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Abstract

Foundations for iterated admissibility (i.e., the iterated removal of weakly dominated

strategies) need to confront a fundamental challenge. On the one hand, admissibility

requires that a player consider every strategy of their opponents possible. On the other

hand, reasoning that the opponents are rational requires ruling out certain strategies.

Brandenburger, Friedenberg and Keisler’s (BFK, Econometrica, 2008) foundations for

iterated admissibility address this challenge with two ingredients: lexicographic beliefs

and the concept of “assumption.” However, BFK restrict attention to lexicographic

beliefs whose supports are essentially disjoint. This restriction does not have a com-

pelling behavioral rationale, or a clear intuitive interpretation. At the same time, it

plays a crucial role in BFK’s foundations for iterated admissibility—specifically, in their

analysis of assumption. We provide an alternate characterization of assumption, which

applies to all lexicographic beliefs. We also characterize two variants of assumption,

based on two extensions of ‘weak dominance’ to infinite state spaces. These notions

of assumption coincide with BFK’s notion when the state space is finite and lexico-

graphic beliefs have disjoint support; but they are different in more general settings.

Leveraging these characterization results, we show that disjoint supports do not play

a role in the foundations for iterated admissibility.
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1 Introduction

Lexicographic beliefs (henceforth `-beliefs) have become a relatively standard tool, both for

studying refinements and for providing epistemic characterizations of solution concepts.1

The appeal of `-beliefs is that they can be used to address a tension between being certain

that an opponent is rational and having full-support beliefs about opponents’ actions. To

clarify, suppose that, if Bob is rational, he will not play specific actions. Can Ann be certain

that Bob is rational, and at the same time be cautious and assign non-zero probability to

all of Bob’s actions? The answer is no if Ann has standard probabilistic beliefs. Suppose

instead that Ann has `-beliefs. That is, she has a vector (µ0, ..., µn−1) of probabilities over

the relevant space of uncertainty, Sb (Bob’s strategy space) and uses them lexicographically

to determine her preferences over her own strategies: Ann first ranks her strategies using µ0;

if that leads to more than one best reply for Ann, she uses µ1 to rank them, and so on. If the

union of the supports of the probabilities µi is all of Sb, then Ann’s beliefs have, in a sense,

full support. At the same time, Ann can still be confident in Bob’s rationality, for example

in the sense that the primary hypothesis µ0 assigns positive probability only to strategies of

Bob that are rational.

There are two notions of `-beliefs that have been studied and used in the literature:

lexicographic conditional probability systems (henceforth LCPSs) in which, loosely speaking,

the supports of the different beliefs (i.e., the µi’s) are disjoint, and the more general class

of lexicographic probability systems (LPSs) in which this disjointedness condition is not

imposed. In particular, LCPSs are used by Brandenburger, Friedenberg and Keisler (2008,

henceforth, BFK) to provide an epistemic characterization of iterated admissibility—thereby

answering a long-standing open question.2

However, there are reasons not to find the restriction to LCPSs appealing. First, while

Blume, Brandenburger and Dekel (1991a) provide an axiom that characterizes LCPSs within

the class of LPSs, their axiom has a flavor of reverse-engineering: it says no more than the

probabilities in the LPS have disjoint support; it offers no further normative or other appeal.

Indeed, the interpretation of LPSs is quite natural and intuitive. The probability µ0 is the

player’s primary hypothesis, in the sense that she is (almost fully) confident in it. The

probability µ1 is her secondary hypothesis: she is willing to entertain it as an alternative,

1See, for example, Blume, Brandenburger and Dekel (1991b), Brandenburger (1992), Stahl (1995),
Mailath, Samuelson and Swinkels (1997), Rajan (1998), Asheim (2002), Govindan and Klumpp (2003),
Brandenburger, Friedenberg and Keisler (2008), Keisler and Lee (2010), Lee (2015a), Yang (2013), and
Catonini and De Vito (2014) amongst many others.

2To be more precise: BFK provide an epistemic characterization of m rounds of deleting inadmissible
strategies, for any finite m. Their epistemic conditions involve finite-order reasoning. However, they show
an “impossibility result” for common reasoning—that is, common reasoning is impossible in their model.
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but considers it “infinitely” less plausible than µ0; and so on. There is no reason that primary

and secondary hypotheses must have disjoint supports. For instance, one may be confident

that a coin is fair, but entertain the secondary hypothesis that it is biased towards falling

on heads.3 Second, the marginal of an LCPS need not be an LCPS. For example, suppose

that two players are playing the game in Figure 1.1, where the pairs of actions A,B for each

constitute a zero-sum matching pennies game, (A,C) and (C,A) give (−2, 3) and (3,−2)

respectively and anything else gives (−4,−4). Consider the `-belief over this game where

µ0 is that the players are playing the equilibrium of the matching pennies game while µ1 is

that they are playing the Pareto superior outcome that requires correlation of (A,C) and

(C,A) with probability one half each. The beliefs on the joint action space are clearly an

LCPS, but the marginal on one player’s actions has the first belief being that A and B are

equally likely while the second belief is that A and C are equally likely, which is clearly not

an LCPS. Thus, if one takes a small-worlds approach in which the beliefs we use to study

a particular game are the marginals of some belief on a larger space, then the beliefs in the

game need not be an LCPS (even if one requires that the overall belief be an LCPS). For

these reasons we find LPSs more suitable for the study of refinements than LCPSs.

A B C
A -1,1 1,-1 -2,3
B 1,-1 -1,1 -4,-4
C 3,-2 -4,-4 -4,-4

Figure 1.1: The marginal of an LCPS may not be an LCPS

This raises the question of whether BFK’s characterization of iterated admissibility (IA)

requires the use of LCPSs. We show that it does not: There is an analogue of BFK’s

characterization of IA for the more general notion of LPSs.4 As we will discuss below, this

result is important for evaluating the epistemic foundations of IA. Showing the result requires

two steps.

First, BFK define what it means for one player to “be certain” that another is rational.

A key feature of their approach is that they do so in terms of the player’s preferences. This

decision-theoretic approach is analogous to that taken in Morris (1997) and, more recently,

Asheim and Søvik (2005). One advantage is that such preference-based definitions can

be evaluated on their own merits, independently of the (arbitrary) choice of a particular

representation.

3Of course one may instead have the secondary hypothesis that the coin will fall on an edge, which would
have disjoint support, but that does not seem like the only story one could tell.

4In fact, we show that each of BFK’s three main results all hold for the more general notion of LPSs.
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BFK introduce the notion of “assumption.” An event E is assumed if it is “infinitely more

likely” than its complement. They formalize assumption as a requirement on preferences.

When the state space is finite and beliefs have full support, the requirement can be stated

as:

(*) whenever a player prefers an act x to an act y conditional on E (loosely

speaking, if she were to be informed of E), she also prefers x to y unconditionally

(i.e., without this information).5

In the usual case where the player has one level of beliefs, this corresponds exactly to

probability-1 belief. (See Section 3.1 for precise statements.) BFK show that, with LCPS

beliefs, condition (*) is (essentially) equivalent to the following:

there is a belief level j such that:

(BFK-i) for all i ≤ j we have µi (E) = 1 and

(BFK-ii) for all i > j we have µi (E) = 0.

However, the equivalence between the preference-based condition (*) and its `-belief coun-

terpart, conditions (BFK-i) and (BFK-ii), only holds if the player’s beliefs are represented

by an LCPS. We illustrate this in Examples 3.1-3.2, which also show that the problem lies

with condition (BFK-ii) above.

Therefore, to state an analogue of BFK’s epistemic conditions with unrestricted beliefs,

it is necessary to first characterize condition (*) for general LPSs. Our main result, Theorem

3.2, does just that. It provides the precise weakening of condition (BFK-ii) required for the

equivalence. The key idea is that condition (BFK-ii) implies:

(†) the payoffs at states in E “do not matter” as far as the probabilities of level

greater than j are concerned; that is, the ranking of acts by probabilities above

j are unaffected by the payoffs at states in E..

However, there is another way in which (†) can hold: if, for k > j, the restriction of µk to E

is a linear combination of the lower-level probabilities µ0, . . . , µj. With LCPSs, we need not

worry about this possibility, since the supports of µ0, . . . , µj, µk must be disjoint. But if we

drop the disjointness requirement, we need to allow for this possibility.

Second, BFK provide an epistemic characterization of IA (and self-admissible sets, or

SASs; see Definition 6.4), using the LCPS formulation of assumption, i.e., conditions (BFK-

i) and (BFK-ii). We show that, when players’ beliefs are represented by unrestricted LPSs,

5We emphasize that, as in Savage, there is no real “information” in our static setting; this is just
suggestive language.
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the very same epistemic conditions continue to characterize IA (and SASs), provided we use

our LPS formulation of assumption.6

Note that we allow players to hold a larger set of beliefs than do BFK. This immediately

implies that more strategies are consistent with rationality, as there are more beliefs to

justify a given strategy. However, as BFK point out, allowing more beliefs may lead to

fewer strategies being consistent with rationality and mutual assumption thereof. (This is

because assumption is non-monotonic, i.e., a set can be assumed even though a larger set

is not assumed.) Despite these two opposing forces, our analysis still gives an epistemic

characterization of SASs (Theorem 6.1) and IA (Theorem 6.2). It also retains BFK’s so-

called impossibility theorem (Theorem 6.3).

Our result addresses a tension in BFK’s analysis. In particular, a key ingredient in their

epistemic characterization of IA is a “completeness” requirement: the analysis takes place

in a type structure that represents every possible belief about the opponent’s strategies and

beliefs. But, because they restrict attention to LCPSs, BFK’s completeness requirement is

that the type structure represents every possible LCPS belief. However, since the marginal

of an LCPS need not be an LCPS, players can have first-order beliefs (about the strategies

played) which are not LCPSs. In fact, BFK show that, for the purposes of providing an

epistemic characterization of IA, the type structure must include first-order beliefs that are

non-LCPSs. This leads to a tension: On the one hand, BFK’s analysis insists on LCPS beliefs

on the full space of uncertainty; on the other hand, their analysis requires inclusion of non-

LCPS beliefs on the first-order space of uncertainty (i.e., on the strategies of the opponent).

Our Theorem 6.2 resolves this tension by considering type structures that represent all

possible LPS beliefs—not just LCPS beliefs.

The preceding informal discussion imposed two implicit restrictions—that the state space

was finite and that beliefs have full support. However, BFK’s epistemic conditions for iter-

ated admissibility requires a “complete type structure,” which induces an uncountable state

space. (See Section 6.) Thus, when we turn to the formal analysis, it is important to con-

sider uncountable state spaces. This requires care: Condition (*) defines assumption for a

finite state space and full-support beliefs. As BFK observe, for uncountable state spaces, it

is no longer a suitable definition of assumption, even if there are full-support beliefs. (Corre-

spondingly, conditions (BFK-i) and (BFK-ii) do not characterize assumption on uncountable

state spaces, even for full-support LCPSs. See BFK’s Supplemental Appendix S.1, where

they discuss this point.) Because our analysis accommodates arbitrary (uncountable) state

spaces and we do not require full-support beliefs, we will need to follow BFK in modifying

6The proofs of these epistemic results follow BFK closely; the only significant modification is in estab-
lishing measurability. See the Appendix.
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Condition (*).7

Return to the introductory case, in which the state space is finite and beliefs are repre-

sented by full-support LCPSs. There, condition (*) has an alternative, equivalent, formula-

tion:

(**) whenever an act x weakly dominates y on E (i.e., x is at least as good as y

in every state in E, and strictly better at some state in E), the player prefers x

to y unconditionally.

Condition (**) was proposed by Asheim and Dufwenberg (2003).8 It can be seen as a variant

of assumption. Asheim and Søvik (2005) established the aforementioned equivalence between

conditions (*) and (**). However, these conditions are not equivalent for LPSs, even if the

state space is finite (Example 4.2).

This raises the question of whether (**) can be used to provide an epistemic character-

ization of IA. A central challenge in addressing the question is extending (**) to arbitrary

state spaces—specifically, extending the notion of weak dominance to arbitrary state spaces.

We consider two such extensions; see Section 4.1 for details. We provide an LPS-based

characterization of these versions of assumption (Theorem 4.1). We show that either variant

can be used to provide an epistemic characterization of IA (Theorem 6.2). Moreover, BFK’s

impossibility theorem is retained under both variants (Theorem 6.3).

Section 2 introduces the framework. Section 3 reviews the definition of assumption and

BFK’s characterization for LCPSs (Section 3.1), motivates the modifications needed for LPSs

(Section 3.2), and provides the behavioral characterization thereof (Section 3.3). Section 4

provides two definitions of weak dominance for arbitrary state spaces (Section 4.1), uses

them to extend (**) (Section 4.2), and provides the characterizations thereof (Section 4.3).

Section 5 provides the proofs of the characterization theorems. Section 6 applies these results

to the epistemic characterizations of iterated admissibility and SASs. Section 7 discusses the

closely related work of Lee (2013, 2015a). The Appendix provides proofs not included in the

body.

2 Preliminaries

Let (Ω,S) be a Polish space, where S is the Borel σ-algebra on Ω. We call the elements of

S “Borel sets” or “events.” Write P(Ω) for the set of probability measures on Ω and endow

P(Ω) with the topology of weak convergence, so that it is also a Polish space.

7We thank an anonymous referee for suggesting that we drop the full-support requirement.
8We thank an anonymous referee for suggesting studying (**) in the context of BFK’s epistemic analysis.
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Denote by ≥L the lexicographic order on Rn. That is, given vectors u = (u0, . . . , un−1)

and v = (v0, . . . , vn−1) in Rn, u ≥L v if and only if uj < vj implies uk > vk for some k < j.

A lexicographic probability system (LPS) on Ω will be some σ = (µ0, . . . , µn−1)

where each µi ∈ P(Ω). Call an LPS σ = (µ0, . . . , µn−1) a lexicographic conditional

probability system (LCPS) if there are Borel sets U0, . . . , Un−1 such that, for all i, µi(Ui) =

1 and µj(Ui) = 0 for j 6= i.9 Notice that, if Ω is finite, this simply requires that the

measures µ0, . . . , µn−1 have disjoint supports. An LPS σ = (µ0, . . . , µn) has full support if⋃n−1
i=0 suppµi = Ω.

Let A be the set of all measurable functions from Ω to [0, 1]. A particular function x ∈ A
is an act. For c ∈ [0, 1], write −→c for the constant act associated with c, i.e. −→c (Ω) = {c}.
Given acts x, z ∈ A and a Borel subset E in Ω, write (xE, zΩ\E) for the act y ∈ A with

y(ω) =

x(ω) if ω ∈ E

z(ω) if ω ∈ Ω\E.

When Ω = {ω0, ω1, . . . , ωK}, write (x0, x1, . . . , xK) for an act x with x(ωk) = xk. In this

case, we also write µ = (µ(ω0), µ(ω1), . . . , µ(ωK)) for some µ ∈ P(Ω).

Given an LPS σ = (µ0, . . . , µn−1) on Ω, define a preference relation %σ on A where x %σ y

if and only if (∫
Ω

x(ω)dµi(ω)

)n−1

i=0

≥L
(∫

Ω

y(ω)dµi(ω)

)n−1

i=0

.

Write �σ for the associated strict preference relation. Given a Borel set E, define the

conditional preference given E in the usual way, i.e., x %σ
E y if for some act z ∈ A,

(xE, zΩ\E) %σ (yE, zΩ\E). (Since %σ satisfies independence, the choice of the act z does

not affect the conditional preference relation.) Write �σE for the associated strict preference

relation and ∼σE for the associated indifference relation.

An event E is %σ-null if x ∼σ y, for all x, y ∈ A that coincide on Ω\E (i.e., with

x(ω) = y(ω) for all ω ∈ Ω\E). Equivalently, E is %σ-null if x ∼σE y for all x, y ∈ A.

Remark 2.1 Fix some LPS σ = (µ0, . . . , µn−1). A Borel set E is %σ-null if and only if

µi(E) = 0 for all i.

Proof. If µi(E) = 0 for each i, then x ∼σE y. Conversely, if µi(E) > 0 for some i, then
−→
1 �σE

−→
0 .

9 This terminology is due to Blume, Brandenburger and Dekel, 1991a, who define LCPSs for finite state
spaces. The present definition is Definition 4.1 in BFK.
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3 BFK-Assumption

3.1 Definition and LCPS-based characterization

BFK define assumption in terms of the preference relation %σ associated with an LCPS σ;

their definition equally applies to the case where σ is an LPS. The informal idea is that an

event E is assumed if states in E “determine” strict preference.

Definition 3.1 (BFK, Definition A.3) Say a set E is BFK-assumed under %σ if E is

Borel and the following hold:

Non-Triviality: for each open set U , if E ∩ U 6= ∅, then E ∩ U is not %σ–null.

Strict Determination: for all x, y ∈ A, x �σE y implies x �σ y.

Non-Triviality states that every “part” of E is relevant, in the sense that it can potentially

determine strict preference. Strict Determination states that, if x is strictly preferred to

y conditional on E, then x is also unconditionally strictly preferred to y (regardless of the

outcomes x and y may deliver outside of E). Observe that Non-Triviality ensures that Strict

Determination does not hold vacuously. When the state space is finite, Non-Triviality holds

if the LPS has full support.

BFK provide the following characterization for LCPSs.

Theorem 3.1 (BFK, Proposition A.2 and Lemma B.1) Fix an LCPS σ. A set E ⊆
Ω is BFK-assumed under %σ if and only if it is Borel and there exists j ∈ {0, . . . , n − 1}
such that

(i) µi(E) = 1 for all i ≤ j,

(ii) µi(E) = 0 for all i > j, and

(iii) E ⊆
⋃
i≤j suppµi.

The remainder of this section discusses how to modify Conditions (i)–(iii) in order to

obtain an analog of Theorem 3.1, i.e., a characterization of BFK-assumption for LPSs. As

discussed in the Introduction, an alternative is to modify the notion of BFK-assumption.

We discuss this approach in Section 4.
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3.2 From LCPSs to LPSs

We next explore the extent to which Theorem 3.1 holds for arbitrary LPSs. One direction

of this theorem holds for all LPSs: If there is some j that satisfies conditions (i)—(iii),

then %σ BFK-assumes E. This holds even if σ does not have disjoint supports. However,

the conditions in Theorem 3.1 are not necessary for an event E to be BFK-assumed. In

particular, we now argue that the problem arises from Condition (ii).

Example 3.1 illustrates that, for LPSs, conditions (i) and (iii) do not suffice for BFK-

assumption. The remaining examples and observations in this subsection illustrate that, for

LPSs, BFK-assumption implies that Conditions (i) and (iii) must hold for some j, but (ii)

may fail for any such j. Thus (i) and (iii) are necessary but not sufficient. Since (i), (ii), and

(iii) are jointly sufficient, we are led to weaken (ii). (With this in mind the reader interested

in getting to the results can skip to Subsection 3.3.)

In this subsection we focus on finite state spaces, which is enough to illustrate these issues.

For LCPSs on finite state spaces Condition (ii) is redundant: if (iii) holds for some j then

so does (ii). Hence, for LCPSs, Condition (ii) only plays a role in infinite state spaces—that

is, for LCPSs on finite state spaces (i) and (iii) are equivalent to BFK-assumption. Hence,

for LCPSs, (ii) might be seen as a technicality. However, for LPSs, its weakening plays a

substantive role even for finite state spaces.

We now provide an outline of the remainder of this subsection. Example 3.1 shows that

(i) and (iii) are not sufficient for BFK-assumption; the next example (3.2) and observation

(3.1) concern a case where (i) and (iii) hold for j = 0, and in particular illustrate that if E

is BFK-assumed then µ0(E) = 1. This is essentially Lemma 5.1, the first step in the proof

of our main result. The final example (3.3) and observation (3.2) illustrate more generally

that (i) and (iii) must hold for some j < n− 1, mirroring Lemmas 5.2 and 5.5 .

Example 3.1 Let Ω = {ω0, ω1, ω2} and consider the LPS σ = (µ0, µ1, µ2) such that µ0 =

(1
2
, 1

2
, 0), µ1 = (0, 0, 1), and µ2 = (0, 1, 0). Observe that σ has full support, so no state is

%σ-null. Furthermore, σ is not an LCPS.

The event E = {ω0, ω1} is not BFK-assumed under %σ. Given acts x = (0, 1, 0) and

y = (1, 0, 1), x �σE y and y �σ x. This contradicts Strict Determination.

Nevertheless, Conditions (i) and (iii) do hold for j = 0, because µ0(E) = 1 and supp µ0 =

E. Of course, Condition (ii) must fail for j = 0, and indeed it does: µ2(E) > 0.

Notice that, if Ω is finite, σ has full support, and E ( Ω, then Condition (i) can only hold

for some j < n− 1. (If j = n− 1 then, by (i), Ω =
⋃n−1
i=0 suppµi ⊆ E, a contradiction.) So,

if Conditions (i)–(iii) are to hold for some j, it must be the case that j < n − 1. However,

we now provide examples where BFK-assumption holds but Condition (ii) only holds for
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j = n− 1.10 So, as discussed, to obtain a characterization of BFK-assumption for all LPSs,

we will relax Condition (ii).

Example 3.2 Take Ω = {ω0, ω1} and E = {ω0}. Consider an LPS σ = (µ0, µ1) with

µ0 = (1, 0) and µ1 = (1
2
, 1

2
). If x �σ{ω0} y, then x(ω0) > y(ω0), and so x �σ y. It follows that

E is BFK-assumed under %σ. Note that Condition (i) holds only for j = 0, Condition (ii)

holds only for j = 1, and Condition (iii) holds for both j = 0, 1. Thus, there is no single j

for which all three conditions hold. So one direction of BFK’s characterization fails.

Observation 3.1 There is a natural generalization of Example 3.2, which is essentially

the proof of Lemma 5.1. As above, take Ω = {ω0, ω1} and E = {ω0}. Then, for any

LPS σ = (µ0, . . . , µn−1) on Ω, if the event E is BFK-assumed under %σ, then µ0(E) = 1.

To prove this fact, suppose that E is BFK-assumed under %σ, but µ0(E) < 1. By Non-

Triviality, E = {ω0} is not %σ-null, so by Remark 2.1, µi(E) > 0 for some i = 0, . . . , n− 1.

Let x = (x0, 0), with x0 > 0; let y = (0, 1). Then x �σE y, but, since µ0({ω1}) > 0, for x0

sufficiently small, y �σ x. This yields a contradiction.

To sum up, if E is BFK-assumed under %σ, Conditions (i) and (iii) hold for j = 0.

However, Example 3.2 illustrated that Condition (ii) may fail to hold for j = 0; indeed it

may only hold—and trivially hold—for j = n− 1.

In Example 3.2, BFK-assumption implies that Conditions (i) and (iii) hold for j = 0.

The next example illustrates that, with more than two states, Conditions (i) and (iii) need

not hold for j = 0. However, these conditions will hold for some j > 0.

Example 3.3 Let Ω = {ω0, ω1, ω2} and E = {ω0, ω1}. Consider the LPS σ = (µ0, µ1, µ2)

such that µ0 = (1, 0, 0), µ1 = (1
2
, 1

2
, 0) and µ2 = (0, 1

2
, 1

2
). We claim that %σ BFK-assumes

E. Non-Triviality holds because Ω is finite and σ has full support. For Strict Determination,

suppose x �σE y. It must be the case that x(ω0) ≥ y(ω0); if not, y �σE x. Hence there are

two possibilities: either (i) x(ω0) > y(ω0), or (ii) x(ω0) = y(ω0) and x(ω1) > y(ω1); if not,

y %σ
E x. In either case, x �σ y, so %σ BFK-assumes E. Notice that Conditions (i) and (iii)

do not hold for j = 0, but do hold for j = 1. On the other hand, Condition (ii) holds only

for j = 2.

We now extend this example to illustrate that BFK-assumption implies that (i) and (iii)

must hold for some j.

10Regardless of the event E, conditions (ii) and (iii) always hold trivially for j = n− 1. For any non-null
E, (ii) holds as well.
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Observation 3.2 Consider the following generalization of Example 3.3. Again, Ω = {ω0, ω1, ω2}
and E = {ω0, ω1}. We show that, for any full-support LPS σ = (µ0, . . . , µn−1) on Ω, if the

event E is BFK-assumed under %σ, then Conditions (i) and (iii) hold for some j.

To prove this claim, note first that the argument given in Observation 3.1 implies that

µ0(E) = 1. Furthermore, since E is BFK-assumed, Non-Triviality holds and implies that

µi({ω0}) > 0 for some i = 0, . . . , n − 1, and similarly µ`({ω1}) > 0 for some (possibly

different) `. We now argue that, if the support of µ0 does not contain E—i.e., Condition

(iii) fails for j = 0—then µ1(E) = 1. For simplicity, let µ0({ω0}) = 1. Now suppose that

µ1(E) < 1. Consider acts x, y such that x(ω0) = y(ω0) = 0, x(ω1) > 0 = y(ω1), and

x(ω2) = 0 < 1 = y(ω2). Then x %σ
E y; however,

∫
Ω
xdµ0 = x(ω0) = y(ω0) =

∫
Ω
ydµ0

but, for x(ω1) sufficiently small,
∫

Ω
xdµ1 <

∫
Ω
ydµ1, and so y �σ x. This violates Strict

Determination. Hence, µ1(E) = 1. If µ1({ω1}) > 0, then E is contained in the union of the

supports of µ0 and µ1, so Conditions (i) and (iii) both hold for j = 1. Otherwise, we can

repeat the argument to conclude that µ2(E) = 1. And so on. Since, as noted, Non-Triviality

implies that µ`({ω1}) > 0 for some `, we will eventually reach a j such that E is contained

in
⋃j
i=0 suppµi. For this j, Conditions (i) and (iii) both hold.

To sum up, in Example 3.2, an event was assumed, but Condition (ii) failed. On the

other hand, Example 3.1 illustrates that Condition (ii) cannot simply be dropped. This leads

us to weaken Condition (ii) in order to characterize BFK-assumption.

3.3 LPS-based characterization

We provide our characterization of BFK-assumption for general LPSs. (The characterization

refers to an LPS σ and not the preference relation %σ.)

Definition 3.2 Fix an LPS σ = (µ0, . . . , µn−1). Say a set E ⊆ Ω is BFK-assumed under

σ at level j if E is Borel and

(i) µi(E) = 1 for all i ≤ j,

(ii ∗) for each k > j, there exists (αk0, . . . , α
k
j ) ∈ Rj+1 so that, for each Borel F ⊆ E,

µk(F ) =
∑j

i=0 α
k
i µi(F ),

(iii) E ⊆
⋃
i≤j suppµi.

Say a set E ⊆ Ω is BFK-assumed under σ if it is BFK-assumed under σ at some level j.
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Conditions (i) and (iii) in Definition 3.2 are Conditions (i) and (iii) in Theorem 3.1;

Condition (ii∗) is the required weakening of Condition (ii) therein.

Observe that Condition (ii) in Theorem 3.1 implies Condition (ii∗) by taking (αk0, . . . , α
k
j ) =

(0, . . . , 0). Second, when σ is an LCPS, Condition (ii∗) implies (ii); hence, for LCPSs, these

conditions are equivalent. To see this, suppose that (ii) fails. Then there is k > j such that

µk(E) > 0. Since σ is an LCPS, there is a Borel Uk such that µk(Uk) = 1 and µi(Uk) = 0

for all i 6= k. Therefore, F ≡ E ∩ Uk ⊆ E is Borel and µk(F ) = µk(E) > 0. Moreover,

µi(F ) ≤ µi(Uk) = 0 for all i 6= k, so (ii∗) fails.

Theorem 3.2 Fix an LPS σ. A set E ⊆ Ω is BFK-assumed under %σ if and only it is

BFK-assumed under σ.

To understand the intuition, it will be useful to recall the following fact from Blume,

Brandenburger and Dekel (1991a, Theorem 3.1): Fix an LPS σ = (µ0, . . . , µn−1). If µi

is a linear combination of (µ0, . . . , µi−1), then σ′ = (µ0, . . . , µi−1, µi+1, . . . , µn−1) represents

the same lexicographic preferences, i.e., %σ=%σ′
. That is, µi is irrelevant for determining

preference.

A similar idea applies to conditional preferences. Fix an LPS σ = (µ0, . . . , µn−1) and

consider the conditional preference %σ
E. Recall, x %σ

E y if and only if (xE, zΩ\E) %σ (yE, zΩ\E).

Thus, if the restriction of µi to (Borel sets in) E is a linear combination of the restrictions of

µ0, . . . , µi−1 to (Borel sets in) E, then the measure does not affect the ranking of x %σ
E y, i.e.,

%σ
E=%σ′

E where σ′ = (µ0, . . . , µi−1, µi+1, . . . , µn−1). This is precisely the content of Condition

(ii∗). Specifically, Condition (ii∗) requires that, when i > j, the measure µi is irrelevant for

determining the conditional preference given E.

We next apply this result to Examples 3.1 and 3.3.

Example 3.4 (Example 3.1, Continued) Here, E = {ω0, ω1} is not BFK-assumed un-

der %σ. Conditions (i) and (iii) hold only for j = 0. However, Condition (ii∗) fails for

j = 0: since µ0(ω0) = µ0(ω1) = 1
2

and µ1(ω0) = µ1(ω1) = 0, there are no α2
0, α

2
1 such that

µ2(ω0) = 0 = α2
0µ0(ω0) + α2

1µ1(ω0) and µ2(ω1) = 1 = α2
0µ0(ω1) + α2

1µ1(ω1).

Example 3.5 (Example 3.3, Continued) Here, %σ BFK-assumes E = {ω0, ω1} and Con-

ditions (i) and (iii) hold (only) for j = 1. To see that Condition (ii∗) also holds for j = 1,

take (α2
0, α

2
1) = (−1

2
, 1) and notice that µ2(F ) = −1

2
µ0(F ) + µ1(F ) for all F ⊆ {ω0, ω1}.

Notice that this example also demonstrates that, in Definition 3.2 we cannot replace

linear combinations with convex combinations. There is no α2
0, α

2
1 ≥ 0, so that µ2(F ) =

α2
0µ0(F ) + α2

1µ1(F ) for all F ⊆ {ω0, ω1}.
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There is no redundancy in our characterization result. Example 3.4 illustrates that Con-

ditions (i) and (iii) alone do not imply BFK-assumption. Conditions (i) and (ii∗) alone

are also not sufficient. BFK’s Supplemental Appendix S.1 shows that, when Ω is uncount-

able, a full-support LCPS σ may satisfy these conditions for some event E even though

the preference relation %σ does not assume E. Obviously, (ii∗) and (iii) alone do not imply

BFK-assumption either: consider a one-level LPS with full support on a finite Ω and any

E ( Ω.

4 Alternative notions of assumption

4.1 Weak dominance on infinite state spaces

Asheim and Søvik (2005) restrict attention to full support LCPSs on a finite state space

and provide an alternate preference-based characterization of assumption. Their alternate

characterization is based on what Asheim and Dufwenberg (2003) term “full belief.” The

basic idea is condition (**) in the Introduction: whenever an act x weakly dominates y

on E, the player prefers x to y unconditionally. To adapt this approach to arbitrary (i.e.,

uncountable) state spaces, we must specify what it means for x to weakly dominate y on E.

We consider two possible definitions.

Definition 4.1 Say x P-weakly dominates y on E if

(a) x(ω) ≥ y(ω) for all ω ∈ E, and

(b) there exists some Borel F ⊆ E not %σ-null so that x(ω) > y(ω) for all ω ∈ F .

Definition 4.2 Say x T-weakly dominates y on E if

(a) x(ω) ≥ y(ω) for all ω ∈ E, and

(b) there exists some open set U such that U ∩E 6= ∅ and x(ω) > y(ω) for all ω ∈ U ∩E.

If x P-weakly dominates y on E, we write xPWDσ
E y; if x T-weakly dominates y on E, we

write xTWDE y.

In both definitions, condition (b) requires strict preference on a subset of E that is

“significant.” P-weak dominance employs a Preference-based notion of significance, while

T-weak dominance instead invokes a T opological notion. These two definitions coincide with

the usual notion of weak dominance on finite state spaces.

13



Observation 4.1 Let Ω be finite and consider E ⊆ Ω and acts x, y ∈ A.

• x T-weakly dominates y on E if and only if x weakly dominates y on E.

• If the support of σ contains E (in particular, if σ has full support), then x P-weakly

dominates y on E if and only if x weakly dominates y on E.

To see this, recall that, if the state space is finite, every point is open. This immediately

gives the first statement. Moreover, if every point of E is in the support of σ, then every

such point is not %σ-null, and the second statement follows.

Definitions 4.1 and 4.2 do not coincide, as the next example shows.

Example 4.1 Let Ω = [0, 1] and E = [0, 1), and consider the LCPS σ = (µ0, µ1, µ2), where

µ0 is the uniform measure on [0, 1], µ1 is the Dirac measure on ω = 1, and µ2 is the Dirac

measure on ω = 0.

Consider the acts x, y ∈ A such that x(0) = 1, x(ω) = 0 for all ω ∈ (0, 1], y(1) = 1, and

y(ω) = 0 for all ω ∈ [0, 1). Then x P-weakly dominates y on E: the event F = {0} ⊂ [0, 1) =

E is not %σ-null and x(0) > y(0). However, x does not T-weakly dominate y, because for

any open set U such that U ∩ E 6= ∅, there is ω ∈ U ∩ E such that x(ω) = y(ω) = 0.

P-weak dominance has a natural behavioral interpretation: x must be strictly better

than y on a set F that is subjectively meaningful to the player. By way of contrast, T-weak

dominance requires that x be strictly better than y on a topologically non-trivial set. On

the other hand, we shall see that T-weak dominance leads to a version of assumption that

admits a simpler characterization in terms of LPSs.

4.2 Weak-dominance assumption

We can now extend Asheim and Dufwenberg (2003)’s full belief to uncountable state spaces.

Definition 4.3 Say a set E is P-weak dominance assumed (PWD-assumed) under

%σ if E is Borel, and Non-Triviality as well as the following hold:

PWD Determination: for all x, y ∈ A, xPWDσ
E y implies x �σ y.

Definition 4.4 Say a set E is T-weak-dominance assumed (TWD-assumed) under

%σ if E is Borel, and Non-Triviality as well as the following hold:

TWD Determination: for all x, y ∈ A, xTWDE y implies x �σ y.

14



We view BFK-assumption, PWD-assumption, and TWD-assumption as different mani-

festations of the same intuitive idea. With this in mind, we use the term assumption when

we discuss properties that hold for, or are implied by all three notions. The remainder of this

subsection discusses the precise relationship among these three notions. It is summarized in

Table 1.

General Case

Finite Ω

LCPSs

BFK-
assumption

⇒ (Obs. 4.2)
6⇐ (Ex. 4.2)

⇒ (Obs. 4.2)
6⇐ (Ex. 4.2)

⇔ (Prop. 4.1)

PWD-
assumption

⇒ (Obs. 4.3)
6⇐ (Ex. 4.3)

⇔ (Obs. 4.1)

⇒ (Obs. 4.3)
6⇐ (Ex. 4.3)

TWD-
assumption

Table 1: Different notions of assumption

Observation 4.2 If E is BFK-assumed, it is also PWD-assumed. This follows because, if

xPWDσ
E y, then surely x �σE y; hence, if Strict Determination holds for E, PWD Determi-

nation holds as well.

However, the converse need not hold, as the following example demonstrates.

Example 4.2 (Example 3.1, continued) Recall that the event E is not BFK-assumed

under %σ. However, E is PWD-assumed under %σ. Non-triviality holds because Ω is finite

and σ has full support. Suppose that xPWDσ
E y. Then x(ω0) ≥ y(ω0) and x(ω1) ≥ y(ω1),

with at least one strict inequality. In either case x �σ y. Thus, PWD Determination holds.

Despite this difference, BFK-assumption and PWD-assumption coincide for LCPSs

Proposition 4.1 Fix an LCPS σ. An event E is BFK-assumed under %σ if and only if it

is PWD-assumed under %σ.

This result follows from Theorems 3.2 and 4.1. It extends a result by Asheim and Søvik,

2005 from finite to infinite state spaces. Since BFK restrict attention to LCPSs, this equiv-

alence implies that their epistemic analyses and results have an alternate preference-based

interpretation that builds upon PWD-assumption.11

Now turn to PWD- and TWD-assumption.

11We thank an anonymous referee for proposing this conjecture.
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Observation 4.3 If E is PWD-assumed, then it is TWD-assumed. To see this, note that,

if Non-Triviality holds, then xTWDE y implies xPWDσ
E y. (Let U be an open set such

that U ∩ E 6= ∅ and x(ω) > y(ω) for all ω ∈ U ∩ E, and observe that, by Non-Triviality,

U ∩ E is not %σ-null.) Therefore, PWD Determination implies TWD Determination under

Non-Triviality.

However, the converse need not hold, even for LCPS beliefs.

Example 4.3 (Continuation of Example 4.1) Recall that σ is an LCPS. We saw that

xPWDσ
E y; however, x ≺σ y, so PWD Determination fails. We now show that, nonetheless,

E satisfies TWD Determination. Consider arbitrary acts x, y ∈ A such that xTWDE y.

Then there is an open U such that U ∩ E 6= ∅ and x(ω) > y(ω) for all ω ∈ U ∩ E. Since U

is open and E = [0, 1), there is ε > 0 and an ω ∈ U ∩ E such that V ≡ (ω, ω + ε) ⊆ U ∩ E.

Since V is open and V ∩ E 6= ∅, by Non-Triviality and Remark 2.1, µi(V ) > 0 for some

i = 0, 1, 2; but since V ⊆ (0, 1), i = 0. Finally, since V ⊆ U ∩E, x(ω) > y(ω) for all ω ∈ V .

This implies that
∫

Ω
(x− y)dµ0 =

∫
E

(x− y)dµ0 ≥
∫
V

(x− y)dµ0 > 0, so x �σ y. Thus, TWD

Determination holds.

Nonetheless, when the state space is finite, PWD-assumption and TWD-assumption

coincide. To see this, recall from Observation 4.1 that T-weak dominance on E coincides

with P-weak dominance on E, provided that the support of the LPS contains E. The key is

that, when Non-Triviality holds for E, the support of the LPS must contain E. Thus, under

Non-Triviality, PWD and TWD Determination coincide and so PWD- and TWD-assumption

coincide. However, Example 4.2 shows that, even with a finite state space, BFK-assumption

is stronger than both.

By Proposition 4.1, the same Example shows that, even for LCPSs, BFK-assumption

and TWD-assumption need not coincide in uncountable state spaces.

4.3 LPS-based characterizations

We provide characterizations of PWD-assumption and TWD-assumption in terms of LPSs.

Definition 4.5 Fix an LPS σ = (µ0, . . . , µn−1). A set E ⊆ Ω is PWD-assumed under

σ at level j if it is Borel and

(i) µi(E) = 1 for all i ≤ j,

(ii ∗∗) for each k > j and each Borel F ⊆ E, if µk(F ) > 0, then there exists i ≤ j with

µi(F ) > 0.
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(iii) E ⊆
⋃
i≤j suppµi.

A set E ⊆ Ω is PWD-assumed under σ if it is PWD-assumed under σ at some level j.

Like Condition (ii∗), Condition (ii∗∗) is an irrelevance requirement (cf. p. 12). However,

the former dictates that the measures µk, for k > j do not affect conditional preferences over

any pair of acts. On the other hand, Condition (ii∗∗) is an irrelevance requirement that only

directly applies to specific pairs of “betting” acts. In particular, fix some Borel F ⊆ E and

(winning-losing) prizes w, ` ∈ [0, 1] such that w > `. Consider the act (−→w F ,
−→
` Ω\F ) and the

constant act
−→
` . Condition (ii∗∗) requires that the ranking of these two acts is completely

determined by the measures µ0, . . . , µj. To see this, suppose first that µi(F ) > 0 for some

i ≤ j: then (−→w F ,
−→
` Ω\F ) �σ

−→
` . Suppose that instead µi(F ) = 0 for all i ≤ j: then the

Condition requires that also µk(F ) = 0 for k > j, and so (−→w F ,
−→
` Ω\F ) ∼σ

−→
` . Therefore, the

measures µj+1, . . . , µn−1 are irrelevant for determining the ranking of (−→w F ,
−→
` Ω\F ) vs.

−→
` .

However, they may well be relevant for the ranking of other acts.

Definition 4.6 Fix an LPS σ = (µ0, . . . , µn−1). A set E ⊆ Ω is TWD-assumed under

σ at level j if E is Borel and

(i) µi(E) = 1 for all i ≤ j,

(iii) E ⊆
⋃
i≤j suppµi.

A set E ⊆ Ω is TWD-assumed under σ if it is TWD-assumed under σ at some level j.

Definition 4.6 does not have an analog to Conditions (ii), (ii∗), or (ii∗∗). However, Condi-

tions (i) and (iii) imply the following property:

(ii∗∗∗) for each k > j and each open U , if µk(U ∩ E) > 0, then there exists i ≤ j with

µi(U ∩ E) > 0.

Thus, the difference between TWD-assumption and PWD-assumption under σ hinges on

whether the set F ⊆ E is Borel or relatively open. Indeed, the interpretation of (ii∗∗) as an

irrelevance property applies to (ii∗∗∗) as well, but it is restricted to sets F that are relatively

open, rather than just Borel.

Condition (ii∗) immediately implies Condition (ii∗∗), which trivially implies Condition

(ii∗∗∗). Our characterization results, Theorems 3.2 and 4.1, together with Examples 3.2,

4.2 and 4.3, show that the converse implications do not hold. That said, when σ is an

LCPS, Conditions (ii∗) and (ii∗∗) are equivalent, and stronger than (ii∗∗∗). The equivalence

is established in the proof of Proposition 4.1. The fact that (ii∗) and (ii∗∗) are stronger than
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(ii∗∗∗) follows from our characterization results and Example 4.3. Also, Conditions (ii∗∗) and

(ii∗∗∗) coincide when the state space is finite. This follows from Theorem 4.1 because in this

case TWD- and PWD-assumption coincide.

Theorem 4.1 Fix an LPS σ.

(A) A set E ⊆ Ω is PWD-assumed under %σ if and only it is PWD-assumed under σ.

(B) A set E ⊆ Ω is TWD-assumed under %σ if and only it is TWD-assumed under σ.

There is no redundancy in Theorem 4.1. In Example 4.1, the event E is not PWD-

assumed, even though it is immediate to verify that Conditions (i) and (iii) hold for j = 0.

Conditions (i) and (ii∗∗) are also not sufficient for PWD-assumption. Since PWD- and BFK-

assumption coincide for LCPSs, our discussion at the end of Subsection 3.3 applies.

5 Proof of Theorems 3.2 and 4.1, and Proposition 4.1

We first prove that the LPS-based definitions are sufficient: if E is BFK-assumed (resp.

PWD-assumed, TWD-assumed) under σ, then it is BFK-assumed (resp. PWD-assumed,

TWD-assumed) under %σ. We need two preliminary results.

Remark 5.1 Fix some LPS σ = (µ0, . . . , µn−1) and a Borel set E. There is some i with

µi(E) > 0 if and only if there are x, y ∈ A with x �σE y.

Remark 5.1 is a corollary of Remark 2.1.

Remark 5.2 Fix some LPS σ = (µ0, . . . , µn−1) and a Borel E ⊆ Ω. Suppose that Conditions

(i) and (iii) hold for some j. Then, for each open set U with E∩U 6= ∅, µi(U) = µi(E∩U) > 0

for some i ≤ j.

Proof. Fix some open set U with E ∩ U 6= ∅. By Condition (iii), for each ω ∈ E ∩ U ,

there is some i ≤ j with ω ∈ suppµi. Since U is an open neighborhood of ω, µi(U) > 0. By

Condition (i), µi(E ∩ U) = µi(U) > 0.

Proof of Theorems 3.2 and 4.1, Sufficiency. If E is TWD-assumed under σ at level j

(a fortiori, if it is PDW-assumed or BFK-assumed), then Non-triviality holds. This follows

from Remark 5.2 and Remark 5.1. We show that, if E is TWD-assumed (resp. PWD-

assumed, BFK-assumed) under σ, then TWD Determination (resp. PWD Determination,

Strict Determination) holds.
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The arguments for TWD and PWD Determination are similar; we present them concur-

rently. Consider acts x, y ∈ A such that x(ω) ≥ y(ω) for all ω ∈ E, and suppose further

that there exists a nonempty set F ⊆ E such that x(ω) > y(ω) for all ω ∈ F . If E is TWD-

assumed (a fortiori, if it is PWD-assumed) under σ at level j, then Condition (i) holds, and

implies that ∫
xdµi =

∫
E

xdµi ≥
∫
E

ydµi =

∫
ydµi

for all i ≤ j.

If E is TWD-assumed and ∅ 6= F = U ∩ E for some open U , then by Remark 5.2, there

exists some i ≤ j such that µi(U ∩ E) > 0. If instead E is PWD-assumed and F is Borel

and not %σ-null, then by Remark 5.1 there exists some i such that µi(F ) > 0; moreover, by

(ii∗∗), we can take i ≤ j. Therefore, in either case, there is i ≤ j such that∫
xdµi =

∫
E

xdµi >

∫
E

ydµi =

∫
ydµi,

and so x �σ y. This establishes TWD Determination and, respectively, PWD Determination.

Finally, suppose that E is BFK-assumed under σ. Consider acts x, y ∈ A such that

x �σE y. Then, there exists some k = 0, . . . , n− 1 so that

(a)
∫
E

(x− y)dµi = 0 for all i ≤ k − 1 and

(b)
∫
E

(x− y)dµk > 0.

It suffices to show that k ≤ j; if so, then by Condition (i), it follows that x �σ y.

Suppose, contra hypothesis, k > j. Then, by Condition (ii∗), there exists (αk0, . . . , α
k
j ) ∈

Rj+1 so that ∫
E

(x− y)dµk =
∑j

i=0
αki

∫
E

(x− y)dµi = 0,

where the second equality follows from (a). But this contradicts (b).

We now turn to the proof of necessity: if E is TWD-assumed (resp. PWD-assumed,

BFK-assumed) under %σ, then it is TWD-assumed (resp. PWD-assumed, BFK-assumed)

under σ.

First, we show that, if E is TWD-assumed under %σ, Condition (i) must hold for j = 0.

A fortiori, this conclusion holds if E is PWD-assumed or BFK-assumed under %σ. Second,

we show that, if E is TWD-assumed, PWD-assumed, or BFK-assumed under %σ, then there

exists a j such that Condition (i) holds, and in addition the measures µj+1, . . . , µn−1 are

‘redundant’ in the appropriate sense. (Refer to the discussion on pages 12 and 17.) Third,
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we show that the weakest notion of redundancy—that implied by TWD-assumption—implies

Condition (iii).

Several of these steps mirror the observations and examples above. The first is analogous

to Observation 3.1.

Lemma 5.1 Fix an LPS σ = (µ0, . . . , µn−1). If E is TWD-assumed under %σ, then µ0(E) =

1.

Proof. Suppose that E is TWD-assumed under %σ. By contradiction, suppose that µ0(E) <

1. Consider acts x and y so that x(ω) = ε ∈ (0, µ0(Ω\E)) for all ω ∈ Ω, y(ω) = 0 for all

ω ∈ E, and y(ω) = 1 for all ω 6∈ E. Since x(ω) > y(ω) for all ω ∈ E = Ω∩E, and Ω is open,

xTWDE y. But, ∫
Ω

ydµ0 = µ0(Ω\E) > ε =

∫
Ω

xdµ0,

contradicting TWD Determination. Thus, µ0(E) = 1.

The next two Lemmas state that assumption implies Condition (i) holds for some j =

0, . . . , n − 1. Furthermore, the Lemmas show that, if an event E is TWD-assumed, PWD-

assumed, or BFK-assumed under %σ, the measures µj+1, . . . , µn−1 satisfy suitable redun-

dancy properties.

The cases of TWD-assumption and PWD-assumption can be handled concurrently.

Lemma 5.2 Fix an LPS σ and an event E that is TWD-assumed or PWD-assumed under

%σ. Then, there exists some j so that

(i) µi(E) = 1 for all i ≤ j.

Furthermore, if E is TWD-assumed under %σ, then

(ii∗∗∗) for each k > j and each open U , if µk(U ∩E) > 0, then there exists i ≤ j so that

µi(U ∩ E) > 0;

and if E is PWD-assumed under %σ, then

(ii∗∗) for each k > j and each F ⊆ E Borel, if µk(F ) > 0, then there exists i ≤ j so

that µi(F ) > 0.

Proof. By Lemma 5.1, Condition (i) holds for j = 0. Let j be the largest number satisfying

Condition (i). We will show that, if j does not also satisfy Condition (ii∗∗∗) (resp. (ii∗∗)),

then E is not TWD-assumed (resp. PWD-assumed) under %σ.

If j = n− 1, then Conditions (ii∗∗∗) and (ii∗∗) hold vacuously. Thus, suppose j < n− 1.

Since j is the largest number satisfying Condition (i), we have µj+1(Ω\E) > 0. Fix a Borel
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F ⊆ E and consider acts x and y satisfying the following: x(ω) = ε ∈ (0, µj+1(Ω\E)) for

ω ∈ F , x(ω) = 0 if ω 6∈ F , y(ω) = 0 if ω ∈ E and y(ω) = 1 if ω 6∈ E.

We now consider two cases. First, suppose that E is TWD-assumed, and there exists an

open U such that F = U ∩ E and µk(U ∩ E) > 0 for some k ≥ j + 1. Then U ∩ E 6= ∅, so

xTWDE y, and TWD Determination implies that x �σ y.

Second, suppose that E is PWD-assumed, and µk(F ) > 0 for some k ≥ j+1. By Remark

2.1, F is not %σ-null. Then xPWDσ
E y and so, by PWD Determination, x �σ y.

To sum up, in either case x %σ y and µk(F ) > 0 for some k ≥ j + 1. Suppose that

µi(F ) = 0 for all i ≤ j. Then µi(E\F ) = 1 for all i ≤ j, so∫
Ω

xdµi =

∫
E

xdµi = 0 =

∫
E

ydµi =

∫
Ω

ydµi,

for all i ≤ j. Moreover, since x %σ y,

µj+1(F )ε =

∫
Ω

xdµj+1 ≥
∫

Ω

ydµj+1 = µj+1(Ω\E).

But this contradicts the fact that µj+1(Ω\E) > ε > 0 and µj+1(F ) ≤ 1. Therefore, there

must be i ≤ j such that µi(F ) > 0. Hence, if E is TWD-assumed (resp. PWD-assumed)

under %σ, Condition (ii∗∗∗) (resp. (ii∗∗)) holds.

If U is open, then U ∩ E is Borel; thus, Condition (ii∗∗) implies Condition (ii∗∗∗).

Now consider BFK-assumption. We break up the argument into two Lemmas.

Lemma 5.3 Fix an LPS σ = (µ0, . . . , µn−1). If E ⊆ Ω is BFK-assumed under %σ, then

there is some j = 0, . . . , n− 1 such that

(i) µi(E) = 1 for all i ≤ j, and

(�) if
∫
E

(x− y)dµi = 0 for all i ≤ j, then
∫
E

(x− y)dµi = 0 for all i = 0, . . . , n− 1.

Proof. Fix an LPS σ = (µ0, . . . , µn−1) on Ω such that E is BFK-assumed under %σ. By

Lemma 5.1 and the fact that BFK-assumption implies TWD-assumption, µ0(E) = 1. Let

k = max{` = 0, . . . , n − 1 : µi(E) = 1 for all i ≤ `}. If k = n − 1 then condition (�) holds

trivially. Suppose instead that k < n − 1 and condition (�) fails. Then there are acts x, y

and a number l = k + 1, . . . , n− 1 such that

•
∫
E

(x− y)dµi = 0 for all i ≤ l − 1, and

•
∫
E

(x− y)dµl > 0.
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We will use these acts and the fact that µk+1(E) < 1, to construct acts x̂ and ẑ such that

x̂ �σE ẑ and ẑ �σ x̂. This contradicts Strict Determination.

For each ρ ∈ (0, 1), let z[ρ] be the act with z[ρ](ω) = ρx(ω) + (1− ρ)y(ω) for all ω ∈ Ω.

Note that for any i = 0, . . . , n− 1,∫
E

(x− z[ρ])dµi = (1− ρ)

∫
E

(x− y)dµi.

So, for each ρ ∈ (0, 1), (i)
∫
E

(x− z[ρ])dµi = 0 for all i ≤ l − 1, and (ii)
∫
E

(x− z[ρ])dµl > 0.

It follows that, for each ρ ∈ (0, 1), x �σE z[ρ].

Construct acts x̂ = (xE,
−→
0 Ω\E) and ẑ[ρ] = (z[ρ]E,

−→
1 Ω\E). Certainly, for each ρ ∈ (0, 1),

x̂ �σE ẑ[ρ]. Moreover, since µi(E) = 1 for all i ≤ k, it follows that, for each ρ ∈ (0, 1) and

each i ≤ k,
∫

Ω
(ẑ[ρ]− x̂)dµi = 0. Next note that, for each ρ ∈ (0, 1),∫

Ω

(ẑ[ρ]− x̂)dµk+1 = (1− ρ)

∫
E

(y − x)dµk+1 + µk+1(Ω\E).

Since µk+1(Ω\E) > 0, there exists ρ∗ ∈ (0, 1) large enough so
∫

Ω
(ẑ[ρ∗]− x̂)dµk+1 > 0 and so

ẑ[ρ∗] �σ x̂.

Lemma 5.4 Fix an LPS σ = (µ0, . . . , µn−1). Suppose that E ⊆ Ω is Borel and, for some

j = 0, . . . , n− 1,

(�)
∫
E

(x− y)dµi = 0 for all i ≤ j =⇒
∫
E

(x− y)dµi = 0 for all i = 0, . . . , n− 1.

Then,

(ii∗) for each k > j, there exists (αk0, . . . , α
k
j ) ∈ Rj+1 so that, for each Borel F ⊆ E,

µk(F ) =
∑j

i=0 α
k
i µi(F ).

Proof. Take j so that condition (�) holds. Fix some k > j. We will show that there exists

(αk0, . . . , α
k
j ) ∈ Rj+1 so that, for any Borel F ⊆ E, µk(F ) =

∑j
i=0 α

k
i µi(F ).

Let B denote the vector space of bounded Borel-measurable functions b : Ω → R. For

each i = 1, . . . , j, k, define linear functionals T1, . . . , Tj, Tk on B by Ti(b) =
∫
E
bdµi. By

condition (�), if x, y ∈ A with Ti(x−y) = 0 for all i ≤ j, then Tk(x−y) = 0. Now, note that

B is the set of all functions of the form γ(x−y) for γ ∈ R++ and x, y ∈ A. So, for each b ∈ B,

Ti(b) = 0 for all i ≤ j implies that Tk(b) = 0. Hence, by the Theorem of the Alternative

(see Aliprantis and Border, 2007, Corollary 5.92), there exists (αk0, . . . , α
k
j ) ∈ Rj+1 with

Tk =
∑j

i=0 α
k
i Ti.

For any F ⊆ E Borel, it follows that

µk(F ) =

∫
E

(
−→
1 F ,
−→
0 Ω\F )dµk =

∑j

i=0
αki

∫
E

(
−→
1 F ,
−→
0 Ω\F )dµi =

∑j

i=0
αki µi(F ),
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as desired.

Finally, we show that, under Non-Triviality, Condition (ii∗∗∗) implies Condition (iii) in

Definition 4.6.

Lemma 5.5 Fix an LPS σ = (µ0, . . . , µn−1) and a Borel E ⊆ Ω for which Non-Triviality

holds under %σ. If Condition (ii∗∗∗) holds for some j, then E ⊆
⋃
i≤j suppµi, i.e., Condition

(iii) holds.

Proof. Let U = Ω\(
⋃
i≤j suppµi) and observe that U is open. Suppose, contra hypothesis,

that E ∩U 6= ∅. Then, by Non-Triviality, E ∩U is not %σ-null. By Remark 2.1, there exists

k such that µk(E ∩ U) > 0. By the definition of U , for any ` with µ`(E ∩ U) > 0, ` > j. So

there exists k > j with µk(E ∩ U) > 0. But, µi(E ∩ U) = 0 for all i ≤ j, which contradicts

the fact that Condition (ii∗∗∗) must hold.

Proof of Theorems 3.2 and 4.1, Necessity. Fix an LPS σ = (µ0, . . . , µn−1) and a Borel

E ⊆ Ω. Lemmas 5.2 and 5.5 show that, if E is TWD-assumed under %σ, then it is TWD-

assumed under σ. Having established necessity for TWD-assumption, we turn to PWD-

and BFK-assumption. First recall (see page 17) that if (ii∗) or (ii∗∗) hold for some j, then

(ii∗∗∗) holds for that j. Therefore Lemmas 5.2 and 5.5 also show that, if E is PWD-assumed

under %σ, then it is PWD-assumed under σ. Finally, Lemmas 5.3, 5.4, 5.5 show that, if E

is BFK-assumed under %σ, then it is BFK-assumed under σ.

Theorems 3.2 and 4.1 readily imply Proposition 4.1, i.e., the equivalence of BFK-assumption

and PWD-assumption for LCPSs.

Proof of Proposition 4.1. By Theorems 3.2 and 4.1, it is enough to show that Conditions

(ii∗∗) and (ii∗) are equivalent. We argued on page 17 that (ii) in Theorem 3.1 implies (ii∗),

which implies (ii∗∗). Thus, it is enough to show that (ii∗∗) implies (ii). To see this, suppose

that (ii) fails. Then there is k > j such that µk(E) > 0. Since σ is an LCPS, there is a

Borel Uk such that µk(Uk) = 1 and µi(Uk) = 0 for all i 6= k. Therefore, E ∩ Uk is Borel and

µk(E ∩ Uk) > 0. Moreover, µi(E ∩ Uk) ≤ µi(Uk) = 0 for all i 6= k, so (ii∗∗) fails.

6 Application: SAS and IA

This section applies the LPS-based characterizations of assumption to BFK’s game-theoretic

analysis. We consider type structures where types map to arbitrary LPSs, rather than

LCPSs. We formalize (lexicographic) rationality, assumption of rationality, etc., for the
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three variants of assumption. We show that, independent of the variant of assumption, self-

admissible sets capture the behavioral implications of rationality and common assumption

of rationality across all type structure. Moreover, independent of the variant of assump-

tion, iterated admissibility captures the behavioral implications of rationality and mth-order

assumption of rationality, in a complete type structure.

As in BFK, we restrict attention to two-player games. Fix a game 〈Sa, Sb, πa, πb〉 where

Sa (resp. Sb) is a finite strategy set for Ann (resp. Bob) and πa (resp. πb) is a payoff function.

6.1 Solution Concepts

The following definitions are standard.

Definition 6.1 Fix Ya × Yb ⊆ Sa × Sb. A strategy sa ∈ Ya is weakly dominated with

respect to Ya × Yb if there exists µa ∈ P(Sa), with µa(Ya) = 1, such that πa(µa, sb) ≥
πa(sa, sb) for every sb ∈ Yb, and πa(µa, sb) > πa(sa, sb) for some sb ∈ Yb. Otherwise, say sa

is admissible with respect to Ya × Yb. If sa is admissible with respect to Sa × Sb, simply

say that sa is admissible.

Definition 6.2 Set S0
a = Sa and S0

b = Sb. Define inductively

Sm+1
a = {sa ∈ Sma : sa is admissible with respect to Sma × Smb };

and, likewise, define Sm+1
b . A strategy sa ∈ Sma is called m-admissible. A strategy sa ∈⋂∞

m=0 S
m
a is called iteratively admissible (IA).

The following definitions are due to BFK.

Definition 6.3 Say ra supports sa if there exists some µa ∈ P (Sa) with ra ∈ suppµa and

πa (µa, sb) = πa (sa, sb) for all sb ∈ Sb. Write su (sa) for the set of ra ∈ Sa that support sa.

Definition 6.4 Fix Qa×Qb ⊆ Sa× Sb. The set Qa×Qb is a self-admissible set (SAS)

if:

(a) each sa ∈ Qa is admissible,

(b) each sa ∈ Qa is admissible with respect to Sa ×Qb,

(c) for any sa ∈ Qa, if ra ∈ su (sa) then ra ∈ Qa,

and likewise for each sb ∈ Qb.
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6.2 Epistemic Analysis

For each n ∈ N, write Nn(Ω) for the set of LPSs of length n, σ = (µ0, . . . , µn−1), and

write N (Ω) =
⋃
n∈NNn(Ω) for the set of LPS. Write N+(Ω) for the set of σ ∈ N that

have full support. Define a metric on N (Ω) as follows: The distance between two sequences

of measures (µ0, . . . , µn−1) and (ν0, . . . , νn−1) of the same length is the maximum of the

Prohorov distances between µi and νi for all i < n. The distance between two sequences of

measures of different lengths is 1. With this, N (Ω) is a Polish space and, by Corollary C.1

in BFK, N+(Ω) is Borel.

Definition 6.5 An (Sa, Sb)-based type structure is a structure

〈Sa, Sb, Ta, Tb, λa, λb〉,

where Ta and Tb are nonempty Polish type spaces, and λa : Ta → N (Sb × Tb) and λb :

Tb → N (Sa × Ta) are Borel measurable belief maps.

Type structures are a basic representation of interactive LPS-based beliefs. Definition

6.5 differs from BFK’s Definition 7.1 in that it does not require that types be mapped to

LCPSs (or limits of LCPSs). A type structure induces a set of states, i.e., Sa×Ta×Sb×Tb.
In the remainder of this subsection, we fix a (Sa, Sb)-based type structure 〈Sa, Sb, Ta, Tb, λa, λb〉.

All definitions have counterparts with a and b reversed.

Definition 6.6 A strategy sa is optimal under σ = (µ0, . . . , µn−1) if σ ∈ N (Sb × Tb) and

(
πa(sa,marg Sb

µi(sb))
)n−1

i=0
≥L
(
πa(ra,marg Sb

µi(sb))
)n−1

i=0

for all ra ∈ Sa.

Here, marg Sb
µi denotes the marginal on Sb of the measure µi. In words, Ann will

prefer strategy sa to strategy ra if the associated sequence of expected payoffs under sa is

lexicographically greater than the sequence under ra. (If σ is a length-one LPS (µ0), we will

sometimes say that sa is optimal under the measure µ0 if it is optimal under (µ0).)

We now formalize the epistemic conditions of interest as restrictions on strategy-type

pairs.

Definition 6.7 A strategy-type pair (sa, ta) ∈ Sa×Ta is rational if λa (ta) is a full-support

LPS and sa is optimal under λa(ta).
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Next, for E ⊆ Sb × Tb, set

AX
a (E) = {ta ∈ Ta : E is X-assumed under λa(ta)}, for X ∈ {BFK,PWD,TWD}.

In words, ABFK
a (E) is the set of types ta ∈ Ta such that the associated LPSs λa (ta) BFK-

assumes the event E ⊆ Sb×Tb. Likewise, APWD
a (E) and ATWD

a (E) are the sets of types that

PWD-assume and, respectively, TWD-assume E. We frequently refer to properties that hold

for several variants of assumption. For brevity, we use X to denote these variants, as in the

equation above. Henceforth, we drop explicit reference to the fact that X is an element of the

set {BFK,PWD,TWD}; this fact should be taken as implicit (as in the next observation).

Note, if E ⊆ Sb × Tb is not Borel, then AX
a (E) = ∅

For finite m and any X, define the sets RX,m
a as follows. Let RX,1

a be the set of all rational

(sa, ta) ∈ Sa × Ta. Inductively, set

RX,m+1
a = RX,m

a ∩ [Sa × AX
a (RX,m

b )].

If (sa, ta, sb, tb) ∈ RX,m+1
a ×RX,m+1

b , say there is rationality andmth-order X-assumption

of rationality at this state. If (sa, ta, sb, tb) ∈
⋂∞
m=1R

X,m
a ×

⋂∞
m=1R

X,m
b , say there is ratio-

nality and common X-assumption of rationality (RCAXR) at this state.

Recall that BFK-assumption implies PWD-assumption which, in turn, implies TWD-

assumption. In light of this, one might conjecture that, for any given type structure and

any given m, RBFK,m
a ×RBFK,m

b ⊆ RPWD,m
a ×RPWD,m

b ⊆ RTWD,m
a ×RTWD,m

b . (And, if so, this

would allow us to simplify proofs, taking BFK-assumption as a lower bound on behavior and

TWD-assumption as an upper bound of behavior.) However, this is not the case because

assumption—in all its forms—is not monotonic: we can have E ⊆ F , and E assumed, even

though F is not assumed (see BFK, p. 323). Nonetheless, we will show two behavioral

equivalence results; so, at some level, the differences between these variants of assumption

will not be material for observed behavior.

Because there is no ranking of rationality and mth-order assumption of rationality across

the variants of assumption, we will need to establish the results separately, for each variant

of assumption. However, the arguments take a similar structure to one another and all follow

the line of argument in BFK (Theorems 8.1–10.1). In the Appendix, we discuss the required

modifications.
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6.3 Self-admissible sets

We begin by showing that SASs characterize RCAXR, independent of the choice of X ∈
{BFK,PWD,TWD}.

Theorem 6.1

(1) For every type structure, proj Sa

⋂
mR

X,m
a × proj Sb

⋂
mR

X,m
b is an SAS.

(2) For every SAS Qa × Qb, there exists a type structure such that proj Sa

⋂
mR

X,m
a ×

proj Sb

⋂
mR

X,m
b = Qa ×Qb.

Part (2) is essentially Theorem 8.1(ii) in BFK. They show this by constructing a finite,

LCPS-based type structure which is, a fortiori, an LPS-based type structure. In such a type

structure, all three notions of assumption coincide.12 Part (1) is an analogue of Theorem

8.1(i) in BFK. In contrast to BFK, we allow for arbitrary LPS-based type structures and

employ our characterizations of assumption. As noted, in the Appendix we indicate how to

adapt BFK’s proofs.

Within a given type structure, RCAXR may have different—and potentially incompatible—

behavioral implications for different admissibility concepts. That is, within a given type

structure, the sets proj Sa

⋂
mR

X,m
a ×proj Sb

⋂
mR

X,m
b may be disjoint for any pair of distinct

X ∈ {BFK,PWD,TWD}. Nevertheless, Theorem 6.1 states that, if we quantify across all

type structures, then RCAXR has the same behavioral implications for all X. For instance,

suppose that for a given type structure, Qa × Qb ⊆ Sa × Sb is the projection on the strat-

egy set of RCABFKR; then Theorem 6.1 says that, there exists a (potentially different) type

structure so that Qa×Qb is also the projection of RCATWDR in the different type structure.

Thus, if the analyst can only observe behavior, then RCABFKR, RCAPWDR, and RCATWDR

are indistinguishable. However, if the analyst also has information about both behavior and

hierarchies of beliefs, then the three epistemic conditions are distinguishable.

6.4 Iterated Admissibility

BFK’s foundations for iterated admissibility focus on type structures that satisfy a particular

property, known as completeness. Write rangeλa for the range of the function λa.

Definition 6.8 A type structure is complete if N+ (Sb × Tb) ( rangeλa and N+ (Sa × Ta) (
rangeλb.

12This is implied by Observation 4.1 and Proposition 4.1.
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A complete type structure is one that is sufficiently rich: For every possible full-support LPS-

based belief a player can hold, there is a type of the player that holds that belief. Moreover,

there is (at least) some type of the player that has an LPS-based belief without full support.13

Section 2.4 in BFK illustrates why, from the perspective of providing foundations for iterated

admissibility, it is important to include types without full support (i.e., why it is important

to require that λa and λb be a strict superset of N+(Sb × Tb) and N+(Sa × Ta)).
Again, within a given complete type structure, the sets RX,m

a may well be different for

different values of X. Nonetheless, Theorem 6.2 shows that they are all characterize m rounds

of iterated admissibility.

Theorem 6.2 Fix a complete type structure. For each m,

proj Sa
RX,m
a × proj Sb

RX,m
b = Sma × Smb .

Theorem 6.2 is an analogue of Theorem 9.1 in BFK. It states that, in a complete type

structure, the strategies consistent with rationality and mth order BFK-assumption (resp.

PWD-assumption, TWD-assumption) of rationality are precisely the ones that survive m

rounds of iterated admissibility. Unlike BFK’s result, Theorem 6.2 allows for an LPS-based

notion of a complete type structure. It employs our characterizations of assumption to prove

this result.

Finally, BFK show a negative result on the impossibility of RCAR in a complete type

structure. Again, an analogous result holds in our setting. Say that player a is not indifferent

if there exist sa, ra ∈ Sa and sb ∈ Sb such that πa(ra, sb) 6= πa(sa, sb).

Theorem 6.3 Fix a complete type structure (Sa, Sb, Ta, Tb, λa, λb) where λa and λb are con-

tinuous. If player a is not indifferent then, for any X, there is no state at which there is

RCAXR.

Theorem 6.3 is an analogue of Theorem 10.1 in BFK. The result shows that BFK’s impossi-

bility of RCAR does not hinge on mutual singularity, or the choice between BFK-assumption,

PWD-assumption, or TWD-assumption.

7 Discussion: Related Literature

In contemporaneous work, Lee (2013) extends the results of BFK to LPSs. His elegant

approach is different from but complementary to ours. His starting point is that the same

13A type structure that is complete in the sense of BFK is complete according to this definition; the
converse does not hold.
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lexicographic preference relation may be represented by more than one LPS. (See Blume,

Brandenburger and Dekel, 1991a, page 66). He shows that a lexicographic preference relation

% assumes an event E if and only if Conditions (i)–(iii) in Theorem 3.1 hold for some LPS

σ for which %σ=%. That is, instead of providing conditions that a given LPS must satisfy

for the corresponding preference relation to assume an event E, he provides conditions that

must be satisfied by at least one of the many LPSs that represent the same preferences.

Theorem 7.1 (Lee, 2013) Fix an LPS σ. A set E ⊆ Ω is BFK-assumed under %σ if and

only if there is some LPS ρ satisfying Conditions (i)–(iii) in Theorem 3.1 such that %σ=%ρ.

Lee’s result can also be derived from our Theorem 3.2. In fact, Lee (2015b) gives a self-

contained proof using our characterization of assumption.

Appendix A Theorems 6.1-6.3

The proofs of Theorems 8.1 and 9.1 in BFK rely on three results concerning the properties

that hold in LCPS-based type structures. (See Lemma D.1, Property 6.3, and Lemma C.4 in

BFK.) The statement and proofs of these results rely on BFK’s characterization of assump-

tion for LCPSs. (Proposition 4.1 implies that the same characterization holds for PWD-

assumption.) We have seen that the characterization does not apply to BFK-assumption

and PWD-assumption with arbitrary LPSs, and to TWD-assumption. To address this, we

state and prove analogous properties in our setting. (See Lemmas A.1, A.2, and A.3.)

Lemma A.1 Let λa(ta) = (µ0, . . . , µn−1) be a full-support LPS. Suppose ta TWD-assumes

E ⊆ Sb × Tb. Then, there exist some j so that⋃
i≤j

supp marg Sb
µi = proj Sb

E.

Note that if Sb × Tb is finite and λa(ta) = (µ0, . . . , µn−1) TWD-assumes (a fortiori, PWD-

assumes or BFK-assumes) E at level j, then E =
⋃
i≤j suppµi. If Sb × Tb is infinite, the

same may not hold. Lemma A.1 shows that, if Ω = Sb × Tb is infinite, a similar statement

holds if we consider the marginal LPS (marg Sb
µ0, . . . ,marg Sb

µn−1) and, correspondingly,

the projection of E on Sb.

Lemma A.2 Fix a full-support LPS σ ∈ N+(Sb× Tb). If σ X-assumes RX,1
b , RX,2

b , . . ., then

it X-assumes
⋂
mR

X,m
b .

Lemma A.2 will be a consequence of a conjunction property of X-assumption .
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Lemma A.3 The sets RX,m
a and RX,m

b are Borel.

To prove part (1) of Theorem 6.1, it is enough to replace Lemma D.1 and Property

6.3 in BFK’s proof with Lemma A.1 and Lemma A.2. To prove part (2) simply repeat

BFK’s proof, observing that BFK-assumption implies both PWD-assumption and TWD-

assumption. (Observations 4.2-4.3.)

To prove Theorem 6.2, two changes to BFK’s proof are needed. First, replace Lemma

D.1 and Lemma C.4 in BFK with Lemma A.1 and Lemma A.3. Second, modify the proof

of Lemma E.3 in BFK, for the case where m ≥ 2: Skip the construction that ensures

that µi(U) = 0 for all i. (That particular construction does not work for arbitrary LPSs.

Fortunately, it is not needed in our setting.)

We now prove Lemmas A.1, A.2, and A.3.

Proof of Lemma A.1. Suppose ta TWD-assumes E ⊆ Sb×Tb at level j. If sb ∈ proj Sb
E,

then there exists i ≤ j such that µi({sb} × Tb) > 0. (See Remark 5.2.) It follows that, if

sb ∈ proj Sb
E, sb ∈ supp marg Sb

µi. Conversely, if sb 6∈ proj Sb
E, then E ∩ ({sb} × Tb) = ∅.

Since each µi(E) = 1 for i ≤ j, it follows that µi({sb} × Tb) = 0 for i ≤ j, i.e., sb 6∈⋃
i≤j supp marg Sb

µi.

Lemma A.4 Fix Borel sets E1, E2, . . ., with Em+1 ⊆ Em. If a full-support LPS σ =

(µ0, . . . , µn−1) X-assumes each of E1, E2, . . ., then it X-assumes
⋂
mEm.

Proof. For each m = 1, 2, . . ., there exists some j[m] ∈ {0, . . . , n− 1} so that σ X-assumes

Em at level j[m]. Let j = min{j[m] : m ≥ 0}. Let M be some m with j = j[M ]. We show

that
⋂
mEm is X-assumed under σ at level j = j[M ].

For Condition (i), note that, for each i ≤ j, µi(Em) = 1 for all m. So, by continuity,

µi(
⋂
mEm) = 1. For Condition (iii), note that

⋂
mEm ⊆ EM ⊆

⋃
i≤j suppµi. Hence,

⋂
mEm

is TWD-assumed at level j. Now suppose that X ∈ {BFK,PWD}. For Condition (ii∗) (resp.

(ii∗∗)), note that each Borel F ⊆
⋂
mEm is also a subset of EM . Thus, Condition (ii∗) (resp.

(ii∗∗)) applied to
⋂
mEm follows from Condition (ii∗) (resp. (ii∗∗)) applied to EM .

Proof of Lemma A.2. Immediate from Lemma A.4.

We now turn to the proof of Lemma A.3. We will break the proof into several Lemmas.

The first Lemma is standard (and so the proof is omitted).

Lemma A.5 Fix some strategy sa ∈ Sa.

(1) The set of µ ∈ P(Sb) so that sa is optimal under µ is closed.
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(2) The set of µ ∈ P(Sb) so that sa is strictly optimal under µ is open.

Lemma A.6 The sets RX,1
a and RX,1

b are Borel.

Proof. For each sa ∈ Sa, define O[sa, n] to be

O[sa, n] = {σ ∈ Nn(Sb × Tb) : sa is optimal under σ}.

Note, that

RX,1
a =

⋃
sa∈Sa

⋃
n∈N0

[
{sa} ×

(
(λa)

−1(O[sa, n]) ∩ (λa)
−1(N+

n (Sb × Tb))
)]
.

Since λa is measurable and N+
n (Sb× Tb) is Borel (Corollary C.1 in BFK), it suffices to show

that each O[sa, n] is measurable.

Write O[sa] for the set of µ ∈ P(Sb) under which sa is optimal, Os[sa] for the set of

µ ∈ P(Sb) under which sa is strictly optimal, and Ow[sa] = O[sa]\Os[sa]. By Lemma A.5,

Ow[sa], O
s[sa], and O[sa] are Borel. Note that

O[sa, n] = (Os[sa]×Nn−1(Sb×Tb))∪(Ow[sa]×Os[sa]×Nn−2(Sb×Tb))∪· · ·∪(Ow[sa]×Ow[sa]×· · ·×O[sa]),

so that O[sa, n] is Borel.

Given a Borel set E ⊆ Ω, write SE for the set of F ⊆ E that are Borel. Of course,

SE ⊆ S. Moreover, SE is the Borel σ-algebra on E. (See Aliprantis and Border, 2007,

Lemma 4.20.)

Lemma A.7 Fix n ∈ N0 and j = 0, . . . , n− 1. If E ∈ S, then

{σ ∈ Nn(Ω) : E is X-assumed under σ at level j},

is Borel.

A Corollary of Lemma A.7 is:

Corollary A.1 If E ∈ S, then {σ ∈ N (Ω) : E is X-assumed under σ} is Borel.

To show Lemma A.7, define the sets

A[1, j, E] =
⋂j

i=0
{σ ∈ Nn(Ω) : µi(E) = 1}
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and

A[3, j, E] = {σ ∈ Nn(Ω) : E ⊆
⋃

i≤j
suppµi}.

Repeating the arguments in the proof of Brandenburger, Friedenberg and Keisler’s (2008)

Lemma C.3, for each j, the sets A[1, j, E] and A[3, j, E] are Borel. Now observe that

{σ ∈ N (Ω) : E is TWD-assumed under σ} =
⋃n−1

j=0
(A[1, j, E] ∩ A[3, j, E]) .

This establishes Lemma A.7 for TWD-assumption.

To establish Lemma A.7 for BFK- and PWD-assumption, we will need to define sets

A[BFK, j, E] and A[PWD, j, E]. For j = 0, . . . , n− 2, let

A[BFK, j, E] =
⋂n−1

k=j+1

⋃
αk∈Rj+1

⋂
F∈SE

{σ ∈ Nn(Ω) : µk(F ) =
∑j

i=0
αki µi(F )}

and

A[PWD, j, E] =
⋂

F∈S:F⊆E

⋂n−1

k=j+1
{σ = (µ0, . . . , µn−1) ∈ Nn : µk(F ) > 0⇒ ∃i ≤ j, µi(F ) > 0}.

Let A[BFK, n− 1, E] = A[PWD, n− 1, E] = Nn(Ω).14 Observe that, for X ∈ {BFK, PWD}

{σ ∈ N (Ω) : E is X-assumed under σ} =
⋃n−1

j=0
(A[1, j, E] ∩ A[X, j] ∩ A[3, j, E]) .

Thus, to show Lemma A.7 for BFK- and PWD-assumption, it suffices to show that the sets

A[BFK, j, E] and A[PWD, j, E] are Borel. This is immediate for j = n− 1. So we focus on

the case of j = 0, . . . , n− 2.

Lemma A.8 Fix a Borel E ⊆ Ω. There exists a countable algebra FE on E that generates

SE.

Proof. Since E is a subset of a second countable space, it is second countable. Thus, there

exists a countable subbase {U1, U2, . . .} that generates SE. Let FE be the algebra generated

by {U1, U2, . . .}. By Rao and Rao (1983, Corollary 1.1.14), FE is countable. Moreover, it

generates SE.

In what follows, we write FE for a countable algebra on E that generates SE.

Lemma A.9 Fix an LPS σ = (µ0, . . . , µn−1). Fix also some j = 0, . . . , n − 2 and k > j.

Then, the following are equivalent:

(1) There exists α ∈ Rj+1 with µk(F ) =
∑j

i=0 αiµi(F ) for all F ∈ SE.

14For A[X, n− 1, E] is independent of E. But, for j = 0, . . . , n− 2, A[X, j, E] depends on E.
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(2) There exists an integer M ≥ 1 such that, for all integers m ≥ 1, there exists βm =

(βm0 , . . . , β
m
j ) ∈ Qj+1 ∩ [−M,M ]j+1 with |µk(F )−

∑j
i=0 β

m
i µi(F )| ≤ 1

m
for all F ∈ SE.

(3) There exists an integer M ≥ 1 such that, for all integers m ≥ 1, there exists βm =

(βm0 , . . . , β
m
j ) ∈ Qj+1 ∩ [−M,M ]j+1 with |µk(F )−

∑j
i=0 β

m
i µi(F )| ≤ 1

m
for all F ∈ FE.

Proof. Suppose part (1) holds. If
∑j

i=0 µi(E) = 0, then µk(F ) =
∑j

i=0 α
k
i µi(F ) = 0 for

every F ⊆ E Borel. In this case, take M = 1 and β = (0, . . . , 0) ∈ Qj+1 ∩ [−1, 1]j+1.

Thus, we focus on the case where
∑j

i=0 µi(E) > 0. In this case, for each m ≥ 1, we can

choose εm ∈ (0, 1

m
∑j

i=0 µi(E)
] and βm ∈ Qj+1 such that maxi |βmi −αi| ≤ εm. By construction,

βm → α, and so the sequence (βm)m is bounded. This implies that there exists M ≥ 0 such

that βm ∈ [−M,M ]j+1 for all m. Moreover, for each m ≥ 1 and each F ⊆ E Borel,∣∣∣µk(F )−
∑j

i=0
βmi µi(F )

∣∣∣ =
∣∣∣∑j

i=0
αiµi(F )−

∑j

i=0
βmi µi(F )

∣∣∣
=
∣∣∣∑j

i=0
(αi − βmi )µi(F )

∣∣∣
≤ |αi − βmi |

∑j

i=0
µi(F )

≤ εm
∑j

i=0
µi(E)

≤ 1

m
.

This establishes part (2), which in turn establishes part (3).

Next, suppose part (3) holds, i.e., there exist an integer M ≥ 1 and a sequence (βm)m

such that, for every m ≥ 1, βm ∈ Qj+1 ∩ [−M,M ]j+1 and |µk(F )−
∑j

i=0 β
m
i µi(F )| ≤ 1

m
for

all F ∈ FE. Let M be the collection of all F ∈ SE for which |µk(F )−
∑j

i=0 β
m
i µi(F )| ≤ 1

m

holds for all m ≥ 1. We will show that SE ⊆M, thereby establishing part (2).

By Lemma A.8, SE is the σ-algebra generated by FE. So, by the Monotone Class Lemma

Aliprantis and Border (2007, Lemma 4.13), SE is the smallest monotone class containing FE.

As such, to show SE ⊆M, it suffices to show that M is a monotone class containing FE.

The fact thatM contains FE follows from part (3). To see thatM is a monotone class,

consider a monotonically increasing (resp. decreasing) sequence (F n) of elements ofM. Then

F ≡
⋃
n F

n (resp. F ≡
⋂
n F

n) are Borel and, by continuity of the measures µ0, . . . , µj, µk,

limn→∞ µi(F
n) = µi(F ) for i = 0, . . . , j, k. Therefore, limn→∞ |µk(F n) −

∑j
i=0 β

m
i µi(F

n)| =

|µk(F )−
∑j

i=0 β
m
i µi(F )|, and so |µk(F )−

∑j
i=0 β

m
i µi(F )| ≤ 1

m
. Thus,M is a monotone class

containing FE.

Finally, suppose part (2) holds. Since βm ∈ Qj+1∩ [−M,M ]j+1, there exists a convergent

subsequence (βm(`))`; let β = (β0, . . . , βj) be its limit. By construction, for each m(`) ≥ 1
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and each F ∈ SE |µk(F ) −
∑j

i=0 β
m(`)
i µi(F )| ≤ 1

m(`)
. It follows that, for each F ∈ SE,

|µk(F )−
∑j

i=0 βiµi(F )| = 0. This establishes (1).

Lemma A.10 Fix some n ∈ N0 and some j = 0, . . . , n− 2. If E ∈ S, then A[BFK, j, E] is

Borel.

Proof. It suffices to show that the set

Ak[BFK, j, E] :=
⋃

αk∈Rj+1

⋂
F∈SE

{σ ∈ Nn(Ω) : µk(F ) =
∑j

i=0
αki µi(F )}

is Borel. Note, by Lemma A.9, Ak[BFK, j, E] = Y k where

Y k :=
⋃

M∈N

⋂
m∈N

⋃
α∈Qj+1∩[−M,M ]j+1

⋂
F∈FE

{σ ∈ Nn(Ω) : |µk(F )−
∑j

i=0
αiµi(F )| ≤ 1

m
}.

Note that, in the definition of Y k, each of the unions and intersections are taken over count-

able sets. (Use Lemma A.8 to conclude that FE is countable.) Thus, to show that the set

Ak[BFK, j, E] is Borel, it suffices to show that, for each M ≥ 1, α ∈ Qj+1 ∩ [−M,M ]j+1,

m ∈ N, and F ∈ FE the set

{σ ∈ Nn(Ω) : |µk(F )−
∑j

i=0
αiµi(F )| ≤ 1

m
}

is Borel. To show this set is Borel, it suffices to show that the map F : Nn(Ω)→ R defined

by

F (µ0, . . . , µn) = |µk(F )−
∑j

i=0
αiµi(F )|

is measurable.

Note that F is measurable if and only if G is measurable, where

G(µ0, . . . , µn) = µk(F )−
∑j

i=0
αiµi(F ).

(See Aliprantis and Border, 2007, Theorem 4.27.) Define maps gi : Nn(Ω) → R where

gi(µ0, . . . , µn) = µi(F ). For each i, gi is measurable. (See Aliprantis and Border (2007,

Lemma 15.16).) With this G = gk −
∑j

i=0 αigi is measurable Aliprantis and Border (2007,

Theorem 4.27), as desired.

Fix some n ∈ N0 and j = 0, . . . , n− 2. For any k > j and Borel F ∈ S, define

Ak[PWD, j, E](F ) = {σ = (µ0, . . . , µn−1) ∈ Nn : µk(F ) > 0⇒ ∃i ≤ j, µi(F ) > 0}.
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Then, set

Ak[PWD, j, E] ≡
⋂

F∈S:F⊆E
Ak[PWD, j, E](F )

and observe that A[PWD, j, E] =
⋂n−1
k=j+1A

k[PWD, j, E].

Lemma A.11 Fix some n ∈ N0 and j = 0, . . . , n− 2.

(i) For any k > j and Borel F ∈ S, Ak[PWD, j, E](F ) is Borel.

(ii) If E ∈ S, then Ak[PWD, j, E] is Borel.

(iii) If E ∈ S, then A[PWD, j, E] is Borel.

Before we prove Lemma A.11, it will be convenient to introduce a background lemma.

Observe that, since Ω is second-countable, its topology admits a countable base O. Let

C = {Ω \ O : O ∈ O}. Then C is countable, and every closed set C is an intersection of

elements of C.

Lemma A.12 If F ∈ S, then µ(F ) = sup{µ(C) : C ∈ C}.

Proof. Since Ω is Polish, every Borel measure on Ω is regular (Aliprantis and Border, 2007,

Theorem 12.7) and hence inner regular (Aliprantis and Border, 2007, Definition 12.2 and

Lemma 12.3): that is, for every Borel F ∈ S, µ(F ) = sup{µ(C) : C ⊆ F,C closed }. Since

any closed set is an intersection of elements of C, this is equivalent to µ(F ) = sup{µ(C) :

C ∈ C}.

Proof of Lemma A.11. Let F ∈ S and define

Pi(F ) = {(µ0, . . . , µn−1) ∈ Nn : µi(F ) > 0} and Zi(F ) = {(µ0, . . . , µn−1) ∈ Nn : µi(F ) = 0}

for each i = 0, . . . , n− 1. By Lemma 15.16 in Aliprantis and Border (2007), the sets Pi(F )

and Zi(F ) are Borel.

Fix k > j. Observe that σ = (µ0, . . . , µn−1) ∈ Ak[PWD, j, E](F ) if either µk(F ) = 0, or

µi(F ) > 0 for some i ≤ j. Therefore,

Ak[PWD, j, E](F ) = Zk(F ) ∪
(⋃j

i=0
Pi(F )

)
.

This is a finite union of Borel sets, and so it is Borel. This establishes part (i).

To complete the proof, it suffices to show part (ii). (Part (iii) follows immediately from

part (iii).) Set

Ãk[PWD, j] =
⋂

C∈C:C⊆E
Ak[PWD, j, E](C).
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First observe that, by part (i) and the fact that C is countable, Ãk[PWD, j] is Borel. Thus,

it suffices to show that Ãk[PWD, j] = Ak[PWD, j, E].

Observe that C ⊂ S and so Ak[PWD, j, E] ⊆ Ãk[PWD, j]. We show Ãk[PWD, j] ⊆
Ak[PWD, j, E]: Fix some σ = (µ0, . . . , µn−1) ∈ Ãk[PWD, j]. Consider a Borel F ∈ S.

Suppose that µk(F ) > 0. By Lemma A.12, there is C ∈ C such that µk(C) > 0 and

C ⊆ F ⊆ E. Since σ ∈ Ak[PWD, j, E](C), there is i ≤ j such that µi(C) > 0. Hence

µi(F ) > 0. Thus σ ∈ Ak[PWD, j, E].

Proof of Lemma A.7. Immediate from the earlier argument and Lemmas A.10-A.11.

Finally, we conclude with Theorem 6.3. The proof of Theorem 10.1 in BFK relies on Property

6.2 and Lemmas F.1 and F.2 therein. Property 6.2 holds for all LPSs (repeat the proof in

BFK). The proofs of the two Lemmas begin by fixing a type ta which maps to a full-support

LCPS. BFK then use this type to construct a continuum of related types ua that satisfy

certain properties. Although in our setting types may correspond to general LPSs, we can

still find a type ta that maps to a (full-support) LCPS. In that case, the proof of Lemma F.1

follows verbatim. Likewise, the proof of Lemma F.2 applies verbatim for BFK-assumption

and PWD-assumption, since the concepts coincide for LCPSs (Proposition 4.1).15

Because TWD-assumption does not coincide with BFK-assumption for LCPSs, we must

provide a separate proof of Lemma F.2 for arbitrary LPSs. The key step is to replace Lemma

E.2 with an analogue for LPSs. With that, we can repeat the argument in BFK (modulo

making the correction discussed in Footnote 15). Parts (i) and (ii) of Lemma E.2 follow

immediately for arbitrary LPSs. Part (iv) follows immediately from Part (iii). Thus, it

suffices to show part (iii) for arbitrary LPSs and TWD-assumption. We conclude with that

argument.

Say two LPSs on Sb × Tb, viz. σ and ρ, are equivalent if σ = (µ0, . . . , µn−1), ρ =

(ν0, . . . , νn−1) and for each i, (a) marg Sb
µi = marg Sb

νi and (b) µi and νi have the same null

sets. The following is the analogue of Lemma E.2(iii) for TWD-assumption:

Lemma A.13 If σ = (µ0, . . . , µn−1) and ρ = (ν0, . . . , νn−1) are equivalent and σ TWD-

assumes a Borel set E ⊆ Sb × Tb, the ρ TWD-assumes E.

Proof. Since σ TWD-assumes E, there exists some j = 0, . . . , n − 1 so that conditions

(i) and (iii) hold. Since, for each i, µi and νi have the same null sets, it follows that

15 That said, there is a correctable error in BFK’s proof of Lemma F.2. The first paragraph must be
amended to say the following: There exists some type ta with λa(ta) = (µ0, . . . , µn−1) and a finite set
U ⊆ Rm−1

b \Rm
b so that Rm

b is assumed at level 0, proj Sb
U = proj Sb

Rm−1
b , and µi(E) = 0 for all i < m. The

ability to choose U is crucial for establishing the base case, but not important for the inductive step.
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µi((Sb×Tb)\E) = νi((Sb×Tb)\E) = 0 for i ≤ j; thus, νi(E) = 1 for all i ≤ j. We next show

that E ⊆
⋃
i≤j supp νi.

Suppose not, i.e., E is not contained in
⋃
i≤j supp νi. Then U = (Sb×Tb)\

⋃
i≤j supp νi is

an open set with E∩U 6= ∅. Observe that E∩U ⊆
⋃
i≤j suppµi. So, for each (sb, tb) ∈ (E∩U),

there exists i ≤ j with (sb, tb) ∈ suppµi. Since U is an open neighborhood of (sb, tb),

µi(U) > 0. And since µi(E) = 1, µi(E ∩ U) > 0. But then since µi and νi have the same

null sets, νi(E ∩ U) > 0, contradicting the definition of U .
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