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Proof of Lemma 3.6

Notice first that ϕ0, the identity on Σ, can be written as (ϕ01, ϕ02), where ϕ0i

is the identity on Σi, for i = 1, 2. Fix ti ∈ Ti as in the above statement and let
µ = gi(ti), µ

′ = g′i(ϕi(ti)); then, by definition, one can find two CPSs µi ∈ ∆Bi(Σi),
µj ∈ ∆Bj (Σj × Tj) such that, for all B = B1 × B2 ∈ B, µ(.|B × Tj) = µi(.|Bi) ⊗
µj(.|Bj × Tj). We construct two marginal CPSs µ′i ∈ ∆Bi(Σi), µ

′
j ∈ ∆Bj (Σj × T ′j)

such that, for all B = B1 ×B2 ∈ B, µ′(.|B × T ′j) = µ′i(.|Bi)⊗ µ′j(.|Bj × T ′j).
To this end, recall that ϕ̂−i : ∆B(Σ× Tj)→ ∆B(Σ× T ′j) is defined by

ϕ̂−i(µ)(M |B × T ′j) = µ(ϕ−1
−i (M)|B × Tj) ∀M ∈ A′

(where A′ denotes the Borel σ–algebra generated by the product topology on
Σ× T ′j .)

This suggests the following definitions: for all Bi ∈ Bi and measurable Mi ⊂
Σi, let

µ′i(Mi|Σi(h
′)) = µi(ϕ

−1
0i (Mi)|Σi(h));
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also, for all Bj ∈ Bj and measurable Mj ⊂ Σj × T ′j let

µ′j(Mj|Σj(h
′)× T ′j) = µj((ϕ0j, ϕj)

−1(Mj)|Σj(h
′)× Tj)

These assignments yield CPSs µ′i ∈ ∆Bi(Σi), µ
′
j ∈ ∆Bj (Σj × T ′j).

Now fix a rectangular event E = Ei × Ej ∈ A′ such that Ei ⊆ Σi and
Ej ⊆ Σj×T ′j . Notice that, since ϕ−i maps Σi×Σj×Tj to Σi×Σj×T ′j coordinate–
by–coordinate,

ϕ−1
−i (Ei × Ej) = ϕ−1

0i (Ei)× (ϕ0j, ϕj)
−1(Ej)

which is thus also a rectangular event in A, the Borel σ–algebra on Σ× Tj. Since
by assumption µ is independent, for any B = B1 ×B2 ∈ B,

µ(ϕ−1
−i (E)|B × Tj) = µi(ϕ

−1
0i (Ei)|Bi) · µj((ϕ0j, ϕj)

−1(Ej)|Bj × Tj)

Since µ = gi(ti) and ϕ̂−i ◦ gi = g′i ◦ ϕi, the LHS equals µ′(E|B × T ′j). But then,
applying the definitions above,

µ′(E|B × T ′j) = µ′i(Ei|Bi)× µ′j(Ej|Bj × T ′j).

Hence, µ′(.|B×T ′j) and µ′i(.|Bi)⊗µ′j(.|Bj ×T ′j) agree on the algebra of rectangles
in Σi × (Σj × T ′j). By standard arguments, they must agree on A′. Therefore
µ′ ∈ I∆B(Σi,Σj × T ′j).

The argument just given shows that, whenever gi(ti) ∈ I∆B(Σi,Σj × Tj),
ϕ̂−i ◦ gi(ti) ∈ I∆B(Σi,Σj × T ′j). By the definition of type–morphism, this implies
that g′i ◦ ϕi(ti) ∈ I∆B(Σi,Σj × T ′j), as needed.

Proof of Proposition 5.6, part (b)

The preliminary Lemma below shows that, if (rationality and) CCOR given R,
the collection of relevant histories, is possible, then the backward induction profile
survives arbitrarily many iterations of the Σn

R procedure. That is, backward
induction is “consistent with” rationality and CCOR given R.

Lemma 0.1. Fix a game of complete and perfect information with no ties among
different terminal nodes. Let σBj , j = 1, 2, be the (unique) backward induction
strategy for Player j. Then, if R ∩ CCORR 6= ∅, for every n ≥ 1, (σB1 , σ

B
2 ) ∈ Σn

R.

Proof: Fix a player i ∈ {1, 2} and let j 6= i. For any history h ∈ H, we can
find a strategy σhj ∈ Σj such that σhj ∈ Σj(h) and σhj (h

′) = σBj (h′) for all h′ ∈ H
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such that either h is a subhistory of h′ (that is, for all h′ weakly following h) or h′

is not a subhistory of h (that is, for all h′ which are not on the unique path to h.)
Observe that, whenever h is a subhistory of h′ and at each history h′′ such

that h ⊂ h′′ ⊂ h′, σh
′
j (h′′) = σBj (h′′) (i.e. whenever h′ can be reached from h by a

sequence of Player j’s backward induction moves1,) σh
′
j = σhj by construction. In

particular, σhj = σBj for all h ∈ H on the backward induction path.
Then it is immediate to see that the collection µBi = {µBi (·|Σj(h))}h∈H with

µBi ({σhj }|Σj(h)) = 1 for all h ∈ H is a well–defined CPS. Also, clearly σBi ∈ ri(µBj )
(i.e. σBi is a sequential best reply against µBi .) This immediately implies that
(σB1 , σ

B
2 ) ∈ Σ1

R. Now assume that (σB1 , σ
B
2 ) ∈ Σn

R; by part (a) of Proposition 5.6,
h ∈ R implies that h is on the backward induction path, and at any such history
µBi (Σn

j,R|Σj(h)) ≥ µBi ({σBj }|Σj(h)) = 1. Thus, µBi ∈ Λi,R(Σn
j,R) for i = 1, 2 and

j 6= i, which establishes the induction step.

Again, consider a game of perfect and complete information with no ties be-
tween payoffs at terminal nodes. Let Hn be the set of histories h such that the
longest continuation of h has length n, that is, let

• H0 = Z

• Hn+1 =
{
h ∈ H : ∀a ∈ A(h), (h, a) ∈

⋃n
k=0Hk

}
,

where A(h) is the set of feasible actions (or action profiles) at h.
The following Lemma implies part (b) of Proposition 5.6, as required.

Lemma 0.2. Consider a game of perfect and complete information with no ties
between payoffs at terminal nodes and let R be the set of its relevant histories.
Suppose R ∩CCORR 6= ∅. Then ∀n ≥ 1, ∀h ∈ Hn, ∀σ ∈ Σ(h)∩Σn

R, if player i is
active at h, σi prescribes the backward induction action at h

Proof: The base step (n = 1) is obvious. Thus, suppose the claim holds for
n ≥ 1 and fix h ∈ Hn+1, σ = (s, θ) ∈ Σ(h) ∩ Σn+1

R . Let Player i be active at h.
Since Σn+1

R ⊂ Σ1
φ, either at h Player i has a dominant continuation strategy, or

h ∈ R. In the first case, σi chooses the dominant continuation strategy at h, and
of course this coincides with the backward induction prescription. Otherwise, by

1This does not preclude the possibility that the other player may have to deviate from her
backward induction strategy for h′ to be reached starting from h.
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part (a) of Proposition 5.6, h is on the backward induction path. Therefore, the
backward induction strategy profile reaches h: (σB1 , σ

B
2 ) ∈ Σ(h).

For any profile (σ′i, σj) ∈ Σ(h) ∩ Σn
R, the induction hypothesis implies that

the induced continuation path beginning with the history (h, σ′i(h)) is the path
prescribed in that subgame by the backward induction profile. Thus, if µ is
the CPS justifying σi, h ∈ R implies µ(Σn

j,R ∩ Σj(h)|Σj(h)) = 1, and one has
Eµ[Ui(σ

′
i, ·)|h] = Ui(σ

′
i, σ

B
j ) (recall that σBj ∈ Σj(h).)

By definition, Eµ[Ui(σi, ·)|h] ≥ Eµ[Ui(σ
′
i, ·)|h] for all σ′i ∈ Σi(h), and hence

a fortiori Ui(σi, σ
B
j ) = Eµ[Ui(σi, ·)|h] ≥ Eµ[Ui(σ

′
i, ·)|h] = Ui(σ

′
i, σ

B
j ) for all σ′i ∈

Σi(h) ∩ Σn
i,R. Indeed, since the game is assumed to be generic, Ui(σi, σ

B
j ) >

Ui(σ
′
i, σ

B
j ) whenever (σi, σ

B
j ) and (σ′i, σ

B
j ) reach distinct terminal nodes.

Equivalently, σi(h) is the unique payoff–maximizing action under the assump-
tion of backward induction continuation, when Player i’s choices are restricted
to the set of actions specified by strategies in Σi(h) ∩ Σn

i,R at h. But by Lemma
0.1, and since σBi ∈ Σi(h), this set includes the backward induction choice σBi (h).
By definition, the latter is (uniquely) optimal, under the assumption of backward
induction continuation, among all actions available at h, hence a fortiori in the
restricted set we consider here. This immediately implies that σi(h) = σBi (h), and
the proof is complete.

Proof of Proposition 5.7

Lemma 0.3. [h] ∩Ri ⊂ βi,h(Ri).

Proof. Suppose (σ, τ 1, τ 2) ∈ [h] ∩ Ri. Then (σi, τ i) satisfies conditions (1), (2)
and (3) of Definition 5.2 and σi ∈ Σi(h). The latter fact and condition (1) imply

gi,h(τ i) ({σi} × Σj × Tj) = 1.

Since (σ, τ 1, τ 2) ∈ Ri,

{σi} × Σj × Tj ⊂
{

(σ′, τ ′j) : (σ′i, τ i) satisfies (1),(2),(3)
}

= [Ri]τ i
.

Therefore
gi,h(τ i) ([Ri]τ i

) = 1

and (σ, τ 1, τ 2) ∈ βi,h(Ri).

LetR1
i,h = Ri andRn+1

i,h = Rn
i,h∩βi,h(Rn

j,h). (This definition ofRn+1
i,h is equivalent

to the definition given in the proof of Proposition 5.5.) It is easily verified that

Ri ∩ CCORi,h =
⋂
n≥1

Rn
i,h.
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It is then sufficient to show that for all n ≥ 2

[h] ∩Rn
i,h = [h] ∩Ri ∩ βi,h

(
n−2⋂
k=0

βkh(R)

)
, i = 1, 2, (0.1)

where the iterated operator βkh is defined in the usual way, with β0
h(E) := E.

Base Step. Using the definition of R2
i,h, Lemma 0.3 and conjunction,

[h] ∩R2
i,h = [h] ∩Ri ∩ βi,h(Rj) =

[h] ∩Ri ∩ βi,h(Ri) ∩ βi,h(Rj) = [h] ∩Ri ∩ βi,h(R).

Induction Step. Assume that eq. 0.1 holds. We have to show that

[h] ∩Rn+1
i,h = [h] ∩Ri ∩ βi,h

(
n−1⋂
k=0

βkh(R)

)
, i = 1, 2.

Using the definition of Rn+1
i,h , eq. 0.1, positive introspection (i.e. βi,h(E) ⊂

βi,h(βi,h(E))), conjunction and monotonicity (in this order), we obtain

[h] ∩Rn+1
i,h = [h] ∩Rn

i,h ∩ βi,h(Rn
j,h) =

[h] ∩Ri ∩ βi,h

(
n−2⋂
k=0

βkh(R)

)
∩ βi,h

(
Rj ∩ βj,h

(
n−2⋂
k=0

βkh(R)

))
=

[h] ∩Ri ∩ βi,h

(
n−2⋂
k=0

βkh(R)

)
∩ βi,h

(
βh

(
n−2⋂
k=0

βkh(R)

))
∩ βi,h(Rj) =

[h] ∩Ri ∩ βi,h

(
n−2⋂
k=0

βkh(R)

)
∩ βi,h

(
n−1⋂
k=1

βkh(R)

)
∩ βi,h(Rj) =

[h] ∩Ri ∩ βi,h

(
n−1⋂
k=0

βkh(R)

)
.
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