (i.e.,

µ-basic belief) µ(·|S−i (I )), then si must yield a strictly higher payoff given an alternative hy-

pothesis µ(·|S−i (J )) that the player deems more plausible.

More informally, to compare si and ti , player i considers all possible paths through the

tree. For each such path, she keeps track of the expected payoffs of si and ti at each µ-basic

8Note that µ(·|S−i (I )) 6=µ(·|S−i (J )): in particular, since J is µ-basic, S−i (I )⊃ S−i (J ) implies µ(S−i (J )|S−i (I )) = 0.

9The usual lexicographic order ≥L on RL can be defined as follows: given a , b ∈ RL , a ≥L b if, for every

k ∈ {1, . . . , L} such that ak < bk , there is ` ∈ {1, . . . , k −1}with a` > b`. Definition 5 generalizes this formulation.

10As usual, strict preference, denoted “si �µ ti ,” is defined as “si ¼µ ti and not ti ¼µ si ;” indifference, denoted

“si ∼µ ti ,” is defined as “both si ¼µ ti and ti ¼µ si .”
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information set, in the order these information sets are crossed. Then, loosely, si ¼µ ti requires

that, on each path, the resulting ordered list of expected payoffs for si be lexicographically

weakly greater than the corresponding list for ti . (I provide a precise formalization of this

intuition in Online Appendix E.1.) Section 6.G discusses similarities and differences between

structural and lexicographic preferences (Blume, Brandenburger, and Dekel, 1991a).

Structural rationality for a CPS µ is defined as maximality with respect to ¼µ. Structural

preferences are transitive (see Siniscalchi, 2016, Appendix B); hence, every finite game admits

a structurally rational strategy for every CPS. With complete preferences, maximality coin-

cides with optimality (si is at least as good as any other strategy). However, as Example 2

shows, structural preferences may be incomplete.

Structural preferences are tied to the extensive form of the game, and specifically to the

conditioning events S−i (Ii ). These play a key role in the definition of player i ’s CPS, of basic

beliefs, and of their plausibility ordering.

Structural rationality reduces to ex-ante EU maximization in two cases: when the game has

simultaneous moves, and when every information set of player i has positive prior probability

(because in this case only the prior µ(·|S−i ) is a basic belief). Outside of these special cases,

structural preferences refine ex-ante EU maximization. This immediately delivers the first

prediction anticipated in the Introduction: if a player has structural preferences, her behavior

will, in general, differ in a dynamic game and in the associated strategic form.

The following characterization is immediate from Definition 5:

Remark 1 Strategy si is structurally rational forµ if, for every ti ∈ Si , either (i) Eµ(·|S−i (I ))Ui (si , ·) =

Eµ(·|S−i (I ))Ui (ti , ·) for everyµ-basic I ∈Ii , or (ii) there is aµ-basic I ∈Ii such that Eµ(·|S−i (I ))Ui (si , ·)>

Eµ(·|S−i (I ))Ui (ti , ·) and Eµ(·|S−i (J ))Ui (si , ·) = Eµ(·|S−i (J ))Ui (ti , ·) for all µ-basic J ∈Ii with S−i (J )⊃ S−i (I ).

Finally, it is immediate from Definition 5 that structural preferences (and hence structural

rationality) do not distinguish between realization-equivalent strategies. In particular, if si

and ti are realization-equivalent, then si ∼µ ti for every CPS µ (cf. footnote 6).
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Example 1 The game in Figure 3 is parameterized by x ∈ [0, 2]; for x < 2, it is a Centipede

game. Ann’s beliefs µ satisfy µ({d }|Sb ) = µ({a }|Sb (I )) = 1. The events Sb and Sb (I ) are µ-basic,

and the table in Figure 3 shows Ann’s expected payoff conditional upon these events.

Ann

φ

D1

2,1

A1 Bob

d

x , 4

a Ann

I
D2

4,3

A2
3,6

sa Eµ(·|Sb (φ))Ua (sa , ·) Eµ(·|Sb (I ))Ua (sa , ·)

D1D2, D1A2 2 2

A1D2 x 4

A1A2 x 3

Figure 3: A centipede-like game. Ann’s CPS: µ({d }|Sb (φ)) =µ({a }|Sb (I )) = 1. x ∈ [0, 2]

Denote by D1 either one of the realization-equivalent (hence, indifferent) strategies D1D2, D1A2.

First, I apply Remark 1. If x < 2, then D1 is the unique structurally rational strategy given µ

(again, up to realization equivalence), as it yields strictly higher ex-ante expected payoff than

A1D2 and A1A2. This is also the unique sequential best reply toµ. For x = 2, A1D2 is the unique

structurally rational strategy given µ: all other strategies also yield an ex-ante payoff of 2, but

A1D2 yields a strictly higher payoff conditional upon Sb (I ) = {a }.11 By comparison, both D1

and A1D2 are sequentially rational given µ.

Next, I apply Definition 5 directly. Assume first that x < 2: then D1 �µ A1D2 �µ A1A2. To see

this, consider D1 and A1D2. Although Eµ(·|Sb (I ))Ua (D1, ·) = 2 < 4 = Eµ(·|Sb (I ))Ua (A1D2, ·), we have

Sb (φ) = Sb ⊃ Sb (I ), and Eµ(·|Sb )Ua (D1, ·) = 2 > x = Eµ(·|Sb )Ua (A1D2, ·): thus, D1 ¼µ A1D2. On the

other hand, Eµ(·|Sb )Ua (D1, ·) > Eµ(·|Sb )Ua (A1D2, ·) and the fact that no (µ-basic) J ∈ Ii can satisfy

Sb (J ) ⊃ Sb imply that not A1D2 ¼µ D1. Thus, D1 �µ A1D2. Now consider A1D2 and A1A2. There

is no µ-basic J ∈ Ia with Eµ(·|S−i (J ))Ua (A1D2, ·) < Eµ(·|S−i (J ))Ua (A1A2, ·), so trivially A1D1 ¼µ A1A2.

Moreover, Eµ(·|Sb (I ))Ua (A1D2, ·) > Eµ(·|Sb (I ))Ua (A1A2, ·) and Eµ(·|Sb )Ua (A1D2, ·) = Eµ(·|Sb )Ua (A1A2, ·), so

not A1A2 ¼µ A1D2. Hence, A1D2 �µ A1A2.

Finally, consider x = 2. All strategies yield the same ex-ante payoff, so Definition 5 implies

11Indeed, A1D2 is the unique structurally rational strategy for any CPS of Ann.
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that preferences are determined by expectations given Sb (I ). Thus, A1D2 �µ A1A2 �µ D1. �

In Example 1, the fact that D1 is a sequential, but not structural best reply to Ann’s CPS

µ when x = 2 illustrates that, while sequential rationality is defined in terms of interim or

“local” optimality, structural rationality is a “global” optimality criterion. This corresponds to

the intuition provided in the Introduction: at every point in the game, a structurally rational

player takes into account possible surprise moves, in a disciplined way.12 In the example, this

leads to more refined predictions about play, given the same conditional beliefs.

Indeed, Theorem 2 and Remark 4 below imply that, for beliefs to be elicitable from on-

path betting choices, structural rationality must refine sequential rationality. Yet, the next

example shows that Definition 5 is a parsimonious, or limited, refinement, in two respects.

First, structural preferences need not rank all strategies in the game: they only guarantee that,

if a strategy is not sequentially rational, there is always another strategy that is strictly preferred

to it. Second, structural rationality employs the “minimal” amount of information about a

player’s conditional beliefs required to ensure sequential rationality.

Example 2 (Incompleteness and Minimality) Consider the game in Fig. 4, and assume that

Ann’s CPS µ satisfies µ({b }|Sb (φ)) = 1 (the other conditional probabilities are pinned down by

Definition 2). All information sets for Ann are µ-basic. Moreover, Sb (I ) = {t } and Sb (J ) = {m}

are disjoint, hence not ordered by set inclusion. Denote by U T either one of the realization-

equivalent strategies U T T ′,U T B ′; interpret U B , D T ′, D B ′ similarly.

Incompleteness: Definition 5 implies that U T (resp. D T ′) is strictly preferred to the se-

quentially irrational strategy U B (resp. D B ′). The strategies U T and D T ′ are incomparable

according to Definition 5: U T yields a strictly higher expected payoff given µ(·|Sb (I )) than

D T ′, but D T does strictly better given µ(·|Sb (J )), and these µ-basic beliefs are not ordered by

12Online Appendix F discusses different definitions of preferences that also take into account possible surprise

moves, but do so in ways that do not deliver the properties of interest in this paper (for instance, they do not

ensure sequential rationality).
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Ann

U

Bob

t

b 3, 3

m 2, 2

Ann

I

T 1, 1

B 0, 0

D

Bob

t 2, 2

m

b 3, 3

Ann

J

T ′ 1, 1

B ′ 0, 0

sa Eµ(·|Sb )Ua (sa , ·) Eµ(·|Sb (I ))Ua (sa , ·) Eµ(·|Sb (J ))Ua (sa , ·)

U T 3 1 2

U B 3 0 2

D T ′ 3 2 1

D B ′ 3 2 0

Figure 4: Incompleteness and minimality. Ann’s CPS: µ({b }|Sb (φ)) = 1

set inclusion of the corresponding conditioning events.13 However, U T and D T ′ are also the

sequentially rational best replies to µ. Since the objective of Definition 5 is to (i) guarantee

sequential rationality, and (ii) allow the elicitation of conditional beliefs, the fact that U T and

D T ′ are not ranked by ¼µ is immaterial. See Section 6.F for further discussion.

Minimality: Consider a modification of Definition 5 that only takes into account Ann’s

basic beliefsµ(·|Sb ) andµ(·|Sb (I )), but notµ(·|Sb (J )). Then D B ′ is undominated in the resulting

ordering; however, it is not sequentially rational. Definition 5 rules out D B ′ precisely because

it takes the basic belief µ(·|Sb (J )) into account as well. �

4 Structural preferences for general dynamic games

While convenient, the assumption of nested strategic information rules out several games

of economic interest; notable examples include, but are not limited to, English (rather than

ascending-clock) auctions, alternating-offer bargaining, and the chain-store game.14 Unfor-

13U T and D T ′ are maximal but not optimal. Indeed, this game has no optimal strategies.

14In a chain-store game with players i , e1 and e2, in the obvious notation, let I (J ) be i ’s node reached when

e1 enters, i fights (acquiesces), and e2 enters. The profile s−i such that e1 enters and e2 enters regardless of i ’s

first-period choice allows both I and J . However, the profile s ′−i (s ′′−i ) such that e1 enters and e2 only enters if i
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tunately, without nested strategic information, a strategy may be maximal in the order for-

malized by Definition 5, and yet fail to be sequentially rational.

Example 3 (Non-nested information) Consider the “signal-choice” game in Figure 5. Ann

and Bob choose an action simultaneously. If Bob chooses o , the game ends. Otherwise, Ann’s

action determines what she learns about Bob’s action. This game does not have nested strate-

gic information: Sb (I ) = {t , m} and Sb (J ) = {m , b }, so Sb (I )∩Sb (J ) 6= ; but Sb (I ) and Sb (J ) are

not nested. Bob’s payoffs are omitted in Fig. 5 as they are not relevant to the discussion.

Ann R

t

m
b

0o

1

T 6

B 3

T 3

B 5L

t

0

m

b
o

1

T ′2

B ′0

T ′1

B ′0
Bob

Ann I

AnnJ

Figure 5: A signal-choice game.

Define Ann’s CPS µ by µ({o}|Sb (φ)) = 1, µ({t }|Sb (I )) =µ({m}|Sb (I )) =
1
2 , and µ({m}|Sb (J )) =

µ({b }|Sb (J )) =
1
2 . All three information sets for Ann are basic for µ; expected payoffs are dis-

played in Table I.

Strategy R B is not sequentially rational given µ: it chooses the inferior action B , rather

than T , at I . Yet, According to Definition 5, R B is structurally rational given µ. In particular,

RT is not strictly preferred to R B . While Eµ(·|Sb (I ))Ua (RT , ·)> Eµ(·|Sb (I ))Ua (R B , ·), it is also the case

that Eµ(·|Sb (J ))Ua (R B , ·)> Eµ(·|Sb (J ))Ua (RT , ·), and the conditioning events S−(I ) and S−i (J ) are not

ordered by inclusion. Thus, RT and R B are not comparable according to Definition 5. �

The failure of sequential rationality in Example 3 reflects a deeper, conceptual issue. In

fights (acquiesces) in the first period allows I but not J (J but not I ). Thus, S−i (I ) and S−i (J ) are not nested.
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sa Eµ(·|Sb (φ))Ua (sa , ·) Eµ(·|Sb (I ))Ua (sa , ·) Eµ(·|Sb (J ))Ua (sa , ·)

RT 1 4.5 1.5

R B 1 4 2.5

LT ′ 1 1 1.5

L B ′ 1 0 0

Table I: µ({o}|Sb (φ)) = 1, µ({t }|Sb (I )) =µ({m}|Sb (I )) =µ({m}|Sb (J )) =µ({b }|Sb (J )) =
1
2

games without nested strategic information, the simple approach used in Section 3 to iden-

tify and rank a player’s alternative hypotheses from her CPS is not satisfactory. In Example

3, µ(·|Sb (I )|Sb (J )) > 0, even though Sb (I ) 6⊃ Sb (J ): thus, the alternative hypothesis Ann uses at

J —which Section 3 identifies with µ(·|Sb (J ))—is also consistent with reaching I . Yet µ(·|Sb (I ))

is not derived from µ(·|Sb (J )) by conditioning on Sb (I ). The logic of lexicographic consistency

then suggests that, at I , Ann uses a more plausible hypothesis than the one she employs at

J . But, switching the roles of I and J , a symmetric argument leads to the conclusion that she

uses a more plausible hypothesis at J than at I .

The key insight is that, to avoid this contradiction, µ(·|Sb (I )) and µ(·|Sb (J )) should be re-

garded as being derived from the same alternative theory. Indeed, there is a unique proba-

bility distribution p ∈ ∆(Sb ) that satisfies p (Sb (I )) > 0, p (Sb (J )) > 0, and p (Sb (I )∪ Sb (J )) = 1,

and such thatµ(·|S−i (I )) andµ(·|S−i (J )) are its updates given S−i (I ) and S−i (J ) respectively. This

suggests that, in addition to the prior µ(·|Sb ), Ann entertains only one additional hypothesis,

p . Furthermore, she deems this hypothesis less plausible than the prior: p assigns positive

probability to Sb = Sb (φ), but it is different from Ann’s prior belief. Finally, this approach re-

stores the connection with sequential rationality: if expected payoffs given p are used to break

ties in ex-ante expectations, RT is ranked strictly above RB.

One conclusion from the preceding discussion is that, in general dynamic games, alterna-

tive probabilistic hypotheses need not coincide with µ-basic beliefs; they may instead gener-
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ate two or moreµ-basic beliefs by updating. Despite this, a player’s plausibility ranking among

such theories is still partially revealed by her CPS. As was just argued, in Example 3, the fact

that µ(Sb (I )|Sb (J )) > 0 suggests that the theory that Ann updates to obtain her beliefs at I is

at least as plausible as the theory she uses at J . In that example, it was argued that the same

theory must be used at I and J ; more generally, the theories used may be different, but if so

the theory used at J is revealed to be less plausible than the theory used at I . Definition 6

below generalizes this intuition by adding the requirement that plausibility be transitive.

It is conceptually appropriate to formalize plausibility as a ranking over conditioning events.

After all, if a player associates a more plausible hypothesis to reaching I than J , then arguably

she should deem it more plausible to reach I than J (and conversely). As will be clear mo-

mentarily, defining plausibility as a ranking over events is also notationally convenient.

Throughout the remainder of this section, fix an arbitrary dynamic game (N , (Si ,Ii ,Ui )i∈N ),

a player i ∈N , and a CPS µ ∈∆(S−i ,S−i (Ii )).

Definition 6 Consider two information sets I , J ∈ Ii . Then S−i (I ) is at least as plausible as

S−i (J ) given µ (S−i (I ) ≥µ S−i (J )) if there is an ordered list I1, . . . , IL ∈ Ii such that I1 = J , IL = I ,

and µ(S−i (I`+1)|S−i (I`))> 0 for all `= 1, . . . , L .

The relation ≥µ is a preorder (i.e., reflexive and transitive). Its strict (i.e., asymmetric) part >µ

is defined as usual by letting F >µ G iff F ≥µ G and not G ≥µ F .

With nested strategic information, the plausibility relation of Definition 6 reduces to set

inclusion (see Corollary 3 in the Appendix); this ensures that the approach of this section is a

proper generalization of the approach in Section 3:

Remark 2 If the game has nested strategic information, then for all µ-basic information sets

I , J ∈Ii : S−i (J )>µ S−i (I ) if and only if S−i (J )⊃ S−i (I ).

The relation ≥µ also helps identify them from the player’s CPS. Observe that, in Example

3, Sb (I ) =µ Sb (J ), and the support of the probability p , Ann’s secondary hypothesis, is Sb (I )∪
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Sb (J ) = {t , m , b }. Note also that one can define a CPS ν ∈ ∆(Sb ,Sb (Ia )∪ {t , m , b }) by letting

ν(·|F ) = µ(·|F ) for F ∈ Sb (Ii ) and ν(·|{t , m , b }) = p . Rather than saying that the CPS µ permits

one to uniquely identify Ann’s secondary hypothesis p , one could equivalently state that Ann’s

CPS µ admits a unique extension to a CPS ν defined over a broader family of conditioning

events. The following definition formalizes and generalizes these observations.

Definition 7 For every I ∈Ii , let

Bµ(I ) =
⋃¦

S−i (J ) : S−i (J ) =
µ S−i (I )

©

.

A CPS ν ∈∆(S−i ,S−i (Ii )∪Bµ(Ii )) is an extension of µ if ν(·|S−i (I )) =µ(·|S−i (I )) for all I ∈Ii .

Analogously to S−i (Ii ), Bµ(Ii ) denotes the range of the function Bµ :Ii → 2S−i . If µ has an ex-

tension, it is called extensible. Theorem 3 in Section 5.3 characterizes extensible CPSs, and

establishes that, if an extension exists, it is unique. The probabilities ν(·|Bµ(I )) are the coun-

terpart of µ-basic beliefs for general dynamic games; indeed, in games with nested strategic

information, these notions coincide:

Remark 3 If the game has nested strategic information, then for every I ∈ Ii , I is µ-basic if

and only if Bµ(I ) = S−i (I ); therefore, the extension of µ is µ itself.

To extend Definition 5 to general dynamic games, I replace µ-basic beliefs with the prob-

abilities ν(·|Bµ(I )) (with I ∈Ii µ-basic), and set inclusion with the ordering of Definition 6.

Definition 8 Let ν ∈ ∆(S−i ,S−i (Ii )∪ Bµ(Ii )) be an extension of µ. For every pair of strategies

si , ti ∈ Si , si is (weakly) structurally preferred to ti givenµ (si ¼µ ti ) iff, for everyµ-basic I ∈Ii

such that Eν(·|Bµ(I ))Ui (si , ·)< Eν(·|Bµ(I ))Ui (ti , ·), there is a µ-basic J ∈ Ii , with S−i (J )>µ S−i (I ), such

that Eν(·|Bµ(J ))Ui (si , ·)> Eν(·|Bµ(J ))Ui (ti , ·).

Remark 3 implies that Definition 8 reduces to Definition 5 for games with nested strategic

information. The intuition given in Section 3 for structural preference applies here as well:

19



it is more plausible that si is better than ti . The obvious counterpart to Remark 1 holds for

general games. Online Appendix E explores equivalent definitions of structural preferences.

5 Main Results

Throughout subsections 5.1–5.3, fix an arbitrary dynamic game
�

N , (Si ,Ii ,Ui )i∈N ,S (·)
�

.

5.1 Structural and Sequential Rationality

The first main result of this paper can now be stated. For readers who skipped Section 4: in a

game with nested strategic information, every CPS is extensible.

Theorem 1 Fix a player i ∈N and an extensible CPS µ ∈∆(S−i ,S−i (Ii )) for i . If strategy si ∈ Si

is structurally rational for µ, then it is sequentially rational for µ.

The intuition15 behind Theorem 1 is reminiscent of the argument establishing that, with

EU preferences, an ex-ante optimal strategy si of player i must prescribe an optimal continu-

ation at every positive-probability information set I ∈ Ii : if si of player i is not conditionally

optimal at I , and S−i (I ) has positive prior probability, then there is a strategy s ∗i that differs

from si only at I and subsequent information sets, and which yields strictly higher ex-ante

expected payoff than si . The additional power of structural preferences allows one to extend

this argument to the case in which S−i (I ) has zero prior probability.

The logic of the proof is easiest to convey if the game has nested strategic information, and

I is a µ-basic information set. In this case, the noted strategy s ∗i has strictly higher expected

payoff than si conditional on S−i (I ). Furthermore, since I is basic, and s ∗i coincides with si at

information sets that do not (weakly) follow I , si and s ∗i have the same conditional expectation

at every information set J with S−i (J )⊃ S−i (I ). Then, by Definition 5, si is not weakly preferred

15The actual proof relies on the characterization of structural rationality via belief perturbations (Theorem 4).
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to s ∗i . In addition, consider an arbitrary µ-basic information set J . If the expected payoff of si

at J is strictly greater than that of s ∗i , one can show that, with nested strategic information, it

must be the case that S−i (I ) ⊃ S−i (J ). Since s ∗i has a greater conditional expectation than si at

I , Definition 5 implies that s ∗i is weakly preferred to si . Since we also argued that the converse

does not hold, s ∗i is strictly preferred to si . Hence, as in the argument for EU preferences, if si

is structurally rational, it must maximize the conditional expected payoff at I .

Example 1 (in the case x = 2) shows that the converse to Theorem 1 does not hold. How-

ever, structural and sequential rationality are “generically” equivalent. A precise statement

of this result requires an explicit description of extensive-form games that goes beyond the

notation introduced in Section 2.16 In order to focus on the important issue of elicitation, I

relegate the formal statement and proof of this result (Theorem 2) to Online Appendix C, and

instead provide an informal description. Fix an extensive game tree, having z terminal nodes,

and a player i . A payoff assignment for i is a specification of i ’s payoff at each terminal node.

Each payoff assignment is thus a z -dimensional vector.

Theorem. Fix a CPS µ and a strategy si for player i . Except for a set of payoff

assignments for i of dimension strictly less than z , si is sequentially rational given

µ if and only if it is structurally rational given µ.

5.2 Eliciting Conditional Beliefs

5.2.1 Structural preferences in the elicitation game of Figure 2

I first show that, if Bob has structural preferences in the game of Figure 2, then his initial choice

conveys information about his beliefs conditional upon observing Ann’s move In. The strat-

egy sets are Sa = {Out, InB , InS} and Sb = {p B , pS , b B , b S}, where, as in previous examples,

Out denotes either one of the realization-equivalent strategies OutB , OutS , etc.. Furthermore,

16In addition, the proof of this result relies on the properties of extensive game forms with perfect recall.
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Ib = {φ, J , K }with Sa (J ) = Sa (K ) = {InB , InS}. The game has nested strategic information. As-

sume that Bob’s CPS µ satisfies µ({Out}|Sa ) = 1 and µ({S}|Sa (J )) =µ({S}|Sa (K )) =π ∈ [0, 1] (the

Introduction focused on the caseπ= 1). Bob’s expected payoffs are depicted in Table II. Recall

that Figure 2 displays both a “game” and a “betting” payoff for Bob at each terminal node, and

a fair coin toss determines which one Bob receives. Each entry in Table II is thus the expecta-

tion with respect to the relevant belief on Sa as well as the lottery probabilities.

sb Sa Sa (J ) = Sa (K )

p B 1
2 ·2+

1
2 ·0

1
2 · (1−π) +

1
2 ·p

pS 1
2 ·2+

1
2 ·0

1
2 ·3π+

1
2 ·p

b B 1
2 ·2+

1
2 ·0

1
2 · (1−π) +

1
2 ·π

b S 1
2 ·2+

1
2 ·0

1
2 ·3π+

1
2 ·π

Table II: Bob’s expected payoffs for the game in Figre 2.

This randomization ensures that Bob has strict incentives to choose the best “game” action

(B vs. S ) and the best “betting” action (b vs. p ).17 In particular, the best game action is S if

and only if π> 1
4 and, crucially, the best betting action is b if and only if π> p . Remark 1 then

readily imply that Bob’s choice at the initial node reveals whether or not he assigns probability

greater than p to S conditional upon Ann choosing In. (For instance, if π = 1, the unique

structurally rational strategy for Bob is b S ; if π= 0, it is p B .)

This construction only allows one to conclude whether π > p or π ≤ p . To obtain tigher

bounds on beliefs, one can employ richer betting choices, such as price lists, scoring rules,

17 In several experimental papers (e.g., Van Huyck, Battalio, and Beil, 1990; Nyarko and Schotter, 2002; Costa-

Gomes and Weizsäcker, 2008; Rey-Biel, 2009), payoffs are monetary, and game and betting payoffs are simply

added. Under risk neutrality, this provides correct incentives. Blanco et al. (2010) argue that, if players are risk-

averse, randomization addresses the concern that betting choices may be used to “hedge” against uncertainty

in the game. I use randomization primarily because, throughout this paper, outcomes are expressed in utils, so

randomization is the appropriate way to combine game and betting payoffs.
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or the Becker, DeGroot, and Marschak (1964) mechanism. Incorporating these mechanisms

into the elicitation game does not change the basic insight, but requires additional notation.

To streamline the exposition, this section focuses on simple bets as in this example.

5.2.2 On-path beliefs about off-path moves: the strategy method

Assume again that the subgame-perfect equilibrium in which Ann plays Out prevails. To elicit

Ann’s initial beliefs, an experimenter could in principle offer her side bets on Bob’s choice of B

vs S . These would be offered at the initial node, so Ann’s betting behavior would be observable.

However, a new issue arises. If Ann’s game choice at the initial node is Out, Bob’s move is

not observed. Thus, whatever Ann’s betting choice may be, it is not in response to real incen-

tives: after all, Ann understands that the simultaneous-move subgame will not be reached.18

Bob

B̄ S̄

Ann

K

(Out, b )

(2, 0), 2

(Out, p )
(2, p ), 2

(InB , b ) (InB , p ) (InS , b ) (InS , p )

Bob

I
B

(3, 0), 1

B

(3, p ), 1

B

(0, 0), 0

B

(0, p ), 0

(Out, b )

(2, 1), 2

(Out, p )
(2, p ), 2

(InB , b ) (InB , p ) (InS , b ) (InS , p )

Bob

I ′
S

(0, 1), 0

S

(0, p ), 0

S

(1, 1), 3

S

(1, p ), 3

Figure 6: Eliciting Ann’s initial beliefs in the game of Figure 1.

The approach I propose implements the game (and bets) using the strategy method of Sel-

ten (1967). Recall that, in this protocol, players simultaneously commit to extensive-form

18Modifying the game so that the subgame is reached, perhaps with small probability, may change the nature

of the strategic interaction and so invalidate the elicitation exercise: see §6.E.
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strategies; the experimenter then implements them. Figure 6 depicts a simplified19 strategy-

method elicitation game in which Ann bets on Bob’s choice of S . In this game, Ann’s choice of

b vs. p is observed and has actual payoff consequences: betting incentives are real.20

A feature of Figure 6 is that, at information sets I and I ′, Bob learns that Ann chose In. This

is exactly what he learns at J in Figure 1.21 Thus, the conditioning events for Bob in Figure 6

“correspond to” his conditioning events in Figure 1. This implies that any CPS for Bob in Fig-

ure 1 can be used to define a CPS in Figure 6 that preserves Bob’s beliefs about Ann’s choices

of In vs. Out and B vs. S . (Definitions 9 and 10 formalize this.) The same is true for Ann’s

conditioning events and beliefs. The key insight of this subsection is that, under structural

rationality, if Bob’s conditional beliefs about Ann are the same in Figures 1 and 6, then by defi-

nition, so will his preferences, and hence his behavior. In particular, if Bob assigns probability

one to S following Ann’s unexpected choice of In, he must play S̄ in Figure 6. Consequently,

if Ann anticipates this, (Out, b ) is her unique (ex-ante and structural) best reply for any p < 1.

(The calculations are in Online Appendix D.1.) Thus, analogously to Figure 2, Ann’s initial

betting choice conveys information about the beliefs she holds in both Figures 6 and 1.

Assuming structural, rather than sequential rationality, is crucial to this conclusion. For

instance, with p = 2
3 in Figure 6, there is a sequential equilibrium in which Bob plays B̄ and

S̄ with equal probability, Ann plays (Out, p ), and at both I and I ′ Bob assigns probability one

to InS. Bob’s beliefs about Ann’s game actions are as in the (Out, (S ,S )) equilibrium of Figure

1. However, sequential rationality allows Bob’s behavior to differ in the two games. Conse-

quently, while Ann’s betting behavior correctly reveals her (prior) beliefs in Figure 6, these do

not correspond to her beliefs in the posited equilibrium of the game in Figure 1.

19Figure 6 does not distinguish between Ann’s commitment choice of a strategy and its implementation. This

is inessential for structural rationality, because the only conditioning event for Ann is Sb in both cases.

20Strictly speaking, Ann bets on S̄ in Figure 6; however, S̄ commits Bob to choosing S at I ′.

21The information sets I and I ′ in Figure 6 are distinct only because they also encode Bob’s own past choice of

B̄ vs. S̄ . Note also that, at I and I ′, Bob is committed to playing the action he has chosen at the initial node.
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5.2.3 The general elicitation game

I now formalize the construction of the elicitation game associated with an arbitrary dynamic

game. As in Figure 6, I employ a specific implementation of the strategy method in which,

as the experimenter executes the strategies chosen in the commitment stage, players receive

the same information about opponents’ actions as in the original game. A coin toss, modeled

as the choice of a dummy chance player, and not observed until a terminal node is reached,

determines whether subjects receive their game or betting payoff.22

As in Figures 2 and 6, I restrict attention to bets that only reveal whether the probability

a player assigns to a given event at a given information set is above or below a certain value;

further extensions are only a matter of additional notation. I allow for belief bounds to be

simultaneously elicited from zero, one, or more of players.23

Definition 9 24 A questionnaire is a collection Q = (Ii , Wi )i∈N such that, for every i ∈N , Ii ∈Ii

and either Wi = {∗} or Wi = (E , p ) for some E ⊆ S−i (I ) and p ∈ [0, 1]. The elicitation game

for the questionnaire Q = (Ii , Wi )i∈N is the tuple
�

N ∪{c }, (S ∗i ,I ∗i ,U ∗
i )i∈N∪{c },S ∗(·)

�

, where S ∗c =

{h , t }, I ∗c = {φ
∗}, U ∗

c ≡ 0, and for all i ∈N :

1. (Strategies) S ∗i = Si ×Wi ;

2. (Information) I ∗i = {φ
∗, I 1

i }∪ {(si , wi , I ) : (si , wi ) ∈ S ∗i , I ∈Ii , si ∈ Si (I )};

3. (First stage) S ∗(I 1
i ) = S ∗

4. (Second stage) for all (si , wi , I ) ∈I ∗i , S ∗
�

(si , wi , I )
�

= {(si , wi )}×S−i (I )×W−i ×S ∗c ;25

5. (Payoffs) for all
�

(si , wi ), (s−i , w−i ), s ∗c
�

∈ S ∗: if s ∗c = h or Wi = {∗}, thenU ∗
i

�

(si , wi ), (s−i , w−i ), s ∗c
�

=

22For notational simplicity, in Definition 9 the same coin toss selects game or betting payoffs for all players.

One can alternatively assume i.i.d. coin tosses for each player, and/or i.i.d. coin tosses at each terminal node,

provided one makes the appropriate assumptions on players’ beliefs about the chance player (cf. Definition 10).

23Thus, a justification for the use of the strategy method without belief elicitation follows as a corollary.

24I use the formalism of Section 2. Online Appendix C.3 formalizes the extensive form of the elicitation game.

25Here and in part 5, it is convenient to decompose S ∗ = (Si ×Wi )× (S−i ×W−i )×S ∗c .
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Ui (si , s−i ); and if s ∗c = t and Wi = (E , p ), then

U ∗
i

�

(si , E ), (s−i , w−i ), t
�

=











1 s−i ∈ E

0 otherwise
and U ∗

i

�

(si , p ), (s−i , w−i ), t
�

=











p s−i ∈ S−i (Ii )

0 otherwise.

Thus, chance can select either h , in which case payoffs are as in the original game, or t ,

in which case payoffs are given by betting choices for every player whose beliefs are being

elicited. Each player i chooses a strategy si and betting action wi at her first-stage information

set I 1
i , without any knowledge of coplayers’ moves. At every second-stage information set

(si , wi , I ), player i recalls her first-stage choice (si , wi ); furthermore, what i learns about her

(real) coplayers at (si , wi , I ) is precisely what she learns about them at I in the original game.26

Next, I formalize the assumptions that players hold (a) the same beliefs about coplayers

in the original game and in the elicitation game, and (b) view chance moves as independent

of coplayers’ strategies. This ensures that conditional expected payoffs are 1
2 : 1

2 mixtures of

game and betting payoffs, as in Table II (cf. Lemma 6).

Definition 10 Fix a questionnaire (Ii , Wi )i∈N . Let
�

N ∗, (S ∗i ,I ∗i ,U ∗
i )i∈N ∗ ,S ∗(·)

�

be the associated

elicitation game. For any i ∈N and CPS µ ∈∆(S−i ,S−i (Ii )), the CPS µ∗ ∈∆(S ∗−i ,S ∗−i (I
∗

i )) agrees

with µ if, for every I ∗ ∈I ∗i ,

marg S−i×S ∗c
µ∗
�

· |S ∗−i (I
∗)
�

=
1

2
µ
�

· |proj S−i
S ∗−i (I

∗)
�

.27 (4)

More than one CPS for player i in the elicitation game may agree with her CPS in the original

game. This is because i may assign different probabilities to her coplayers’ choices of side

bets in the elicitation game. However, these differences are irrelevant for her strategic reason-

ing, because her payoff does not depend on these choices. On the other hand, independence

26Part 4 of the definition also indicates that i has a single action available at (si , wi , I ); see Appendix C.3.

27By Definition 9, proj Si
S ∗−i (φ

∗) = proj S−i
S ∗−i (I

1
i ) = S−i and, for all (si , wi , I ) ∈I ∗i , proj S−i

S ∗−i ((si , wi , I )) = S−i (I ).
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of Chance’s move is important: if i believes that her coplayers correlate their choices with

Chance, this may impact her expected payoffs, and hence her strategic incentives.

The main result of this section can now be stated: if the strategy method is implemented

as described above, and players’ beliefs about others’ moves are the same as in the original

game, then (1) players’ preferences are also unchanged, and (2) as a result, belief bounds can

be elicited from initial, observable betting choices.

Theorem 2 Fix a questionnaire (Ii , Wi )i∈N . Let
�

N ∗, (S ∗i ,I ∗i ,U ∗
i )i∈N ∗ ,S ∗(·)

�

be the associated elic-

itation game. For any player i ∈N , fix an extensible CPS µi ∈∆(S−i ,S−i (Ii )). Then there exists

an extensible CPS µ∗i ∈∆(S
∗
−i ,S−i (I ∗i )) that agrees with µi . For any such CPS,

(1) for all (si , wi ), (ti , wi ) ∈ S ∗i , (si , wi )¼µ
∗
i (ti , wi ) if and only if si ¼

µ
i ti ;

(2) if Wi = (E , p ), then for all si ∈ Si , p > µi (E |S−i (Ii )) implies (si , p ) �µ∗i (si , b ) and p <

µi (E |S−i (Ii )) implies (si , b )�µ∗i (si , p ).

Hence, if Wi = (E , p )and (si , b ) (resp. (si , p )) is structurally rational in the elicitation game, then

si is structurally rational in the original game, and µi (E |S−i (Ii ))≥ p (resp. µi (E |S−i (Ii ))≤ p ).28

This result also provides a positive rationale for the use of the strategy method:

Corollary 1 Under the assumptions of Theorem 2, suppose that Wi = {∗} for all i ∈N . Then,

for all i ∈N and all si , ti ∈ Si , si ¼µi ti if and only if (si ,∗)¼µ∗i (ti ,∗). In particular, si is structurally

rational in the original game if and only if (si ,∗) is structurally rational in the elicitation game.

Theorem 2 and Corollary 1 depend crucially on the assumption that players are struc-

turally rational. Sequential rationality is not sufficient to deliver these results, even if players’

conditional beliefs are the same as in the original game:

Remark 4 Under the assumptions of Theorem 2, for every player i ∈N , (si , wi ) ∈ S ∗i is sequen-

tially rational in the elicitation game if and only if (i) si ∈ arg maxti∈Si
Eµi (·|S−i )Ui (ti , ·), and (ii) if

28A weak inequality is needed because, if p =µi (E |S−i ), the strategies (si , b ) and (si , p )may be incomparable.
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Wi = (E , p ) and wi = b (resp. wi = p ), then µi (E |S−i ) ≥ p · µi (S−i (I )|S−i )) (resp. µi (E |S−i ) ≤

p ·µi (S−i (I )|S−i ))).

This is an immediate consequence of the fact that, for each player i , the only information set

in the elicitation game where more than one action is available is I 1
i .

To reconcile Theorem 2 and Remark 4 with the generic equivalence result described in

Section 5.1, notice that elicitation games feature numerous ties at terminal nodes: see Fig. 6.

In other words, by construction elicitation games are non-generic, and such that structural

rationality is strictly stronger than sequential rationality.

5.3 Extensibility, Structural Rationality, and Trembles

The final set of results relates the approach in this paper with the traditional notion of “trem-

bles,” or belief perturbations. First, I show that a CPS is extensible if and only if it can be ob-

tained by taking limits of perturbed beliefs. Second, I provide a characterization of structural

rationality as optimality given a novel class of belief perturbations.

Example 4 (Non-extensible beliefs) Consider the game in Figure 7.

Ann R

a

b

c

d

0

o

1

T 0

B 0

T 5

B 3

T 3

B 5
L

a

0

b

c

d
o

1

T0

B0

T3

B5

T5

B3

Bob

Ann IAnnJ

Figure 7: A conditional Newcomb’s paradox (only Ann’s payoffs are shown)
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Suppose that Ann’s CPS µ satisfies µ({o}|Sb (φ)) = µ({b }|Sb (I )) = µ({c }|Sb (J )) = 1. Observe

that Sb (φ) >µ Sb (I ) =µ Sb (J ). Hence, Bµ(I ) = Bµ(J ) = Sb (I )∪Sb (J ) = {a , b , c , d }, and any exten-

sion ν ∈∆(Sb ,Sb (Ia )∪Bµ(Ia ))must satisfy

µ({b }|Sb (I )) ·ν(Sb (I )|Bµ(I )) = ν({b }|Bµ(I )) = ν({b }|Bµ(J )) =µ({b }|Sb (J )) ·ν(Sb (J )|Bµ(J )), and

µ({c }|Sb (I )) ·ν(Sb (I )|Bµ(I )) = ν({c }|Bµ(I )) = ν({c }|Bµ(J )) =µ({c }|Sb (J )) ·ν(Sb (J )|Bµ(J )).

Since µ({b }|Sb (I )) > 0 and µ({b }|Sb (J )) = 0, the first equation implies ν(Sb (I )|Bµ(I )) = 0; simi-

larly, since µ({c }|Sb (I )) = 0 and µ({c }|Sb (J )) > 0, the second equation implies ν(Sb (J )|Bµ(J )) =

0. But Bµ(I ) = Bµ(J ) = Sb (I )∪Sb (J ), contradiction. Hence µ is not extensible. �

A peculiar feature of the CPS µ in Example 4 is that Ann’s own initial choice of R vs. L

determines her conditional beliefs on the relative likelihood of b and c , despite the fact that

Bob does not observe Ann’s initial choice. (In fact, Ann’s first action and Bob’s move may well

be simultaneous.) This phenomenon is reminiscent of Newcomb’s paradox (Weirich, 2016).

If Sb (I ) and Sb (J ) both had positive prior probability, the definition of conditional proba-

bility would imply that the relative likelihood of b and c must be the same at both information

sets. The same conclusion holds in any consistent assessment in the sense of Kreps and Wil-

son (1982), and for CPSs for which all non-empty subsets of S−i are conditioning events, as in

Myerson (1986). The reason is that, in both cases, Ann’s conditional beliefs at I and J are ob-

tained by fixing a sequence (p n ) of strictly positive probability distributions on Sb , and taking

the limit of the conditional probabilities p n (·|Sb (I )) and p n (·|Sb (J )).29

To sum up, if a CPS is extensible, or if it is the limit of belief perturbations, the pathologies

in Example 4 do not arise. The next result shows that, in fact, belief perturbation characterize

extensible CPSs. It also establishes uniqueness of the extension of a CPS. Throughout this

subsection, in addition to the game
�

N , (Si ,Ii ,Ui )i∈N ,S (·)
�

, also fix a player i ∈ N and a CPS

µ ∈∆(S−i ,S−i (Ii )).

29Modulo notational differences, this is true by definition for consistent assessments; for complete CPSs, it

follows from a result in Myerson (1986).
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Definition 11 A sequence (p n )n≥1 ⊂∆(S−i ) is a perturbation of µ if p n (S−i (I ))> 0 for all n ≥ 1

and I ∈Ii , and p n (·|S−i (I ))→µ(·|S−i (I )) for all I ∈Ii .

A perturbation need not consist of full-support probabilities, so long as every conditioning

event has positive probability. (The reason for this will be clear momentarily.) A particular

class of perturbations plays a key role in the characterization of structural preferences:

Definition 12 A perturbation (p n )n≥1 of µ is structural if supp p n =
⋃

I∈Ii
µ(·|S−i (I )) for every

n ≥ 1, and p n ({s−i })
p n ({t−i }) =

µ({s−i }|S−i (I ))
µ({t−i }|S−i (I ))

for all n ≥ 1, I ∈Ii , and all s−i , t−i ∈ suppµ(·|S−i (I )).

The rationale for this definition is given below. The first main result of this section is:

Theorem 3 The following are equivalent:

1. µ admits an extension ν ∈∆(S−i ,S−i (Ii )∪Bµ(Ii ));

2. there is a structural perturbation (p n )⊂∆(S−i ) of µ;

3. there is a perturbation (p n )⊂∆(S−i ) of µ.

If µ is extensible, then its extension is unique.

Online Appendix B provides a further characterization of extensibility via an intrinsic prop-

erty of CPSs that strengthens the chain rule of conditioning.

The next result shows that structural rationality can itself be characterized via structural

perturbations of the player’s beliefs. Trembles have been used in the literature to refine equi-

libria (e.g. Myerson, 1978; Van Damme, 1984; Kohlberg and Mertens, 1986). However, the re-

sult presented below is closer in spirit to the use of trembles in Selten (1975), who introduced

perturbations to ensure “perfection” (optimality at unreached information sets). The objec-

tive of Theorem 4 below is to identify perturbations that do not refine structural rationality,

and indeed characterize it exactly. The following example illustrates.

Example 5 Consider the game in Fig. 8. I analyze two parameterizations of Ann’s payoffs and

prior belief, with p ≡µ({t }|Sb ) = 1−µ({m}|Sb ) and µ({b }|Sb ) = 0.
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Ann

U

D

t 1

m
1b

x

t
y

m
zb

Bob

Ann

I

T 1

B 0

sa Eµ(·|Sb )Ua (sa , ·) Eµ(·|Sb (I ))Ua (sa , ·)

U 1 x

D T p y + (1−p )z 1

D B p y + (1−p )z 0

Figure 8: Structural perturbations. Ann’s payoffs shown. p =µ({t }|Sb ) = 1−µ({m}|Sb ).

Supports: let x = 1, y = 1, z = 0, and p = 1. Then U weakly dominates D T , and so

Ep n Ua (U , ·)> Ep n Ua (D T , ·)whenever (p n ) is a full-support perturbation ofµ. However, U T ∼µ

D T . Indeed, for D T to be a best reply to a perturbation of Ann’s CPSµ, it must be the case that

p n ({m}) = 0. Note that the CPS µ assigns probability 0 to {m} both ex-ante and given Sb (I ).

Relative Likelihoods: now let x = 0, y = 0, z = 2, and p = 1
2 . Then D T �µ U . Define a

sequence (p n ) ∈ ∆(Sb ) by letting p n ({t }) = 1
2 , p n ({m}) = 1

2 −
1

2n , and p n ({b }) = 1
2n for every

n ≥ 1. Then (p n ) is a perturbation of µ; however, Ep n Ua (U , ·)> Ep n Ua (D T , ·) for all n > 1. Here,

the fact that µ(·|Sb ) assigns equal weight to t and m ensures that U and D T have the same

ex-ante expected payoff, and hence is crucial to conclude that D T �µ U . However, p n does

not preserve the relative likelihood of t and m .

Example 5 motivates the definition of structural perturbations given above. These trem-

bles preserve two key features of the limiting CPS: supports and relative likelihoods. Loosely,

the objective is to modify the player’s beliefs only insofar as it is necessary to ensure that all

her information sets are reached.

Note that, if the game has simultaneous moves, or if all information sets of i have positive

prior probability underµ, then the unique structural perturbation (p n ) ofµ is defined by p n =

µ(·|S−i ) for all n . This underscores the fact that structural perturbations only modify a player’s
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(prior) beliefs in a “minimal” way so as to ensure that there are no unexpected information

sets: if no information set is unexpected to begin with, there is no need for any perturbation.

Theorem 4 For every si , ti ∈ Si :

(1) si ¼µ ti if and only if, for every structural perturbation (p n )n≥1 of µ, there is n̄ ≥ 1 such

that Ep n U (si , ·)≥ Ep n Ui (ti , ·) for all n ≥ n̄ ;

(2) si �µ ti if and only if, for every structural perturbation (p n )n≥1 of µ, there is n̄ ≥ 1 such

that Ep n U (si , ·)> Ep n Ui (ti , ·) for all n ≥ n̄ .

Therefore, a strategy si ∈ Si is structurally rational for µ if, for every ti ∈ Si , there is a structural

perturbation (p n ) of µ such that Ep n U (si , ·)≥ Ep n Ui (ti , ·) for all n ≥ 1.

Theorem 4 yields a tight characterization of structural preferences and rationality. As shown

in Example 5, non-structural perturbations may fail to rationalize a given structurally rational

strategy. In addition, the second parameterization in the example shows that a best reply to a

non-structural perturbation may fail to be structurally rational given the limiting CPS.

In the last statement of Theorem 4, the structural perturbation for which si yields a weakly

higher expected payoff than an alternative strategy ti may well vary with ti . This is a direct

implication of part (2) in the Theorem; Example 1 in Online Appendix D.2 illustrates this point.

6 Discussion

6.A Material payoffs. The partial representation of a dynamic game given in Section 2 is

sufficient to state the main definitions and results in this paper. One can enrich this repre-

sentation by replacing player i ’s reduced-form payoff functions Ui : S → R with (i) a set of

material consequences X i , (ii) a consequence function Ci : S → X i , and (iii) a (von Neumann-

Morgenstern) utility function ui : X i →R: thus, Ui = ui ◦Ci . In this case, (i) and (ii) are part of

the description of the game; (iii) is part of the representation of players’ preferences. If Defini-

tions 3, 5, 8, 11 and 12 are modified in the obvious way, Theorems 1, 3 and 4 continue to hold.

32



Furthermore, if the sets X i are sufficiently rich (e.g., the set of lotteries on some prize space

X0), Theorem 2 can be adapted so that both beliefs and utilities can be elicited in the game.

6.B Incomplete-information games The analysis may also be adapted to accommodate

incomplete information. Fix a dynamic game with N players, strategy sets Si and information

sets Ii for each i ∈N , and a strategy profile correspondence S (·). Consider sets Θi of possible

“types” for each i ∈N , and a set Θ0 that captures residual uncertainty not reflected in players’

types. Player i ’s payoff function is a map Ui : S ×Θ→ R, where Θ = Θ0 ×
∏

j∈N Θ j . The set of

conditioning events for player i isFi = {S−i (I )×Θ−i : I ∈Ii }, whereΘ−i =Θ0×
∏

j∈N \{i }Θ j . The

conditional beliefs of player i ’s type θi can then be represented via a CPSµθi
on S−i ×Θ−i , with

conditioning eventsFi . Definitions 3, 5 and 8 can be readily adapted to characterize notions

of sequential and structural rationality for any given type θi ∈ Θi ). Theorems 1 and 2 have

straightforward extensions, even if some of the sets Θ j are uncountably infinite. For finite Θ,

Definitions 11 and 12, as well as Theorems 3 and 4, also extend readily.

6.C Higher-order beliefs The proposed approach can also be adapted to elicit higher-order

beliefs. Consider a two-player game for simplicity. The analyst begins by eliciting Ann’s first-

order beliefs about Bob’s strategies, as in Section 5.2. She can then elicit Bob’s second-order

beliefs by offering him side bets on both Ann’s strategies and on her first-order beliefs. The re-

quired formalism is analogous to that for incomplete information, taking Θi =∆(S−i ,S−i (Ii ))

for each player i . The incomplete-information extension of Theorem 2 ensures that they can

be elicited in an incentive-compatible way. The argument extends to beliefs of higher orders.

6.D Elicitation: ex-ante analysis. As argued in the Introduction, Bob’s beliefs at J in the

subgame-perfect equilibrium(Out, (S ,S )) of the game of Figure 1 cannot be elicited under se-

quential rationality. A possible response is to note that the strategic reasoning that supports

this equilibrium can be restated entirely in terms of Ann’s ex-ante, second-order beliefs, with-
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out reference to Bob’s actual (first-order) beliefs at J .30 However, the issue is how to elicit Ann’s

initial second-order beliefs in an incentive-compatible way. As discussed above, this involves

asking Ann to bet on Bob’s actual, elicited beliefs at J . Thus, from a behavioral perspective,

the elicitation of off-path beliefs is relevant in an ex-ante view of strategic reasoning as well.

6.E Elicitation: modified or perturbed games. In the equilibrium (Out, (S ,S )) of the game

of Figure 1, Ann’s initial move prevents J from being reached. One might consider modify-

ing the game so that J is actually reached, perhaps with small probability, regardless of Ann’s

initial move. However, such modifications may have a significant impact on players’ strategic

reasoning and behavior—and therefore on elicited beliefs. For instance, in the game of Fig-

ure 1, forward-induction reasoning selects the equilibrium (In, (B , B )) (cf. e.g. Ben-Porath and

Dekel, 1992). Thus, if Ann follows the logic of forward induction, she should expect Bob to

play B in the subgame. However, consider the extreme case in which action Out is removed.

The game of Figure 1 reduces to the simultaneous-move Battle of the Sexes, in which forward

induction has no bite. Ann may well expect Bob to play B in the game of Figure 1, and S in

the game with Out removed. Thus, Ann’s beliefs elicited in the latter game may differ from her

actual beliefs in the former. Similar conclusions hold if one causes Ann to play In with pos-

itive probability when she chooses Out. Analogous arguments apply to backward-induction

reasoning: see e.g. Ben-Porath (1997), Example 3.2 and p. 36.

By way of contrast, the elicitation approach in Section 5.2 only modifies the game in ways

that, as per Statement (1) of Theorem 2, are inessential for each player’s structural preferences.

6.F Partial and complete ordering of beliefs Recall from Section 3 that the notion of lexi-

cographic consistency in (Kreps and Wilson, 1982) involves a complete ordering of a player’s

alternative probabilistic hypotheses. The ordering of beliefs used in Definitions 5 and 8 is

30That is: whether Bob would actually assign high probability to S at J is irrelevant; what matters is that Ann

initially believe that he would, and that this would induce him to play S . I thank Phil Reny for this observation.
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instead only partial. I offer two complementary interpretation.

In the first interpretation, structural rationality reflects a generalization of lexicographic

consistency whereby a player actually only entertains a partial order over alternative hypothe-

ses, which the analysis in Sections 3 and 4 elicits from conditional beliefs at each information

set. To preserve the spirit of the Kreps and Wilson (1982) definition, one does need to ensure

that, for each information set I , there is a unique “most plausible” hypothesis that is consis-

tent with it. Observation 2 in the Appendix establishes this uniqueness.

In the second interpretation, the player’s actual ordering of alternative hypotheses may be

richer than the one elicited in Sections 3 and 4, and possibly complete. However, this richer

ranking cannot be elicited from the player’s collection of beliefs at each information set. Struc-

tural rationality is defined in a way that is robust to the specification of such unelicitable rank-

ings. Example 2 illustrates this: if Ann actually deems µ(·|Sb (I )) more (resp. less) plausible

than µ(·|Sb (J )), then U T (resp. D T ′) is the only (lexicographically) rational strategy. Since

Ann’s CPS does not identify the ranking of µ(·|Sb (I )) vs. µ(·|Sb (J )), structural rationality allows

both U T and D T ′ as best replies. (Recall that these are also the sequential best replies to Ann’s

CPS.) Online Appendix E.2 shows that this holds generally: indeed, as I now discuss, there is

a tight connection between structural preferences and lexicographic preferences defined by

completions of the elicited ranking of basic beliefs.

6.G Lexicographic expected utility. As noted in Section 3, structural preferences are for-

mally a generalization of lexicographic preferences (Blume et al., 1991a). Whereas lexico-

graphic preferences were introduced into game theory in order to study strategic-form re-

finements (Blume, Brandenburger, and Dekel, 1991b), the definition of structural preferences

is clearly tied to a specific extensive form. Also, recall that lexicographic maximization with

respect to a full-support lexicographic probability system implies invariance in the sense of

Kohlberg and Mertens (1986): the same strategies will be optimal regardless of the extensive

form of the game. Structural rationality is conceptually closer to sequential rationality, in that

35



the given extensive form is essential.

That said, there are useful connections between structural and lexicographic rationality.

First, as informally described in Section 3, structural rationality can be thought of as “lexico-

graphic rationality along each path:” see Online Appendix E.1. Second, strategy si is struc-

turally preferred to strategy ti if and only if si is lexicographically preferred to ti for every

completion of the elicited plausibility ordering of basic events: see Online Appendix E.2.

6.H Preferences for the timing of uncertainty resolution The fact that structural prefer-

ences depend upon the extensive form of the dynamic game can be seen as loosely analogous

to the issue of sensitivity to the timing of uncertainty resolution: see e.g. Kreps and Porteus

(1978); Epstein and Zin (1989), and in particular Dillenberger (2010). In the latter paper, pref-

erences are allowed to depend upon whether information is revealed gradually rather than in

a single period, even if no action can be taken upon the arrival of partial information. This

is close in spirit to the observation that subjects behave differently in the strategic form of a

dynamic game (where all uncertainty is resolved in one shot), and when the game is played

with commitment as in the strategy method (where information arrives gradually). However,

for structural preference, this dependence on the timing of uncertainty resolution is only al-

lowed when some piece of partial information has zero prior probability—that is, when there

is unexpected partial information.

A Appendix: Preliminary results on extensible CPSs

Throughout, fix a dynamic game (N , (Si ,Ii ,Ui )i∈N ,S (·)).

For every player i , collectionCi ⊆ 2S−i \ {;},and and CPS µ ∈∆(S−i ,Ci ), a µ-sequence is an

ordered list F1, . . . , FK ∈Ci such thatµ(Fk+1|Fk )> 0 for all k = 1, . . . , K −1. Thus, for all F,G ∈Ci ,

F ≥µ G iff there is a µ-sequence F1, . . . , FK with F1 =G and FK = F .

The following result states that every equivalence class of≥µ can be arranged in aµ-sequence.
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Observe that the elements of the µ-sequence constructed in the proof are not all distinct.

Lemma 1 For every player i , collection Ci ⊆ 2S−i \ {;}, CPS µ ∈ ∆(S−i ,Ci ), and event F ∈ Ci ,

there is a µ-sequence F1, . . . , FM ∈ Ci such that F1 = FM = F and, for all G ∈ Ci , G =µ F if and

only if G = Fm for some m = 1, . . . , M .

Proof: let {F1, . . . , FL}be an enumeration of the equivalence class of≥µ containing F ; in partic-

ular, assume without loss that F1 = F . Then in particular F1 ≥µ F2 ≥µ . . .≥µ FL and FL ≥µ F1. By

definition, for every ` = 1, . . . , L − 1, there is a µ-sequence F `
1 , . . . , F `

M (`) such that F `
1 = F`+1 and

F `
M (`) = F`; furthermore, there is a µ-sequence F L

1 , . . . , F L
M (L ) such that F L

1 = F1 and F L
M (L ) = F L .

Then the ordered list

F L
1 , F L

2 , . . . , F L
M (L ) = F L−1

1 , . . . , F L−1
M (L−1) = F L−2

1 , . . . , F 1
M (1).

is a µ-sequence, with F L
1 = F1 = F and F 1

M (1) = F1 = F .

By construction, F` = F `
M (`) for every ` = 1, . . . , L , so this µ-sequence contains the equiv-

alence class {F1, . . . , FL} for F . Finally, notice that, for every ` = 1, . . . , L and m = 1, . . . , M (`),

the ordered sublist beginning with F L
1 and ending with F `

m , and the ordered sublist beginning

with F `
m and ending with F 1

M (1), are both µ-sequences, so F `
m ≥

µ F L
1 and F L

M (1) ≥ F `
m . Further-

more, F L
1 = F 1

M (1) = F1 = F , so in fact F `
m ≥

µ F and F ≥µ F `
m , so F `

m = F¯̀ for some ¯̀ = 1, . . . , L .

Corollary 2 Fix a player i ∈N and a CPS µ ∈∆(S−i ,S−i (Ii )). For every I ∈Ii , there is a µ-basic

I ′ ∈Ii such that S−i (I ) =µ S−i (I ′)

Observation 1 By transitivity of ≥µ, S−i (I ) =µ S−i (I ′) implies Bµ(I ) = Bµ(I ′). Hence, by this

Corollary, one can drop the requirement that the information sets in Definition 8 be µ-basic.

Proof: By Lemma 1 there is a µ-sequence F1, . . . , FM ∈ S−i (Ii ) such that F1 = FM = S−i (I ) and

G =µ S−i (I ) iff G = Fm for some m ∈ {1, . . . , M }. To simplify the exposition, in this proof only,

call an event F ∈ S−i (Ii ) “µ-basic” if F = S−i (J ) for some µ-basic J ∈Ii .
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Consider the following algorithm. First, set m1 = 1 and k = 1. Then, for each k ≥ 1, if Fmk
is

µ-basic, STOP; otherwise, (1) find G ∈ S−i (Ii ) such that G ⊃ Fmk
and µ(Fmk

|G )> 0, and (2) find

mk+1 such that G = Fmk+1
: this must exist, because µ(Fmk

|G )> 0 and µ(G |Fmk
)≥µ(Fmk

|Fmk
) = 1

imply G =µ Fmk
=µ S−i (I ). Set k := k +1 and repeat.

This algorithm produces a sequence Fm1
, Fm2

, . . . such that Fmk
⊃ Fmm+1

for every k ≥ 1:

thus, the elements of this sequence are all distinct. Since each Fmk
is a member of the ≥µ-

equivalence class of S−i (I ), which is finite, the algorithm must stop. If the algorithm stops at

step k , by construction Fmk
=µ S−i (I ) and Fmk

isµ-basic. Since Fmk
∈ S−i (Ii ), there is a (µ-basic)

I ′ ∈Ii such that S−i (I ′) = Fmk
.

Corollary 3 (Remarks 2 and 3) Fix a player i ∈ N and a CPS µ ∈ ∆(S−i ,S−i (Ii )). If the game

has nested strategic information, then for every µ-basic I ∈Ii , Bµ(I ) = S−i (I ). Furthermore, if

I , J ∈Ii are µ-basic, then S−i (I )>µ S−i (J ) iff S−i (I )⊃ S−i (J ).

Proof: By Lemma 1 there is a µ-sequence F1, . . . , FM ∈ S−i (Ii ) such that F1 = FM = S−i (I ) and

G =µ S−i (I ) iff G = Fm for some m ∈ {1, . . . , M }, so that Bµ(J ) =∪m Fm .

I claim that Fm ⊆ FM = S−i (I ) for all m . The claim is trivially true for m = M . Assume

it is true for some m ∈ {2, . . . , M }. By the definition of a µ-sequence, µ(Fm |Fm−1) > 0; by the

induction hypothesis FM ⊇ Fm , so µ(FM |Fm−1) > 0, and hence FM ∩ Fm−1 6= ;. Since the game

has nested strategic information, either FM ⊇ Fm−1 or Fm−1 ⊇ FM . By assumption, I is µ-basic,

and µ(FM |Fm−1)> 0; thus, it cannot be the case that Fm−1 ⊇ FM . This proves the claim for m−1.

Therefore, Bµ(I ) =∪M
m=1Fm = FM = S−i (I ).

Finally, suppose I , J ∈ Ii are µ-basic and S−i (I ) ⊃ S−i (J ). Then S−i (I ) ≥µ S−i (J ); if also

S−i (J ) ≥µ S−i (I ), then S−i (I ) =µ S−i (J ), and so, by the definition of µ-basis and transitivity of

≥µ, S−i (I ) = Bµ(I ) = Bµ(J ) = S−i (J ), contradiction. Hence, S−i (I )>µ S−i (J ). Conversely, suppose

that S−i (I ) >µ S−i (J ). Then there is a µ-sequence F1, . . . , FM with F1 = S−i (J ) and FM = S−i (J ).

I claim that Fm ⊆ FM for all m . For m =M the claim is trivial. Suppose the claim is true for
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m ∈ {2, . . . , M }. Since µ(Fm |Fm−1)> 0, also µ(FM |Fm−1)> 0. By nested strategic information and

the assumption that I is µ-basic, Fm−1 ⊆ FM , as claimed. Hence, S−i (J ) = F1 ⊆ FM = S−i (I ). If

S−i (I ) = S−i (J ), then S−i (I ) =µ S−i (J ), contradiction: thus, S−i (I )⊃ S−i (J ).

The next result is useful to analyze extensions of CPSs.

Lemma 2 Fix a player i ∈N , a CPS µ ∈∆(S−i ,Si (Ii ))with extension ν ∈∆(S−i ,S−i (Ii )∪Bµ(Ii )),

and an information set I ∈ Ii . Consider a collection F1, . . . , FL ∈ S−i (Ii ) such that F` =µ Fm

for all `, m ∈ {1, . . . , L}, and ν(∪`F`|Bµ(I ))> 0. Then there are ˆ̀ ∈ {1, . . . , L} and Î ∈ Ii such that

S−i (Î ) =µ S−i (I )andµ(Fˆ̀|S−i (Î ))> 0. Therefore F` ≥µ S−i (I ) for all `. In particular,ν(S−i (J )|Bµ(I ))>

0 for all J ∈Ii such that S−i (J ) =µ S−i (I ).

Proof: Denote by G1, . . . ,GM the ≥µ-equivalence class for S−i (I ). Then Bµ(I ) = ∪mGm . Since

ν(∪mGm |Bµ(I )) = ν(Bµ(I )|Bµ(I )) = 1,

0<ν(∪`F`|Bµ(I ))≤
∑

m̄

ν
�

Gm̄ ∩ [∪`F`]
�

�Bµ(I )
�

,

so there must be m̂ with ν
�

Gm̂ ∩ [∪`F`]|Bµ(I )
�

> 0. Furthermore,

0<ν
�

Gm̂ ∩ [∪`F`]
�

�Bµ(I )
�

≤
∑

¯̀

ν(Gm̂ ∩ F¯̀|Bµ(I )),

so there is ˆ̀ with ν(Gm̂ ∩ Fˆ̀|Bµ(I )) > 0. A fortiori, ν(Fˆ̀|Bµ(I )) > 0 and ν(Gm̂ |Bµ(I )) > 0. Since ν

extends µ, 0 < ν(Fˆ̀ ∩Gm̂ |Bµ(I )) = µ(Fˆ̀ ∩Gm̂ |Gm̂ ) ·ν(Gm̂ |Bµ(I )), so µ(Fˆ̀|Gm̂ ) = µ(Fˆ̀ ∩Gm̂ |Gm̂ ) > 0.

Since Gm̂ ∈ S−i (Ii ), there is Î such that Gm̂ = S−i (Î ). Thus, as claimed, µ(Fˆ̀|S−i (Î ))> 0. In turn,

this implies that F` =µ F` ≥µ S−i (Î ) =µ S−i (I ) for all `.

For the last statement, fix m ∈ {1, . . . , M }. By Lemma 1, there is aµ-sequence F1, . . . , FL ∈Ci

such that F1 = FL =Gm and {F1, . . . , FL} is the ≥µ–equivalence class of Gm —hence, it coincides

with {G1, . . . ,GM }. Therefore ν(∪`F`|Bµ(I )) = ν(∪mGm |Bµ(I )) = 1. As shown above, there is ¯̀ ∈

{1, . . . , L} such that ν(F¯̀|Bµ(I ))> 0.
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I claim that this implies ν(F`|Bµ(I )) > 0 for all ` = ¯̀ + 1, . . . , L . The claim is trivially true if

¯̀ = L ; otherwise, suppose thatν(F`|Bµ(I ))> 0 for some `= ¯̀, . . . , L−1, and consider `+1. By the

chain rule, since by construction F` ∈ {G1, . . . ,GM }, ν(F`∩F`+1|Bµ(I )) =µ(F`∩F`+1|F`)ν(F`|Bµ(I )).

By the induction hypothesis,ν(F`|Bµ(I ))> 0; and since F1, . . . , FL is aµ-sequence,µ(F`∩F`+1|F`) =

µ(F`+1|F`)> 0. Thus, ν(F`+1|Bµ(I ))≥ ν(F` ∩ F`+1|Bµ(I ))> 0, as claimed. Since FL =Gm , this com-

pletes the proof.

Corollary 4 For all I , J ∈ Ii , ν(Bµ(I )|Bµ(J )) > 0 implies S−i (I ) ≥µ S−i (J ). Hence S−i (I ) 6=µ S−i (J )

implies supp ν(·|Bµ(I ))∩ supp ν(·|Bµ(J )) = ;.

Proof: If ν(Bµ(I )|Bµ(J )) > 0, then there are t−i ∈ Bµ(Im ) and I ′ ∈ Ii with t−i ∈ S−i (I ′) and

S−i (I ′) =µ S−i (I ) such that ν({t−i }|Bµ(J )) > 0. Then ν(S−i (I ′)|Bµ(J )) > 0 and so, by Lemma 2

and transitivity, S−i (I ) =µ S−i (I ′) ≥µ S−i (J )), as claimed. Therefore, S−i (I ) 6=µ S−i (J ) implies that

ν(Bµ(I )|Bµ(J )) = ν(Bµ(J )|Bµ(I )) = 0.

Observation 2 Corolllary 4 also implies that, for every I ∈ Ii , S−i (I ) is ≥µ-maximal in the set

{S−i (J ) : J ∈Ii ,ν(S−i (I )|Bµ(J ))> 0}. If S−i (J ), J 6= I , is also≥µ-maximal in this set, then S−i (I ) =µ

S−i (J ) and so Bµ(I ) = Bµ(J ) and ν(·|B|µ(I )) = ν(·|Bµ(J )).

B Appendix: Proofs of the main results

B.1 Trembles

Lemma 3 Fix a dynamic game
�

N , (Si ,Ii ,Ui )i∈N ,S (·)
�

, a player i ∈N , and a CPSµ ∈∆(S−i ,S−i (Ii ))

that admits an extension ν ∈ ∆(S−i ,S−i (Ii ) ∪ Bµ(Ii )). Choose I1, . . . , IM ∈ Ii so that, for ev-

ery I ∈ Ii , there is a unique m ∈ {1, . . . , M } such that S−i (I ) =µ S−i (Im ). Then a sequence
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(p n )⊂∆(S−i ) is a structural perturbation of µ if and only if, for all s−i ∈ S−i ,

p n ({s−i }) =
M
∑

m=1

αn
mν({s−i }|Bµ(Im )), (5)

where the collection of sequences
�

(αn
m )n≥1

�N

m=1
satify

(i) for all n and m , αn
m ∈ (0, 1];

(ii) for all n ,
∑

m α
n
m = 1; and

(iii) for all `, m ∈ {1, . . . , M }, S−i (Im )>µ S−i (I`) implies
αn
`

αn
m
→ 0.

Also, if (p n ) is a structural perturbation ofµ, then p n (·|Bµ(Im ))→ ν(·|Bµ(Im )) for all m = 1, . . . , M .

Proof: (⇐): let ((αn
m )n≥1)Mm=1, and (p n )n≥1 be as in the statement of the Lemma. By construc-

tion, p n (Bµ(Im )) > 0 for all m . By Corollary 4, the supports of the probabilities ν(·|Bµ(Im )) for

different indices m are disjoint, and moreover, for all t−i ∈ Bµ(Im ) and all `, ν({t−i }|Bµ(I`)) > 0

implies S−i (Im )≥µ S−i (I`)). Thus, fix s−i ∈ Bµ(Im ). If ν({s−i }|Bµ(I`)) = 0 for all `, then p n ({s−i }) = 0

and so p n ({s−i })
p n (Bµ(Im ))

= 0 = ν({s−i }|Bµ(Im )). Otherwise, let ¯̀ be the unique index ` such that s−i ∈

supp ν(·|Bµ(I`)). As just noted, S−i (Im ) ≥µ S−i (I ¯̀); indeed, by construction, either ¯̀ = m or

S−i (Im )>µ S−i (I ¯̀). Therefore,

p n ({s−i })
p n (Bµ(Im ))

=

=
αn

¯̀ ν({s−i }|Bµ(I ¯̀))
∑

t−i∈supp ν(·|Bµ(Im ))
αn

mν({t−i }|Bµ(Im ))+
∑

`:S−i (Im )>µS−i (I`)

∑

t−i∈Bµ(Im )∩supp ν(·|Bµ(I`))α
n
` ν({t−i }|Bµ(I`))

=

=
ν({s−i }|Bµ(I ¯̀))

∑

t−i∈supp ν(·|Bµ(Im ))
αn

m
αn

¯̀
ν({t−i }|Bµ(Im ))+

∑

`:S−i (Im )>µS−i (I`)

∑

t−i∈Bµ(Im )∩supp ν(·|Bµ(I`))
αn
`

αn
¯̀
ν({t−i }|Bµ(I`))

=

=
ν({s−i }|Bµ(Im ))

αn
m
αn

¯̀
+
∑

`:S−i (Im )>µS−i (I`)

∑

t−i∈Bµ(Im )∩supp ν(·|Bµ(I`))
αn
`

αn
¯̀
ν({t−i }|Bµ(I`))

.

If ¯̀ = m , then
αn

m
αn

¯̀
= 1 for all n , and

αn
`

αn
¯̀
= αn

`

αn
m
→ 0 for all ` with S−i (Im ) >µ S−i (I`). Hence, the

first term in the denominator equals 1, and all other terms vanish as n →∞, so p n ({s−i })
p n (Bµ(Im ))

→

ν({s−i }|Bµ(Im )). If instead ¯̀ 6=m , then S−i (Im ) >µ S−i (I ¯̀), so
αn

m
αn

¯̀
→∞; also, for ` with S−i (Im ) >µ

S−i (`), either
αn
`

αn
¯̀
→ 0 or

αn
`

αn
¯̀
→∞ as well. Hence, p n ({s−i })

p n (Bµ(Im ))
→ 0= ν({s−i }|Bµ(Im )).
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For every I ∈ Ii , if S−i (I ) =µ S−i (Im ) then Lemma 2 implies that ν(S−i (I )|Bµ(Im )) > 0, and

so by construction p n (S−i (I )) > 0; therefore, for all s−i ∈ S−i (I ),
p n ({s−i }

p n (S−i (I ))
= p n ({s−i }

p n (Bµ(I ))
· p n (Bµ(I )

p n (S−i (I ))
→

ν({s−i }|Bµ(I ))
ν(S−i (I )|Bµ(I )) = µ({s−i }|S−i (I )), by the chain rule and the assumption that ν extends µ. Therefore

(p n ) is a perturbation of µ. Furthermore it is a structural perturbation: it is immediate to see

that p n ({s−i }) > 0 iff ν({s−}|Bµ(Im )) > 0 for some m , and hence iff µ({s−i }|S−i (I )) > 0 for some

I ∈ Ii ; and if s−i , t−i ∈ suppµ(·|S−i (I )) for some I ∈ Ii , and S−i (I ) =µ S−i (Im ), then p n ({s−i })
p n ({t−i }) =

ν({s−i }|Bµ(Im ))
ν({t−i }|Bµ(Im ))

= µ({s−i }|S−i (Im ))
µ({t−i }|S−i (Im ))

by the chain rule and the assumption that ν extends µ.

(⇒): given a structural perturbation (p n ) of µ, define ((αn
m )n≥1)Mm=1 by letting

∀m = 1, . . . , M , n ≥ 1 : αn
m = p n (supp ν

�

·
�

�Bµ(Im ))
�

. (6)

I claim that, for every m , supp ν(·|Bµ(Im )) = ∪{suppµ(·|S−i (I ) : S−i (I ) =µ S−i (Im )}. If s−i ∈

supp ν(·|Bµ(Im )), then s−i ∈ Bµ(Im ) = ∪{S−i (I ) : I ∈ Ii ,S−i (I ) =µ S−i (Im )}, so there is J ∈ Ii with

s−i ∈ S−i (J ) and S−i (J ) =µ S−i (I ). By the chain rule and the fact thatν extendsµ,µ({s−i }|S−i (J )) =

ν({s−i }|S−i (J )) > 0. Conversely, if s−i ∈ suppµ(·|S−i (I )) for some I ∈ Ii with S−i (I ) =µ S−i (Im ),

then, since ν(S−i (I )|Bµ(Im ))> 0 by Lemma 2, the chain rule, and the fact that ν extendsµ imply

that ν({s−i }|Bµ(Im )) =µ({s−i }|S−i (I ))ν(S−i (I )|Bµ(Im ))> 0.

Since p n is a structural perturbation of µ, the claim implies that

supp p n =
⋃

I

suppµ(·|S−i (I )) =
⋃

m

⋃

{suppµ(·|S−i (I )) : S−i (I ) =
µ S−i (Im )}=

⋃

m

supp ν(·|Bµ(Im )),

(7)

For every m = 1, . . . , M and n ≥ 1, Eq. (7) implies that supp ν(·|Bµ(Im )) ⊂ supp p n , so

αn
m ∈ (0, 1]. By Corollary 4, the supports of ν(·|Bµ(Im )) and ν(·|Bµ(I`)) are disjoint for ` 6= m ;

hence, Eq. (7) also implies that
∑

m α
n
m =

∑

m p n (supp ν(·|Bµ(Im )) = p n
�

∪m supp ν(·|Bµ(Im ))
�

=

p n (supp p n ) = 1. Thus, (i) and (ii) hold.

To prove (iii), consider first arbitrary I , J ∈Ii such that S−i (I )>µ S−i (I ). Then in particular

there are J1, . . . , JK ∈Ii such that J1 = J , JK = I , and S−i (J1), . . . ,S−i (JK ) is a µ-sequence. Then

p n (S−i (J ))
p n (S−i (I ))

=
K
∏

k=2

p n (S−i (Jk−1))
p n (S−i (Jk−1)∩S−i (Jk ))

·
p n (S−i (Jk−1)∩S−i (Jk ))

p n (S−i (Jk ))
→

K
∏

k=2

µ(S−i (Jk−1)∩S−i (Jk )|S−i (Jk ))
µ(S−i (Jk−1)∩S−i (Jk )|S−i (Jk−1))

.
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By assumption, the denominators in the limit expression are all positive. However, the nu-

merators cannot be all positive, because otherwise S−i (JK ),S
i
(JK −1), . . . ,S−i (J1) would also be a

µ-sequence and so S−i (J ) = S−i (J1) ≥µ S−i (JK ) = S−i (I ), contradiction. Therefore, p n (S−i (J ))
p n (S−i (I ))

→ 0.

Now suppose that, for some m ,` ∈ {1, . . . , M }, S−i (Im ) >µ S−i (I`). Fix s−i ∈ suppµ(·|S−i (Im )), so

as shown above s−i ∈ supp ν(·|Bµ(Im )) and, by Eq. (7), p n ({s−i })> 0 as well. Then

αn
`

αn
m

=
p n (supp ν(·|Bµ(I`)))
p n (supp ν(·|Bµ(Im )))

≤
p n (Bµ(I`))

p n ({s−i })
=

p n (S−i (Im ))
p n ({s−i })

·
p n (Bµ(I`))

p n (S−i (Im ))
≤

p n (S−i (Im ))
p n ({s−i })

·
∑

I :S−i (I )=µS−i (I`

p n (S−i (I ))
p n (S−i (I))

→ 0,

because by assumption p n ({s−i })
p n (S−i (Im ))

→ µ({s−i }|S−i (Im )) > 0 and p n (S−i (I ))
p n (S−i (Im ))

→ 0 for all I ∈ Ii with

S−i (I ) =µ S−i (Im )>µ S−i (I`). This completes the proof of (iii).

Now consider m ∈ {1, . . . , M }. I claim that

∀s−i , t−i ∈ supp ν(·|Bµ(Im )),
p n ({s−i })
p n ({t−i })

=
ν({s−i }|Bµ(Im ))

ν({t−i }|Bµ(Im ))
. (8)

Fix two such s−i , t−i (recall that p n ({t−i }) > 0). By the definition of Bµ(Im ), there are I , J ∈ Ii

such that S−i (I ) =µ S−i (J ) =µ S−i (Im ), s−i ∈ S−i (I ), and t−i ∈ S−i (J ). By Lemma 1, there is a µ-

sequence F1, . . . , FL̄ ∈ S−i (Ii ) such that F1 = FL̄ = S−i (I ) and {F1, . . . , FL̄}= {S−i (J ) : J ∈Ii ,S−i (J ) =µ

S−i (Im )}. In particular, S−i (J ) = FL for some L ∈ {1, . . . , L̄}. By Lemma 2, ν(F`|Bµ(Im )) > 0 for all

`. By definition, µ(F`+1|F`) = µ(F` ∪ F`+1|F`) > 0 for all ` = 1, . . . , L − 1, so by the chain rule and

the extension property ν(F`∪ F`+1|Bµ(Im ))> 0 as well, and one can find s `−i ∈ F`∪ F`+1 such that

ν({s `−i }|Bµ(Im ))> 0 for every such `. Then

ν({s−i }|Bµ(Im ))

ν({t−i }|Bµ(Im ))
=
ν({s−i }|Bµ(Im ))

ν({s 1
−i }|Bµ(Im ))

·
L−2
∏

`=1

ν({s `−i }|Bµ(Im ))

ν({s `+1
−i }|Bµ(Im ))

·
ν({s L−1

−i }|Bµ(Im ))

ν({t−i }|Bµ(Im ))

Let s 0
−i = s−i , s L

−i = t−i , and F0 = S−i (I ) = F1. By construction, for every `= 0, . . . , L −1, s `−i , s `+1
−i ∈

F`, so
ν({s `−i }|Bµ(Im ))

ν({s `+1
−i }|Bµ(Im ))

= ν({s `−i }|F`)ν(F`|Bµ(Im ))

ν({s `+1
−i }|F`)ν(F`|Bµ(Im ))

= µ({s `−i }|F`)
µ({s `+1

−i }|F`)
= p n ({s `−i })

p n ({s `+1
−i })

by the chain rule, the extension

property, and the fact that (p n ) is a structural perturbation of µ. Therefore,

ν({s−i }|Bµ(Im ))

ν({t−i }|Bµ(Im ))
=

p n ({s−i })
p n ({s 1

−i })
·

L−2
∏

`=1

p n ({s `−i })
p n ({s `+1

−i })
·

p n ({s L−1
−i })

p n ({t−i })
=

p n ({s−i })
p n ({t−i })

.
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By Lemma 2, ν(S−i (I )|Bµ(Im )) > 0 and ν(S−i (J )|Bµ(Im )) > 0. Since ν extends µ, ν(S−i (I ) ∩

S−i (J )|S−i (J )) = ν(S−i (I )|S−i (J )) =µ(S−i (I )|S−i (J ))> 0; by the chain rule, ν(S−i (I )∩S−i (J )|Bµ(Im )) =

ν(S−i (I )∩S−i (J )|S−i (J ))ν(S−i (J )|Bµ(Im ))> 0, so applying the chain rule again yieldsµ(S−i (J )|S−i (I )) =

µ(S−i (I )∩S−i (J )|S−i (I )) = ν(S−i (I )∩S−i (J )|S−i (I )) =
ν(S−i (I )∩S−i (J )|Bµ(Im ))
ν(S−i (I )|Bµ(Im ))

> 0.

The claim implies that, for all m = 1, . . . , M and s−i ∈ supp ν(·|Bµ(Im )),

p n ({s−i })
p n (supp ν(·|Bµ(Im )))

=
1

1+
∑

t−i∈supp ν(·|Bµ(Im ))\{si }
p n ({t−i })
p n ({s−i })

=
1

1+
∑

t−i∈supp ν(·|Bµ(Im ))\{si }
ν({t−i }|Bµ(Im ))
ν({s−i }|Bµ(Im ))

=

=
ν({s−i }|Bµ(Im )

ν(supp ν(·|Bµ|Bµ(Im (Im )))
= ν({s−i }|Bµ(Im )).

Therefore, as required, p n =
∑

m α
n
mν(·|Bµ(Im )).

Proof of Theorem 3: (2)⇒ (3) is immediate. To prove (3)⇒ (1), for every n ≥ 1, define wn ∈

(0, 1] and q n ∈∆(S−i ) by wn =
1
n min{p n ({s−i }) : s−i ∈ supp p n} and q n ({s−i }) = (1−wn )p n (s−i ) +

wn
1
|S−i | for every s−i ∈ S−i . Then wn → 0, and for every I ∈Ii and s−i ∈ S−i (I ),

q n ({s−i })
q n (S−i (I ))

=
(1−wn )p n ({s−i }) +wn

1
|S−i |

(1−wn )p n (S−i (I ))+wn
|S−i (I )|
|S−i |

=
(1−wn )

p n ({s−i })
p n (S−i (I ))

+ wn
p n (S−i (I ))

1
|S−i |

(1−wn ) +
wn

p n (S−i (I ))
|S−i (I )|
|S−i |

→µ({s−i }|S−i (I )),

because wm
p n (S−i (I ))

= 1
n ·

min{p n ({s−i }):s−i∈supp p n }
p n (S−i (I ))

∈ (0, 1
n ] for every n , as by assumption p n (S−i (I )) > 0

and so min{p n ({s−i }) : s−i ∈ supp p n} ≤ p n (S−i (I )). By Myerson (1986, Theorem 1), (q n ) gener-

ates a CPS ρ ∈∆(S−i , 2S−i \ {;}). The restriction of ρ to conditioning events in S−i (Ii ) is µ, and

its restriction to S−i (Ii )∪Bµ(Ii ) is thus an extension of µ.

Finally, to show (1)⇒ (2), let I1, . . . , IM ∈ Ii be such that, for every I ∈ Ii there is a unique

m ∈ {1, . . . , M }with S−i (I ) =µ S−i (Im ). For every m = 1, . . . , M and n ≥ 1, letβn
m = n−|{`:S−i (I`)>µS−i (Im )}|

and αn
m =

βn
m

∑

`β
n
`

. Finally, for every n ≥ 1, let p n =
∑

m α
n
mν(·|Bµ(Im )). By construction, αn

m ∈ (0, 1]

for all m , n , and
∑

m α
n
m = 1 for all n ≥ 1. Furthermore, if S−i (Im )>µ S−i (I`), then

αn
`

αn
m

= n−|{k :S−i (Ik )>µS−i (I`)}|+|{k :S−i (Ik )>µS−i (Im )}| ≤ n−1→ 0,
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because S−i (Ik ) >µ S−i (Im ) implies S−i (Ik ) >µ S−i (I`), and in addition S−i (Im ) >µ S−i (I`) but not

S−i (Im )>µ S−i (Im ). Therefore, by Lemma 3, (p n ) is a structural perturbation of µ.

Observation 3 The proof of (3)⇒ (1) actually establishes a slightly stronger fact (leveraging

Theorem 1 in Myerson, 1986): if an array µ = (µ(·|S−i (I ))I∈Ii
∈∆(S−i )Ii and a sequence (p n ) ⊂

∆(S−i ) satisfy µ(S−i (I )|S−i (I )) = 1 and µ(·|S−i (I )) = limn→∞p n (·|S−i (I )) for every I ∈ Ii , where

p n (S−i (I ))> 0 for all I and n , then µ ∈∆(S−i ,S−i (Ii )) and, in addition, µ is extendible. In other

words, it is not necessary to assume that µ is a CPS.

Proof of Theorem 4: let I1, . . . , IM be as in the statement of Lemma 3. It is convenient to

prove sufficiency in (1) and (2) jointly, then do the same for necessity. In turn, (2) implies the

last claim, possibly taking a subsequence for the⇒ direction.

(⇒) assume that si ¼µ ti . To simplify notation, let µm ≡ Eν(·|Bµ(Im ))[Ui (si , ·)−Ui (ti , ·)] for m =

1, . . . , M ; also let πn ≡ Ep n [Ui (si , ·)−Ui (ti , ·)] for all n ≥ 1. With this,

πn =
∑

m

αn
mµm . (9)

where (αn
m )m=1,...,M ;n≥1 are as in Lemma 3.

If si ∼µ ti , then Definition 8 implies that µm = 0 for all m ; then Eq. (9) implies πn = 0 for all

n . If instead si �µ ti , then there is some `∗ with µ`∗ 6= 0. I now analyze this case.

For every ` ∈ {1, . . . , M }withµ` 6= 0, I claim that there is m (`) such thatµm (`) > 0, S−i (Im (`))≥µ

S−i (I`), and µm = 0 for all m ∈ {1, . . . , M } with S−i (Im ) >µ S−i (Im (`)). By contradiction, suppose

no such m (`) exists for some ` ∈ {1, . . . , M } with µ` 6= 0. Construct a sequence m 1, m 2, . . . with

µm k 6= 0 and S−i (Im k+1) >µ S−i (Im k ) for all k ≥ 1, as follows. Let m 1 = `. Inductively, assume m k

with µm k 6= 0 has been defined for some k ≥ 1. If µm k > 0, then there exists m ∈ {1, . . . , M }with

S−i (Im )>µ S−i (Im k ) and µm 6= 0 (otherwise one could take m (`) =m k ); let m k+1 =m . If instead

µm k < 0, then si ¼µ ti implies that there is m ∈ {1, . . . , M } with µm > 0 and S−i (Im ) >µ S−i (Im k );
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let m k+1 =m . This completes the inductive step. Since S−i (Im k+1) >µ S−i (Im k ) for all k ≥ 1, the

indices m k , k ≥ 1, are all distinct; but m k ∈ {1, . . . , M } and M <∞, contradiction. This shows

that m (`)with the noted properties exists.

Now letM =m ({` :µ` 6= 0}), which is non-empty because there is `∗ with µ`∗ 6= 0. Then

πn =
∑

m

αn
mµm =

∑

m∈M
αn

mµm +
∑

m∈{1,...,M }\M :µm 6=0

αn
mµm .

Let M (n ) = arg maxm∈M α
n
m for each n (pick one arbitrarily if there are ties): then

πn

αn
M (n )

=µM (n )+
∑

m∈M\{M (n )}

αn
m

αn
M (n )

µm +
∑

`∈{1,...,M }\M :µ` 6=0

αn
`

αn
M (n )

µ`.

The first term on the rhs is not smaller than minm∈M µm > 0. Each summand in the second

term is also positive. Finally, summands in the third term may be negative; however, if µ` < 0,

then m (`) 6= `; since S−i (Im (`)) ≥µ S−i (I`) by definition, and it cannot be that S−i (Im (`)) = S−i (I`)

by the choice of indices 1, . . . , M , conclude that S−i (Im (`)) >µ S−i (I`). Then, by the definition of

M (n ) and (iii) in Lemma 3,
αn
`

αn
M (n )
≤ αn

`

αn
m (`)
→ 0. Hence, for n large, πn > 0.

Summing up, if si ∼µ ti then πn = 0 for all n , and if si �µ ti „ then πn eventually. Thus,

necessity holds in both (1) and (2).

(⇐): suppose that, for every structural perturbation (p n ) of µ, Ep n Ui (si , ·) ≥ Ep n Ui (ti , ·) for

all large n . Again let µm = Eν(·|Bµ(Im ))[Ui (si , ·)−Ui (ti , ·)] for m = 1, . . . , M . Suppose that µ¯̀ < 0 for

some ¯̀. It must be shown that there is m with S−i (Im )>µ S−i (I ¯̀) such that µm > 0.

For every m ∈ {1, . . . , M } and n ≥ 1, let βn
m = n−|{`:S−i (I`)>µS−i (Im )}|. If S−i (Im )>µ S−i (I`), then

βn
`

βn
m

= n−[|{r :S
i
(Ir )>µS−i (I`)}|−|{r :S

i
(Ir )>µS−i (Im )}|] ≤ n−1→ 0.

Next, for m ∈ {1, . . . , M } and n ≥ 1, let γn
m =β

n
m if S−i (Im )≥µ S−i (I ¯̀), and γn

m =β
n
¯̀ ·βn

m otherwise.

I claim that, for all m ,` ∈ {1, . . . , M }, S−i (Im ) >µ S−i (I`) implies
γn
`

γn
m
→ 0. If S−i (I`) ≥µ S−i (I ¯̀), then

also S−i (Im ) >µ S−i (I ¯̀), so
γn
`

γn
m
= βn

`

βn
m
→ 0. If not S−i (I`) ≥µ S−i (I ¯̀) and also not S−i (Im ) ≥µ S−i (I ¯̀),

then
γn
`

γn
m
=
βn

¯̀ ·β
n
`

βn
¯̀ ·β

n
m
= βn

`

βn
m
→ 0. Finally, if not S−i (I`)≥µ S−i (I ¯̀) but S−i (Im )≥µ S−i (I ¯̀), then

γn
`

γn
m
=
βn

¯̀ ·β
n
`

βn
m
=

βn
¯̀ ·

βn
`

βn
m
→ 0, because 0<βn

¯̀ ≤ 1 for all n and
βn
`

βn
m
→ 0.
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Finally, for m ∈ {1, . . . , M } and n ≥ 1, let αn
m =

γn
m

∑

` γ
n
m

, and note that, again, S−i (Im ) >µ S−i (I`)

for `, m ∈ {1, . . . , M } implies
αn

m
αn
`
→ 0. For every n ≥ 1, define p n =

∑

m α
n
mν(·|Bµ(Im )) and, as

above, πn = Ep n [Ui (si , ·)−Ui (ti , ·)].

By Lemma 3, (p n ) is a structural perturbation of µ. Therefore, by assumption πn ≥ 0 even-

tually. By contradiction, assume that µm ≤ 0 for all m such that S−i (Im )>µ S−i (I ¯̀). Then, since

S−i (I`) =µ S−i (I ¯̀) for no ` ∈ {1, . . . , M } \ {¯̀},

πn ≤αn
¯̀ µ¯̀ +

∑

`: not S−i (I`)≥µS−i (I ¯̀ )

αn
` µ`.

Dividing throughout by αn
¯̀ ,

πn

αn
¯̀

≤µ¯̀ +
∑

`: not S−i (I`)≥µS−i (I ¯̀ )

αn
`

αn
¯̀

µ` =µ¯̀ +
∑

`: not S−i (I`)≥µS−i (I ¯̀ )

γn
`

γn
¯̀

µ` =

=µ¯̀ +
∑

`: not S−i (I`)≥µS−i (I ¯̀ )

βn
¯̀ ·βn

`

βn
¯̀

µ` =µ¯̀ +
∑

`: not S−i (I`)≥µS−i (I ¯̀ )

βn
` µ`.

If not S−i (I`) ≥µ S−i (I ¯̀), then in particular I` 6= φ. Hence, S−i (φ) >µ S−i (I`), and there is

r ∈ {1, . . . , M } such that S−i (Ir ) =µ S−i (φ). Therefore, βn
` ≤ n−1 → 0. Since, by assumption,

µ¯̀ < 0, this implies that, for n large,πn < 0: contradiction. Thus, si ¼µ ti , and the proof of (1) is

complete. If in addition Ep n [Ui (si , ·)−Ui (ti , ·)]> 0 eventually for every structural perturbation

(p n ) of µ, then by (1) not ti ¼µ si ; hence, si �µ ti , and the proof of (2) is also compete.

B.2 Theorem 1 (structural and sequential rationality)

Suppose that si is structurally rational, and fix I ∈ Ii and ti such that si , ti ∈ Si (I ). By the

strategic independence property, there is ri ∈ Si (I ) such that Ui (ri , s−i ) =Ui (ti , s−i ) for all s−i ∈

S−i (I ), and Ui (ri , s−i ) = Ui (si , s−i ) for all s−i ∈ S−i \ S−i (I ). Since si is structurally rational, by

Theorem 4 there is a structural perturbation (q n ) of µ such that Eq n U (si , ·)≥ Eq n Ui (ri , ·) for all
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n . Since q n (S−i (I ))> 0, this implies that

Eq n (·|S−i (I ))Ui (si , ·) =
Eq n Ui (si , ·)−Eq n 1S−i \S−i (I )Ui (si , ·)

q n (S−i (I ))
=

Eq n Ui (si , ·)−Eq n 1S−i \S−i (I )Ui (ri , ·)
q n (S−i (I ))

≥

≥
Eq n Ui (ri , ·)−Eq n 1S−i \S−i (I )Ui (ri , ·)

q n (S−i (I ))
= Eq n (·|S−i (I ))Ui (ri , ·) = Eq n (·|S−i (I ))Ui (ti , ·).

Taking limits as n →∞, Eµ(·|S−i (I ))[Ui (si , ·)−Ui (ti , ·)]≥ 0. Since I and ti ∈ Si (I ) were arbitrary, si

is sequentially rational.

B.3 Elicitation

Throughout this section, fix a dynamic game (N , (Si ,Ii ,Ui )i∈N ,S (·)), a questionnaireQ = (Qi )i∈N ,

and the corresponding elicitation game
�

N ∪{c }, (S ∗i ,I ∗i ,U ∗
i )i∈N∪{c },S ∗(·)

�

, according to Defini-

tion 9. It is convenient to let N ∗ =N ∪{c }. Also, as in part 1 of Definition 9, for every i ∈N , let

Wi = {∅} if Qi =∅ and Wi = {b , p} if Qi = (I , E , p ).

B.3.1 Preliminaries

I first verify that the elicitation game satisfies two properties in Section 2. This is necessary to

ensure that definitions and results on structural rationality in Section 4 apply.

It is immediate by inspecting Definition 9 that, for every i ∈N ∗ and I ∗ ∈I ∗i , S ∗(I ) = S ∗i (I
∗)×

S ∗−i (I
∗). Second, fix i ∈N (so i 6= c ) and I ∗, J ∗ ∈I ∗i : it must be shown that either S ∗(I ∗)∩S ∗(J ∗) =

;, or S ∗(I ∗)and S ∗(J ∗)are nested. This is immediate if I ∗ or J ∗ equal I 1
i . Otherwise, I ∗ = (si , wi , I )

and J ∗ = (s ′i , w ′
i , J ), where si ∈ Si (I ) and s ′i ∈ Si (J ); then S ∗i (I

∗) = {(si , wi )} and S ∗i (J
∗) = {(s ′i , w ′

i )}.

If either si 6= s ′i or wi 6= w ′
i , then S ∗(I ∗)∩S ∗(J ∗) = ;. Thus, suppose si = s ′i and wi = w ′

i . By part

4 of Definition 9, S ∗(I ∗) = {(si , wi )}×S−i (I )×W−i ×S ∗c and S ∗(J ∗) = {(si , wi )}×S−i (J )×W−i ×S ∗c .

Therefore, S ∗(I ∗)∩S ∗(J ∗) 6= ; implies S−i (I )∩S−i (J ) 6= ;, and so S (I )∩S (J )⊇ [{si }×S−i (I )]∩ [{si }×

S−i (J )] 6= ;. Therefore S (I ) and S (J ) are nested: say S (I )⊇ S (J ), and so S−i (I )⊇ S−i (J ). But then,

part 4 of Definition 9 implies that S ∗(I ∗) and S ∗(J ∗) are nested, as required.
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Next, it must be verified that the elicitation game satisfies strategic independence. Again,

it is enough to focus on i ∈N and I ∗ = (si , wi , I ) ∈ I ∗i , with si ∈ Si (I ), because S ∗−i (I
∗) = S ∗−i for

all other I ∗ (including for i = c and I ∗ = φ). But part 4 of Definition 9 implies that S ∗i (I
∗) =

{(si , wi )}, a singleton set, so strategic independence holds trivially.

Remark 5 If (N , (Si ,Ii ,Ui )i∈N ,S (·)) has nested strategic information, so does the associated

elicitation game.

Proof: Suppose the original game has nested strategic information, and fix a player i ∈ N .

It is enough to consider information sets of the form (si , wi , I ), (s ′i , w ′
i , I ′) ∈ Ii . Suppose that

�

(s−i , w−i ), s ∗c
�

∈ S ∗−i

�

(si , wi , I )
�

∩S ∗−i

�

(s ′i , w ′
i , I ′)

�

; then, by Definition 9 part 4, s−i ∈ S−i (I )∩S−i (I ′).

Since the original game has nested strategic information, S−i (I ) and S−i (I ′) are nested; assume

that S−i (I )⊆ S−i (I ′). Then, Definition 9 part 4 implies that S ∗−i

�

(si , wi , I )
�

⊆ S ∗−i

�

(s ′i , w ′
i , I ′)

�

.

B.3.2 Proof of Theorem 2

Throughout this subsection, fix a player i ∈ N and a CPS µ ∈ ∆(S−i ,S−i (Ii )) with extension

ν ∈∆(S−i ,S−i (Ii )∪Bµ(Ii )).

Lemma 4 Let µ∗ ∈∆(S ∗−i ,I ∗i ) agree with µ (Definition 10). Then:

(0) I ∗ ∈I ∗i if and only if S ∗−i (I
∗) = S−i (I )×W−i ×S ∗c for some I ∈Ii .

(1) for every I ∗, J ∗ ∈I ∗i , µ∗(S ∗−i (I
∗)|S ∗−i (J

∗)) =µ(proj S−i
S ∗−i (I

∗)|proj S−i
S ∗−i (J

∗)).

(2) for every I ∗, J ∗ ∈I ∗i , S ∗−i (I
∗)≥µ∗ S ∗−i (J

∗) if and only if proj S−i
S ∗−i (I

∗)≥µ proj S−i
S ∗−i (J

∗).

(3) for every I ∈Ii and I ∗ ∈I ∗i , if S ∗−i (I
∗) = S−i (I )×W−i ×S ∗c , then B ∗µ∗(I

∗) = Bµ(I )×W−i ×S ∗c .

Proof: (0): Fix I ∗ ∈I ∗i . If I ∗ =φ∗ or I ∗ = I 1
i , then S ∗−i (I

∗) = S ∗−i = S−i×W−i×S ∗c = S−i (φ)×W−i×S ∗c .

If instead I ∗ = (si , wi , I ) for some si ∈ Si , wi ∈Wi and I ∈ Ii , then S−i (I ∗) = S−i (I )×W−i × S ∗c .

Conversely, for every I ∈Ii , si ∈ Si (I ) and wi ∈Wi , I ∗ = (si , wi , I ) ∈Ii satisfies S ∗−i (I
∗) = S−i (I )×

W−i ×S ∗c .
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(1): if I ∗ =φ∗ or I ∗ = I 1
i , then S ∗−i (I

∗) = S ∗−i , so both conditional probabilities equal 1. Oth-

erwise, by part 4 of Definition 9, S ∗−i (I
∗) = S−i (I )×W−i ×S ∗c for some I ∈Ii , so

µ∗(S ∗−i (I
∗)|S ∗−i (J

∗)) =µ∗(S−i (I )×W−i ×S ∗c |S
∗
−i (J

∗)) =
�

marg S−i×S ∗c
µ∗(·|S ∗−i (J

∗))
�

(S−i (I )×S ∗c ) =

=µ(S−i (I )|proj S−i
S ∗−i (J

∗)) =µ(proj S−i
S ∗−i (I

∗)|proj S−i
S ∗−i (J

∗)),

where the second equality follows from marginalization and the third from Definition 10.

(2): suppose that S ∗−i (I
∗)≥µ∗ S ∗−i (J

∗). Then there are I ∗1 , . . . , I ∗L ∈I
∗

i such that I ∗1 = J ∗, I ∗L = J ∗,

andµ∗(S ∗−i (I
∗
`+1)|S

∗
−i (I

∗
` )) for `= 1, . . . , L−1. Hence (1) implies thatµ(proj S−i

S ∗−i (I
∗
`+1)|proj S−i

S ∗−i (I
∗
` ))>

0 for `= 1, . . . , L−1, which implies that proj S−i
S ∗−i (I

∗) = proj S−i
S ∗−i (I

∗
L )≥

µ proj S−i
S ∗−i (I

∗
1 ) = proj S−i

S ∗−i (J
∗).

Conversely, suppose that proj S−i
S ∗−i (I

∗) ≥µ proj S−i
S ∗−i (J

∗), so there are I1, . . . , IL ∈ Ii such

that S−i (I1) = proj S−i
S ∗−i (J

∗), S−i (IL ) = proj S−i
S ∗−i (I

∗), andµ(S−i (I`+1)|S−i (I`))> 0 for all `= 1, . . . , L−

1. Let I ∗1 = J ∗, I ∗L = I ∗, and I ∗` = (si , wi , I`), with si ∈ S−i (I`) and wi ∈Wi , for all ` = 2, . . . , L − 1.

Then, for all ` = 1, . . . , L , proj S−i
S ∗−i (I

∗
` ) = S−i (I`), so part (1) implies that µ∗(S−i (I ∗`+1)|S−i (I ∗` )) > 0

for all `= 1, L −1. Therefore S ∗−i (I
∗)≥µ∗ S−i (J ∗).

(3) Let I ∗1 , . . . , I ∗L ∈ I
∗

i be an enumeration of {J ∗ : S ∗−i (J
∗) =µ∗ S ∗−i (I

∗)}. By part (0), for every

` = 1, . . . , L , there is I` ∈ Ii such that S ∗−i (I
∗
` ) = S−i (I`)×W−i ×S ∗c . By part (2), S ∗−i (J

∗) =µ∗ S ∗−i (I
∗)

iff proj S−i
S ∗−i (J

∗) =µ proj S−i
S ∗−i (I

∗) = S−i (I ); hence, S−i (I1), . . . ,S−i (IL ) is an enumeration of {J :

S−i (J ) =µ S−i (I )}, and therefore B ∗µ∗(I
∗) =∪`S ∗−i (I

∗
` ) = [∪`S−i (I`)]×W−i ×S ∗c = Bµ(I )×W−i ×S ∗c .

Lemma 5 There is an extensible CPS µ∗ ∈∆(S ∗−i ,I ∗i ) that agrees with µ.

Proof: Since µ is extensible, by Theorem 3 there is a perturbation (p n ) of µ. Fix an arbitrary

element w−i ∈W−i (cf. part 1 of Definition 9) and define a sequence (q n )⊂∆(S ∗−i ) by letting

q n ({(s−i , w−i , s ∗c }) =
1

2
p n ({s−i }) ∀n ≥ 1, s−i ∈ S−i , s ∗c ∈ S ∗c .

Fix I ∗ ∈ I ∗i . By Lemma 4 part (0), there is I ∈ Ii such that S ∗−i (I
∗) = S−i (I ) ×W−i × S ∗c , so

proj S−i
S ∗−i (I

∗) = S−i (I ). Therefore, q n (S ∗−i (I
∗)) = q n (S−i (I )×W−i ×S ∗c ) = q n (S−i (I )×{w−i }×S ∗c ) =
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p n (S−i (I ))> 0; furthermore, for every s−i ∈ S−i and s ∗c ∈ S ∗c ,

q n ({(s−i , w−i , s ∗c }
q n (S ∗−i (I ∗))

=
1
2 p n ({s−i })

p n (proj S−i
S ∗−i (I ∗)))

→
1

2
µ({s−i }|proj S−i

S ∗−i (I
∗)).

If instead w ′
−i ∈ W−i \ {w−i }, then

q n ({(s−i ,w ′−i ,s ∗c }
q n (S ∗−i (I ∗))

= 0. Therefore, by Observation 3, the array

µ∗ = (µ∗|S ∗−i (I
∗)))I ∗∈I ∗i defined by µ∗({(s−i , w ′

−i , s ∗c )}|S
∗
−i (I

∗)) = 1w ′−i=w−i

1
2µ({s−i }|proj S−i

S ∗−i (I
∗)) for

all s−i ∈ S−i , w ′
−i ∈W−i and s ∗c ∈ S ∗c , is a CPS, (q n ) is a perturbation of it, and by construction µ∗

agrees with µ. By Theorem 3, µ∗ is extensible.

Lemma 6 Letµ∗ ∈∆(S ∗−i ,I ∗i )a CPS that agrees withµand admits an extensionν∗ ∈∆(S ∗−i ,S ∗−i (I
∗

i )∪

B ∗µ∗(I
∗

i )). Fix I ∗ ∈I ∗i and let I ∈Ii be such that S ∗−i (I
∗) = S−i (I )×W−i ×S ∗c (cf. Lemma 4 part 0).

Then, for all s−i ∈ S−i and s ∗c ∈ S ∗c ,

ν∗({s−i }×W−i ×{s ∗c }|B
∗
µ∗(I

∗)) =
1

2
ν({s−i }|Bµ(I )). (10)

Furthermore, for every si ∈ Si , if Qi = (Î , E , p ) then

Eν∗(·|B ∗µ∗ (I ∗))U
∗

i

�

(si , b ), ·) =
1

2
Eν(·|Bµ(I ))Ui (si , ·) +

1

2
ν(S−i (Î )|Bµ(I ))µ(E |S−i (Î )) (11)

Eν∗(·|B ∗µ∗ (I ∗))U
∗

i

�

(si , p ), ·) =
1

2
Eν(·|Bµ(I ))Ui (si , ·) +

1

2
ν(S−i (Î )|Bµ(I ))p , (12)

whereas, if Qi =∅, then

Eν∗(·|B ∗µ∗ (I ∗))U
∗

i

�

(si ,∗), ·) = Eν(·|Bµ(I ))Ui (si , ·). (13)

Proof: By Lemma 4, B ∗µ∗(I
∗) = Bµ(I )×W−i×S ∗c . Now consider s−i ∈ S−i , and s ∗c ∈ S ∗c . If s−i 6∈ Bµ(I ),

then [{s−i }×W−i ×{s ∗c }]∩B ∗µ∗(I
∗) = ;, so ν∗({s−i }×W−i ×{s ∗c }|B

∗
µ∗(I

∗)) = 0= ν({s−i }|Bµ(I )). Thus,

assume s−i ∈ Bµ(I ), so there is J ∈ Ii such that s−i ∈ S−i (J ) and S−i (J ) =µ S−i (I ), so S−i (J ) ⊆

Bµ(I ). By the last claim of Lemma 2, ν(S−i (J )|Bµ(I ))> 0. Finally, S−i (J )×W−i ×S ∗c ∈ S ∗−i (I
∗

i ) and

S−i (J )×W−i ×S ∗c ⊆ B ∗µ∗(I
∗). Then, by the chain rule, the assumptions that ν∗ extends µ∗ and µ∗
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agrees with µ, and the fact that ν(S−i (J )|Bµ(I ))> 0,

ν∗({s−i }×W−i ×{s ∗c }|B
∗
µ∗(I

∗)) =ν∗({s−i }×W−i ×{s ∗c }|S−i (J )×W−i ×S ∗c ) ·ν
∗(S−i (J )×W−i ×S ∗c |B

∗
µ∗(I

∗)) =

=µ∗({s−i }×W−i ×{s ∗c }|S−i (J )×W−i ×S ∗c ) ·ν
∗(S−i (J )×W−i ×S ∗c |B

∗
µ∗(I

∗)) =

=
1

2
µ({s−i }|S−i (J )) ·ν∗(S−i (J )×W−i ×S ∗c |B

∗
µ∗(I

∗)) =

=
1

2
ν({s−i }|Bµ(I )) ·

ν∗(S−i (J )×W−i ×S ∗c |B
∗
µ∗(I

∗))

ν(S−i (J )|Bµ(I ))
≡

1

2
ν({s−i }|Bµ(I )) ·κJ .

It must thus be shown that κJ = 1 for all J ∈ Ii such that S−i (I ) =µ S−i (J ).

To do so, let {I1, . . . , IL} be such that {S−i (I1), . . . ,S−i (IL )} is the≥µ-equivalence class contain-

ing S−i (I ). By Lemma 1, there is aµ-sequence F1, . . . , FM such that {F1, . . . , FM }= {S−i (I1), . . . ,S−i (IL )}.

Note that, for every m = 1, . . . , M , there is I(m ) ∈ {I1, . . . , IL} such that Fm = S−i (I(m )).31 For ev-

ery m = 1, . . . , M − 1, µ(Fm+1|Fm ) > 0, so there is s m
−i ∈ Fm ∩ Fm+1. Then also s−i ∈ Bµ(I ) and

{s−i }×W−i ×S ∗c ⊆ B ∗µ∗(I
∗), so (adding over all s ∗c ∈ {h , t })

ν({s m
−i }|Bµ(I )) ·κI(m ) = ν

∗({s−i }×W−i ×S ∗c |B
∗
µ∗(I

∗)) = ν({s m
−i }|Bµ(I )) ·κI(m+1)

,

which implies that κm = κm+1. Therefore, there is κ ∈ R such that κJ = κ for all J ∈ Ii with

S−i (I ) =µ S−i (J ). But

1=
∑

s−i∈Bµ(I ),s ∗c ∈{h ,t }

ν∗({s−i }×W−i ×{s ∗c }|B
∗
µ(I

∗)) =
∑

s−i∈Bµ(I ),s ∗c ∈{h ,t }

1

2
ν({s−i |Bµ(I )) ·κ= κ,

which completes the proof of Eq. (10).

31Recall that, to obtain the µ-sequence F1, . . . , FM , it may be necessary to rearrange and/or repeat the sets

S−i (I1), . . . ,S−i (IL ); hence the need for a separate indexing of the information sets I1, . . . , IL .

52



Finally, fix si ∈ S ∗i . If Qi = (Î , E , p ), then:

Eν∗(·|B ∗µ∗ (I ∗))U
∗

i

�

(si , b ), ·
�

=

=
∑

s−i∈S−i

∑

w−i∈W−i

∑

s ∗c ∈{h ,t }

ν∗({(s−i , w−i , s ∗c )}|B
∗
µ∗(I

∗))U ∗
i

�

(si , b ), (s−i , w−i , s ∗c )
�

=

=
∑

s−i∈S−i

∑

w−i∈W−i

ν∗({(s−i , w−i , h )}|B ∗µ∗(I
∗))Ui

�

si , s−i )
�

+
∑

s−i∈S−i

∑

w−i∈W−i

ν∗({(s−i , w−i , t )}|B ∗µ∗(I
∗))1E (s−i ) =

=
∑

s−i∈S−i

ν∗({(s−i }×W−i ×{h}|B ∗µ∗(I
∗))Ui

�

si , s−i )
�

+
∑

s−i∈S−i

ν∗({(s−i }×W−i ×{t }|B ∗µ∗(I
∗))1E (s−i ) =

=
∑

s−i∈S−i

1

2
ν({(s−i }|Bµ(I ))Ui

�

si , s−i )
�

+
∑

s−i∈S−i

1

2
ν({(s−i }|Bµ(I ))1E (s−i ) =

=
1

2
Eν(·|Bµ(I ))Ui (si , ·) +

1

2
ν(E |Bµ(I )) =

1

2
Eν(·|Bµ(I ))Ui (si , ·) +

1

2
ν(S−i (Î )|Bµ(I ))µ(E |S−i (Î )),

i.e., Eq. (11) holds. The other equations are proved similarly.

The proof of Theorem 2 can now be completed. Lemma 5 shows that there exists an ex-

tensible CPS µ∗ ∈ ∆(S ∗−i ,S ∗−i (I
∗

i )) that agrees with µ; call ν∗ its extension. By Lemma 4, for

all I ∗, J ∗ ∈ I ∗i , S ∗−i (I
∗) ≥µ∗ S ∗−i (J

∗) if and only if S−i (I ) ≥µ S−i (J ), where I , J ∈ Ii are such that

S ∗−i (I
∗) = S−i (I )×W−i ×S ∗c and S ∗−i (J

∗) = S−i (J )×W−i ×S ∗c . Then part (1) of Theorem 2 follows

from the definition of structural preferences (Definition 8), Observation 1, and Eqs. (11)-(13).

For part (2), let Qi = (I , E , p ), and fix si ∈ Si . Suppose that p > µ(E |S−i (I )). Let I ∗ ∈ I ∗i be

such that S ∗−i (I
∗) = S−i (I )×W−i × S ∗c , which exists by part (0) of Lemma 4. By Eqs. (11) and

(12), and the fact that ν(S−i (I )|Bµ(I ))> 0 by the last claim of Lemma 2, Eν∗(·|B ∗µ∗ (I ∗))U
∗

i ((si , b ), ·)<

Eν∗(·|B ∗µ∗ (I ∗))U
∗

i ((si , p ), ·). Furthermore, consider J ∗ ∈I ∗i such that S ∗−i (J
∗)>µ∗ S ∗−i (I

∗). Ifν∗(S ∗−i (I
∗)|Bµ∗(J ∗))>

0, by Lemma 2 with {F ∗1 }= {S
∗
−i (I

∗)} implies S ∗−i (I
∗)≥ S ∗−i (J

∗), contradiction: thus,ν∗(S ∗−i (I
∗)|Bµ∗(J ∗)) =

0. Since U ∗
i ((si , b ), (s−i , w−i ), s ∗c ) =U ∗

i ((si , p ), (s−i , w−i , s ∗c )) for s−i 6∈ S−i (I ) and all w−i ∈W−i , s ∗c ∈

{h , t }, it follows that Eν∗(·|B ∗µ∗ (J ∗))U
∗

i ((si , b ), ·) = Eν∗(·|B ∗µ∗ (J ∗))U
∗

i ((si , p ), ·). Hence, not (si , b )¼µ∗ (si , p ).

Finally, consider J ∗ ∈ I ∗i such that Eν∗(·|B ∗µ∗ (J ∗))U
∗

i ((si , b ), ·) > Eν∗(·|B ∗µ∗ (J ∗))U
∗

i ((si , p ), ·). Again

because U ∗
i ((si , b ), (s−i , w−i ), s ∗c ) =U ∗

i ((si , p ), (s−i , w−i , s ∗c )) for s−i 6∈ S−i (I ) and all w−i ∈W−i , s ∗c ∈
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{h , t }, it must be thatν∗(S ∗−i (I
∗)|B ∗µ∗(J

∗))> 0. Lemma 2 implies that S ∗−i (I
∗)≥µ∗ S ∗−i (J

∗). If S ∗−i (I
∗) =µ∗

S ∗−i (J
∗), then B ∗µ(I

∗) = B ∗µ∗(J
∗), which contradicts the fact that Eν∗(·|B ∗µ∗ (I ∗))U

∗
i ((si , b ), ·)< Eν∗(·|B ∗µ∗ (I ∗))U

∗
i ((si , p ), ·).

Hence S ∗−i (I
∗) >µ∗ S ∗−i (J

∗). But then, since J ∗ was arbitrary, (si , p ) ¼µ∗ (si , b ). Thus, (si , p ) �µ∗

(si , b ), as claimed.

The case µ(E |S−i (E ))> p is analogous, so the proof is omitted.

Finally, suppose that Qi = (I , E , p ) and (si , b ) is structurally rational in the elicitation game.

Suppose that there is ti ∈ Si such that ti �µ si . Then, by (1), (ti , b ) �µ∗ (si , b ): contradiction.

Thus, si is structurally rational in the original game. Furthermore, suppose that µ(E |S−i (I ))<

p : then (2) implies that (si , p ) �µ∗ (si , b ), contradiction. Thus, µ(E |S−i (I )) ≥ p . The case of

(si , p ) structurally rational is analogous, so the proof is omitted.
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