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Abstract

We analyze the consequences of strategically sophisticated bidding without assuming equi-
librium behavior. In particular, we characterize interim rationalizable bids in symmetric
first-price auctions with interdependent values and affiliated signals. We show that (1) every
non-zero bid below the equilibrium is rationalizable, (2) some bids above the equilibrium
are rationalizable, (3) the upper bound on rationalizable bids of a given player is a non-
decreasing function of her signal. In the special case of independent signals and quasi-linear
valuation functions, (i) the least upper bound on rationalizable bids is concave; hence (ii)
rationalizability implies substantial proportional shading for high valuations, but is consis-
tent with negligible proportinal shading for low valuations. We argue that our theoretical
analysis may shed some light on experimental findings about deviations from the risk-neutral
Nash equilibrium.
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1 Introduction

The analysis of simultaneous bidding games generally builds upon the notion of (Bayesian)
Nash equilibrium. Implicit in the latter solution concept are the assumptions that players
are rational and hold correct beliefs about the play of their opponents.

This paper represents a first step toward the analysis of simultaneous bidding games
under the assumption that bidders’ beliefs are strategically sophisticated, but not necessarily
correct; the rationality hypothesis is maintained.

Strategic sophistication is defined as the conjunction of the following assumptions about
beliefs: (1) Bidders expect positive bids to win with positive probability; (2) Bidders are
certain that their opponents are rational and certain of (1); (3) Bidders are certain that their
opponents are certain of (2); and so on.

We focus on first-price sealed-bid auctions with private or interdependent valuations
and independent or correlated signals, and adopt the notion of (interim) rationalizability to
capture strategic sophistication.

Our approach is motivated by the following considerations. In our opinion, the equilib-
rium assumption that beliefs are correct should be justified in terms of more fundamental
hypotheses about the bidders’ belief formation process. In particular, one may attempt to
find a justification based on either introspection or learning in the specific context of auction
games.

This paper provides an analysis based on beliefs that are strategically sophisticated, and
hence consistent with a careful introspective analysis of the game. We show that, in first-price
auctions, although strategic sophistication has non-trivial implications for bidding behavior,
it is consistent with a wide range of non-equilibrium beliefs. Thus, introspection alone does
not provide a justification for equilibrium analysis.

One may then argue that, even if bidders initially hold heterogeneous non-equilibrium
beliefs, a learning process should nevertheless lead to an equilibrium.1 This argument, how-
ever, is subject to important qualifications. First, it applies only to situations where bidders
repeatedly play similar auction games with different competitors (a fixed set of bidders could
give rise to collusion). Second, whether convergence to an equilibrium occurs at all, as well
as the speed of convergence, crucially depend on how much feedback each player obtains
about the decision rules adopted by his competitors in previous plays. In auctions games,
this feedback is typically very poor: only the actual bids, and not the private information
that induced such bids, can typically be observed.2

Therefore, we find no compelling reasons to expect approximate equilibrium behavior
in the short run. Not surprisingly, experimental evidence shows significant and persistent

1On learning in games see, for example, Fudenberg and Levine (1998).
2In a Dutch auction, whose reduced normal form is like a first-price auction, only the winning bid is

observed.
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deviations from the risk-neutral Nash equilibrium in first-price auctions (cf. Kagel, 1995).
These considerations suggest that it may be interesting to ascertain the extent to which

the predictions of “textbook” auction theory (cf. Milgrom and Weber, 1982; Myerson, 1981;
Riley and Samuelson, 1981; Vickrey, 1961) are dependent on the assumption that bidders’
beliefs are correct.

Our analysis addresses this issue. We find that bid shading (bidding below the expected
value of the good conditional on private information) is a robust phenomenon in first-price
auctions. In settings with common values, shading is a consequence of rational reaction to
the winner’s curse, which is not present in private values settings. However, we also find
substantial shading in settings with private values. Moreover, our results are qualitatively
consistent with the empirical finding (cf. Kagel and Roth, 1992) that higher types tend to
shade proportionally more than low types.

On the other hand, the equilibrium assumption appears to be crucial for revenue equiva-
lence in auctions with independent private values (and risk neutral bidders). In particular,
our analysis of first-price auctions shows that (i) for every type, every positive bid below the
corresponding equilibrium bid is rationalizable, and (ii) for almost every type, the highest
rationalizable bid is above the equilibrium bid.

Note that our assumptions about beliefs and behavior imply that players do not use
weakly dominated bids. In a second-price auction with private values, analogous assumptions
imply that each player bids its valuation, as in the dominant-strategy equilibrium. Therefore,
in light of the standard (i.e. equilibrium) revenue equivalence results, we conclude that the
expected revenue of a seller with rationalizable beliefs in a second-price auction may be lower
or higher than the rationalizable expected revenue in a first-price auction.

A further motivation for our work does not directly apply to this paper, but rather to the
general approach we are attempting to develop. In recent years, many novel auction designs
have been implemented in practice. When faced with such “novelties”, bidders cannot be
expected to have learned to play equilibrium strategies—even if, say, they may be reasonably
expected to have learned the shape of each other’s valuation functions, each other’s signal
distribution, and so on.

In such situations, we find the case for an analysis based on strategic sophistication alone
particularly compelling. We hope that the methodology of this paper can be extended to
more complex bidding games.

This paper employs an interim notion of rationality: different types of the same player
are allowed to hold different beliefs about the bidding behavior of his opponents. Corre-
spondingly, our results characterize interim rationalizability.

The latter solution concept involves the iterative deletion, for each possible type, of bids
that cannot be justified by beliefs consistent with progressively higher degrees of strategic
sophistication. A direct application of this procedure to bidding games would be analytically
cumbersome and numerically intractable.
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Our main technical contribution is to provide a more efficient implementation of interim
rationalizability in the setting under consideration. The methodology we propose entails
constructing bounds on the set of rational(izable) bids for a given type (valuation, signal)
then proving that every bid within these bounds is rational(izable).3

The remainder of the paper is organized as follows. Section 2 illustrates the steps of our
analysis, as well as the main ideas, by means of an example. Section 3 introduces our ba-
sic characterization result for symmetric auctions with interdependent values and affiliated
signals. This result is used in Section 4 to obtain an iterative characterization of interim
rationalizable bids in auctions. Section 5 discusses the relationship with experimental evi-
dence and some extensions of our results. The Appendix contains some proofs and ancillary
results.

2 An Illustration: the two-bidder uniform IPV case

In order to develop the main ideas, we consider the following simple setting: two bidders
(denoted i = 1, 2) participate in the auction; each bidder’s valuation is fully determined by
an independent draw si from the uniform distribution on [0, 1]. We reserve boldface letters
for random variables, and italics for their realizations. Bidders are risk-neutral: thus, if
Bidder i wins the object for a price $b when her valuation is si = si, her payoff equals si− b.

A bidding function is a map b : [0, 1] → R+. Recall that, in this setting, there exists a
unique, symmetric Bayesian Nash equilibrium, characterized by the bidding function

beq(si) =
1

2
si. (1)

To simplify the exposition, throughout this section we assume that a bidder’s conjecture
about her opponent’s behavior may be represented by a continuous, increasing4 bidding
function (these restrictions are relaxed in the main text). In light of our distributional
assumptions, the expected payoff to Bidder i when her type is si, her conjecture is bj, and
she bids b ∈ [bj(0),bj(1)] is

π(b, si;bj) = (si − b)b−1
j (b). (2)

The first objective of this paper is to characterize bids that survive finitely many steps
of interim rationalizability, under the additional assumption that (it is common belief that)

3Our techniques also provide upper bounds on the set of ex-ante rationalizable bids, although these bounds
may not be tight. See Section 5 for a brief discussion of ex-ante and interim rationalizability.

4Throughout the paper we call a function h increasing if x′ > x′′ implies h(x′) > h(x′′), and we call h
nondecreasing if x′ > x′′ implies h(x′) ≥ h(x′′).
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bidders expect positive bids to win with positive probability. The set of bids for type si that
survive k steps of the procedure is denoted by R(si; k).

In the present setting, it turns out that interim rationality, with the additional assumption
just indicated, eliminates all weakly dominated bids: thus, if Bidder i’s signal is si > 0, she
may only place bids in the interval (0, si). A bidder with signal si = 0 will only bid 0.

This is the first step of the procedure, i.e., the characterization of the set of interim
1-rationalizable bids for each bidder: we may write R(si; 1) = (0, si) for si ∈ (0, 1] and
R(0; 1) = {0}.

The inductive step entails characterizing the setsR(si; k) for each si ∈ [0, 1] and k > 1; by
definition, these are the collections of bids that are best responses for Bidder i to conjectures
consistent with the following assumptions: (1) positive bids win with positive probability;
and (2) for all sj, Bidder j’s type sj places bids drawn from the set R(sj; k − 1).

The inductive step can be understood by focusing on the characterization of the sets
R(si; 2), si > 0. Note that, for k = 2, (2) actually implies (1); moreover, if Bidder i’s beliefs
about Bidder j are represented by the bidding function bj, (2) requires that, for (almost)
all sj ∈ [0, 1],

0 < bj(sj) < sj. (3)

That is, Bidder i’s belief (for any given signal) must be a positive function below the least
upper bound B(sj; 1) = sj.

5 It is plausible to conjecture that the sets R(si; 2) will also
be intervals of the form (0,B(si, 2)). Our task is then to derive a new least upper bound
B(·; 2) from the preceding one, i.e. B(·; 1). If successful, this approach generalizes to all
finite iterations.

We now verify that this conjecture is correct, and derive the new least upper bound.
Specifically, we first show that the “old” least upper bound may be used to construct an
upper bound on the set of interim 2-rationalizable bids; then, we show that this upper bound
is tight, i.e. that every positive bid below this new upper bound is interim 2-rationalizable.

The first key step is to note that the “old” least upper bound B(·; 1), viewed as a
conjecture that Bidder i holds about Bidder j, is “more pessimistic” than any conjecture
bj that satisfies Eq. (3).

More precisely, suppose that Bidder i’s type is si > 0, and consider any bid b ∈ (0, si).
Since b < si, Bidder i strictly prefers to win the object than to lose it. Thus, a conjecture is
“more pessimistic” than another if it implies a lower probability of winning, i.e. of placing
the highest bid. In particular, if bj satisfies Eq. (3), B(sj; 1) < b implies bj(sj) < b,
but the converse is false. Thus, Pr[sj : B(sj; 1) < b] ≤ Pr[sj : bj(sj) < b], and hence
π(b, si;B(·; 1)) ≤ π(b, si;bj) for all b ∈ (0, si).

We will be interested in the maximum expected payoff that Bidder i can secure, given

5Or a probability distribution over such functions (see Section 3).
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the conjecture B(·; 1):

π∗(si;B(·; 1)) = max
b≥0

(si − b) Pr[sj : B(sj; 1) ≤ b] = max
b≥0

(si − b) · b =
s2

i

4
.

The unique maximizer is si

2
.

On the other hand, notice that, for any conjecture bj and bid b ∈ (0, si), π(b, si;bj) ≤
si − b.

The above observations allow us to place an upper bound on the set of interim 2-
rationalizable bids. Suppose that b is such that si − b < π∗(si;B(·; 1)) = π( si

2
, si;B(·; 1)).

Consider any conjecture bj that satisfies Eq. (3): then

π(b, si;bj) ≤ si − b < π(
si

2
, si;B(·; 1)) ≤ π(

si

2
, si;bj).

Hence, b cannot be a best reply to a conjecture that satisfies Eq. (3). In other words, the

quantity si − π∗(si;B(·; 1) = si − s2
i

4
is an upper bound on the set R(si; 2).

We now prove that this upper bound is tight by exhibiting, for any bid b∗ ∈ (0, si − s2
i

4
),

a conjecture gb∗ that satisfies Eq. (3) and such that b∗ is a best reply to gb.

-

6

sj

bj

B(·; 1)

s̄

gb∗
b∗

b∗ − δ

-

6

bi

π
si

sib∗
δ

si − b∗

π∗(si;B(·; 1))

Figure 1: The bidding function gb∗ (L) and the corresponding payoff function for Bidder i
(R).

The construction is illustrated in the left panel of Fig. 1. The point s̄ is chosen so that
B(s̄; 1) = b∗ − δ. For sj ∈ [0, s̄], the bidding function gb∗ approximates the bound B(·; 1)
from below.6 For sj > s̄, the function gb∗ is defined as the line segment joining the points
(s̄,gb∗(s̄)) and (1, b∗). Note that Eq. (3) is satisfied for almost all sj, as required.

The corresponding payoff function is shown in the right panel of Fig.1. Notice that, for
b ∈ [0, b∗−δ], by construction π(b, si;B(·; 1)) ≈ π(b, si;g

b∗); moreover, π(b∗, si;g
b∗) = si−b∗.

Thus, since b∗ < si − π∗(si;B(·; 1)), we have

π(b∗, si;g
b∗) = si − b∗ > π∗(si;B(·; 1)) ≥ π(b, si;B(·; 1)) ≈ π(b, si;g

b∗).

6For instance, let gb∗(sj) = sα
j B(sj ; 1) for α close to 1.
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Hence, b∗ is strictly more profitable than any bid b ∈ [0, b∗ − δ]. Furthermore, δ is chosen so
as to ensure that π(b, si;g

b∗) is increasing on the interval (b∗ − δ, b∗], as shown in the figure.
Since clearly bids above b∗ are strictly worse than b∗, it follows that b∗ is a strict best reply
to the conjecture gb∗.

We conclude that the function si 7→ si− π∗(si;B(·; 1)) = si− s2
i

4
provides the least upper

bound on the sets R(si; 2); we shall denote it by B(·; 2). The argument above shows that
R(si; 2) is an interval7with interior (0,B(si; 2)).

The preceding construction did not rely on the specific functional form of the “old”
least upper bound B(·; 1), but only on some of its features—specifically, monotonicity and
positivity. Thus, the construction can be repeated starting from the bound just derived, i.e.
B(·; 2), to conclude that the least upper bound B(·; 3) on the set R(·; 3) is given by

B(si; 3) = si − π∗(si;B(·; 2)).

More generally, determining the maximum payoff against a given least upper bound B(·; k−1)
is sufficient to pin down the least upper bound B(·; k) on the set of k-rationalizable bids.
The set R(si; k) is an interval with interior (0,B(si; k)).

Thus, the methodology we propose is particularly amenable to numerical computation.
Figure 2 shows the first four bounds for the model under consideration; further bounds are
not shown because they do not differ significantly from B(·; 4).8

It can be easily proved by induction that B(si; k) ≤ B(si; k − 1). Therefore the limit
B(si;∞) = limk→∞B(si; k) is well defined. In section 4 we prove that the set of interim
rationalizable bids for type si is an interval with interior (0,B(si;∞)).

To further illustrate our techniques, we sketch an argument showing that, as suggested
by Figure 2, there are rationalizable bids strictly above the Nash equilibrium for almost
every type. First note that beq(si) = si

2
must be rationalizable for type si because the

bidding function beq is a best reply to itself. Therefore B(si;∞) ≥ beq(si). Since the set
of rationalizble bids for si is an interval with interior (0,B(si;∞)), every bid in the interval
(0,beq(si)) is rationalizable. This implies that all the best replies to conjectures bj such that
0 < bj(sj) < beq(sj) (for almost all sj) are rationalizable. The least upper bound on such
best replies can be derived from beq, regarded as a least upper bound on conjectures, using
our method:

bnew(si) = si − π∗(si;b
eq) = si − s2

i

2
.

It is easily verified that bnew(si) > beq(si) for all si ∈ (0, 1). Therefore B(si;∞) > beq(si)
for almost all si. In Section 4 we show that this is a general result.

7We call “interval” any convex subset of [0, 1].
8Details and code are available from the authors upon request.
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2si

Figure 2: The two-bidder uniform IPV model: bounds.

In this example, the least upper bound B(si; 2) = si− s2
i

4
is a non-decreasing and concave

function of si; also, it lies very close to the 45◦ line near the origin. This is not specific to the
case k = 2, or indeed to this particular example: our results in Section 4 show that, in all
symmetric auctions with independent private values as well as in “generalized wallet games”
(cf. Klemperer, 1998), each bound B(·; k) computed as indicated above has these properties,
for all k = 2, ...,∞. Therefore, rationalizability implies substantial proportional shading
(bidding below the valuation) for high types, but is consistent with negligible proportional
shading for low types.

3 Characterizing Best Responses

Consider the following game with asymmetric information representing a single-object, first-
price auction with (possibly) interdependent values and risk-neutral bidders. There are n
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players, or bidders. Each bidder i observes a random signal with realizations si in the compact
interval Si = [0, 1]. Signals are distributed according to the joint c.d.f. F : S → [0, 1], where
S =

∏n
i=1 Si. We shall often refer to signals as types.

After observing her signal, each player chooses a bid b ≥ 0. The object is assigned to one
of the high bidders, breaking ties at random. The winner pays her bid, losers do not pay
anything. Bidder i’s value for the object is given by a function (random variable) vi : S → R.

3.1 Notation

Random variables and beliefs.From the point of view of a bidder, her competitors’ bids are
random variables. We use boldface letters to denote random variables. A function (random
variable) bj : [0, 1] → R+ can be interpreted as a conjecture of Player i about the bidding
behavior of Player j—a description of how Player j would bid for any possible signal (or
type) sj.

9 To allow for the possibility that a player is uncertain about the bidding behavior of
her competitors, we model beliefs as probability distributions over (n− 1)-tuples of bidding
functions (random variables). Let Bj denote the jth copy of the set of bounded functions
with domain [0, 1] and range R+, interpreted as the set of conjectures about j. The set of
possible conjectures for Bidder i about her competitors is B−i =

∏
j 6=i Bj. A belief for Player

i is a probability measure on B−i, that is, an element µ of the set ∆(B−i).
10’11 With a slight

abuse of notation we identify a belief µ assigning probability one to a tuple b−i ∈ B−i with
b−i itself. As a matter of terminology, we refer to elements b−i ∈ B−i as conjectures. Thus,
in our setting conjectures are degenerate beliefs.

Inequalities. Inequalities between random variables are interpreted as pointwise inequal-
ities which hold almost everywhere. For example, bj < Bj if and only if the set of sj such
that bj(sj) ≥ Bj(sj) has (Lebesgue) measure zero. Similarly, inequalities between tuples of
random variables are interpreted as coordinate-wise inequalities: b−i < B−i if and only if
bj < Bj for all j 6= i. Degenerate random variables and collections of identical degenerate
random variables are represented by the corresponding real numbers.

Conditional expectations and probabilities. The expected value of a random variable
x : S → R conditional on realization si is denoted E[x|si] and the expected value of x
conditional on si and event C−i ⊆ S−i is denoted E[x|si, C−i]. For example,

E[vi|si,b−i ≤ b] =

∫

[b−i≤b]

vi(si, s−i)dF−i|i(s−i|si)

9We need not interpret bj as a bidding strategy chosen ex ante.
10Our results do not depend on the choice of a specific sigma-algebra of measurable subsets of B−i. We

only require that singletons are measurable, so that degenerate beliefs belong to ∆(B−j).
11Note that we allow for correlated choices of bidding functions, and hence spurious correlation among

opponents’ bids. However, the formulation in the text does entail a mild restriction: Player i cannot believe
that Player j’s bid is a function of the valuation of competitor k.
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is the expected valuation for Bidder i conditional on the signal and the event that b is the
high bid.

A similar notation is used for conditional probabilities: the probability of event A−i ⊆ S−i

given si and C−i ⊆ S−i is denoted Pr[A−i|si, C−i] and C−i is omitted if C−i = S−i. For
example,

Pr[b−i ≤ b|si] =

∫

[b−i≤b]

dF−i|i(s−i|si)

is the conditional probability that b is the high bid given conjecture b−i.
We shall only need to consider beliefs assigning zero probability to ties. Given such a

belief µ ∈ ∆(B−i), the expected payoff of bidding b conditional on signal si is

π(b, si; µ) =

∫

B−i

E[vi − b|si,b−i ≤ b] Pr[b−i ≤ b|si]µ(db−i).

Let
π∗(si; µ) = sup

b≥0
π(b, si; µ).

Bid b is a best response to belief µ for type si if π(b, si; µ) = π∗(si; µ).

3.2 Assumptions

We assume that the environment is symmetric (cf. Milgrom and Weber, 1982). More pre-
cisely:

Assumption 1 The cumulative distribution F is symmetric: that is, for any permutation
{π(1), . . . , π(n)} of {1, . . . , n}, and for any s ∈ [0, 1]n, F (s1, . . . , sn) = F (sπ(1), . . . , sπ(n)).

Assumption 2 The valuation functions are symmetric: that is, there exists a function
v : [0, 1]× [0, 1]n−1 → R such that:
(i) for every s1 ∈ [0, 1], s−1 ∈ [0, 1]n−1, and permutation {π(2), . . . , π(n)} of {2, . . . , n},
v(s1, s−1) = v(s1, (sπ(j))j 6=1).
(ii) For every i ∈ N , and s = (si, s−i) ∈ S, vi(s) = v(si, s−i).

For example, in an auction with private values, v(s1, s−1) = s1. In an auction with pure
common values, v(s1, ..., sn) is the expected value of the object conditional on the realization
(s1, ..., sn).

In the following, we shall drop player indices whenever no confusion can arise.

Assumption 3 The cumulative distribution function F is differentiable, with continuous
density f bounded away from zero.
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Assumption 4 The function v : [0, 1]×[0, 1]n−1 → R is continuous, increasing in the first ar-
gument, and nondecreasing in all the other arguments. Moreover, it satisfies v(0, 0, . . . , 0) =
0.12

As a consequence of Assumption 4, the expected valuation conditional on a player’s signal
is positive:

Remark 1 For each player i and each signal si > 0,

E[vi|si] > 0. (4)

We also assume that signals are affiliated. As is well-known from Milgrom and We-
ber (1982) (MW henceforth), this is equivalent to the supermodularity of log f . For any
pair of vectors (x, y) ∈ Rn×Rn let x ∨ y and x ∧ y denote the componentwise maxi-
mum and minimum respectively, i.e., x ∨ y = (max(x1, y1), ..., max(xn, yn)) and x ∧ y =
(min(x1, y1), ..., min(xn, yn)).

Assumption 5 For all s, s′ ∈ S,

f(s ∨ s′)f(s ∧ s′) ≥ f(s)f(s′), (5)

Clearly, statistical independence is a special case of affiliation. Two key properties of
affiliated random variables will be employed here:

Result 1 (cf MW, Theorem 4) For every nonempty J ⊆ N , and for every K ⊆ N disjoint
from J , the random variables {sj}j∈J are affiliated conditional upon the realizations of the
(possibly empty) collection of random variables {sk}k∈K .

Result 2 (MW, Theorem 5) For every random variable H : S → R, if H is nondecreasing
in each argument, then the conditional expectation function

h(x1, y1, . . . , xn, yn) = E[H|x1 ≤ s1 ≤ y1, . . . , xn ≤ sn ≤ yn]

is nondecreasing in each argument.

12The assumption that vi(0, . . . , 0) = 0 is made for expositional simplicity only. It ensures that, in
the symmetric equilibrium constructed in Theorem 14 of Milgrom and Weber (1982), positive bids win
with positive probability; thus, equilibrium bidding functions are admissible conjectures. Our analysis goes
through unchanged if one instead assumes that vi is non-negative, and players only expect bids above
vi(0, . . . , 0) to win with positive probability (so that, again, equilibrium bidding functions are admissible
conjectures).
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3.3 Upper Bounds on Best Responses

It is often noted that a player bidding close to her expected valuation E[vi|si] is subject
to the winner’s curse, because she is not taking into account the fact that, if she wins
the object, it must be the case the competitors have observed low signals. This adverse-
selection argument relies on the assumption that Player i thinks that her competitors are
using increasing bidding functions. To see this, note that if Bidder i has conjecture b−i and
b−i is increasing (in each component), then the expected valuation conditional on (the signal
and) the event of winning the object is E[vi|si,b−i ≤ b] ≤ E[vi|si], where the inequality is
strict in non-degenerate cases. However, if the conjecture b−i is not increasing, then it may
be the case that E[vi|si,b−i ≤ b] > E[vi|si], and the best response to b−i may lie above
E[ vi|si].

We find it interesting to carry out our analysis of strategically sophisticated bidding
focusing on beliefs for which the adverse-selection argument mentioned above is valid; there-
fore, we mainly restrict our attention to beliefs that assign positive weight only to increasing
bidding functions13 Also, we shall show that above-equilibrium bids are interim rationaliz-
able for almost all bidder types; in light of the preceding discussion, this conclusion would
be uninteresting if we allowed for non-monotonic beliefs.

Formally, let Mj denote the set of monotone increasing bidding functions for Player j
and let M−i =

∏
j 6=iMj. Then, in our analysis of auctions with interdependent values, we

consider beliefs µ ∈ ∆(M−i). In the special case of private values we consider more general
beliefs.

In the same spirit, we wish to avoid the possibility that a player may bid either zero or
above her conditional valuation only because she is certain that she is not going to get the
object. Therefore we assume that a player believes that every positive bid yields a positive
probability of winning the object. Formally, the set of Bidder i’s beliefs we restrict our
attention to is

∆+(B−i) =

{
µ ∈ ∆(B−i) : ∀b > 0,

∫

M−i

Pr[b−i ≤ b|si]µ(db−i) > 0

}
,

where si on the right hand side is arbitrary.14 We record two immediate consequences of
these restrictions on beliefs.

Remark 2 For any signal si and conjecture b−i ∈ M−i, the function b 7→ π(b, si;b−i) is
continuous, and there exists b∗ ∈ R+ such that π(b∗, si;b−i) = π∗(si;b−i).

Proof. See Lemma 14 in the Appendix.

13Including nondecreasing bidding functions with flat segments in the support of beliefs involves technical
complications that are dealt with in Battigalli and Siniscalchi (2000).

14By Assumption 3, for every si, the conditional density f−i|i(·|si) is bounded away from zero; hence the
expression on the right hand side is independent of si.
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Remark 3 Fix si > 0 and µ ∈ ∆(M−i) ∩∆+(B−i). Then π∗(si; µ) > 0. Moreover, neither
b = 0 nor any b ≥ E[vi|si] are maximizers.

Proof. By Assumption 4, vi(si, 0, . . . , 0) > vi(0, . . . , 0) = 0. Let b′ = 1
2
vi(si, 0, . . . , 0) >

0; then
∫
M−i

Pr[b−i ≤ b′|si]µ(db−i) > 0, so π(b′, si; µ) > 0. On the other hand, π(0, si; µ) = 0.

Also, by Result 2 ,

π(b, si;b−i) =
(
E[vi|si,b−i ≤ b]− b

)
Pr[b−i ≤ b|si] ≤

(
E[vi|si]− b

)
Pr[b−i ≤ b|si] ≤ 0

for all b−i ∈M−i and b ≥ E[vi|si]. Thus, π(b, si; µ) ≤ 0 for all b ≥ E[vi|si].

Let B−i = {B,B, . . .} be an arbitrary (symmetric) upper bound on the bids of Player
i’s competitors. The main result of this section characterizes the set of interim best replies
to “monotonic” beliefs assigning probability one to bids below this upper bound. The set of
such beliefs is

∆+(M−i;B−i) =
{
µ ∈ ∆(M−i) ∩∆+(B−i) : µ ({b−i : b−i < B−i}) = 1

}
.

For the special case of private values, where adverse-selection considerations play no role,
we are able to characterize best reponses to arbitrary beliefs below the upper bound, i.e.,
beliefs in the set

∆+(B−i;B−i) =
{
µ ∈ ∆+(B−i) : µ ({b−i : b−i < B−i}) = 1

}
.

Theorem 6 Let B : [0, 1] → R+ be a nondecreasing function such that B > 0, and define
B−i = {B,B, . . .}. For every bid b∗ > 0 and signal si ∈ [0, 1],

(1) if E[vi|si] − b∗ < infµ∈∆+(M−i;B−i) π∗(si; µ), then b∗ is not a best reply to any belief
µ ∈ ∆+(M−i;B−i) for si;
(2) if E[vi|si] − b∗ > infµ∈∆+(M−i;B−i) π∗(si; µ), then b∗ is a strict best reply to some belief
µ ∈ ∆+(M−i;B−i) for si.
(3) Furthermore,

infµ∈∆+(M−i;B−i) π∗(si; µ) = supb≥0

{ (
E[vi|si,B−i < b]− b

)
Pr[B−i < b|si]+

+ max
{

0,
(
E[vi|si,B

max
−i = b]− b

)
Pr[Bmax

−i = b|si]
}}

and the supremum is attained.

(4) If the auction game has private values

inf
µ∈∆+(M−i;B−i)

π∗(si; µ) = π∗(si;B−i) = inf
µ∈∆+(B−i;B−i)

π∗(si; µ).

Therefore parts (1) and (2) hold with ∆+(M−i;B−i) replaced by ∆+(B−i;B−i).
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Note that, by (3) above and Remark 2, if B is increasing, then infµ∈∆+(M−i;B−i) π∗(si; µ) =
π∗(si;B−i) as in the case of private values. Note also that the given bound B−i can be chosen
so high that infµ∈∆+(M−i;B−i) π∗(si; µ) = 0. Therefore, in view of Remark 3, we obtain:

Corollary 7 The set of best replies for si > 0 to beliefs in ∆+(M−i) is the interval
(0, E[vi|si]).

Theorem 6 shows that for every (common) least upper bound B : [0, 1] → R+ on the bids
of the opponents we can derive a least upper bound on the interim best replies of Player i.
We denote by φB the new upper bound, that is,

∀si ∈ [0, 1], φB(si) = E[vi|si]− inf
µ∈∆+(M−i;B−i)

π∗(si; µ),

where B−i = {B,B, ...}. The following proposition lists some useful properties of the map
φ, under additional restrictions on the bound B that will be satisfied in our application to
rationalizability.

Proposition 8 For every continuous, increasing function B such that B > 0, the function
φ B satisfies the following properties:
(1) 0 < φB(si) ≤ E[vi|si] for all si ∈ (0, 1]. If B(0) ≥ E[vi|si = 0], E[vi|si = 0] = φB(0).
(2) For every si > 0 and b∗ ∈ arg maxb≥0 π(b, si;B−i), b∗ ≤ φB(si) ≤ B(1) (where B−i =
{B,B, ...}). Furthermore, if B(1) /∈ arg maxb≥0 π(b, si;B−i), both inequalities are strict.
(3) φB is continuous.
(4) Either φB is increasing or there exists a signal sB such that φB is increasing on [0, sB)
and φB(si) = B(1) for all si ∈ [sB, 1].

Proof. (1) As noted above, if B is increasing, φB(si) = E[vi|si] − π∗(si;B−i). This
immediately implies that φB(si) ≤ E[vi|si] for all si. Moreover, consider a signal si > 0 and
the bid function g defined by

∀sj ∈ [0, 1], g(sj) = sjB(sj).

Since B is continuous, so is g, and g(0) = 0. Thus, g−i ∈ ∆+(M−i;B−i). Moreover, by
Remark 2, there exists b∗ ∈ R+ such that π(b∗, si;g−i) = π∗(si;g−i); by Remark 3, b∗ > 0;
by (1) in Theorem 6, this implies that φB(si) ≥ b∗ > 0.

Finally, assume that B(0) ≥ E[vi|si = 0]. Note that, for all b ∈ R+, π(b, 0;B−i) ≤
(E[vi|si = 0] − b) Pr[B−i ≤ b]|si = 0] by Result 2. Now, either Pr[B−i ≤ b|si = 0] = 0, or
b > B(0) ≥ E[vi|si = 0]. Therefore π(b, 0;B−i) ≤ 0 for all b, which implies φB(0) = E[vi|si =
0]− π∗(si;B−i) = E[vi|si = 0].

(2) Let b∗ ∈ arg maxb≥0 π(b, si;B−i), where si > 0. If b∗ = B(1), then π∗(si;B−i) =
E[vi|si]−B(1) and the result is obviuous. If b∗ < B(1), then Pr[B−i ≤ b∗|si] < 1. Therefore
(using Result 2 again)

π∗(si;B−i) = E[vi − b∗|si,B−i ≤ b∗] Pr[B−i ≤ b∗|si] < E[vi|si]− b∗.
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Hence b∗ < E[vi|si]− π∗(si; B−i) = φB(si).
Finally note that if B(1) /∈ arg maxb≥0 π(b, si;B−i) then π∗(si;B−i) > π(B(1), si;B−i) =

E[vi|si]−B(1). Thus B(1) > E[vi|si]− π∗(si;B−i) = φB(si).
The proof of (3) and (4) may be found in the Appendix.

4 Rationalizable Bids

The standard definition of (interim) rationalizability captures the implications of the as-
sumption that bidders are (interim) rational, and there is common certainty of this fact. We
analyze a strengthening of this definition because we also assume that bidders’ beliefs satisfy
some restrictions, and there is common certainty of this fact too (see e.g. Battigalli, 1999).

4.1 Definitions

Let ∆i ⊆ ∆(B−i) be a restricted set of beliefs and let ∆ = (∆1, ..., ∆n). In particular, we
shall consider the case ∆i = ∆(M−i) ∩∆+(B−i) in the next subsection, and ∆i = ∆+(B−i)
in the following one. We provide a definition of interim ∆-rationalizability that captures the
implications of the assumption that:

(a) the bidders are expected payoff maximizers,

(b) for each bidder i = 1, ..., n, i’s beliefs belong to ∆i (but different bidders and different
types of the same bidder may have different beliefs), and

(c) there is common certainty of (a) and (b).

Some additional notation is required. First, fix a player i, a set of beliefs ∆∗
i ⊆ ∆(B−i)

and a type si. We let

ρi(si, ∆
∗
i ) = {b ≥ 0 : ∃µ ∈ ∆∗

i , π(b, si; µ) = π∗(si; µ)}
denote the set of bids rationalized for type si by beliefs in ∆∗

i . Observe that ρi is monotone
in its second argument: that is, ∆′

i ⊆ ∆′′
i implies ρi(si, ∆

′
i) ⊆ ρi(si, ∆

′′
i ). Next, fix a (n− 1)-

tuple C−i = (Cj)j 6=i, where each Cj is a correspondence (multi-valued function) from Si to
R+ . Since C−i may be interpreted as a subset of B−i it makes sense to write

∆(C−i) = {µ ∈ ∆(B−i) : µ ({b−i : ∀j 6= i, ∀sj ∈ [0, 1],bj(sj) ∈ Cj(sj)}) = 1} .

The main definitions can now be provided.

Definition 9 An n-tuple of correspondences (C1, ..., Cn) has the ∆-best response property
if Cj(sj) ⊆ ρj(sj, ∆j ∩∆(C−i)) for all j = 1, ..., n, sj ∈ Sj.
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Definition 10 For all i = 1, ..., n, si ∈ [0, 1] and k = 1, 2, ... let R∆
i (si; 0) = R+,

R∆
i (si; k) = ρi

(
si, ∆i ∩∆(R∆

−i(·, k − 1))
)
.

A bid b∗ is interim (∆, k)-rationalizable for type s∗i of Bidder i if b∗ ∈ R∆
i (s∗i , k).

A bid b∗ is interim ∆-rationalizable for type s∗i of Bidder i if there is an n-tuple of correspo-
nences (C1, ..., Cn) with the ∆-best response property such that b∗ ∈ Ci(s

∗
i ).

Observe that interim ∆-rationalizability is defined via a best-response property, indepen-
dently of the sets of (∆, k) -rationalizable bids (cf. Osborne and Rubinstein, 1994, Definition
55.1). However, we will show below that the set of interim ∆ -rationalizable bids for type si

can indeed be obtained as the limit of the sets of (∆, k)-rationalizable bids as k →∞. 15

The following remarks are easily derived from Definition 10.

Remark 4 The set of ∆-rationalizable bids for type si is included in R∆
i (si, k) for all k =

1, 2, ....

Proof. Let (C1, ..., Cn) be an n-tuple of correspondences with the ∆-best-response prop-
erty. Trivially, Cj(sj) ⊆ ρj(sj, ∆i ∩ ∆(C−i)) ⊆ R+ = R∆

i (si; 0) for all j and sj. Suppose
that Cj(sj) ⊆ R∆

j (sj; k − 1) for all j and sj. Then ∆(C−i) ⊆ ∆(R∆
−i(·; k − 1)). By the

best-response property and monotonicity of ρi(si, ·) we obtain Ci(si) ⊆ ρi(si, ∆i ∩∆(C−i)) ⊆
ρi(si, ∆i ∩∆(R−i(·, k − 1))) = Ri(si, k).

Therefore Ci(si) ⊆ Ri(si, k) for all i, si and k, which implies the thesis.

Remark 5 Let (beq
1 , ...,beq

n ) be a Bayesian Nash equilibrium such that beq
−i ∈ ∆i, i = 1, ..., n.

Then, for all i and si, the equilibrium bid beq
i (si) is interim ∆-rationalizable for type si.

Proof. Since beq
−i ∈ ∆i and (beq

1 , ...,beq
n ) is an equilibrium, beq

i (si) ∈ ρi(si, ∆i∩∆({beq
−i})).

Therefore (beq
1 , ...,beq

n ) (regarded as an n-tuple of correspondences) has the ∆-best-response
property.

4.2 Rationalizable Bidding with Monotonic Beliefs

We now return to the auction setting of Section 3 and let ∆i = ∆+(B−i) ∩ ∆(M−i) (i =
1, ..., n). To simplify the notation, we omit the superscript ∆ from the set of interim ∆-
rationalizable strategies.

15In games with compact action spaces and continuous payoffs, this result follows from standard arguments:
see Bernheim (1984), Proposition 3.2 and the generalization in Battigalli (1999), Proposition 3. But Lipman
(1994) shows by example that the result does not hold in general discontinuous games. Hence, a direct proof
is required in the present context. We thank an anonymous referee for pointing this out.
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We shall provide a full characterization of the set of interim (∆, k) and ∆-rationalizable
bids momentarily. However, a direct application of Theorem 6 and Definition 10 is sufficient
to compare the predictions of equilibrium analysis and interim ∆-rationalizability.

From now on, we let beq denote the symmetric equilibrium bidding function of Milgrom
and Weber (1982, Theorem 14). Our assumptions are sufficient to guarantee its existence;
moreover, beq is increasing and satisfies beq(0) = 0. Therefore beq

−i ∈ ∆i. By Remark 5,
beq(si) is ∆-rationalizable for type si.

Our first result shows that, for every type si ∈ (0, 1), all bids below the equilibrium, as
well as a nonempty interval of bids above it, are interim ∆-rationalizable.

Recall that, for any increasing bound B, φB(si) = E[vi|si]−π∗(si;B−i) is the new bound
on best replies obtained by a given upper bound B on beliefs.

Proposition 11 The function φbeq

is increasing, and satisfies:
(1) φbeq

(1) = beq(1);
(2) beq(si) < φbeq

(si) < beq(1) for all si ∈ (0, 1) .
(3) Every bid b ∈ (0, φbeq

(si)) is interim ∆ -rationalizable for si, for all si ∈ (0, 1] .

Proof. By the equilibrium condition beq(si) ∈ arg maxb≥0 π(b, si;b
eq). Therefore, Propo-

sition 8, (2) implies that beq(si) ≤ φbeq

(si) ≤ beq(1), where the inequalities are strict for
si ∈ (0, 1), and hold as equalities if si = 1. This proves (1) and (2). Proposition 8 (4) implies
that φbeq

is increasing.
(3) To prove that every bid in the interval (0, φbeq

(si)) is interim ∆-rationalizable for si,
we show that the n-tuple of correspondences

(
sj 7−→ (0, φbeq

(sj))
)n

j=1
(slightly modified for

the extreme values sj = 0, 1) has the best-response property:

• for sj ∈ (0, 1), let Cj(sj) = (0, φbeq

(sj)), and Ĉj(sj) = (0,beq(sj)].

• for sj = 0, let Cj(0) = {0} ∪ (0, φbeq

(0)) and Ĉj(0) = {0}.

• for sj = 1, let Cj(1) = Ĉj(1) = (0, φbeq

(1)] = (0,beq(1)].

By (1) and (2), Ĉ−j(sj) ⊆ C−j(sj) for all j and sj. Thus, ∆(Ĉ−j) ⊆ ∆(C−j) for all j, so

that ρj(sj; ∆j ∩∆(Ĉ−j)) ⊆ ρj(sj; ∆j ∩∆(C−j)).

Now Theorem 6 implies that, for all j and sj ∈ (0, 1), Cj(sj) ⊆ ρj(sj, ∆j ∩∆(Ĉ−j)), and

also that (0, φbeq

(sj)) ⊆ ρj(sj; ∆j ∩∆(Ĉ−j)) for sj = 0, 1.16 Moreover, since beq
−j ∈ ∆j, by the

equilibrium condition, also 0 ∈ ρj(0; ∆j ∩∆(Ĉ−j)) and φbeq

(1) = beq(1) ∈ ρj(1; ∆j ∩∆(Ĉ−j)).

Thus, Cj(sj) ⊆ ρj(sj; ∆j ∩ ∆(Ĉ−j)) for sj = 0, 1 as well. Since ρj(sj; ∆j ∩ ∆(Ĉ−j)) ⊆
ρj(sj; ∆j ∩∆(C−j)), the collection (C1, . . . , Cn) has the best-response property.

16The latter inclusion may hold vacuously for sj = 0, if φbeq

(0) = 0.
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We now turn to the characterization of interim ∆-rationalizability. For every signal
si ∈ [0, 1], let

B(si; 1) = E[vi|si],

B(si; k + 1) = E[vi|si]− infµ∈∆+(M−i;B−i(·;k)) π∗(si; µ) k ≥ 1.

Since infµ∈∆+(M−i;B−i(·;k)) π∗(si; µ) ≥ 0, we have B(·; 1) ≥ B(·; 2); by induction, if B(·; k−
1) ≥ B(·; k) for some k > 1,

∆+(M−i;B−i(·; k − 1)) ⊇ ∆+(M−i;B−i(·; k)),

so that, for every si ∈ [0, 1],

inf
µ∈∆+(M−i;B−i(·;k−1))

π∗(si; µ) ≤ inf
µ∈∆+(M−i;B−i(·;k))

π∗(si; µ),

and hence B(·; k) ≥ B(·; k+1) for all k. Thus, the sequence {B(·; k)}k≥1 is weakly decreasing
pointwise, and we can define B(si;∞) = limk→∞B(si; k) for all si. The main result of this
section can now be stated.

Theorem 12
(1) For all k = 1, 2, ... and si ∈ (0, 1], Ri(si; k) is an interval with interior (0,B(si; k)); the
upper bound B(·; k) is increasing, continuous, and satisfies B(·; k) > 0.
(2) For all si ∈ (0, 1], the set of interim ∆-rationalizable bids is an interval with interior
(0,B(si;∞)); the upper bound B(·;∞)) is nondecreasing and satisfies B(·;∞) > 0.

Proof. (1) The statement is true for k = 1 by Remark 3 and Assumption 4.17 Suppose it
is true for some k ≥ 1. Then Theorem 6 implies that R(si; k + 1) is an interval with interior
(0, E[vi|si]− π∗(si;B−i(·; k)) = (0,B(si; k + 1)) for all si ∈ (0, 1].

By the inductive hypothesis, B(·; k) is a continuous, increasing function such that B(·; k) >
0. Thus, Proposition 8 (1), (3) immediately implies that B(·; k + 1) = φB(·;k) is continuous
and such that B(·;k) > 0. Moreover, Proposition 8 (4) implies that either B(·; k + 1) is in-
creasing, or there is some sk < 1 such that B(s; k +1) = B(1; k) for all s ∈ [sk, 1]. By way of
contradiction, suppose that B(·; k+1) is not increasing. Then, B(s; k+1) = B(1, k) > B(s; k)
for some s ∈ (sk, 1), which contradicts B(s; k + 1) ≤ B(s; k). Therefore, B(·; k + 1) must
also be increasing.

(2) As noted above, the sequence {B(·; k)}k≥1 is weakly pointwise decreasing, and its
elements are increasing and positive by Part (1). Hence, its pointwise limit B(·;∞) is
nondecreasing. We first show that it satisfies B(·;∞) > 0.

As noted in the text, for any si, the Milgrom-Weber equilibrium bid beq(si) is interim
∆-rationalizable, and hence interim (∆, k)-rationalizable for all k ≥ 1. This implies that
B(si; k) ≥ beq(si) for all si and k ≥ 1; hence, B(·;∞) ≥ beq > 0, as required.

17Continuity of the map si 7→ E[vi|si] follows by Dominated Convergence.
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Next we show that every bid in the open interval (0,B(si;∞)) is interim ∆-rationalizable
for type si. Lemma 19 in the Appendix, applied to the sequence {B(·; k)}k≥1 and to its limit
B(·;∞), shows that

lim
k→∞

π∗(si;B−i(·; k)) = inf
µ∈∆+(M−i,B−i(·;∞))

π∗(si; µ).

Therefore
φB(·;∞)(si) = E[vi|si]− infµ∈∆+(M−i,B−i(·;∞)) π∗(si; µ) =

= limk→∞(E[vi|si]− π∗(si;B−i(·; k))) =
= limk→∞B(si; k + 1) =
= B(si;∞).

Theorem 6 then implies that every bid b∗ ∈ (0,B(si;∞)) is a best reply to some belief
µ ∈ ∆+(M−i;B−i(·;∞)).

We prove that the collection of correspondences (sj 7−→ (0,B(sj;∞)))n
j=1(slightly modi-

fied for the extreme values sj = 0, 1) has the best-response property:

• for sj ∈ (0, 1), let Cj(sj) = (0,B(sj;∞));

• for sj = 0, let Cj(0) = {0} ∪ (0,B(0;∞));

• for sj = 1, let Cj(1) = (0,B(1;∞)) ∪ {beq(1)}.

The zero bid must be included for type sj = 0 to ensure that Cj(0) 6= ∅ and ∆j∩∆(C−j) 6=
∅. As shown below, including bid b = beq(1) for type sj = 1 allows to rationalize the zero
bid for sj = 0. Also, since beq(1) is rationalizable for type sj = 1, B(1;∞) ≥ beq(1); hence,
Cj(1) is an interval, and beq(1) is either one of its interior points, or its right endpoint.

φB(·;∞) = B(·;∞) implies that Cj(sj) = (0,B(sj;∞)) ⊆ ρj(sj; ∆j ∩∆(C−j)) for all sj > 0;
moreover, it implies that (0,B(sj;∞)) ⊆ ρj(sj; ∆j ∩∆(C−j) for sj = 0, 1.

Furthermore, note that Proposition 11 implies that beq(sk) ∈ Ck(sk) for sk ∈ (0, 1); the
definition of Ck(sk) for sk = 0, 1 ensures that 0 = beq(0) ∈ Ck(0), and beq(1) ∈ Ck(1); thus, by
the equilibrium condition, sj ∈ ρj(sj; ∆j ∩∆(C−j) for sj = 0, 1 as well, and we conclude that
Cj(sj) ⊆ ρj(sj; ∆j∩∆(C−j) for all sj. Therefore, the collection (C1, . . . , Cn) has the best-reply
property. This proves that every bid in the interval (0,B(si;∞)) is ∆-rationalizable for type
si.

On the other hand, for every bid b > B(si;∞) there is some k such that b > B(si; k) and
this implies that b cannot be ∆-rationalizable for si (see Remark 4).

There are interesting examples of (symmetric) interdependent-values models where (a)
signals are independent, and (b) valuations functions are quasi-linear : that is, the valuation
function has the form v(si, s−i) = υ(s−i)si +κ(s−i), where υ and κ are nondecreasing and
υ > 0. Auctions with independent private values and the “wallet game” (see Klemperer,
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1998) belong to this class of models. For such models we find stronger results about rational-
izable bids. In particular, the following proposition shows that interim ∆-rationalizability
implies substantial shading for high conditional valuations (signals), but is consistent with
negligible shading for low conditional valuations (of course, interim ∆-rationalizability is
also consistent with extreme shading for all signals, because every positive bid below the
equilibrium is interim ∆ -rationalizable for bidders with positive signals).

Proposition 13 Suppose that the signals are independent and the valuation functions
quasi-linear. Then, for all k = 2, 3, ...,∞,

(1) the upper bound B(·; k) is concave;

(2) the “minimum-shading” function S(si; k) = E[vi|si] − B(si; k) is increasing (nonde-
creasing for k = ∞) and convex, with S(0; k) = 0 and S(si; k) > 0 for all si ∈ (0, 1];

(3) the “minimum-proportional-shading” function S(si,k)
E[vi|si]

(defined for si > 0) is positive
and nondecreasing; however,

lim
si↓0

S(si, k)

E[vi|si]
= 0.

Proof. Fix an increasing bound B. We claim that the value function π∗(si;B−i) is
increasing and convex in si.

To see this, note that, by quasi-linearity and independence,

π(b, si;B−i) = E[vi − b|si,B−i ≤ b] Pr[B−i ≤ b] =

=
(
E[υ|B−i ≤ b]si + E[κ|B−i ≤ b]− b

)
Pr[B−i ≤ b],

(6)

i.e. π(b, si;B−i) is linear in si, for any b.
To show that π∗(·;B−i) is increasing in its first argument, pick s′i > si. Suppose that

π∗(si;B−i) > 0; choose b∗ ∈ arg maxb≥0 π(b, si;B−i), and note that Pr[B−i ≤ b∗] > 0 and
υ > 0. Then (6) implies that π∗(s′i;B−i) ≥ π(b∗, s′i;B−i) > π(b∗, si;B−i) = π∗(si;B−i. If
instead π∗(si;B−i) = 0, Remark 3 shows that π∗(s′i;B−i) > π∗(si;B−i) = 0.

To see that π∗(·;B−i) is convex, choose si, s
′
i, λ ∈ [0, 1] and let b∗ ∈ arg maxb≥0 π(b, λsi +

(1− λ)s′i;B−i). Then, by linearity,

π∗(λsi + (1− λ)s′i;B−i) = π(b∗, λsi + (1− λ)s′i;B−i) =

= λπ(b∗, si;B−i) + (1− λ)π(b∗, s′i;B−i) ≤
≤ λπ∗(si;B−i) + (1− λ)π∗(s′i;B−i).

(7)

This completes the proof of the preliminary claim.
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We first prove (1)-(3) for k < ∞.
(1) By Theorem 12 (1), the upper bound B(·; k − 1) is indeed increasing for k − 1 >

0. Hence the argument above implies that B(·; k) = φB(·;k−1) is concave for each k > 1.
Concavity is preserved by taking the pointwise limit. Therefore B(·;∞) is also concave.

(2) The argument given above also implies that S(si; k) = π∗(si;B−i(·;k−1)) is increasing
and convex. Proposition 8 (1) implies that B(0;k − 1) = B(0; k) = E[vi|si = 0]. Therefore
S(0; k) = 0 and S(si; k) > 0 for any si > 0.

(3) Parts (1) and (2) imply that S(si,k)
E[vi|si]

is positive and nondecreasing. Furthermore,

we know that beq ∈ ∆+(M−i;B−i(·; k − 1)), where beq is the Milgrom-Weber equilibrium
bidding function. Then, Theorem 6 and Result 2 yield

S(si; k) = infµ∈∆+(M−i;B−i(·;k−1)) π∗(si; µ) ≤ π∗(si;b
eq
−i) ≤

≤ E[vi|si] Pr[B−i ≤ b] = E[vi|si] [G(B−1(si))]
n−1

,

where G denotes the common marginal c.d.f. of the signals. Thus

0 ≤ lim
si↓0

S(si; k)

E[vi|si]
≤ lim

si↓0

[
G(B−1(si))

]n−1
= 0.

Results (1)-(3) also hold for k = ∞. In particular, S(si;∞) ≥ S(si, 2) > 0 for si > 0.
Concavity/convexity and weak monotonicity are preserved by taking the limit k → ∞. As
for proportional shading by low types, Lemma 19 in the Appendix and the argument above
imply

S(si;∞) = lim
k→∞

inf
µ∈∆+(M−i,B−i(·;k))

π∗(si; µ) ≤ E[vi|si]
[
G(B−1(si))

]n−1

Therefore

0 ≤ lim
si↓0

S(si;∞)

E[vi|si]
≤ lim

si↓0

[
G(B−1(si))

]n−1
= 0.

4.2.1 Private Values

In the previous subsection we analyzed (interim) ∆-rationalizability with ∆i = ∆+(B−i) ∩
∆(M−i). But we remarked in Section 3 that the restriction to monotonic beliefs is immaterial
if the auction game has private values, i.e., if signals and valuations coincide. In particular,
Theorem 6 (4) implies that all the results about ∆-rationalizability of the previous subsection
also hold for ∆i = ∆+(B−i).

In the case of private values it makes sense to denote a generic signal by vi. The upper
bound on best responses to beliefs in ∆+(B−i) is B(vi; 1) = vi. Therefore we obtain

22



Remark 6 R(vi; 1) = (0, vi) for all vi ∈ (0, 1] and R(0; k) = {0} for all k. This implies that
for all µ and all k = 1, 2, ..., µ ∈ ∆i ∩∆(R−i(·, k)) if and only if µ ∈ ∆(R−i(·, k)), that is,
the condition ∀b > 0,

∫
B−i

Pr[b−i < b|vi]µ(db−i) > 0 is superfluous because it is implied by

µ ∈ ∆(R−i(·, k)).

Using Theorem 6 (4), one can easily prove that for every vi > 0 a bid b is weakly domi-
nated for valuation/type vi if and only if b /∈ (0, vi).

18 We can conclude that the procedure
given by in Definition 10 with ∆+(B−i) is equivalent to performing one round of elimination
of all weakly dominated bids for each type, followed by the iterated elimination, for each
type, of bids which are never best responses.19 Therefore, in this case ∆-rationalizability
captures the implications of the following assumptions:

(a) every bidder is rational,
(b) every bidder is cautious (i.e., she would never choose a weakly dominated bid),
(c) there is common certainty of (a) and (b).

5 Discussion

This section discusses the relationship between our findings and the experimental evidence
on first-price auctions, and indicates a number of extensions. To fix ideas, we begin with an
overview of our results.

Our key analytical tool is a characterization of the best responses for a type to beliefs
satisfying certain restrictions. Specifically, if a (risk neutral) rational player i of type si

believes that his opponents are not going to bid above a given, type-dependent least upper
bound B, then she can choose any bid in the interval (0, φB(si)); φB is thus the new least
upper bound derived from B.

We then use this result to obtain an iterative characterization of interim rationalizable
bids. The upper bound obtained in the first step of the algorithm is B(si, 1) = E(vi|si), where
E(vi|si) is the conditional valuation of the good for type si. In subsequent steps k = 2, 3...,
we apply our characterization result and derive an upper bound B(si; k) = φB(·;k−1)(si) from
the previous upper bound B(·; k−1). (Of course, B(si; k) ≤ B(si; k−1).) The set of interim
rationalizable bids for type si is an interval with interior (0, limk→∞B(si; k)). This provides
a relatively simple implementation of interim rationalizability.

We show that the upper bound on interim rationalizable bids is nondecreasing and strictly
above the Nash equilibrium. Furthermore, if signals are independent and valuation functions

18A bid b is weakly dominated for valuation vi if there is another bid b′ such that π(b, vi;b−i) ≤ π(b′, vi;b−i)
for all b−i ∈ B−i and the inequality is strict for at least one b−i.

19The “ex ante version” of this procedure was first put forward and motivated by Dekel and Fudenberg
(1990). Since then, several papers provided other epistemic characterizations. See Section 6 in the survey
by Dekel and Gul (1997) and the references therein.
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quasi-linear (e.g., in auctions with independent private values), this upper bound is concave,
implying substantial proportional shading for high types.

Our analysis has implications for revenue comparisons in auctions with independent pri-
vate values and risk-neutral bidders. We rely on a form of “cautiousness” that rules out
weakly dominated bids. In second -price auctions, this implies that players will bid their
valuation, so that rationalizable bids coincide with equibrium bids. On the other hand, ra-
tionalizable expected revenues in a first-price auction can be lower or higher than equilibrium
expected revenues. By the equilibrium revenue equivalence result, rationalizable expected
revenues in a first-price auction can be lower or higher than in a second-price auction.

Perhaps more interestingly, rationalizable expected revenues in a first-price auction can
be arbitrarily close to zero, and will always be lower than they would be if players were to
bid their valuation. Observe that, with independent private values, as the number of bidders
grows, the first-price equilibrium bid function approaches the identity function, implying that
the same must hold for the upper bound on rationalizable bids. Thus, in rough, intuitive
terms, in the limit, revenue equivalence obtains only in the “best scenario” (from the point
of view of the seller) where players bid close to their upper bound.

5.1 Experiments and Deviations From the Risk-Neutral Nash Equi-
librium

There are (at least) three “stylized facts” emerging from the experimental studies on first-
price auctions with independent private values, which we find relevant in relation to our
theoretical analysis:20

Overbidding. A large majority of subjects show a persistent tendency to bid above the
risk-neutral Nash equilibrium (RNNE).

Decreasing Proportional Deviations. Deviations from RNNE are proportionally larger for
subjects with smaller valuations; in other words, the ratio

|actual bid-RNNE bid|
valuation

is negatively correlated with subjects’ private valuations.21

Heterogeneity. Bidding behavior is heterogeneous across subjects. 22

In a series of papers, Cox, Smith and Walker try to explain the data with a family of
models featuring bidders with heterogeneous degrees of (constant relative) risk aversion. In
such models, equilibrium bidding functions are linear (like the RNNE function) except for

20See, for example, Kagel (1995) for a survey about experiments on auctions.
21See e.g. Kagel and Roth (1992), p 1381.
22For example, Cox et al. (1988) reject the null hypothesis of a common bidding function in symmetric

IPV auctions.
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the largest valuations, but have heterogenous slopes and are steeper than the RNNE (e.g.
Cox et al., 1988, 1992). The risk-aversion explanation of Overbidding is controversial. In
particular, it leaves Decreasing Proportional Deviations largely unexplained. Furthermore,
it is at odds with experimental findings concerning different auction settings.23

We believe that our paper sheds light on a different explanation of these experimental
findings: different subjects have different beliefs about the bidding behavior of their com-
petitors, and the limited feedback they get from the outcomes of previous auctions prevents
them from approaching the equilibrium sufficiently fast (e.g. Friedman, 1992). But even
if subjects do not hold equilibrium beliefs, they may be sophisticated enough to take into
account that their competitors’ behavior satisfies some rationality restrictions and, possibly,
that also their opponents’ beliefs conform to analogous assumptions. Our paper identifies the
least upper bound on bids of strategically sophisticated, risk-neutral bidders with heteroge-
nous beliefs. Since the upper bound is above the (linear) RNNE and concave, Overbidding
and Decreasing Proportional Deviations are qualitatively consistent with risk-neutrality and
(a degree of) strategic sophistication.

We regard non-equilibrium (but strategically sophisticated) bidding as a complementary
explanation of experimental findings, which can be integrated with risk-aversion. In Batti-
galli and Siniscalchi (2000) we show how risk-aversion can be incorporated into our analysis.

Experimental evidence suggests a number of extensions to our results. First, our analysis
so far does not offer an explanation of the asymmetry in subjects’ deviations from RNNE
(i.e. the tendency to bid above the RNNE), nor does it explain why very small bids are
so rare for subjects with intermediate or high valuations. Second, it may be argued that
rational bidders should form their beliefs about the competitors and make plans before
they are told their valuation, and therefore ex ante rationalizability is a more appropriate
solution concept in this context.24 Third, in most experimental settings there is an (explicit
or implicit) minimum bid increment. We discuss these issues in the following subsection.

23In third-price auctions, risk aversion implies bidding below the RNNE, whereas experiments show signif-
icant bidding above the RNNE (Kagel and Levin, 1993). Other partial explanations of Overbidding involve
(i) psychological biases related to frame effects and the complexity of the decision problem (e.g. Kagel, 1995,
Section I.B), and (ii) lack of experimental control on subjects incentives due to a small expected cost of devi-
ations from the optimal bid (Harrison, 1989). Section I.G in Kagel (1995) provides a discussion of the debate
about the risk-aversion explanation. Kagel and Roth (1992) presents Decreasing Proportional Deviations as
one of the empirical findings at odds with the constant relative risk aversion model. A recent experimental
paper by Goeree et al. (2000) provides support for the risk-aversion explanation.

24Which solution concept (interim or ex ante) is more appropriate depends on our interpretation of the
formal asymmetric-information model. If it represents a situation with genuine incomplete information
without an ex ante stage, then interim rationalizability is appropriate. If it represents a situation where the
bidders really obtain information about the outcome of a chance move, then ex ante rationalizability may
be more appropriate. Experimental games fall in the second category.
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5.2 Some extensions and related results

Unknown distribution of signals. We have derived our results under the assumption that the
distribution of signals F is common knowledge. However, similar results can be obtained
under more general assumptions. For the sake of simplicity, we discuss here the (symmetric)
IPV case with two bidders.

Suppose that the true c.d.f. F is not known, but it is common knowledge that the
valuation of a generic bidder is distributed according to some continuous density f bounded
below by a strictly positive continuous function g : [0, 1] → R such that

∫ 1

0
g(v)dv < 1.

Suppose that bidder i believes that her competitor −i will not bid above a given increasing
upper bound B > 0 (e.g. B(v) = v). Adapting the proof of Theorem 6, we can show that
the new least upper bound on bids derived from B is

φB(v) = v − max
0≤b≤v

(v − b)G∗(B−1(b)),

where G∗ is the “pessimistic” c.d.f. that assigns probability mass 1 − ∫ 1

0
g(w)dw to the

highest type v−i = 1 and probability
∫ v′′

v′ g(w)dw to any interval [v′, v′′] with v′′ < 1 (G∗

can be obtained as the limit of a sequence of continuously differentiable c.d.f.’s Fn such that
F ′

n = fn ≥ g).
Our qualitative results on bounds continue to hold in this setting. Of course, the upper

bounds we find will be higher than in the model where a density f (with f(v) ≥ g(v))
is common knowledge: since more beliefs are allowed, more bids are rationalizable. For
example, if g(v) = c < 1, then second-step upper bound is B(v; 2) = v − cv2

4
which is above

the upper bound obtained with a common knowledge uniform distibution, i.e. v − v2

4
(see

Section 2).25

Lower Bounds. Theorem 12 shows that imposing successively higher-order mutual belief
in the assumption that players are rational (and that positive bids win with positive prob-
ability) yields a decreasing sequence of least upper bounds B(·; k) on the set of best replies
for every bidder type. However, arbitrarily small but positive bids are interim rationalizable.

In view of the experimental findings mentioned above, it may be interesting to exoge-
nously specify a lower bound L ∈ B−i to players’ bids, and investigate the consequences of
the further assumption that (it is mutual belief that) players do not expect their opponents
to bid below L. A preliminary analysis may be found in Appendix 6.2.2 of Battigalli and
Siniscalchi (2000). It is shown that the upper bounds obtained with this modified solution
procedure are similar to those found here.

25In an interdependent-values setting with unknown distribution of signals, Chung and Ely (2000) analyze
the efficiency properties of a generalized Vickrey-Clarke-Groves mechanism using a notion of “iterated ex-post
weak dominance”.
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Ex-Ante Rationalizability. Our analysis of interim rationalizability provides an upper
bound on ex-ante rationalizable bidding functions, but we are not able to show the upper
bound is tight. However, some of our qualitative results also hold for ex ante rationalizability.
In particular, we can show that the analog of Proposition 11 continues to hold: the upper
bound on rationalizable bids is strictly above the RNNE and every positive bid below this
upper bound is rationalizable (see Battigalli and Siniscalchi, 2000, p.24).

Discrete Bids. In most experimental settings, bids are discrete because there is a (possibly
only implicit) minimum increment δ (e.g., a cent), so that the set of bids is {0, δ, 2δ, ..., kδ, (k+
1)δ), ...}. Our analysis of rationalizable bids provides an acceptable approximation if the
number of players is not very large and δ is small. This appears to be the case in most
experiments, as well as in many real-life situations.

Dekel and Wolinski (2000) analyze the opposite case (a large population of players and a
non-negligible minimum increment) in an IPV setting. They identify a nondecreasing lower
bound to the set of rationalizable bids and show that, for any fixed minimum increment δ,
as the number of bidders n gets large, this lower bound approaches the equilibrium bidding
function. Thus, rationalizability and equilibrium roughly coincide in large IPV auctions with
a non-negligible minimum increment on bids.

Asymmetries. The approach presented in this paper may be extended to environments
where players are not symmetric, i.e. Assumptions 1 and 2 are violated. This is carried out
in Battigalli and Siniscalchi (2000). Theorem 6 and Proposition 8 are easily extended, but
the upper bounds on k-rationalizable bids may be flat at the top.

6 Appendix

6.1 Derivation and Properties of Bounds

We begin by introducing additional notation used in the proofs.

6.1.1 Notation

Sets of bidders and signals. Let N = {1, ..., n} denote the set of players. For any subset of
players J ⊆ N , let SJ =

∏
j∈J Sj, and for simplicity define SN\{i} = S−i. A generic element

of SJ is denoted sJ . For any partition {K,L} of the set of players J and any sK ∈ SK ,
sL ∈ SL, (sK , sL) is the element of SJ obtained from sK and sL.

For any nonempty subset J ⊆ N of players, denote by FJ the marginal of c.d.f. F on SJ ,
and by F−J its marginal on SN\J ; finally, given a subset K of players such that K ∩ J = ∅,
denote by FK|J the conditional c.d.f on SK given the signals of players j ∈ J .
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Private values. Recall that, by Assumption 4, the valuation function v is continuous and
increasing in its first argument. Thus, if the game has private values, it may be assumed
without loss of generality that v(si, s−i) = si for all si and s−i.

Random vectors and events. We denote m-dimensional random vectors, defined as (Borel
measurable) functions with domain SJ and range Rm, with boldface letters. In particular,
for any set of players J and random variables bj, j ∈ J , we let bJ denote the joint function
(random vector) defined by bJ(sJ) = {bj(sj)}j∈J . For any set of players J and tuple of
random variables bJ , we denote by bmax

J the scalar-valued random variable defined by the
map sJ 7→ maxj∈J bj(sj).

Events related to the signals of players in set J are represented by means of square
brackets with an index J specifying that we refer to a subset of SJ . For example, let K ⊆ J ;
then [bK < b]J ⊆ SJ is the set of vectors of signals sJ such that bj(sj) < b for all j ∈ K.
When J = N\{i} we suppress the index, as S−i is the basic space of uncertainty from the
point of view of Bidder i. Thus, for example, [∀j ∈ K, bj < bj] ⊆ S−i.

Expected payoff. Taking the possibility of ties into account, the expected payoff of bidding
b given signal si and belief µ ∈ ∆(B−i) is

π(b, si; µ) =

∫

B−i

E[vi − b|si,b−i < b] Pr[b−i < b|si]µ(db−i)+ (8)

+
∑

∅6=J⊆N\{i}

1

1 + |J |
∫

B−i

E [vi − b|si, T (J, b;b−i)] Pr[T (J, b,b−i)|si]µ(db−i),

where T (J, b;b−i) = [b−J∪{i} < b] ∩ [∀j ∈ J,bj = b].
It is convenient to define a modified version of the expected payoff function for a bidder

with nondecreasing conjectures, which may assign positive probability to ties. For any tuple
{Bj}j 6=i of (nondecreasing) real-valued functions on [0, 1], define

π̄(b, si;B−i) = (E[vi|si,B−i < b]− b) Pr[B−i < b|si]+ (9)

+ max
{
0,

(
E[vi|si,B

max
−i = b]− b

)
Pr[Bmax

−i = b|si]
}

.

To avoid repeating tedious qualifications, for every random variable h and event F , if
Pr[F ] = 0, we assume that E[h|F ] is such that E[h|F ] Pr[F ] = 0.

If the game has private values, the above function takes up a particularly simple form.
We define modified payoffs for arbitrary beliefs µ ∈ ∆(B−i).

π̄(b, si; µ) =

{
(si − b)

∫
B−i

Pr[Bi ≤ b|si]µ(db−i) b ∈ [0, si]

(si − b)
∫
B−i

Pr[Bi < b|si]µ(db−i) b > si.
(10)
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6.1.2 Preliminary Results

Lemma 14 Consider a nondecreasing bid function B and let B−i = (B,B, . . .). For every
signal si ∈ [0, 1], the function π̄(·, si;B−i) : R+ → R is upper semicontinuous. There-
fore, supb≥0 π̄(b, si;B−i) is attained. Finally, if B is increasing (i.e., B−i ∈ M−i), then
π̄(·, si;B−i) = π(·, si;B−i), and both functions are continuous.

Proof. Fix b ≥ 0 and consider a sequence bk → b such that limk→∞ π̄(bk, si;B−i)
exists; denote the latter by L. We must show that L ≤ π̄(b, si;B−i). Observe that, since∑

k≥1 Pr[Bmax
−i = bk|si] ≤ 1, it must be the case that Pr[Bmax

−i = bk|si] → 0.

Assume first that bk ↑ b. Note that the indicator functions of the events [B−i < bk]
converge pointwise to the indicator function of [B−i < b]. Therefore, since vi is bounded and
so is the convergent sequence {bk}, by Dominated Convergence (cf. Aliprantis and Border,
1994, p.323) and the observation that the probability of ties vanishes as k →∞ we conclude
that L = (E[vi|si,B−i < b] − b) Pr[B−i < b|si], so L ≤ π̄(b, si;B−i). Observe that the
inequality can only be strict if Pr[Bmax

−i = b|si] > 0.
Assume next that bk ↓ b. Now the indicator functions of the events [B−i < bk] converge

pointwise to the indicator function of [B−i ≤ b], so L = (E[vi|si,B−i ≤ b] − b) Pr[B−i ≤
b|si] ≤ π̄(b, si;B−i). Again, the inequality can only be strict if Pr[Bmax

−i = b|si] > 0.
To complete the proof, consider an arbitrary convergent sequence bk → b and an arbi-

trary subsequence {bkn} such that limn→∞ π̄(bkn , si;B−i) ≡ L exists. If the subsequence is
itself monotonic, then L ≤ π̄(b, si;B−i) by the above arguments. Otherwise, it must contain a
monotonic sub-subsequence {bknm} such that bknm → b and π̄(b, si;B−i) ≥ limm→∞ π̄(bknm , si;B−i) =
L .

Finally, to prove the last claim note that if B−i ∈ M−i, then Pr[Bmax
−i = b|si] = 0 for all

b.

In a private-values setting, the relationship between the payoff function π and the mod-
ified payoff function π̄ is even closer.

Lemma 15 Assume the game has private values. Then, for every signal si, bid b ∈ [0, si]
and belief µ ∈ ∆(B−i), π̄(b, si; µ) ≥ π(b, si; µ). Moreover, π∗(si; µ) = maxb≥0 π̄(b, si; µ).

Proof. The first claim is obvious upon inspecting Equations (8) and (10). This implies
that π∗(si; µ) ≤ maxb≥0 π̄(b, si; µ). Now choose b∗ ∈ arg maxb≥0 π̄(b, si; µ); notice that b∗ ∈
[0, si] for at least one maximizer b∗. Since there can be at most countably many bids b such
that

∫
B−i

Pr[bmax
−i = b|si]µ(db−i) > 0, there exists a sequence bk ↓ b∗ such that

∫
B−i

Pr[bmax
−i =

bk|si]µ(db−i) = 0 for all k. For each b−i ∈ B−i,
⋂

k≥1[b−i ≤ bk] = [b−i ≤ b∗]; thus, by

continuity of the measure Pr[·|si], Pr[B−i ≤ bk|si] → Pr[B−i ≤ b|si] for all k ≥ 1. Hence,
by Dominated Convergence,

∫
B−i

Pr[b−i ≤ bk|si]µ(db−i) →
∫
B−i

Pr[b−i ≤ b∗|si]µ(db−i),
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and therefore π(bk, si; µ) → π̄(b∗, si; µ). Since π∗(si; µ) ≥ π(bk, si; µ) for all k, π∗(si; µ) ≥
maxb≥0 π̄(b, si; µ). This establishes the second claim.

We state another preliminary lemma, which verifies that the conjecture B−i is “more
pessimistic” than any belief µ ∈ ∆+(M−i;B−i).

Lemma 16 Consider a nondecreasing bid function B and let B−i = (B,B, . . .). For every
signal si ∈ [0, 1] and bid b ≥ 0:
(1) if π̄(b, si;B−i) > 0 and Pr[Bmax

−i = b|si] = 0, then π(b, si; µ) ≥ π̄(b, si;B−i) for any
µ ∈ ∆+(M−i;B−i);
(1-PV) If the game has private values and b ∈ [0, si], then π̄(b, si; µ) ≥ π̄(b, si;B−i) for any
µ ∈ ∆+(B−i;B−i);
(2) if π̄(b, si;B−i) ≥ 0, b > 0 and Pr[Bmax

−i = b] > 0, then E[vi − b|si,B
max
−i = b] ≥ 0.

Therefore:
(3) infµ∈∆+(M−i;B−i) π∗(si; µ) ≥ maxb≥0 π̄(b, si;B−i).
(3-PV) If the game has private values, then infµ∈∆+(B−i;B−i) π∗(si; µ) ≥ maxb≥0 π̄(b, si;B−i).

Proof. The claims pertaining to the private-values case are simple to establish, and
illustrate the basic ideas.

(1-PV) For any bid b and conjecture b−i ∈ B−i such that b−i < B−i, Pr[b−i ≤ b|si] ≥
Pr[B−i ≤ b|si]. Therefore, for any bid b ∈ [0, si],

π̄(b, si; µ) = (si − b)

∫

B−i

Pr[b−i ≤ b|si]µ(db−i) ≥ (si − b) Pr[B−i ≤ b|si] = π̄(b, si;B−i).

(3-PV) Clearly, for any belief µ ∈ ∆+(B−i;B−i), no bid b > si can maximize π̄(·, si; µ).
Thus, (1-PV) implies that, for any such belief, maxb≥0 π̄(b, si; µ) ≥ maxb≥0 π̄(b, si;B−i).
Hence, by Lemma 15,

infµ∈∆+(B−i;B−i) π∗(si; µ) = infµ∈∆+(B−i;B−i) maxb≥0 π̄(b, si; µ) ≥
≥ maxb≥0 π̄(b, si;B−i).

Under our monotonicity and affiliation assumptions, the same basic ideas generalize to
the interdependent-values setting. We first illustrate the argument by proving Claim (1) for
the case of a single competitor −i = j and continuous, increasing conjectures Bj,bj; thus,
there are no positive-probability ties: π̄(·, si,bj) = π(·, si,bj), and similarly for Bj. Note
that

π(b, si;bj) = E[vi − b|si, B < b] Pr[B < b|si]+
+ E[vi − b|si,bj < b ≤ B] · Pr[bj < b ≤ B|si].

Since Pr[B = b|si] = 0, the first term in the r.h.s. equals π(b, si;B). If Pr[bj < b ≤
B|si] = 0 we are done. If Pr[bj < b ≤ B|si] > 0, we must show that E[vi − b|si,bj <
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b ≤ B] ≥ 0. Since π(b, si;B−i) > 0, b > B−1(0). Therefore [B < b]j = [0,B−1(b)) and
[bj < b ≤ B]j = [B−1(b),b−1

j (b)) (let b−1
j (b) = 1 if b > bj(1)). Hence, by Result 2,

E[vi − b|si,bj < b ≤ B] ≥ E[vi − b|si,B < b] > 0, where the latter inequality follows from
π(b, si;B−i) = E[vi − b|si,B < b] Pr[B < b|si] > 0. This establishes the claim in the simple
case.

(1) It is enough to prove the claim for a belief µ concentrated on a single profile b−i ∈M−i

such that b−i < B−i. Note that

π(b, si;b−i) = E[vi − b|si,B−i < b] Pr[B−i < b|si]+

+
∑

∅6=J⊆N\{i} E[vi − b|si,BN\(J∪i) < b,bJ < b ≤ BJ ]·
·Pr[BN\(J∪i) < b,bJ < b ≤ BJ |si].

Since Pr[Bmax
−i = b|si] = 0, the first term in the r.h.s. equals π̄(b, si;B−i). If Pr[BN\(J∪i) <

b,bJ < b ≤ BJ |si] = 0 for all nonempty J ⊆ N \ {i}, the proof of the claim is complete.
Otherwise, for any nonempty J ⊆ N \{i} such that Pr[BN\(J∪i) < b,bJ < b ≤ BJ |si] > 0, we
must show that E[vi−b|si, BN\(J∪i) < b,bJ < b ≤ BJ ] ≥ 0. Fix one such J and note that, for
every j 6= i, the greatest lower bound of the set [Bj < b]j is 0 (recall that π̄(b, si;B−i) > 0),
and its least upper bound is sup{sj : Bj(sj) < b}; also, the g.l.b of [bj < b ≤ Bj]j is
inf{sj : Bj(sj) ≥ b} ≥ 0 and its l.u.b. is sup{sj : bj(sj) < b} ≥ sup{sj : Bj(sj) < b}. 26

Hence, by Remark 2, E[vi− b|si,BN\(J∪i) < b,bJ < b ≤ BJ ] ≥ E[vi− b|si,B−i < b]; since
π̄(b, si;B−i) > 0 and Pr[Bmax

−i = b|si] = 0 by assumption, we must have Pr[B−i < b|si] > 0
and E[vi − b|si,B−i < b] > 0, which establishes the claim.

(2) If E[vi − b|si,B−i < b] < 0 the claim follows immediately because π̄(b, si;B−i) ≥ 0.
If instead E[vi − b|si,B−i < b] ≥ 0, note that

E[vi − b|si,B
max
−i = b] =

∑
∅6=J⊆N\{i} E[vi − b|si,BN\(J∪i) < b,BJ = b]·

·Pr[BN\(J∪i) < b,BJ = b|si,B
max
−i = b].

As above, Remark 2 implies that, for any nonempty J ⊆ N \ {i} such that Pr[BN\(J∪i) <
b,BJ = b|si,B

max
−i = b] > 0, E[vi − b|si,BN\(J∪i) < b,BJ = b] ≥ E[vi − b|si,B−i < b] ≥ 0,

which proves the claim.27

(3) Choose b∗ ∈ arg maxb≥0 π̄(b, si;B−i). The required inequality holds trivially if π̄(b∗, si;B−i) =
0, so assume π̄(b∗, si;B−i) > 0. In particular, B−i > 0 implies that Pr[Bmax

−i = 0|si] = 0, so
we can assume that b∗ > 0. Choose µ ∈ ∆+(M−i; B−i). Assume that Pr[Bmax

−i = b∗|si] = 0;
then, by Claim (1), π∗(si; µ) ≥ π(b∗, si; µ) ≥ π̄(b∗, si;B−i), and we are done. If instead
Pr[Bmax

−i = b∗|si] > 0, consider a sequence bk ↓ b∗ such that Pr[Bmax
−i = bk|si] = 0 for all

k: this is possible because there can be at most countably many positive-probability ties.

26The above, detailed argument will be omitted henceforth.
27The claim may be false for b = 0, if Pr[Bmax

−i = 0|si] > 0.
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Since, for any b−i ∈ M−i, π(·, si;b−i) is continuous, π(b∗, si;b−i) = limk→∞ π(bk, si;b−i) ≥
limk→∞ π̄(bk, si;B−i) = π̄i(b

∗, si;B−i), where the inequality follows from Claim (1), and the
second equality follows from Claim (2). Integrating with respect to µ, this implies that
π∗(si; µ) ≥ π(b∗, si; µ) ≥ π̄(b∗, si;B−i).

We next develop the machinery required to approximate B−i with beliefs belonging to
∆+(M−i;B−i). Define an increasing and continuous map σ : [0, 1]× (0, 1] → [0, 1] by

∀(x, α) ∈ [0, 1]× (0, 1], σ(x, α) =

{
1−α

α
x x ∈ [0, α](

1− α
1−α

)
+ α

1−α
x x ∈ (α, 1]

. (11)

That is, for every α ∈ (0, 1], the graph of σ(·, α) is the piecewise linear function joining the
origin with the point (α, 1−α), and the latter with the point (1, 1). Each function σ(·, α) is
continuous and differentiable everywhere except at x = α. Its inverse τ : [0, 1]×(0, 1] → [0, 1]
is given by

∀(y, α) ∈ [0, 1]× (0, 1], τ(y, α) =

{
α

1−α
y y ∈ [0, 1− α](

1− 1−α
α

)
+ 1−α

α
y y ∈ (1− α, 1]

, (12)

i.e. the piecewise linear function joining the origin with the point (1− α, α), and the latter
with the point (1, 1). Each function τ is continuous and differentiable everywhere except at
y = 1− α.

Note that, as α ↓ 0, σ(·, α) converges pointwise on (0, 1] to the constant function 1; for
notational convenience, we let σ(x, 0) = 1 for all x ∈ [0, 1]. Similarly, τ converges pointwise
to the constant function 0 ≡ τ(y, 0).

Now, for any non-negative real number α ≥ 0 and bid function b : [0, 1] → R+, define
the function b(α) : [0, 1] → R+ by

∀sj ∈ [0, 1], b(α)(sj) = σ(sj, α)b(sj). (13)

In conjunction with Lemma 16, the following Lemma implies that supb≥0 π̄(b, si;B−i) is
the least upper bound Bidder i may obtain by best-responding to beliefs in ∆+(M−i;B−i).

Lemma 17 Let B be a nondecreasing bid function, and define B−i = (B,B, . . .). Fix
arbitrarily a signal si ∈ [0, 1].

(1) For all α > 0, B
(α)
−i ∈ ∆+(M−i;B−i).

Moreover, for every sequence αk ↓ 0:
(2) B(αk) → B a.s. pointwise;

(3) for every b ≥ 0 and every sequence bk → b, limk→∞ π(bk, si;B
(αk)
−i ) ≤ π̄(b, si;B−i);

(4) π∗(si;B
(αk)
−i ) → maxb≥0 π̄(b, si;B−i).
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Proof. (1) Denote an arbitrary opponent of Player i by j throughout this proof. Note
that, for any α > 0, B(α) < B (with equality for sj = 1). Moreover, s′j > sj implies

σ(sj, α)B(sj) < σ(s′j, α)B(sj) ≤ σ(s′j, α)B(s′j), so B(α) is increasing. Finally, for any b > 0

there exists sj > 0 such that σ(sj, α)B(1) < b, and thus B(α)(sj) < b. Therefore, Pr[B
(α)
−i <

b|si] > 0, and the first assertion of the Lemma is proved.
Now fix b ≥ 0 and consider sequences αk ↓ 0 and bk → b.
(2) Pointwise convergence on (0, 1] follows from the properties of the function σ.
(3) We begin by computing the a.s. pointwise limit of the sequence of indicator functions

corresponding to the events [B
(αk)
−i ≤ b].

Choose any sj > 0. If B(sj) < b, then for k large B(αk)(sj) < bk; similarly, if B(sj) > b,
then for k large B(αk)(si) > bk. Also note that, if B(0) > b, then, for every ε > 0, there
exists K such that k ≥ K implies B(αk)(ε) > bk, so

⋂
k≥1[B

(αk) ≤ bk]j = {0}.
Finally, suppose B(sj) = b. Since B(αk) is increasing for every k, it follows that, for every

k, the set L(k) = {sj ∈ [0, 1] : B(sj) = b, B(αk)(sj) > bk} satisfies

sj ∈ L(k), B(s′j) = b, s′j > sj ⇒ s′j ∈ L(k).

Now define `(k) = min(1, inf L(k)) (where inf ∅ = ∞). Thus, if B(sj) = b, then sj > `(k)
implies B(αk)(sj) > bk (otherwise sj would be a greater lower bound to L(k) than `(k)), and
sj < `(k) implies B(αk)(sj) ≤ bk (either because L(k) = ∅, or because otherwise there would
be some other s′j ∈ (sj, `(k)) such that B(s′j) = b and B(αk)(s′j) > bk).

Next, w.l.o.g. assume that `(k) → `. Then the indicator functions of the events [B
(αk)
−i ≤

bk] converge a.s. pointwise to the indicator function of the event

[B−i < b] ∪
(
[Bmax

−i = b] ∩ [s−i ≤ `−i]
)
≡ [B−i < b] ∪ T−i(b).

By the Dominated Convergence theorem, this yields

π(bk, si;B
(αk)
−i ) →

∫

[B−i<b]

(vi − b)F−i|i(ds−i|si) +

∫

T−i(b)

(vi − b)F−i|i(ds−i|si).

If Pr[T−i(b)|si] = 0, then limk→∞ πi(b
k, si;B

(αk)
−i ) ≤ π̄(b, si;B−i) follows immediately. Other-

wise, by Remark 2, E[vi − b|si, T−i(b)] ≤ E[vi − b|si,B
max
−i = b] ≤ max(0, E[vi − b|si,B

max
−i =

b]), and Claim (3) follows.

(4) Consider a sequence αk ↓ 0 and, for every k, choose bk ∈ arg maxb≥0 π(b, si;B
(αk)
−i );

note that the maximum is achieved because π(·, si;B
(αk)
−i ) is continuous. Assume w.l.o.g.

that the sequence of maximizers converges, and let b∗ = limk→∞ bk. Claim (3) implies that

limk→∞ π∗(si;B
(αk)
−i ) = limk→∞ π(bk, si;B

(αk)
−i ) ≤ π̄(b∗, si;B−i) ≤ maxb≥0 π̄(b, si;B−i). Since

the reverse inequality follows from Lemma 16, (3), the proof is complete.
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6.1.3 Theorem 6

We are finally able to prove the main result of Section 3, Theorem 6. The key step is the
proof of Claim (2). We sketch the main argument here (see also the discussion in Section 2.

For any bid b∗ < φB−i(si), the justifying belief g
(α)
−i has the qualitative features illustrated

in Figure 1. Specifically, g(α) is increasing and lies below B; moreover, it approximates the
upper bound B up to the point s̄ where the latter crosses the bid b∗ , and approximates b∗

thereafter.
To verify the optimality of b∗ given g

(α)
−i , we proceed in two steps. First, we argue that

Bidder i’s payoff function π(b, si;g
(α)
−i ) is pointwise dominated by the “two-bidder, private-

values” objective function (E[vi|si] − b) Pr[g
(α)
−i ≤ b|si]. Moreover, the two functions share

the same value E[vi|si]− b∗ for b = b∗. We then prove that b = b∗ maximizes this auxiliary
objective function among all bids b chosen by at least one opponent j with type sj ≥ s̄—that
is, a type for which g(α)(sj) approximates b∗.

The second and concluding step entails verifying that, for all remaining bids b, Bidder
i’s payoff given g

(α)
−i is close to her payoff given B−i, her “pessimistic” conjecture. By the

definition of φB−i(si), this implies that no such bids can be profitable deviations from b∗.

Proof of Theorem 6. Note first that Lemmata 16 and 17 imply that part (3) of the
Theorem is true. Moreover, if the game has private values, we have

max
b≥0

π̄(b, si;B−i) = inf
µ∈∆+(M−i;B−i)

π∗(si; µ) ≥ inf
µ∈∆+(B−i;B−i)

π∗(si; µ) ≥ max
b≥0

π̄(b, si;B−i) :

the first equality appears in Part (3) of the Theorem, the first inequality reflects the fact
that M−i ⊂ B−i, and the second inequality is Claim (3-PV) in Lemma 16. Also, Lemma 15
states that maxb≥0 π̄(b, si;B−i) = π∗(si;B−i). Thus, (4) holds.

To see that (1) holds, observe that, by Remark 3, for any b−i ∈ M−i, E[vi|si,b−i <
b∗] ≤ E[vi|si]. Hence, if b∗ > E[vi|si] − infµ∈∆+(M−i;B−i) π∗(si; µ) and b∗ ≤ E[vi|si], then,
for any µ∗ ∈ ∆+(M−i;B−i),

π(b∗, si; µ
∗) =

∫
M−i

(E[vi|si,b−i < b∗]− b∗) Pr[b−i < b∗|si]µ
∗(db−i) ≤

≤ E[vi|si]− b∗ <

< infµ∈∆+(M−i;B−i) π∗i (si; µ) ≤
≤ π∗(si; µ

∗),

so b∗ cannot be a best reply to b−i. On the other hand, if b∗ > E[vi|si], then π(b∗, si; µ
∗) < 0

(recall that b∗ > 0 and positive bids win with positive probability), so again b∗ cannot be a
best reply to µ∗.

We now prove (2).
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Claim. b∗ < min(E[vi|si], limsj↑1 B(sj)).
To see this, note that E[vi|si]− b∗ > infµ∈∆+(M−i;B−i) π∗(si; µ) = supb≥0 π̄(b, si;B−i) im-

plies that b∗ < E[vi|si]. Moreover, suppose that b∗ ≥ limsj↑1 B(sj). If Pr[Bmax
−i = b∗|si] = 0,

then π̄(b∗, si;B−i) = E[vi|si]−b∗ > supb≥0 π̄(b, si;B−i), a contradiction. If instead Pr[Bmax
−i =

b∗|si] > 0 (so b∗ = limsj↑1 B(sj)), note that, by Remark 2, E[vi − b∗|si,B
max
−i = b∗] ≥

E[vi−b∗|si,B−i ≤ b∗] = E[vi|si]−b∗ > 0; hence, we again obtain π̄(b∗, si;B−i) = E[vi|si]−b∗,
which yields the same contradiction.

We now construct the conjecture to which b∗ is a unique best response. First, define a
bounded, nondecreasing and measurable function g : [0, 1] → R+ by

∀sj ∈ [0, 1], g(sj) = min (B(sj), b
∗) . (14)

Correspondingly, define the quantities

s̄ = min(1, inf{sj ∈ [0, 1] : B(sj) > b∗})
b̄(α) = σ(s̄, α)b∗

(15)

Recall that g(α)(sj) = σ(sj, α)g(sj) (Equation 13). For every α > 0 and b ≥ 0, by Remark

2 and the observation that g
(α)
−i ∈ M−i, π(b, si;g

(α)
−i ) ≤ (E[vi − b|si]) Pr[g

(α)
−i ≤ b|si], with

equality for b = b∗. Also note that s̄ < 1, for otherwise we would have B(sj) ≤ b∗ for all
sj ∈ [0, 1), and therefore b∗ ≥ limsj↑1 B(sj).

Letting v̄ = E[vi|si] for notational convenience, and fixing an arbitrary opponent j of
Player i,

Pr[g
(α)
−i ≤ b|si] ≤ Pr[sj : g(α)(sj) ≤ b|si] =

= Pr[sj : sj < s̄ and B(α)(sj) < b or sj > s̄ and σ(sj, α)b∗ ≤ b|si] ≤
≤ Pr[sj : sj < s̄ or sj > s̄ and σ(sj, α)b∗ ≤ b|si],

with equality for b = b∗. Moreover, for b ∈ [b̄(α), b∗] , sj < s̄ implies σ(sj, α)b∗ < σ(s̄, α)b∗ =
b̄(α) ≤ b, so we also have

Pr[g
(α)
−i ≤ b|si] ≤ Pr[σ(sj, α)b∗ ≤ b|si] = Fj|i(τ(

b

b∗
, α)|si)

(recall that τ(·, α) is the inverse of σ(·, α)), and therefore π(b, si;g
(α)
−i ) ≤ (v̄−b)Fj|i(τ( b

b∗ , α)|si),
with equality for b = b∗ . Hence, if b∗ is the unique maximizer of the r.h.s. in the region
[b̄(α), b∗] of bids, then b∗ is also the unique maximizer of Player i’s payoff in the same region.
We now show that this is indeed the case.

It is expedient to represent bids as convex combinations of b̄(α) = σ(s̄, α)b∗ and b∗. For
every λ ∈ [0, 1], define

b(λ, α) = [(1− λ)σ(s̄, α) + λ]b∗; (16)
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note that ∂
∂λ

b(λ, α) = [1− σ(s̄, α)]b∗. Also, for every λ ∈ [0, 1], define the quantity

s(λ, α) = τ

(
b(λ, α)

b∗
, α

)
= τ((1− λ)σ(s̄, α) + λ, α), (17)

which yields the type (of Player j) who bids b(λ, α), according to the bid function g(α), if B
is right-continuous at s̄.

Claim. The function H : [0, 1]× (0, 1] → R+ defined by

H(λ, α) = (v̄ − b(λ))Fj|i(s(λ, α)|si) (18)

has a unique maximum at λ = 1 for sufficiently small α.

Case 1: s̄ > 0. Consider α ∈ (0, s̄). Then σ(s̄, α) = (1− α
1−α

)+ α
1−α

s̄, so (1−λ)σ(s̄, α)+λ =
1− (1− λ) α

1−α
(1− s̄) > 1− α, where the inequality follows from the choice of α. Therefore,

s(λ, α) = 1 − (1 − λ)(1 − s̄) ≡ s(λ), which is independent of α. Also, ∂
∂λ

s(λ) = (1 − s̄) for
λ ∈ (0, 1).

We conclude that

∂

∂λ
H(λ, α) = −[1− σ(s̄, α)]b∗Fj|i(s(λ)|si) + (v̄ − b(λ, α))fj|i(s(λ)|si)(1− s̄).

Now let fmin
j|i (si) = minx∈[0,1] fj|i(x|si) > 0: then, since s̄ < 1, ∂

∂λ
H(λ, α) ≥ −[1−σ(s̄, α)]b∗+

(v̄− b∗)fmin
j|i (si)(1− s̄) ≡ h(α). Since s̄ > 0, limα→0 σ(s̄, α) = 1; this implies that, for α suffi-

ciently small, h(α) > 0, and therefore ∂
∂λ

H(λ, α) > 0. This implies that arg maxλ∈[0,1] H(λ, α) =
{1}.

Case 2: s̄ = 0. Then σ(s̄, α) = 0, b(λ, α) = λb∗, and s(λ, α) = τ(λ, α). We have two
sub-cases.

First, for 0 < λ ≤ 1 − α, τ(λ, α) = α
1−α

λ. Define fmax
j|i (si) = maxx∈[0,1] fj|i(x|si) < ∞;

then, since λ
1−α

≤ 1,

H(λ, α) = (v̄ − λb∗)Fj|i(
α

1− α
λ|si) ≤ v̄fmax

j|i (si)α.

For α sufficiently small, the r.h.s. is smaller than H(1, α) = v̄ − b∗ > 0. Hence, for all
λ ∈ (0, 1− α], H(1, α) > H(λ, α).

For λ ∈ (1− α, 1), τ(λ, α) = (1− 1−α
α

) + 1−α
α

λ, so

∂

∂λ
H(λ, α) = −b∗Fj|i(τ(λ, α)|si) + (v̄ − λb∗)fj|i(τ(λ, α)|si)

1− α

α
.

Thus, with fmin
j|i (si) as above, ∂

∂λ
H(λ, α) ≥ −b∗ + (v̄ − b∗)fmin

j|i (si)
1−α

α
, which is positive for

α sufficiently small. Thus, H(1, α) > H(λ, α) for α small and λ ∈ (1− α, 1).
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Since H(0, α) = 0, we can again conclude that arg maxλ∈[0,1] H(λ, α) = {1}, and the
proof of the claim is complete.

The claim implies that b∗ is the unique maximizer of π(b, si; g
(α)
−i ) in the region [b̄(α), b∗].

Clearly, every b > b∗ is dominated by b∗ given g
(α)
−i .

If s̄ = 0, then b̄(α) = 0, so we are done. Otherwise, notice that b̄(α) = σ(s̄, α)b∗ implies

that [g
(α)
−i ≤ b] = [B

(α)
−i ≤ b] for all b < b̄(α). To see this, suppose g

(α)
−i (s−i) ≤ b, and fix j 6= i.

If g(sj) = B(sj), then B(α)(sj) ≤ b follows immediately. Suppose instead that g(sj) = b∗.
Note that, since we are considering a bid b < b̄(α), σ(sj, α)b∗ = σ(sj, α)g(sj) = g(α)(sj) ≤
b < b̄(α) = σ(s̄, α)b∗. Then we get σ(sj, α) < σ(s̄, α) , and since σ(·, α) is increasing,
sj < s̄; but then B(sj) ≤ b∗, so g(sj) = B(sj), and both must be equal to b∗; moreover,

B(α)(sj) ≤ b. Conversely, if B
(α)
−i (s−i) ≤ b, then a fortiori g

(α)
−i (s−i) ≤ b, because, for all

j 6= i, g(α)(sj) = σ(sj, α)g(sj) ≤ σ(sj, α)B(sj) = B(α)(sj).

We conclude that, for b ∈ [0, b̄(α)), π(b, si;g
(α)
−i ) = π(b, si;B

(α)
−i ). For any such b , Lemma

17, Claim (3) implies that limα↓0 π(b, si;B
(α)
−i ) ≤ π̄(b, si;B−i) ≤ supb′≥0 π̄(b′, si;B−i). By

assumption, the latter quantity is smaller than E[vi|si] − b∗ = π(b∗, si;g
(α)
−i ); therefore, for

sufficiently small α, and for all b ∈ [0, b̄(α)), π(b, si;g
(α)
−i ) < π(b∗, si; g

(α)
−i ) .

6.1.4 Proof of Proposition 8

(3) Note that, since f is continuous, by Dominated Convergence, E[vi|si] and π(b, si;B−i) are
continuous in si; also, the latter function is continuous in b by Lemma 14. By the Maximum
Theorem, the function si 7→ maxb≥0 π(b, si;B−i) is thus continuous, and this implies that φB

is continuous.
(4) Observation. By Assumption 4 and Remark 2, for all si, s

′
i ∈ [0, 1] such that si > s′i,

E[vi|si] > E[ v|s′i]. Similarly, for every b ≥ 0, if Pr[B−i ≤ b|si] > 0 (resp. Pr[Bmax
−i > b|si] >

0), then E[vi|si,B−i ≤ b] (resp. E[vi|si,B
max
−i > b]) is increasing in si.

Choose si > 0 and b ∈ arg maxy≥0 π(y, si;B−i).

Claim. Assume that Pr[B−i ≤ b|si] < 1, so b < B(1). Then, for all s′i < si, φB(s′i) <
φB(si).

To prove the claim, note first that, if π(b, si;B−i) = 0, then φB(si) = E[vi|si] > E[vi|s′i] ≥
φB(s′i), where the strict inequality follows from the initial Observation, and the weak inequal-
ity from Part (1).

Thus, assume π(b, si;B−i) > 0, so in particular Pr[ B−i ≤ b|si] ∈ (0, 1) because B−i > 0.
Then E[vi|si] = E[vi|si,B−i ≤ b] Pr[B−i ≤ b|si] + E[vi|si,B

max
−i > b] Pr[Bmax

−i > b|si] and

φB(si) = E[vi|si,B
max
−i > b] Pr[Bmax

−i > b|si] + b Pr[B−i ≤ b|si].

Since π(b, si;B−i) > 0, b < E[vi|si,B−i ≤ b] ≤ E[vi|si,B
max
−i > b], where the second inequal-

ity follows from Remark 2 by an argument analogous to the one used in the proof of Lemma
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16, (2). Also note that the indicator function of the event [Bmax
−i > b] is nondecreasing,

because Bmax
−i is nondecreasing; therefore, for s′i < si, Pr[Bmax

−i > b|si] ≥ Pr[Bmax
−i > b|s′i].

Note that, since f is bounded away from zero, Pr[Bmax
−i > b|s′i] > 0; therefore,

φB(si) ≥ E[vi|si,B
max
−i > b] Pr[Bmax

−i > b|s′i] + b Pr[ B−i ≤ b|s′i] >

> E[vi|s′i,Bmax
−i > b] Pr[Bmax

−i > b|s′i] + b Pr[B−i ≤ b|s′i] =

= E[vi|s′i]− E[vi − b|s′i,B−i ≤ b] Pr[B−i ≤ b|s′i] ≥
≥ E[vi|s′i]−max

x≥0
π(x, s′i;B−i) = φB(s′i),

where the strict inequality follows from the initial Observation, and the proof of the claim
is complete.

Consider now signals si, s
′
i such that s′i < si and φB(s′i) = B(1). Then it must be the

case that arg maxx≥0 π(x, si;B−i) = {B(1)}: otherwise, by the preceding Claim, s′i < si ,
b ∈ arg maxy≥0 π(y, si;B−i) and b < B(1) would imply

φB(s′i) < φB(si) =

= E[vi|si]− π∗(si,B−i) ≤
≤ E[vi|si]− π(B(1), si;B−i) =

= E[vi|si]−
(
E[vi|si,B−i ≤ B(1)]−B(1)

)
=

= B(1),

a contradiction. Thus, we must have φB(si) = φB(s′i) = B(1). Let

sB = min

(
1, inf{si ∈ [0, 1] : B(1) ∈ arg max

x≥0
π(x, si;B−i)}

)
.

Then φB is increasing on [0, sB) and constant on [sB, 1].

6.2 Rationalizability

Lemma 18 Let b,B be bid functions such that b is increasing, B is nondecreasing, and
b ≥ B > 0. Then, for every bid b ∈ [0, E[vi|si,b−i < b], π(b, si;b) ≤ π̄(b, si;B). In
particular, π∗(si;b) ≤ maxb≥0 π̄(b, si;B).

Proof. Note that

π̄(b, si;B) = E[vi − b|si,b−i < b] Pr[b−i < b|si]+

+
∑

∅6=J⊂N\{i} E[vi − b|si,bN\J∪{i} < b,BJ < b ≤ bJ ]·
·Pr[bN\J∪{i} < b,BJ < b ≤ bJ |si]+

+ max
{
0,

(
E[vi|si,B

max
−i = b]− b

)
Pr[Bmax

−i = b|si]
}

.
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Since b is increasing, the first term on the right-hand side is π(b, si;b). Since b and B are
nondecreasing, by Result 2, E[vi|si,bN\J∪{i} < b,BJ < b ≤ bJ ] ≥ E[vi|si,b−i < b] for all J ,
as in the proof of Lemma 16, Part (1). Since, moreover, by assumption b ≤ E[vi|si,b−i < b],
the second term in the above expression is nonnegative. Since the third is clearly also
nonnegative, the first claim follows.

The second claim holds trivially if π∗(si;b−i) = 0; otherwise, it follows by observing that,
if b∗ ∈ arg maxb≥0 π(b, si;b) and π∗(si;b−i) > 0, then surely b∗ ∈ (0, E[vi|si,b−i < b∗]).

Lemma 19 Let {Bk}∞k=1 be a weakly decreasing sequence of continuous, increasing and
positive functions, and let B = limk→∞Bk > 0. Define Bk

−i = (Bk,Bk . . .) and B−i =
(B,B . . .). Then, for every signal si ∈ Si, limk→∞ π∗(si;B

k
−i) = infµ∈∆+(M−i,B−i) π∗(si; µ).

Proof. Define π̄∗(si,B−i) = maxb≥0 π̄(b, si;B−i) for notational convenience. Then,
Lemma 18 applied to the pairs Bk,Bk+1 and Bk+1,B implies that 0 ≤ π∗(si,B

k
−i) ≤

π∗(si,B
k+1
−i ) ≤ π̄∗(si,B−i) for all k. Therefore, the sequence {π∗(si,B

k
−i)}∞k=1 has a limit,

and if π̄∗(si, B−i) = 0, this limit is zero. Now assume that π̄∗(si,B−i) > 0 and let b∗ ∈
arg maxb≥0 π̄(b, si;B−i). Since B−i > 0, π(0, si,B−i) = 0 < π̄∗(si,B−i). Therefore b∗ > 0,
and—by Lemma 16 (2)—if Pr[Bmax

−i = b∗|si] > 0, then E[vi−b∗|si,B
max
−i = b] ≥ 0. Hence, re-

gardless of whether or not b∗ ties with positive probability, π̄(b∗, si;B−i) = E[ vi−b∗|si,B−i ≤
b∗] Pr[B−i ≤ b∗|si].

Now let {b`}∞`=1 be a sequence of bids such that Pr[Bmax
−i = b`|si] = 0 for all integers `, and

b` ↓ b∗. Thus, for each `, π̄(b`, si;B−i) = E[vi− b∗|si,B−i < b`] Pr[B−i < b`|si]. Also, for all `
and k, the indicator functions of the sets [Bk

−i < b`] converge pointwise on S−i to the indicator
function of [B−i < b`].

28 Thus, [vi(si, s−i)− b`]1[Bk
−i<b`]

(s−i) → [vi(si, s−i)− b`]1[B−i<b`](s−i)

pointwise on S−i; hence, by Dominated Convergence, π̄(b`, si;B
k
−i) → π̄(b`, si;B−i).

Similarly, note that the indicator functions of the sets [B−i < b`] converge pointwise
on S−i to the indicator function of [B−i ≤ b∗].29 Thus, [vi(si, s−i) − b`]1[B−i<b`](s−i) →
[vi(si, s−i)−b∗]1[B−i≤b∗](s−i) pointwise on S−i; hence, by Dominated Convergence, π̄(b`, si;B−i) →
π̄(b∗, si;B−i).

Thus, for every ε > 0 we can find k and ` large enough that |π̄∗(b∗, si;B−i)−π̄(b`, si;B
k
−i)| <

ε. Moreover, π̄(b`, si;B
k
−i) ≤ π∗(si,B

k
−i) ≤ π̄∗(si,B−i). Therefore,

π̄∗(si;B−i) ≥ π∗(si,B
k
−i) ≥ π(b`, si;B

k
−i) ≥ π̄(b∗, si;B−i)− ε,

which implies that limk→∞ π∗(si,B
k
−i) = maxb≥0 π̄(b, si;B−i). Since B > 0 is nondecreasing,

Part (3) of Theorem 6 yields the desired result.

28Consider sj such that B(sj) < b`; then, for k large enough, Bk < b`. If instead B(sj) ≥ b`, then also
Bk(si) > b`. Thus, pointwise convergence obtains for all sj ∈ Sj .

29Consider sj such that B(sj) ≤ b∗; then B(sj) < b` for all `. If instead B(sj) > b∗, then, for ` large,
B(sj) > b`. In either case, pointwise convergence obtains.
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