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VECTOR EXPECTED UTILITY AND ATTITUDES
TOWARD VARIATION

BY MARCIANO SINISCALCHI1

This paper proposes a model of decision under ambiguity deemed vector expected
utility, or VEU. In this model, an uncertain prospect, or Savage act, is assessed accord-
ing to (a) a baseline expected-utility evaluation, and (b) an adjustment that reflects the
individual’s perception of ambiguity and her attitudes toward it. The adjustment is itself
a function of the act’s exposure to distinct sources of ambiguity, as well as its variability.
The key elements of the VEU model are a baseline probability and a collection of ran-
dom variables, or adjustment factors, which represent acts exposed to distinct ambiguity
sources and also reflect complementarities among ambiguous events. The adjustment
to the baseline expected-utility evaluation of an act is a function of the covariance of its
utility profile with each adjustment factor, which reflects exposure to the corresponding
ambiguity source.

A behavioral characterization of the VEU model is provided. Furthermore, an up-
dating rule for VEU preferences is proposed and characterized. The suggested updat-
ing rule facilitates the analysis of sophisticated dynamic choice with VEU preferences.

KEYWORDS: Ambiguity, attitudes toward variability, reference prior.

1. INTRODUCTION

THE ISSUE OF AMBIGUITY in decision-making has received considerable atten-
tion in recent years, both from a theoretical perspective and in applications
to contract theory, information economics, finance, and macroeconomics. As
Ellsberg (1961) first observed, individuals may find it difficult to assign prob-
abilities to events when available information is scarce or unreliable. In these
circumstances, agents may avoid taking actions whose ultimate outcomes de-
pend crucially upon the realization of such ambiguous events and instead opt
for safer alternatives. Several decision models have been developed to accom-
modate these patterns of behavior: these models represent ambiguity via multi-
ple priors (Gilboa and Schmeidler (1989), Ghirardato, Maccheroni, and Mari-
nacci (2004)), nonadditive beliefs (Schmeidler (1989)), second-order probabil-
ities (Klibanoff, Marinacci, and Mukerji (2005), Nau (2006), Ergin and Gul
(2009)), relative entropy (Hansen and Sargent (2001), Hansen, Sargent, and
Tallarini (1999)), or variational methods (Maccheroni, Marinacci, and Rusti-
chini (2006)).

This paper proposes a decision model that incorporates key insights from
Ellsberg’s original analysis, as well as from cognitive psychology and recent the-
oretical contributions on the behavioral implications of ambiguity. According

1This is a substantially revised version of Siniscalchi (2001). Many thanks to Stephen Morris
and three anonymous referees, as well as to Eddie Dekel, Paolo Ghirardato, Faruk Gul, Lars
Hansen, Peter Klibanoff, Alessandro Lizzeri, Fabio Maccheroni, Massimo Marinacci, and Josè
Scheinkman. All errors are my own.
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to the proposed model, the individual evaluates uncertain prospects, or acts,
by a process suggestive of anchoring and adjustment (Tversky and Kahneman
(1974)). The anchor is the expected utility of the prospect under considera-
tion, computed with respect to a baseline probability; the adjustment depends
upon its exposure to distinct sources of ambiguity, as well as its variation away
from the anchor at states that the individual deems ambiguous. Formally, an
act f , mapping each state ω ∈Ω to a consequence x ∈X , is evaluated via the
functional

V (f )= Ep[u ◦ f ] +A(
(Ep[ζi · u ◦ f ])0≤i<n

)
�(1)

In Eq. (1), u :X → R is a von Neumann–Morgenstern utility function; p is
a baseline probability on Ω, and Ep is the corresponding expectation opera-
tor; n ≤ ∞ and, for 0 ≤ i < n, ζi is a random variable, or adjustment factor,
that satisfies Ep[ζi] = 0; and the function A : Rn → R satisfies A(0) = 0 and
A(−φ) =A(φ) for every vector φ ∈ R

n. I call the proposed model vector ex-
pected utility, or VEU. This paper provides a behavioral characterization of
preferences that conform to the VEU model; it also illustrates how tractable
specifications of VEU preferences can reflect a variety of attitudes toward am-
biguity and also facilitate the analysis of dynamic choice.

The remainder of this Introduction elaborates upon key features of the pro-
posed model.

Anchoring and Adjustment: Einhorn and Hogarth (Einhorn and Hogarth
(1985, 1986), Hogarth and Einhorn (1990)) were the first to propose that eval-
uating prospects by means of a baseline prior, adjusted to account for ambi-
guity, was a plausible approach to decisions under ambiguity. The cited papers
explore the implications of this strategy in a series of experiments, dealing pri-
marily with choice among binary lotteries. Ellsberg’s seminal paper also sug-
gests that, when faced with an ambiguous choice situation, “by compounding
various probability judgments of various degrees of reliability, [the individual]
can eliminate certain probability distributions over states of nature as ‘unrea-
sonable,’ assign weights to others and arrive at a composite ‘estimated’ distribu-
tion” (Ellsberg (1961, p. 661); italics added for emphasis). Other authors have
emphasized reference priors: see Section 5.1.

Adjustment Factors ζi and Eventwise Complementarity: Decomposing the
adjustment term in Eq. (1) into a suitable function A(·) and a collection
(ζi)0≤i<n of adjustment factors provides a direct, explicit representation of even-
twise complementarity—a key behavioral feature of ambiguous events high-
lighted in the analysis of Epstein and Zhang (2001). To illustrate this notion
and provide a simple application of the decision model of Eq. (1), consider
Ellsberg’s three-color-urn experiment. A ball is to be drawn from an urn con-
taining 30 red balls, and 60 blue and green balls; the proportion of blue vs.
green balls is unknown. Denote by fR� fB� fRG� fBG the acts that yield $10 if a
red (resp. blue, red or green, blue or green) ball is drawn, and $0 otherwise. As
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reported by Ellsberg, the modal preferences are fR � fB and fRG ≺ fBG. Epstein
and Zhang suggested that “[t]he intuition for this reversal is the complemen-
tarity between G and B—there is imprecision regarding the likelihood of B,
whereas {B�G} has precise probability 2

3 ” (Epstein and Zhang (2001, p. 271)).
The proposed model enables a representation of the modal preferences in this
example that closely matches this interpretation: let p be uniform on the state
space Ω = {R�G�B}, assume without loss of generality (w.l.o.g.) that u is lin-
ear, and let ζ0 be the random variable given by

ζ0(R)= 0� ζ0(B)= 1� ζ0(G)= −1�

Finally, let A(φ) = −|φ| for every φ ∈ R. Thus, in this example, n = 1: one-
dimensional adjustment factors suffice. The interpretation of the adjustment
factor ζ0 is as follows: since A(p({G})ζ0(G)) = A(p({B})ζ0(B)), G and B
are “equally ambiguous”; however, ζ0(G)= −ζ0(B), that is, their ambiguities
“cancel out.” This algebraic cancellation corresponds to Epstein and Zhang’s
notion of complementarity. It is then easily verified that V (fR)= 10

3 , V (fB)= 0,
V (fRG) = 10

3 , and V (fBG) = 20
3 , which is consistent with the preferences indi-

cated above.2
Adjustment Factors ζi and Sources of Ambiguity: Each factor ζi encodes a

particular pattern of complementarity and thus reflects a specific aspect of am-
biguity. Different considerations lead to a similar intuition. Since Ep[ζi] = 0
for all i, Eq. (1) can be rewritten in the form

V (f )= Ep[u ◦ f ] +A(
(Covp(ζi�u ◦ f ))0≤i<n

)
�(2)

where Covp denotes covariance with respect to the baseline probability p. This
suggests the following interpretation: each adjustment factor ζi is a “model”
of ambiguous utility profile, whose evaluation is affected by a distinct3 source
of ambiguity; the adjustment applied to the baseline evaluation of an act f
depends upon the similarity (as measured by covariance) of its utility profile u◦
f with each factor ζi, and hence upon its exposure to the corresponding source
of ambiguity. It may be useful to draw a parallel with factor-pricing models in
finance: for instance, in the capital-asset pricing model (cf. Cochrane (2001,
Section 9.1)), the expected return on an asset is a function of the covariance of
its returns with the returns on the wealth portfolio.4

The construction of the adjustment factors in the proof of the characteri-
zation theorem (Theorem 1) supports this interpretation: as illustrated in Sec-
tion 4.1, (ζi)0≤i<n is an orthonormal basis for a subspace of “purely ambiguous”

2For instance, V (fRG)= 10 · 2
3 − |0 · 10 · 1

3 + 1 · 0 · 1
3 + (−1) · 10 · 1

3 | = 20
3 − | − 10

3 | = 10
3 .

3In a “sharp” VEU representation, the factors ζi are orthonormal; this emphasizes the inter-
pretation as distinct (uncorrelated) sources of ambiguity. See Definitions 1 and 2 for details.

4I thank Adam Szeidl for suggesting this analogy and the term “factor” to indicate the random
variables ζi .
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acts, and the expectations Ep[ζi · u ◦ f ] = Covp[ζi�u ◦ f ] are the Fourier coef-
ficients of the projection of u ◦ f onto this subspace.

Adjustments and Variability: As noted above, adjustments to the baseline
expected utility (EU) evaluation of an act are also related to the variability, or
dispersion, of its utility profile. This can be attractive, as many economic appli-
cations of ambiguity-sensitive decision models show that interesting patterns of
behavior can arise when agents wish to reduce outcome or utility variability.5
Indeed, Schmeidler (1989, p. 582) suggested that “ambiguity aversion” can be
defined as a preference for “smoothing or averaging utility distributions”; see
also Chateauneuf and Tallon (2002).

The VEU representation relates adjustments to utility variability via two
complementary channels. One is immediate from Eq. (2): the covariance of
ζi and u ◦ f clearly depends upon the standard deviation of u ◦ f with respect
to the baseline prior p.

The second channel deserves further discussion. Call two acts f and f̄ com-
plementary if their utility profiles u◦f and u◦ f̄ satisfy u◦ f̄ = c−u◦f for some
real constant c: Definition 3 provides a simple behavioral characterization.
Notice that the utility profiles of f and f̄ have the same standard deviation;
indeed, virtually all classical measures of variability or dispersion for random
variables6 consider u ◦ f and u ◦ f̄ = c − u ◦ f to be just as dispersed, because
such measures are invariant to translation and sign changes. To relate adjust-
ments to utility variability, the VEU representation incorporates the same in-
variance property: complementary acts receive the same adjustment. This follows
from the symmetry property of the adjustment functional A: for every vector
φ,A(φ)=A(−φ).7 Behaviorally, this property corresponds to the main novel
axiom in this paper, complementary independence.

Behavioral Identification of the Baseline Prior p: One additional conse-
quence of this property, and indeed of the Complementary Independence
axiom, deserves special emphasis. Symmetry implies that adjustment terms
cancel out when comparing two complementary acts using the VEU represen-
tation in Eq. (1); thus, the ranking of complementary acts is effectively deter-
mined by their baseline EU evaluation. Conversely, preferences over comple-
mentary acts uniquely identify the baseline prior: there is a unique probability
p and a cardinally unique utility function u such that, for all complementary
acts f and f̄ , f � f̄ if and only if (iff) Ep[u ◦ f ] ≥ Ep[u ◦ f̄ ]. Thus, baseline
priors have a simple behavioral interpretation in the present setting: they pro-
vide a representation of the individual’s preferences over complementary acts. This

5See, for example, Bose, Ozdenoren, and Pape (2006), Epstein and Schneider (2007),
Ghirardato and Katz (2006), or Mukerji (1998).

6For instance, the mean absolute deviation, the range and (for continuous random variables)
the interquantile range, Gini’s mean difference (cf., e.g., Yitzhaki (1982)), or peakedness order-
ing Bickel and Lehmann (1976).

7Notice that if f and f̄ are complementary, then Cov(ζi�u ◦ f̄ )= −Cov(ζi�u ◦ f ) for all ζi .
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implies that, under complementary independence, the baseline prior is behav-
iorally identified independently of other elements of the VEU representation.

Flexibility and Dynamics: Finally, the functional representation in Eq. (1)
is flexible enough to accommodate a broad range of attitudes toward ambi-
guity, while at the same time allowing for numerical and analytical tractabil-
ity. The preferences in the three-color-urn example display ambiguity aver-
sion as defined by Schmeidler (1989); correspondingly, the adjustment func-
tion A is nonpositive and concave. VEU preferences featuring a nonpositive
and concave adjustment function A are variational (Maccheroni, Marinacci,
and Rustichini (2006), Corollary 2 and Section 5.1), but VEU preferences al-
low for considerably more general ambiguity attitudes. For instance, as shown
in Section 4.3, a nonpositive, but not necessarily concave adjustment function
characterizes “comparative ambiguity aversion” in the sense of Ghirardato and
Marinacci (2002); a parsimonious VEU representation with this property can,
for instance, accommodate the interesting preference patterns highlighted by
Machina (2009) (such patterns are inconsistent with decision models such as
maxmin expected utility, variational preferences or smooth-ambiguity-averse
preferences (cf. Baillon, L’Haridon, and Placido (2008)). Indeed, the VEU
model can accommodate even more complex attitudes towards ambiguity—
for instance, stake-dependent attitudes: the previous version of this paper
(Siniscalchi (2007)) provides an example.

This paper also proposes a possible updating rule for VEU preferences and
provides a behavioral characterization. In the covariance formulation of the
VEU model in Eq. (2), the proposed rule amounts to replacing expectations
and covariances Ep and Covp with their conditional counterparts Ep[·|E] and
Covp(·� ·|E).8 Section 4.4 provides a behavioral characterization of this updat-
ing rule; it also illustrates how this rule enables a recursive analysis of sophisti-
cated choice in dynamic problems.

The paper is organized as follows. Section 2 is devoted to preliminaries. Sec-
tion 3 presents the main characterization result. Section 4 analyzes the com-
ponents of the VEU representation (Sections 4.1–4.3), and discusses updat-
ing and dynamic choice (Sections 4.4 and 4.5). Section 5 discusses the related
literature (Section 5.1), as well as additional features and extensions of the
VEU representation (Section 5.2). All proofs, as well as additional technical
results, are given in the Appendix. Supplemental material is also available on-
line (Siniscalchi (2009)).

2. NOTATION AND DEFINITIONS

The following notation is standard. Consider a set Ω (the state space) and a
sigma-algebra Σ of subsets of Ω (events). It will be useful to assume that the
sigma-algebra Σ is countably generated: that is, there is a countable collection

8A slight modification is required to ensure monotonicity; see Section 4.4 for details.
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S = (Si)i≥0 such that Σ is the smallest sigma-algebra containing S . All finite
and countably infinite sets, as well as all Borel subsets of Euclidean n-space,
and more generally all standard Borel spaces (Kechris (1995)) satisfy this as-
sumption.

Denote by B0(Σ) the set of Σ-measurable real functions with finite range
and by B(Σ) its sup-norm closure. The set of countably additive probability
measures on Σ is denoted by ca1(Σ). For any probability measure π ∈ ca1(Σ)
and function a ∈ B(Σ), let Eπ[a] = ∫

Ω
adπ, the standard Lebesgue integral

of a with respect to π. Finally, a ◦ b : X → Z denotes the composition of the
functions b : X → Y and a : Y → Z .

Additional notation is useful to streamline the definition and analysis of the
VEU representation. Given m ∈ Z+ ∪ {∞} and a finite or countably infinite
collection z = (zi)0≤i<m of elements of B(Σ), let Eπ[z · a] = (Eπ[zi · a])0≤i<m
if m > 0 and let Eπ[z · a] = 0 if m = 0. For any collection F ⊂ B(Σ), let
E(F;π�z) = {Eπ[z · a] ∈ R

m :a ∈ F}. Finally, let 0m denote the zero vector
in R

m.
Turn now to the decision setting. Consider a convex set X of consequences

(outcomes, prizes). As in Anscombe and Aumann (1963), X could be the
set of finite-support lotteries over some underlying collection of (determin-
istic) prizes, endowed with the usual mixture operation. Alternatively, the set
X might be endowed with a subjective mixture operation, as in Casadesus-
Masanell, Klibanoff, and Ozdenoren (2000) or Ghirardato, Maccheroni, Mari-
nacci, and Siniscalchi (2003).

An act is a Σ-measurable function from Ω to X . Let F0 be the set of simple
acts, that is, acts with finite range. With the usual abuse of notation, denote
by x the constant act assigning the consequence x ∈ X to each ω ∈ Ω. The
main object of interest is a preference relation � on F0; its symmetric and
asymmetric parts are denoted ∼ and �, respectively.

As is the case for other decision models, VEU preferences on F0 have a
unique extension to a class of nonsimple, bounded acts. This extension is of
particular interest in this paper: Proposition 1 uses it to characterize the mini-
mum number of adjustment factors required to provide a VEU representation
of a given preference relation. Thus, following Schmeidler (1989), denote by
Fb the set of acts f for which there exist x�x′ ∈X such that x� f (ω)� x′ for
all ω ∈Ω.

Finally, given a function u :X → R and a set F of acts, let u ◦ F = {u ◦ f ∈
B(Σ) : f ∈ F }. The formal definition of the VEU representation can now be
provided. For the reasons just mentioned, the definition accommodates pref-
erences on either F0 or Fb.

DEFINITION 1: Let F denote either F0 or Fb. A tuple (u�p�n�ζ�A) is a
VEU representation of a preference relation � on F if the following conditions
are met:
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1. u :X → R is nonconstant and affine, p ∈ ca1(Σ), n ∈ Z+ ∪ {∞}, and ζ =
(ζi)0≤i<n.

2. For every 0 ≤ i < n, ζi ∈ B(Σ) and Ep[ζi] = 0.
3. A : E(u ◦ F ;p�ζ) → R satisfies A(0n) = 0 and A(ϕ) = A(−ϕ) for all

ϕ ∈ E(u ◦ F ;p�ζ).
4. For all a�b ∈ u ◦ F , a(ω)≥ b(ω) for all ω ∈Ω implies Ep[a] +A(Ep[ζ ·

a])≥ Ep[b] +A(Ep[ζ · b]).
5. For every pair of acts f�g ∈ F ,

f � g ⇔ Ep[u◦f ]+A(Ep[ζ ·u◦f ])≥ Ep[u◦g]+A(Ep[ζ ·u◦g])�(3)

Conditions 1 and 5 are self-explanatory. Condition 2 ensures that the ad-
justment factors ζi are bounded and reflect the fact that constant acts are not
subject to ambiguity. The general representation allows for at most countably
infinitely many adjustment factors; moreover, by Theorem 1, if the state space
Ω is finite, then a finite n suffices.

In addition to the normalization A(0n)= 0, condition 3 formalizes the cen-
tral symmetry assumption discussed in the Introduction (cf. in particular foot-
note 7). Condition 4 ensures monotonicity of the VEU representation. Simple
examples show that monotonicity necessarily involves a joint restriction on p,
ζ, and A.9 In many cases of interest, easy-to-check necessary and sufficient
conditions can be provided: see Appendix A for details.

The functionalA can be extended to all of R
n consistently with the symmetry

requirement of condition 3; for instance, let A(φ) = 0 for all φ ∈ R
n \ E(u ◦

F ;p�ζ).10 The values assumed by A at such points are obviously irrelevant
to the representation of preferences. Restricting the domain of A to E(u ◦
F ;p�ζ) as in Definition 1 simplifies the statement of some results.

It is useful to point out that the functionalA, and hence the entire VEU rep-
resentation, is not required to be positively homogeneous. This makes it pos-
sible to accommodate, for instance, members of the “variational preferences”
family studied by Maccheroni, Marinacci, and Rustichini (2006) that satisfy the
key symmetry requirement of this paper; furthermore, it enables differentiable
specifications of the adjustment functional A, which would otherwise be pre-
cluded.

Observation: Equivalent Formulations: One can view the collection ζ =
(ζi)0≤i<n as a vector-valued function and view the corresponding n-vector

9Refer to the three-color-urn example in the Introduction and let f ′
B be a bet that yields

20 dollars if B obtains. Since A(ϕ) = −|ϕ|, then A(Ep[ζ0 · f ′
B]) < A(Ep[ζ0 · fB]), even though

Ep[ζ0 · f ′
B] = 20

3 >
10
3 = Ep[ζ0 · fB]. Taking A(ϕ)= |ϕ| instead shows that no general assumption

may be made regarding the direction of monotonicity for A alone.
10Note that a ∈ u ◦ F implies [infΩ a+ supΩ a] − a ∈ u ◦ F , so φ ∈ E(u ◦ F ;p�ζ) implies −φ ∈

E(u ◦ F ;p�ζ).
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(Ep[ζi ·u◦f ])0≤i<n as its vector expectation (where integration is in the Bochner
sense: cf. Aliprantis and Border (1994, Section 11.8)).11

Each adjustment factor ζi can also be interpreted as a Radon–Nikodym
derivative: that is, one can define a corresponding signed measure mi :Σ→ R

by letting mi(E)= Ep[ζi · 1E] for each E ∈ Σ. An earlier version of this paper
(Siniscalchi (2007)) employed this formulation.

Finally, it is convenient to define a notion of “parsimonious” VEU represen-
tation; the objective is to remove two types of redundancy. First, one or more
of the functions (ζi)0≤i<n in Definition 1 may be linear combinations of other
adjustment factors. In the proposed parsimonious VEU representation, the
collection (ζi)0≤i<n is instead required to be orthonormal (hence a fortiori lin-
early independent) relative to the inner product defined by the baseline prior
p; that is, for all i� j such that 0 ≤ i < n and 0 ≤ j < n, Ep[ζiζj] = 1 if i = j
and Ep[ζiζj] = 0 otherwise. This also suggests that the adjustment factors ζi
reflect distinct, mutually uncorrelated “sources of ambiguity.” The normaliza-
tion Ep[ζ2

i ] = 0 is mainly for convenience.
The second type of redundancy is motivated by the decision-theoretic notion

of “crisp acts” introduced by Ghirardato, Maccheroni, and Marinacci (2004).
Again, let F denote either F0 or Fb. Say that an act f ∈ F is crisp if, for every
x ∈X that satisfies f ∼ x, and for every g ∈ F0

12 and λ ∈ (0�1],
λg+ (1 − λ)x∼ λg+ (1 − λ)f�(4)

That is, a crisp act behaves like its certainty equivalent: in particular, as dis-
cussed in Ghirardato, Maccheroni, and Marinacci (2004), it does not provide a
hedge against the ambiguity that influences any other act g.13 Constant acts are
obviously crisp; correspondingly, any VEU representation of the preference �
assigns them the zero adjustment vector. Since crisp acts behave like constant
acts, it seems desirable to ensure that their associated adjustment vector also
be zero.

DEFINITION 2: Let F denote either F0 or Fb. A VEU representation
(u�p�n�ζ�A) of a preference relation � on F is sharp if (ζi)0≤i<n is ortho-
normal and, for any crisp act f ∈ F , Ep[ζ · u ◦ f ] = 0n.

As an immediate implication, note that, for an EU preference, all acts are
crisp; thus, the unique sharp VEU representation of an EU preference features
n= 0, that is, an empty adjustment tuple.

11If n = ∞, one must normalize the factors ζi so that they are uniformly bounded. One then
views ζ = (ζi)0≤i<∞ as a function with values in the Banach space �∞.

12Under the axioms in the next section, restricting attention to g ∈ F0 is without loss even for
f ∈ F = Fb.

13The present definition is weaker than its counterpart in Ghirardato, Maccheroni, and Mari-
nacci (2004): in particular, it allows for preferences that do not have a positively homogeneous
representation. The two definitions are equivalent if positive homogeneity holds.
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It is sometimes convenient to employ VEU representations that are not
sharp: see, for instance, the analysis of updating in Section 4.4. However, ad-
justment factors in a sharp representation can be interpreted as independent
sources of ambiguity; see Section 4 for details.

3. AXIOMATIC CHARACTERIZATION OF VEU PREFERENCES

Mixtures of acts are taken pointwise: for every pair of acts f , g and any α ∈
[0�1], αf + (1 −α)g is the act assigning the consequence αf(ω)+ (1 −α)g(ω)
to each state ω ∈Ω.

As in the preceding section, let F denote either F0 or Fb. Axioms 1–4 are
standard:

AXIOM 1—Weak Order: � is transitive and complete on F .

AXIOM 2—Monotonicity: For all acts f�g ∈ F , f (ω) � g(ω) for all ω ∈ Ω
implies f � g.

AXIOM 3—Continuity: For all acts f�g�h ∈ F , the sets {α ∈ [0�1] :αf + (1 −
α)g� h} and {α ∈ [0�1] :h� αf + (1 − α)g} are closed.

AXIOM 4—Nondegeneracy: Not for all f�g ∈ F , f � g.

Next, a weak form of the Anscombe and Aumann (1963) independence ax-
iom, owing to Maccheroni, Marinacci, and Rustichini (2006), is assumed.

AXIOM 5—Weak Certainty Independence: For all acts f�g ∈ F , x� y ∈ X ,
and α ∈ (0�1), αf + (1 − α)x � αg + (1 − α)x implies αf + (1 − α)y � αg +
(1 − α)y .

Loosely speaking, preferences are required to be invariant to translations
of utility profiles, but not to rescaling (note that the same weight α is em-
ployed when mixing with x and with y). As discussed in Maccheroni, Marinacci,
and Rustichini (2006), this axiom weakens Gilboa and Schmeidler’s (1989) cer-
tainty independence, which requires invariance to both translation and rescal-
ing. Since certainty independence will be referenced below, it is reproduced
here, even though it is not assumed in Theorem 1.

AXIOM 5∗ —Certainty Independence: For all acts f�g ∈ F , x ∈ X , and α ∈
(0�1), f � g implies αf + (1 − α)x� αg+ (1 − α)x.

To ensure that the baseline prior is countably additive, adopt the following
axiom, which is in the spirit of Arrow (1974).14 A similar representation could

14See also Chateauneuf, Marinacci, Maccheroni, and Tallon (2005) and Ghirardato, Mac-
cheroni, and Marinacci (2004).
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be obtained without it, but it would not be possible to restrict attention to finite
or countably infinite collections of adjustment factors. To state the axiom, for
every pair x� y ∈ X and E ∈ Σ, denote by xEy the act that yields x at every
state ω ∈E and y elsewhere.

AXIOM 6—Monotone Continuity: For all sequences (Ak)k≥1 ⊂ Σ such that
Ak ⊃Ak+1 and

⋂
k Ak = ∅, and for all x� y� z ∈X such that x � y � z, there is

k≥ 1 such that zAkx� y � xAkz.

To state the novel axioms in this paper, a preliminary definition is required.
Intuitively, it identifies pairs of acts whose utility profiles are “mirror images.”

DEFINITION 3: Two acts f� f̄ ∈ F are complementary if and only if, for any
two states ω�ω′ ∈Ω,

1
2
f (ω)+ 1

2
f̄ (ω)∼ 1

2
f (ω′)+ 1

2
f̄ (ω′)�

If two acts f� f̄ ∈ F are complementary, then (f� f̄ ) is referred to as a comple-
mentary pair.

If preferences over X can be represented by a von Neumann–Morgenstern
utility function u(·), which is the case under Axioms 1–5, then the utility profiles
of the acts f and f̄ , denoted u◦f and u◦ f̄ , respectively, satisfy u◦ f̄ = k−u◦f
for some constant k ∈ R. Thus, complementarity is the preference counterpart
of algebraic negation.

Notice that if (f� f̄ ) and (g� ḡ) are complementary pairs of acts, then, for any
weight α ∈ [0�1], the mixtures αf + (1 −α)g and αf̄ + (1 −α)ḡ are themselves
complementary.

The complementary independence axiom may now be formulated.

AXIOM 7—Complementary Independence: For any two complementary pairs
(f� f̄ ) and (g� ḡ) in F , and all α ∈ [0�1]: f � f̄ and g� ḡ imply αf + (1 −α)g�
αf̄ + (1 − α)ḡ.

Axiom 7 formalizes the behavioral implications of the key cognitive assump-
tion underlying VEU preferences: the decision-maker’s assessment of an act
takes into account (i) a baseline evaluation, consistent with EU, as well as
(ii) its utility variability around this baseline.15 To elaborate, for EU preferences,
the property “f � f̄ and g � ḡ imply that αf + (1 − α)g � αf̄ + (1 − α)ḡ”
holds regardless of whether or not f� f̄ and g� ḡ are pairwise complementary;

15Equivalently, its outcome variability, but taking preferences over prizes into account.
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indeed, under Axioms 1–4, this property is equivalent to the standard indepen-
dence axiom and characterizes EU preferences. Next, recall that complemen-
tary acts are mirror images of each other; hence, as noted in the Introduction,
virtually all classical measures of dispersion attribute to them the same utility
variability. Under the cognitive assumptions considered here, this implies that
complementary acts are effectively ranked according to their baseline evaluation,
which is assumed to be consistent with EU. In Axiom 7, this applies to the rank-
ing of f vs. f̄ , g vs. ḡ, and, because complementarity is preserved by mixtures,
αf + (1 − α)g vs. αf̄ + (1 − α)ḡ. These rankings must be consistent with EU,
which leads to the requirement in Axiom 7.

A final assumption is needed:

AXIOM 8—Complementary Translation Invariance: For all complementary
pairs (f� f̄ ) in F and all x� x̄ ∈X with f ∼ x and f̄ ∼ x̄, 1

2f + 1
2 x̄∼ 1

2 f̄ + 1
2x.

Axiom 8 ensures that complementary acts are subject to the same adjust-
ment to their respective baseline evaluations. Observe first that, since f and
f̄ in Axiom 8 are complementary, so are the mixtures 1

2f + 1
2 x̄ and 1

2 f̄ + 1
2x;

hence, these acts are evaluated according to their baseline EU evaluation. Con-
sequently, the indifference between these mixtures has a trade-off interpreta-
tion: the difference between the baseline EU evaluation of f and f̄ is equal to
the utility difference between x and x̄. Since f ∼ x and f̄ ∼ x̄, it also equals the
difference between the overall VEU evaluations of f and f̄ . Hence, f and f̄
are subject to the same adjustment.

Complementary translation invariance is much less central to the charac-
terization of VEU preferences than complementary independence (Axiom 7).
Indeed, Axiom 8 is actually redundant in two important cases. First, Axiom 8
is implied by Axioms 1–5 and 7 if the utility function representing preferences
over X is unbounded either above or below,16 as is the case for the majority
of monetary utility functions employed in applications. Second, regardless of
the utility function, if preferences satisfy Axioms 1–4 and 5∗ (instead of Ax-
iom 5), then it is trivial to verify that the indifference required by Axiom 8
holds regardless of whether or not f and f̄ are complementary; in other words,
Axiom 8 is automatically satisfied by all “invariant-biseparable” preferences
Ghirardato, Maccheroni, and Marinacci (2004).17 Thus, Axiom 8 is only re-
quired to allow for preferences that simultaneously violate Axiom 5∗ and are
represented by a bounded utility function on X .

The main result of this paper can now be stated.

16A proof is available upon request. Well known axioms ensure that utility is unbounded; see,
for example, Maccheroni, Marinacci, and Rustichini (2006).

17This class includes, for instance, all multiple-priors, α-maxmin, and Choquet expected utility
preferences.
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THEOREM 1: Consider a preference relation � on F0. The following statements
are equivalent:

1. The preference relation � satisfies Axioms 1–8 on L= F0.
2. � admits a sharp VEU representation (u�p�n�ζ�A).
3. � admits a VEU representation (u�p�n�ζ�A).
In statement 2, if (u′�p′� n′� ζ ′�A′) is another VEU representation of �, then

p′ = p, u′ = αu+β for some α�β ∈ R with α> 0, and there is a linear surjection
T : E(u′ ◦ F0;p�ζ ′)→ E(u ◦ F0;p�ζ) such that

∀a′ ∈ u′ ◦ F0� T (Ep[ζ ′ · a′])= 1
α

Ep[ζ · a′]�(5)

A′(Ep[ζ ′ · a′])= αA(
T(Ep[ζ ′ · a′]))�

If (p�u′� n′� ζ ′�A′) is also sharp, then T is a bijection. Finally, if Ω is finite, then
n≤ |Ω| − 1.

COROLLARY 1: If a preference relation on F0 satisfies satisfies Axioms 1–8,
then it has a unique extension to Fb that satisfies the same axioms and admits a
sharp VEU representation on Fb.

The primary message of Theorem 1 is the equivalence of statements 1 and
2: Axioms 1–8 are equivalent to the existence of a sharp VEU representation.
However, as noted in Section 2, it is sometimes convenient to employ VEU
representations that are not sharp. Theorem 1 ensures that the resulting pref-
erences will still satisfy Axioms 1–8. To put it differently, if a preference admits
a VEU representation, then it also admits a sharp VEU representation.

The second part of Theorem 1 indicates the uniqueness properties of the
VEU representation. The baseline probability measure p is unique, and the
adjustment factors ζ and function A are unique up to transformations that
preserve both the affine structure of the set E(u ◦ F0;p�ζ) of adjustment vec-
tors and the actual adjustment associated with each element in that set.

To elaborate, recall that the role of the adjustment factors ζ is to capture
the patterns of “complementarity” among different events; for instance, if am-
biguity about two events E and F cancels out, then Ep[ζ · 1E∪F ] = 0. For an-
other tuple of random variables ζ ′ to capture the same complementarities as
ζ, it must be the case that also Ep[ζ ′ · 1E∪F ] = 0. Similarly, complementarities
among adjustment vectors associated with different acts must be preserved.
The existence of a functional T with the properties listed in Theorem 1 en-
sures this. As Example 1 illustrates, this imposes considerable restrictions on
transformations of a given adjustment that can be deemed inessential.

EXAMPLE 1: Refer to the ambiguity-averse VEU preferences described in
the Introduction in the context of the Ellsberg paradox. Note that E(u ◦
F0;p�ζ) is the entire real line.
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Now consider a two-element tuple ζ ′ = (ζ ′
0� ζ

′
1) and let A′(ϕ)= −√

ϕ2
1 +ϕ2

2
for all ϕ ∈ E(u ◦ F0;p�ζ ′). Suppose T is as in Theorem 1. Then A′ =A ◦ T
implies that, in particular, A′( 1

3ζ
′(R)) = A(T( 1

3ζ
′(R))) = A( 1

3ζ(R)) = 0, so
ζ ′(R)= 0 ∈ R

2. Similarly, T( 1
3ζ

′(B)+ 1
3ζ

′(G))= 1
3ζ(B)+ 1

3ζ(G)= 0, so A′ =
A ◦ T implies A′( 1

3ζ
′(B) + 1

3ζ
′(G)) = 0, and so ζ ′(B) = −ζ ′(G). Finally,

A′( 1
3ζ

′(B))= 1
3 =A′( 1

3ζ
′(G)). In other words, ζ ′ encodes exactly the same in-

formation about B andG as ζ: the two events are equally ambiguous, but their
ambiguities cancel out. Of course, ζ does so in a more parsimonious way. Thus,
intuitively, ambiguity in the Ellsberg paradox is really “one dimensional,” re-
gardless of the particular vector representation one chooses. The analysis in
Section 4.1 expands upon this observation.

4. ANALYSIS OF THE REPRESENTATION AND ADDITIONAL RESULTS

4.1. Heuristic Construction of the Representation

The VEU representation is constructed in three key steps. First, a prelimi-
nary numerical representation is obtained invoking results from Maccheroni,
Marinacci, and Rustichini (2006); see item 6 in Proposition 6. Second, the base-
line prior p is identified: Lemma 1 (cf. also Observation 1) implies that if Ax-
ioms 7 and 8 hold,18 there exists a unique probability p such that, for every
complementary pair (f� f̄ ), f � f̄ iff Ep[u ◦ f ] ≥ Ep[u ◦ f̄ ], as was claimed in
the Introduction. By Axiom 6, p is countably additive (Lemma 5). The third
key step is the construction of the adjustment factors ζi and the functionA. To
provide some intuition, it is useful to focus once again on the three-color-urn
problem of the Introduction and Example 1.

Recall that the prior p on the state space Ω = {R�G�B} is assumed to be
uniform. Figure 1 depicts the set F0 of acts in the problem under consideration;
assuming linear utility for simplicity, this is identified with Euclidean space
R

3. The upward-sloping plane in the picture corresponds to the set of crisp
acts; in this example, ambiguity concerns the relative likelihood of G vs. B, so
intuitively an act h is crisp if and only if h(G)= h(B). Denote this set by C and
denote by NC the orthogonal complement of C relative to the inner product
defined by the baseline prior p: that is, g ∈ NC if and only if Ep[g · h] = 0 for
all h ∈ C. In Figure 1, this set corresponds to the line perpendicular to C and
going through the origin.19 By definition, elements of NC are uncorrelated with
any crisp act, and thus may be thought of as “purely ambiguous”; the acronym
NC stands for the more neutral term noncrisp. In this example, both C and NC

18As noted above, Axiom 8 need not be imposed explicitly in most cases of interest for appli-
cations.

19Since p is uniform, in this example the elements of NC are also orthogonal to C in the usual
Euclidean sense.
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FIGURE 1.—Crisp and noncrisp acts in the Ellsberg paradox.

are easily seen to be closed subsets of R
3. For the general case, see Lemma 6

in the Appendix.
It is now possible to define the collection ζ = (ζi)0≤i<n as an orthonormal

basis for the set NC. In this example, NC is one dimensional (recall Exam-
ple 1), so ζ consists of a single vector; Figure 1 depicts one of only two possible
choices for ζ (the other is the negative of the vector indicated in the picture).
Also observe that, because it must lie on NC, ζ = (ζ0) must necessarily satisfy
ζ0(G)= −ζ0(B). Thus, the key feature of the adjustment factor used to ratio-
nalize the modal preferences in the Ellsberg paradox actually arises endoge-
nously from this construction, once the set of crisp acts has been specified. The
existence of an orthonormal basis in the general case is a standard property of
Hilbert spaces; furthermore, under the assumption that the sigma-algebra Σ is
countably generated, such a basis is countable.

Finally, consider an act f : its projections g and h onto NC and C, respec-
tively, are uniquely defined; this is immediate in the example, and follows from
the orthogonal decomposition theorem (cf., e.g., Dudley (1989, p. 125)) in the
general case. One can thus think of g and h as the purely ambiguous and crisp
parts of the act f . This decomposition has two useful consequences.

First, it can be shown that the difference between the individual’s evaluation
(equivalently, due to the assumption of linear utility, the certainty equivalent)
of the act f and its baseline expectation Ep[f ] depends solely upon the projec-
tion g of f on NC—that is, solely on its ambiguous part. Second, the projection
of f on NC has a representation in terms of the adjustment factor ζ0: in par-
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ticular, g = Ep[ζ0 · f ] · ζ0. In the general case, the expectations Ep[ζi · u ◦ f ],
viewed as inner products, are the Fourier coefficients of f relative to the ortho-
normal basis ζ = (ζi)0≤i<n of the Hilbert space NC. Taken together, these facts
lead to the VEU representation in Eq. (3).

4.2. Characterization of the Number n of Adjustment Factors

The cardinality n of the orthonormal basis ζ has a direct behavioral charac-
terization. A notion of “linear combination” of acts, that is, a “mixture” that al-
lows for negative weights, is required. Complementarity (Definition 3) enables
a straightforward formulation of this notion: a combination of a collection of
acts f1� � � � � fm ∈ Fb is a mixture act α1g1 + · · · + αmgm ∈ Fb, where

∑
i αi = 1

and, for every i= 1� � � � �m, αi ∈ [0�1] and either gi = fi or gi is complementary
to fi.

PROPOSITION 1: Consider a preference relation � on F0 that satisfies Ax-
ioms 1–4 and let (u�p�n�ζ�A) be a VEU representation of its unique extension
to Fb.

1. For every finitem> n, every tuple f1� � � � � fm ∈ Fb admits a crisp combina-
tion.

If, additionally, (u�p�n�ζ�A) is sharp, then
2. for every finite m≤ n, there is a tuple f1� � � � � fm ∈ Fb that admits no crisp

combination;
3. for every other VEU representation (u′�p′� n′� ζ ′�A′) of the extension of �

to Fb, n′ ≥ n.
4. n = 1 if and only if � is not consistent with EU and, for all f�g� ḡ ∈ Fb

such that g� ḡ are complementary and not constant, and all α ∈ [0�1], either αf +
(1 − α)g or αf + (1 − α)ḡ is crisp.

This result complements the analysis in the preceding subsection, and re-
inforces the interpretation of the number n as reflecting the multiplicity and
complexity of the “sources of ambiguity” in a given decision situation. Part 1 of
Proposition 1 states that, given any collection of more than n acts, it is possi-
ble to construct a crisp combination, that is, a perfect hedge against ambiguity.
Intuitively, this means that there cannot be more than n distinct sources or
forms of ambiguity; for instance, in the three-color-urn example, given any two
noncrisp acts, it is always possible to construct a combination act that delivers
the same outcome in statesG and B, and is therefore not subject to ambiguity.
Conversely, part 2 of the Proposition 1 asserts the existence of a tuple of up to
n acts that cannot be combined in any way to construct a perfect hedge. Intu-
itively, this suggests that each act in such a tuple is subject to a different source
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or form of ambiguity. It is also instructive to note that the tuple f1� � � � � fm in
the statement is constructed by rescaling the adjustment factors (ζi)0≤i<n.20

Part 3 of Proposition 1 complements the uniqueness statement of Theo-
rem 1. Consider a sharp VEU representation (u�p�n�ζ�A) of the extension
of � to Fb. A fortiori, this21 is a sharp VEU representation of � on F0, and
Theorem 1 states that (u�p�n�ζ�A) employs the “smallest” set of adjustment
vectors E(u ◦ F0;p�ζ), up to embedding. Proposition 1 additionally ensures
that the sharp representation (u�p�n�ζ�A) employs the minimal number of
adjustment factors.

4.3. The Adjustment Function A and Ambiguity Attitudes

This section analyzes ambiguity aversion for VEU preferences. Two es-
tablished definitions of this concept are considered: Schmeidler (1989) and
Ghirardato and Marinacci (2002). Both have natural characterizations in terms
of properties of the adjustment functionA. Ghirardato and Marinacci’s notion
also allows for comparisons of ambiguity attitudes across individuals: again, a
characterization in terms of the adjustment function A is provided.

Begin with Schmeidler’s classical axiom. Intuitively, an individual who is
ambiguity-averse according to the proposed definition values mixtures because
they “smooth” utility profiles (cf. Schmeidler (1989, p. 582), Klibanoff (2001,
p. 290)). This has a straightforward characterization for VEU preferences,
stated below as a corollary to Theorem 1.

AXIOM 9—Ambiguity Aversion: For all f�g ∈ F0 and α ∈ (0�1), f ∼ g im-
plies αf + (1 − α)g� g.

COROLLARY 2: Consider a preference relation � on F0 for which Axioms 1–8
hold and let A be as in Theorem 1 statement 2. Then � satisfies Axiom 9 if and
only if A is nonpositive and concave.

A VEU preference that satisfies Axiom 9 is variational (Maccheroni, Mari-
nacci, and Rustichini (2006)); if it additionally satisfies certainty independence
(Axiom 5∗) rather than the weaker Axiom 5, then it is a maxmin EU prefer-
ence (Gilboa and Schmeidler (1989)). For completeness, a VEU preference is
ambiguity-loving in the sense of Schmeidler (i.e., f ∼ g implies αf + (1−α)g�
g for all f�g ∈ F0 and α ∈ (0�1)) if and only if A is nonnegative and convex;
it is ambiguity-neutral (i.e., both ambiguity-averse and ambiguity-loving) if and
only if A= 0.

20This is the reason why the extension of � to Fb is required. To the best of my knowledge, one
cannot guarantee that the adjustment factors are simple functions, although they can be shown
to be bounded.

21Strictly speaking, consider (u�p�n�ζ�A0), whereA0 is the restriction ofA to E(u◦ F0;p�ζ).
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In the VEU representation, it also seems plausible to associate nonposi-
tive, but not necessarily concave, adjustment functions with a (different) form
of ambiguity aversion. This property turns out to be characterized by weaker
forms of Axiom 9 for VEU preferences.

AXIOM 10—Complementary Ambiguity Aversion: For all complementary
pairs (f� f̄ ) and prizes x� x̄ ∈X such that f ∼ x and f̄ ∼ x̄, 1

2f + 1
2 f̄ � 1

2x+ 1
2 x̄.

AXIOM 11—Simple Diversification: For all complementary pairs (f� f̄ ) with
f ∼ f̄ , 1

2f + 1
2 f̄ � f .

Both axioms have the standard hedging interpretation, but are restricted to
complementary acts. Axiom 11 is related to the “diversification” property of
Chateauneuf and Tallon (2002).

Finally, Ghirardato and Marinacci (2002) proposed a way to compare am-
biguity attitudes across decision-makers, mirroring analogous definitions for
risk attitudes. This leads to a “comparative” notion of ambiguity aversion. For
VEU preferences, this notion, too, characterizes a negative adjustment func-
tion. The details are as follows.

DEFINITION 4: Given two preference relations �1 and �2 on F0, �1 is more
ambiguity-averse than �2 iff, for all f ∈ F0 and x ∈X , f �1 x⇒ f �2 x. Also,
�1 is comparatively ambiguity-averse if it is more ambiguity-averse than a pref-
erence relation �2 that is consistent with EU.

PROPOSITION 2: Let � be a preference relation with VEU representation
(u�p�n�ζ�A). Then the following statements are equivalent:

1. � is comparatively ambiguity-averse.
2. � satisfies Axiom 10.
3. For all ϕ ∈ E(u ◦ F0;p�ζ), A(ϕ)≤ 0.
If u(X) is unbounded above or below, or if � satisfies Axiom 5∗, then state-

ments 1–3 are equivalent to the following statement:
4. � satisfies Axiom 11.

A VEU preference that satisfies the equivalent conditions 1–4 is not neces-
sarily variational or, a fortiori, consistent with maxmin EU. (For completeness,
such a VEU preference is also not ambiguity-loving in the sense of Schmeidler,
except in the trivial case, i.e., if it is ambiguity-neutral.) The following example
shows that this additional flexibility can be advantageous.

EXAMPLE 2: Machina (2009) considered the following situation. Let Ω =
{ω1� � � � �ω4} and assume that {ω1�ω2} and {ω3�ω4} are known to be equally
likely (and not ambiguous); the relative likelihood of ω1 vs. ω2 and of ω3 vs.
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TABLE I

MACHINA’S REFLECTION EXAMPLE: REASONABLE PREFERENCES f1 ≺ f2 AND f3 � f4

ω1 ω2 ω3 ω4

f1 $4000 $8000 $4000 $0
f2 $4000 $4000 $8000 $0
f3 $0 $8000 $4000 $4000
f4 $0 $4000 $8000 $4000

ω4, is not known. Assume further that X = R and u is linear (this is inconse-
quential for the example). Consider the monetary bets (acts) in Table I.

Notice that f1 and f4 only differ by a “reflection,” that is, by exchanging
prizes on states that are informationally symmetric. The same is true of f2

and f3. Hence, it is plausible to expect that f1 ∼ f4 and f2 ∼ f3. In particu-
lar, Machina (2009) conjectured, and L’Haridon and Placido (2009) verified
experimentally, that a plausible pattern of “ambiguity-averse” preferences is
f1 ≺ f2 and f3 � f4. Machina showed that this pattern is inconsistent with Cho-
quet EU if informational symmetries are respected. Baillon, L’Haridon, and
Placido (2008) showed that the same is true for maxmin EU and variational
preferences. Recall that the latter two preference models satisfy Schmeidler’s
notion of ambiguity aversion.22

However, it is possible to rationalize this pattern with VEU preferences
that satisfy comparative ambiguity aversion and respect informational symme-
tries. Let p be uniform and define two adjustment factors by ζ0(ω1) = 1 =
−ζ0(ω2), ζ1(ω3) = 1 = −ζ1(ω4), and ζ0(ω3) = ζ0(ω4) = ζ1(ω1) = ζ1(ω2) = 0.
Finally, consider the adjustment function A : R2 → R given by A(φ0�φ1) =
− 1

2

√
1 + |φ0| − 1

2

√
1 + |φ1| + 1. Monotonicity may be verified by applying Re-

mark 2 (Appendix); straightforward calculations show that the pattern f1 ≺ f2

and f3 � f4 is obtained. Finally, A(φ0�φ1) ≤ 0 for all (φ0�φ1), and so these
VEU preferences are comparatively ambiguity-averse by Proposition 2. Since
the adjustment functionA is not concave on R

2, these VEU preferences do not
satisfy Axiom 9 and hence are not variational, and sinceA(φ) < 0 unlessφ= 0
and A is not convex, these VEU preferences are also not ambiguity-loving.

For additional discussion of Machina’s reflection example, see Siniscalchi
(2008).

Turn now to the comparison of ambiguity attitudes across individuals. The
Ghirardato and Marinacci “more ambiguity averse than” ordering also has a

22Smooth-ambiguity preferences Klibanoff, Marinacci, and Mukerji (2005) also rule out this
pattern under the appropriate ambiguity-aversion assumption (concavity of the second-order util-
ity).
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simple characterization for VEU preferences. To obtain a meaningful compar-
ison of ambiguity attitudes, it is necessary to ensure that the preferences being
compared are represented by the same utility function and baseline prior.23

Furthermore, a comparison solely in terms of the adjustment functions can
be obtained if the preferences under consideration also share the same ad-
justment factors. Proposition 3 provides behavioral characterizations of these
conditions, and Proposition 4 characterizes the “more ambiguity averse than”
relation for the VEU representation.

PROPOSITION 3: Consider two VEU preferences �1 and �2 with representa-
tions (u1�p1� n1� ζ1�A1) and (u2�p2� n2� ζ2�A2). Then the following statements
are equivalent:

1. For all complementary pairs (f� f̄ ) in F0, f �1 f̄ if and only if f �2 f̄ .
2. p1 = p2 and u1�u2 differ by a positive linear transformation.

Furthermore, if statement 1 holds, then �1 and �2 admit a sharp VEU representa-
tion with the same vector of adjustment factors if and only if they admit the same
set of crisp acts.24

PROPOSITION 4: Consider two VEU preferences �1 and �2 on F0 with repre-
sentations (u�p�n1� ζ1�A1) and (u�p�n2� ζ2�A2). Then �1 is more ambiguity-
averse than �2 if and only if, for all f ∈ F0,A1(Ep[ζ1 ·u◦f ])≤A2(Ep[ζ2 ·u◦f ]).
In particular, if n1 = n2 and ζ1 = ζ2 = ζ, then �1 is more ambiguity-averse than
�2 if and only if A1(ϕ)≤A2(ϕ) for all ϕ ∈ E(u ◦ F0;p�ζ).

To conclude, Epstein (1999) proposed an alternative definition of ambigu-
ity aversion in which the benchmark is probabilistic sophistication (Machina
and Schmeidler (1992)) rather than EU. The implications of this definition for
VEU preferences are left to future work.

4.4. Updating

This section proposes an updating rule for VEU preferences. Throughout
this subsection, two binary relations on F0 will be considered: � denotes the in-
dividual’s ex ante preferences, whereas �E denotes her preferences conditional
upon the event E ∈ Σ. To keep notation to a minimum, the event E will be fixed
throughout.

To provide some heuristics for the proposed updating rule, recall that the
VEU preference functional V : F0 → R can be rewritten in “covariance” form:
compare Eq. (2) in the Introduction. One possible way the individual might

23Note that the ranking in Definition 4 already implies that the utility functions coincide: see
the proof of Proposition 2.

24The final statement is not true for VEU representations that are not sharp: examples are
readily obtained.
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update her preferences upon learning that the event E has occurred is to up-
date her baseline prior p and use the same functional representation: that is,
replace Ep[·] and Covp(·� ·) in Eq. (2) with Ep[·|E] and Covp(·� ·|E), where
Covp(a�b|E) = Ep[(a − Ep[a|E])(b − Ep[b|E])|E].25 However, the resulting
preferences may violate monotonicity, and in fact the functional A may not
even be defined for all vectors (Covp(ζi�u◦ f |E))0≤i<n. Now consider rescaling
conditional covariances by the factor p(E), which leads to

VE(f )= Ep[u ◦ f |E] +A(
(p(E) · Covp(ζi�u ◦ f |E))0≤i<n

)
�(6)

Note that, for E = Ω, the above equation reduces to Eq. (2) in the Intro-
duction. Proposition 5 below shows that Eq. (6) does define a well posed
VEU, hence monotonic, representation and admits a straightforward behav-
ioral characterization. Observe that Eq. (6) may be equivalently rewritten sim-
ilarly to Eq. (3) by defining suitable conditional adjustment factors:

VE(f )= Ep[u ◦ f |E] +A(
(Ep(ζi�E · u ◦ f |E))0≤i<n

)
�(7)

where ζi�E = p(E) · [ζi − Ep[ζi|E]]�
Turn now to the axiomatic analysis. The following standard requirement en-

sures that the conditioning event E “matters” for the individual, so that updat-
ing is well defined:

AXIOM 12—E Is Not Null: There exist f�g ∈ F0 such that f (ω) = g(ω) for
all ω /∈E and f � g.

REMARK 1: Let � be a VEU preference, with baseline prior p. Then Axiom 12
holds iff p(E) > 0.

As is the case for conditional EU preferences, it will be assumed throughout
that the evaluation of acts upon learning that the event E has occurred does
not depend upon the consequences that might have been obtained if, counter-
factually, E had not obtained:

AXIOM 13—Null Complement: For all f�g ∈ F0, if f (ω)= g(ω) for all ω ∈
E, then f ∼E g.

The main axiom of this section can be informally stated as follows: if two acts
have the same baseline EU evaluation both ex ante and conditional upon E, and
the utility of the outcomes they deliver differs from this baseline evaluation only on
the event E, then their ex ante and conditional ranking should be the same. This
is consistent with the proposed interpretation of VEU preferences. Consider

25In the covariance formulation, the fact that, in general, Ep[ζi|E] �= 0 is inconsequential.
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an individual whose preferences are VEU both ex ante and conditional on E.
Upon learning that E has occurred, her evaluation of an act f may change
for two reasons: the baseline EU evaluation of f may change, and utility vari-
ability in states outside E no longer matters. However, for acts such that the
baseline evaluation does not change upon conditioning on E, and which exhibit
no variation away from the baseline evalution at states outside E to begin with,
it seems plausible to assume that the individual’s evaluation of such acts will
not change.

These special acts can be characterized by a behavioral condition that, once
again, involves complementarity. Consider two complementary acts h� h̄ ∈ F0

that are constant on Ω \ E; that is, h(ω) = h(ω′) and h̄(ω) = h̄(ω′) for all
ω�ω′ ∈Ω \E. Suppose that, for any (hence all) ω ∈Ω \E,

1
2
h+ 1

2
h̄(ω)∼ 1

2
h̄+ 1

2
h(ω)�(8)

If the preference relation � happens to be consistent with EU, then Eq. (8),
together with complementarity, readily imply that h ∼ h(ω) for any (hence
all) ω ∈Ω \E.26 This indicates that h(ω) is a certainty equivalent of h ex ante.
However, intuitively, h(ω) can also be viewed as a “conditional certainty equiv-
alent” of h givenE: since h(ω′)= h(ω) for allω′ ∈Ω\E, the ranking h∼ h(ω)
suggests that receiving h(ω) for sure at states in E is just as good for the in-
dividual as allowing the act h to determine the ultimate prize she will receive
conditional upon E.27 Thus, for an EU preference, Eq. (8) implies that the act
h has the same certainty equivalent both ex ante and conditional upon E.

For general VEU preferences, the above intuition obviously does not apply:
it may well be the case that h � h(ω) for ω ∈ Ω \ E. However, recall that
complementary independence (Axiom 7) implies that VEU preferences always
rank complementary acts in accordance with their baseline EU evaluation. Since
the mixture acts in Eq. (8) are complementary, the above intuition does apply
to the EU preference determined by the individual’s baseline prior. One then
concludes that if Eq. (8) holds, then h(ω) is a baseline certainty equivalent of h,
both ex ante and conditional upon E; this is formally verified in the proof of
Proposition 5. Furthermore, it is clear that h deviates from this baseline only
at states in E. Thus, Eq. (8) identifies the class of acts that should be ranked
consistently by prior and conditional VEU preferences.

26By complementarity, 1
2h+ 1

2 h̄∼ 1
2h(ω)+ 1

2 h̄(ω); by independence, combining this relation
with Eq. (8) yields 1

2h+ 1
2k∼ 1

2h(ω)+ 1
2k, with k= 1

2 h̄+ 1
2 h̄(ω). Invoking independence once

more yields h(ω)∼ h.
27Indeed, this condition may be used to characterize Bayesian updating for EU preferences,

as well as prior-by-prior Bayesian updating for maxmin expected utility (MEU) preferences; see
Pires (2002).
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AXIOM 14—Baseline-Variation Consistency: For all complementary pairs
(f� f̄ ) and (g� ḡ) such that f� f̄ � g� ḡ are constant on Ω \ E, and for every
ω ∈Ω \E, 1

2f + 1
2 f̄ (ω)∼ 1

2 f̄ + 1
2f (ω) and 1

2g+ 1
2 ḡ(ω)∼ 1

2 ḡ+ 1
2g(ω), f �E g if

and only if f � g.

PROPOSITION 5: Consider a preference relation � on F0 having a VEU repre-
sentation (u�p�n�ζ�A), an event E ∈ Σ, and another binary relation �E on F0.
Assume that �E is complete and transitive, and that Axiom 12 holds. Then the
following statements are equivalent.

1. Axioms 13 and 14 hold.
2. �E has a VEU representation (u�p(·|E)�n�ζE�A), where ζE = (ζi�E)0≤i<n

is as in Eq. (7).

It should be noted that the resulting VEU representation is not necessarily
sharp, even if the ex ante representation is. Also observe that the updating rule
for adjustment factors in Eq. (7) satisfies a version of the “law of iterated con-
ditioning.” Fix two events E�F ∈ Σ with E ⊂ F and, for all 0 ≤ i < n, let ζi�E�F
be the adjustment factor obtained from ζi�E by applying Eq. (7), with p(·|E)
and ζi�E in lieu of p and ζi. Then ζi�E�F = ζi�F for all indices i. Therefore, con-
ditioning on E first, then conditioning the resulting adjustment factors on F
yields the same tuple of adjustment factors as conditioning on F directly. This
property is shared by some, but not all updating rules for known decision mod-
els under ambiguity: for instance, the “maximum-likelihood” rule for maxmin
EU preferences (Gilboa and Schmeidler (1993)) violates it.

4.5. Recursion: A Consumption–Savings Example

The conditional preferences derived in Proposition 5 only satisfy a weak
form of dynamic consistency. Thus, a criterion such as consistent planning
(Strotz (1955–1956)) is required to resolve possible conflicts between the ex
ante and ex post evaluation of future choices. However, the updating rule ax-
iomatized in Section 4.4 allows for a recursive formulation of the consistent-
planning problem. This section illustrates the basic idea by means of a simple
example.

As a preliminary step, it is immediate to verify that if Π ⊂ Σ is a finite parti-
tion of Ω and if, for every F ∈Π, the tuple (ζi�F)0≤i<n is defined as in Eq. (7),
then

Ep[ζia] =
∑
F∈Π

Ep[ζi�Fa|F] +
∑
F∈Π

p(F)Ep[ζi|F]Ep[a|F]�(9)

In other words, for every i, the coefficient Ep[ζia] can be obtained from
the conditional baseline expectations Ep[a|F] and conditional coefficients
Ep[ζi�Fa|F] for all F ∈Π, just like the baseline expectation Ep[a] can be ob-
tained from the conditional baseline expectations Ep[a|F].

Turn now to the consumption–savings example.
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Setup and Notation

Consider an agent who has an initial endowment, or wealth, of w0 units of
a single good and wishes to consume in periods t = 0� � � � �T . At each time
t = 0� � � � � T − 1, she can choose how much of her current wealth wt to save
(st) and to consume (ct = wt − st). A unit saved at time t yields rt units of the
good at time t+1, where (rt)0≤i<T is an independent and identically distributed
(i.i.d.) collection of random variables and each rt equals either H > 1 or L <
H with equal probability. This is the only technology that allows the agent
to transfer the good across periods. Informally, I shall assume that the agent
perceives ambiguity about the correlation between rt and rt+1; this is inspired
by Seidenfeld and Wasserman (1993).

Formally, let the state space Ω be the collection of all realizations of the
process (rt)0≤t<T , and represent information by a filtration (Πt)0≤t≤T , where Πt

is the partition ofΩ generated by r0� � � � � rt−1 (soΠ0 = {Ω}). The element ofΠt

containing state ω ∈Ω is denoted Πt(ω). Also let Ht denote the event “rt =”
and let Lt =Ω \Ht . Consequences are consumption streams: X = R

T+1
+ .

A contingent consumption plan is a collection (ft)0≤t≤T such that, for each
t = 0� � � � � T , ft :Ω→ R+ isΠt-measurable. Each such collection defines an act
f :Ω→X by letting f (ω) = (ft(ω))0≤t≤T . Denote the set of such acts by FA,
where the subscript “A” suggests that these acts are “adapted” to the filtration
Π0� � � � �ΠT . To keep track of wealth given an act f ∈ FA, definewf = (wf

t )0≤t≤T
by wf

0(ω)= w0 and, for t = 1� � � � �T , wf
t (ω)= [wf

t−1(ω)− ft−1(ω)]rt−1(ω). Fi-
nally, let FA(w0) denote the subset of FA whose elements f satisfy ft(ω) ∈
[0�wf

t ] for all t = 0� � � � �T ; these correspond to feasible consumption plans.

Preferences and Updating

Assume discounted power utility on X: u(x) = ∑T

t=0 δ
tv(xt) with v(c) =

c1−γ/(1 − γ). Let the baseline prior p be uniform on Ω, which reflects the
distributional assumptions on (rt)0≤t<T . Next, fix T − 1 adjustment factors
ζ = (ζt)0≤t<T−1, where

ζt(ω)=
{
ε if rt(ω)= rt+1(ω),
−ε if rt(ω) �= rt+1(ω),

and ε > 0 is “suitably small.” Observe that ζt isΠt+2-measurable; furthermore,
it can be verified that Ep[ζt] = 0 for all 0 ≤ t < T − 1, as required by Defini-
tion 1. Finally, let the adjustment function be defined by A(ϕ) = −∑T−2

t=0 |ϕt |
for all ϕ ∈ R

T−1.
The following facts are established in Section S.4 of the supplemental mate-

rial: First, for all f ∈ FA,

V (f )=
T∑
t=0

δtEp[v ◦ ft] −
T−2∑
t=0

∣∣∣∣∣Ep

[
ζt

T∑
s=t+2

δsv ◦ fs
]∣∣∣∣∣�(10)
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Moreover, the updating rule in Eq. (7) yields, for each τ and F ∈ Πτ, a col-
lection (ζt�F)0≤t<T−1 such that, at time τ and conditional on F , acts in LA are
ranked according to the functional28

Vτ(f |F)= v ◦ fτ +
T∑

t=τ+1

δt−τEp[v ◦ ft |F](11)

−
T−2∑
t=τ−1

∣∣∣∣∣Ep

[
ζt�F

T∑
s=t+2

δs−τv ◦ fs|F
]∣∣∣∣∣�

Equation (9) is also simpler here: for all a :Ω→ R and all t,

Ep[ζt�Πτ(ω)a|Πτ(ω)] =
∑

G∈Πτ+1 :G⊂Πτ(ω)
Ep[ζt�Ga|G]�(12)

Analysis of Consumption–Savings Choices

The consistent-planning algorithm prescribes that, at each time τ and for
any possible cell f ∈ Πτ , the agent choose the level of savings that maxi-
mizes her conditional VEU payoff as per Eq. (11), calculated assuming that
consumption–savings choices at all subsequent times t = τ+ 1� � � � � T − 1 and
cells G ∈Πt (with G ⊂ F) are as determined in prior iterations of the proce-
dure.29

This is conceptually straightforward. However, naively computing the expec-
tations in Eq. (11) at time τ as just described is both analytically cumbersome
and computationally intensive: for each possible consumption level at time τ,
it is necessary to explicitly calculate how this choice would influence all sub-
sequent consumption–savings decisions at times t > τ. In other words, at any
decision point, the entire continuation subtree following a consumption choice
must be taken into account.

With EU preferences, this is avoided by assigning a continuation value to
the subtree following each consumption choice; the decision faced at any time
τ then effectively reduces to a simple, two-period problem. It will now be
shown that, by virtue of Eq. (12), a similar recursive approach is also possi-
ble with VEU preferences and baseline-prior updating. The main difference is
that, together with a (baseline) continuation value, it is also necessary to iter-
atively construct a continuation adjustment corresponding to each adjustment
factor ζt .

To initialize the recursion, for every w≥ 0, let VT+1(w)= 0. Now assume that
Vτ+1 and Φτ+1�t have been defined for τ+ 1 ≤ T + 1 and τ− 1 ≤ t ≤ T − 2; fix

28In the notation of Eq. (7), VF(f )= ∑τ−1
t=0 δ

tEp[v ◦ ft |F]+δτVτ(f |F); however, when evaluat-
ing continuation plans at time τ, only Vτ(f |F) is relevant.

29A simplifying feature of this example is that ties do not arise.
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F ∈Πτ and w ≥ 0, and let s∗τ�F(w) be the (unique, as it turns out) solution to
the problem

max
s∈[0�w]

v(w− s)+ δEp[Vτ+1(rτs)|F](13)

− δ
T−2∑
t=τ−1

∣∣Φτ+1�t(Hs|F ∩Hτ)+Φτ+1�t(Ls|F ∩Lτ)
∣∣�

where, as usual, a summation over an empty index set equals zero. As with EU
preferences, it turns out that s∗τ�F(w)= ατ�Fw, where ατ�F does not itself depend
upon w.

To complete the inductive step, define the baseline continuation value

Vτ(w)= v(w− s∗τ�F(w))+ δEp

[
Vτ+1(r̃s

∗
τ�F(w))|F

];(14)

then define the continuation adjustments

Φτ�t(w|F)(15)

=

⎧⎪⎨
⎪⎩
δ
{
Φτ+1�t(Hs

∗
τ�F(w)|F ∩Hτ)

+Φτ+1�t(Ls
∗
τ�F(w)|F ∩Lτ)

}
� τ− 1 ≤ t ≤ T − 2,

ζτ−2�F(ω)Vτ(w)� for any ω ∈ F , t = τ− 2

(the cases t = τ−1 and t = τ−2 also require t ≥ 0). Observe that continuation
adjustments use the same state variable w as the continuation value; however,
they also depend upon the conditioning event F . This is required to keep track
of the realization of adjustment factors.

The (unique) recursive solution to the problem is the act f ∗ ∈ FA for which
consumption f ∗

τ (ω) at time τ in state ω ∈ F ∈ Πτ equals (1 − ατ�F)w
f ∗
τ (ω).

Section S.4 (supplemental material) proves that this coincides with the so-
lution obtained by direct application of the consistent-planning algorithm.
A key step of the argument uses Eq. (12) to show that Φτ�t(w

f ∗
τ (ω)|F) =

Ep[ζt�F ∑T

s=t+2 δ
s−τv ◦ f ∗

s |F] for ω ∈ F : that is, as claimed, the functions Φτ�t

keep track of adjustments. As a result, the problem in Eq. (13) is analogous to
a two-period decision situation: it is not necessary to explicitly trace out the ef-
fects of the choice of s at time τ on subsequent decisions, because the relevant
payoff information is encoded in the functions defined in Eqs. (14) and (15).

4.6. Complementary Independence for Other Decision Models

This section investigates the implications of the complementary indepen-
dence axiom for four well known families of preferences: the maxmin-expected
utility (MEU) model of Gilboa and Schmeidler (1989), the variational pref-
erences model of Maccheroni, Marinacci, and Rustichini (2006), the Choquet
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TABLE II

NECESSARY AND SUFFICIENT CONDITIONS FOR COMPLEMENTARY INDEPENDENCE

Model Representation I(a) Property of Baseline Prior p

MEU minq∈C Eq[a]C ⊂ ba1(Σ) ∀q ∈ C, 2p− q ∈ C
Variational minq∈ba1(Σ)(Eq[a] + c∗(q)) ∀q ∈ ba1(Σ),

u unbounded above or below, xf ∼ f 2p− q ∈ ba1(Σ) ⇒ c∗(q)= c∗(2p− q),
and c∗(q)= supf∈F0

(u(xf )− Eq[u ◦ f ]) and 2p− q /∈ ba1(Σ) ⇒ c∗(q)= ∞
CEU

∫
adv, ∀E ∈ Σ, 1 − v(Ω \E)= 2p(E)− v(E)∫ ·dv Choquet integral w.r.t. capacity v

Smooth
∫

ba1(Σ)
φ(Eq[a])dμ(q) (Only sufficient) ∀q ∈ ba1(Σ),

μ has finite support 2p− q ∈ ba1(Σ) ⇒ μ(q)= μ(2p− q)
and 2p− q /∈ ba1(Σ) ⇒ μ(q)= 0

expected utility (CEU) model of Schmeidler (1989), and the smooth-ambiguity
model of Klibanoff, Marinacci, and Mukerji (2005). In the interest of con-
ciseness, the results are presented in tabular form (see Table II); the reader
is referred to the original papers for details on the representations and their
axiomatizations, and to Section S.2 of the supplemental material for formal
statements and proofs.

The second column in Table II indicates the functional I :u ◦ F0 → R that,
along with a utility function u :X → R, represents preferences in each of these
models: that is, for all f�g ∈ F0, f � g if and only if I(u ◦ f )≥ I(u ◦ g).

Notation: ba1(Σ) is the set of probability charges on (Ω�Σ).
The third column in Table II contains the main results of this subsection.

Each entry should be interpreted as follows: the model under consideration
satisfies complementary independence (Axiom 7) if and only if there exists
a probability p ∈ ba1(Σ) with the properties indicated in the table. For the
smooth-ambiguity model, this condition is only sufficient for Axiom 7.30 It is
also important to notice that, for each of these models, under the stated con-
dition, the baseline probability p is fully characterized by preferences: it is the
only probability charge such that, for all complementary pairs of acts (f� f̄ ),
f � f̄ if and only if Ep[u ◦ f ] ≥ Ep[u ◦ f̄ ].

Table II emphasizes the formal analogy among the various conditions for
complementary independence (CI). This allows a unitary interpretation of
these conditions.

Consider first the MEU, variational, and smooth models. Fix an act f
and compute its baseline EU evaluation Ep[u ◦ f ]. Suppose that a probabil-
ity charge q provides a more pessimistic evaluation of f , in the sense that

30In the setting of Klibanoff, Marinacci, and Mukerji (2005), it is easy to provide a condition
on second-order preferences that is equivalent to the property in Table II and hence implies
complementary independence.
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Ep[u◦f ]>Eq[u◦f ]. It is then immediate to verify that E2p−q[u◦f ]>Ep[u◦f ],
so the charge 2p − q provides a more optimistic evaluation of f . Indeed,
E2p−q[u◦f ] exceeds the baseline Ep[u◦f ] precisely by the amount by which the
latter exceeds Eq[u ◦ f ]. For CI to hold in the MEU, variational, and smooth
models, the probability charges q and 2p−qmust receive the same weight in the
representation of preferences, where the precise meaning of “weight” is model-
specific.31 Informally, under CI, the individual must hold a balanced view of
probabilistic assessments that are equally pessimistic and optimistic relative to
the baseline p. Thus, the latter serves as a cognitive “center of symmetry.”

In the CEU model, the set function defined by E �→ 1 − v(Ω \E) is usually
called the dual of the capacity v. Furthermore, if v is ambiguity-averse in the
sense of Schmeidler (1989), its dual is ambiguity-loving. According to Table II,
under CI the dual of v is precisely 2p−v. Again, this suggests that the baseline
p acts as a center of symmetry between capacities representing pessimistic and
optimistic evaluations.32

This property is satisfied, for instance, in several well known specifications of
MEU preferences. For finite state spaces, one important example is provided
by mean-standard deviation preferences, represented by the functional V (f ) =
Ep[u ◦ f ] − θσp(u ◦ f ) (Grant and Kajii (2007)); analogous representations
for general state spaces can be obtained by replacing the standard deviation
σp(·) with a different measure of dispersion, such as the Gini mean difference
(Yitzhaki (1982)) to ensure monotonicity. For a different, broad class of MEU
examples, consider a finite state space Ω, fix a baseline prior p, and let C =
{q ∈ Δ(Ω) :‖p− q‖ ≤ ε}, where ‖ · ‖ denotes any �p norm (p≥ 1) on R

|Ω|; this
suggests a concern for robustness to the misspecification of the baseline prior
p. Further details may be found in Siniscalchi (2007).

5. DISCUSSION

5.1. Related Literature

In the context of choice under risk, Quiggin and Chambers (1998, 2004) ana-
lyzed models featuring an exogenously given, objective reference probability p.
Under suitable assumptions, a random variable y is evaluated according to the
difference between its expectation Ep(y) with respect to p and a “risk index”
ρ(y). See also Epstein (1985) and Safra and Segal (1998).

Similar functional forms also appear in the social-choice literature. A clas-
sic result owing to Roberts (1980) characterized social-welfare functionals
that evaluate a profile u1� � � � � uI of utility imputations according to the form

31For the MEU model, p must be the barycenter of the set of priors C; for variational pref-
erences, q and 2p − q must be equally “costly”; and in the smooth model, q and 2p − q must
receive the same second-order probability.

32I emphasize that ambiguity aversion is not required for the characterization in Table II; how-
ever, the interpretation in the text may be more transparent for ambiguity-averse preferences.
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ū− g(u1 − ū� � � � � uI − ū), where ū = 1
I

∑
i ui. Ben-Porath and Gilboa (1994)

characterized orderings over income distributions that can be represented in
what is essentially a special case of the VEU functional, with the uniform dis-
tribution as reference probability. These contributions suggest an alternative
formulation of the VEU representation.

Assume for simplicity that the state space Ω is finite and write Ω =
{ω0� � � � �ωn−1}. Also consider a strictly positive probability p onΩ and a utility
function u. For every 0 ≤ i < n, let

ζci (ωi)= 1 −p({ωi})
p({ωi}) and ζci (ωj)= −1 ∀j �= i�(16)

Then, for every f ∈ F0, Ep[ζci · u ◦ f ] = u(f (ωi))− Ep[u ◦ f ], so (Ep[ζci · u ◦
f ])0≤i<n is the vector of statewise utility deviations from the baseline EU evalua-
tion of f . The VEU representation (u�p�n�ζc�A) then takes the canonical33

form V (f )= Ep[u ◦ f ] +A((u(f (ωi))− Ep[u ◦ f ])0≤i<n).
The canonical VEU representation is unique and emphasizes the depen-

dence upon the outcomes delivered by an act in every states. Furthermore, it
highlights the relationship with the social-choice literature. However, canoni-
cal representations are not sharp; therefore, it is not possible to identify canon-
ical adjustment factors ζci with distinct sources of ambiguity.

The literature on model uncertainty, initiated by Hansen, Sargent, and coau-
thors (see, e.g., Hansen and Sargent (2001), Hansen, Sargent, and Tallarini
(1999)), also prominently features a reference prior; the focus in this litera-
ture is largely on applications to macroeconomics and finance, rather than on
behavioral foundations. An interesting axiomatization has recently been pro-
vided by Strzalecki (2007); see also Wang (2003).

A recent paper by Grant and Polak (2007) provided a “primal represen-
tation” of Maccheroni, Marinacci, and Rustichini’s (2006) variational prefer-
ences model in a finite-states setting and generalized it by relaxing translation
invariance (monotonicity and ambiguity aversion are also weakened). The rep-
resentation Grant and Polak proposed is related to the ones in Quiggin and
Chambers (2004) and Roberts (1980): each act f is evaluated by aggregating a
“reference expected utility” term Ep[u ◦ f ], where p is a suitable probability,
and an “ambiguity index” ρ(·) that depends upon the statewise utility devia-
tions u(f (ωi)) − Ep[u ◦ f ]. These authors show that, for variational prefer-
ences, the aggregator is additive; relaxing translation invariance leads to more
general aggregators.

The reference prior p in Grant and Polak (2007) is not unique in general.
In the space of utility profiles, p corresponds to a hyperplane supporting the
individual’s indifference curves at a point on the certainty line. Decision mod-
els featuring a kink at certainty (e.g., MEU, CEU, or invariant biseparable

33I thank a referee for drawing attention to this particular representation, and suggesting the
term “canonical.”
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preferences) allow for multiple supporting hyperplanes and hence, typically,
multiple reference priors. One way to ensure uniqueness is to assume that in-
difference curves are “flat” or smooth at certainty, but, in this case, the prior p
only reflects (indeed, under smoothness, approximates) local behavior around
the certainty line. The baseline prior in the VEU representation is instead
uniquely identified by preferences over complementary acts. Hence, every act
contributes to the behavioral identification of the baseline prior.

Furthermore, Grant and Polak maintain a form of ambiguity aversion, which
is required for the existence of a supporting hyperplane at certainty; the VEU
representation instead allows for arbitrary ambiguity attitudes. Finally, the am-
biguity index ρ in Grant and Polak (2007) is not invariant to sign changes; the
VEU adjustment functional A instead satisfies this invariance property, which
supports the intuition that adjustments to baseline evaluations reflect outcome
variability, or dispersion. On the other hand, the analysis of VEU preferences
provided in this paper does assume and rely upon translation invariance (cf.
Axiom 5); however, see Section 5.2 below.

Decision models that incorporate a reference prior have also been analyzed
in environments where the objects of choice either consist of or include sets of
probabilities. In Stinchcombe (2003), Gajdos, Tallon, and Vergnaud (2004b),
and Gajdos, Hayashi, Tallon, and Vergnaud (2008), the reference prior is char-
acterized as the Steiner point of the set of probabilities under consideration. In
Gajdos, Tallon, and Vergnaud (2004a) and Wang (2003), each object of choice
explicitly indicates the reference prior. The present paper complements the
analysis of these authors by characterizing a decision model that features a
baseline prior in a fully subjective environment.

Kopylov (2006) axiomatized a special case of MEU preferences, where the
characterizing set of priors is generated by ε-contamination: that is, it takes the
form {(1−ε)p+εq :q ∈ Δ}, wherep serves as a reference prior andΔ is a set of
“contaminating” probability measures. While the prior p is endogenously de-
rived, the set Δ must be specified exogenously. Chateauneuf, Eichberger, and
Grant (2007) characterized CEU with respect to a “neo-additive” capacity; this
model can be viewed as α-maxmin expected utility with a set of priors obtained
by ε-contamination, in which the reference prior and the “contaminating set”
are both endogenously derived.

Finally, as was noted following Corollary 2 and elsewhere, VEU preferences
that satisfy Schmeidler’s ambiguity-aversion assumption (i.e., Axiom 9) are
also variational preferences. In this case, the VEU representation can provide
a convenient alternative to the variational specification. To elaborate, recall
that in the canonical variational representation (cf. the second row in Table II),
the utility index V (f ) assigned to an act f is the value of a minimization prob-
lem: V (f )= minq∈ba1(Σ) Eq[u ◦ f ] + c∗(q). In general, there may be no closed-
form solution to this problem and hence no explicit expression for the utility in-
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dex V (f ).34 On the other hand, the VEU utility index V (f ) is explicitly defined
in Eq. (3); VEU representations with a concave function A can thus provide
a family of richly parameterized, analytically convenient specifications of vari-
ational preferences. Furthermore, Theorem 1 and Corollary 2 provide a full
behavioral characterization of preferences that are both VEU and variational.
It is worth emphasizing, however, that VEU preferences enable the modeler
to capture more nuanced forms of aversion to ambiguity than are allowed by
maxmin EU or variational preferences (cf. Section 4.3).

5.2. Additional Features and Extensions

Probabilistic Sophistication

Non-EU VEU preferences can be probabilistically sophisticated in the sense
of Machina and Schmeidler (1992). A characterization of probabilistic sophis-
tication for VEU preferences is left for future work; Section S.3 in the sup-
plemental material provides a simple, related result that sheds further light on
the central role of baseline probabilities in the VEU model. Given a preference
relation � on F0, define the induced likelihood ordering ��⊂ Σ×Σ by

∀E�F ∈ Σ� E �� F ⇔ xEy � xFy for all x� y ∈X with x� y�
Proposition 10 (supplemental material) shows that the likelihood ordering in-
duced by a VEU preference is represented by a probability measure μ if and
only if μ is its baseline prior.

Translation-Invariance

Because they satisfy the weak certainty independence axiom (Axiom 5),
VEU preferences are invariant to “translation in utility space”; in the language
of Grant and Polak (2007), they display “constant absolute ambiguity aver-
sion,” as do, for instance, MEU, CEU, variational, and invariant-biseparable
preferences. However, this is solely a consequence of Axiom 5: the key axiom
in the characterization of the VEU representation, namely complementary in-
dependence (Axiom 7), does not imply or require translation-invariance.

For instance, consider the smooth-ambiguity model of Klibanoff, Marinacci,
and Mukerji (2005): Section 4.6 provides a sufficient condition for complemen-
tary independence that involves only the second-order probability μ, but not
the second-order utility φ; the latter is unrestricted. Smooth-ambiguity prefer-
ences are translation-invariant if and only ifφ is negative exponential or linear;
it then follows that there exists a rich class of smooth-ambiguity preferences

34Hansen and Sargent’s (2001) multiplier preferences are variational preferences for which
the minimization problem does have a closed-form solution; their popularity in applications is
probably due in part to this fact.
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that are not translation-invariant, but nevertheless satisfy complementary in-
dependence.

For a different perspective on this issue, consider an “aggregator” function
W : R2 → R, strictly increasing in both arguments. Also let u�p�ζ, and A be
as in the VEU representation. Then one may consider preferences defined by
letting, for all f�g ∈ F0,

f � g ⇔ W
(
Ep[u ◦ f ]�A(Ep[ζ · u ◦ f ]))

≥W (
Ep[u ◦ g]�A(Ep[ζ · u ◦ g]))�

The representation in this paper corresponds to the aggregator W (x�y)= x+
y . It is then easy to verify that Axiom 7 holds for such preferences, even if they
are not translation-invariant.

Therefore, it may be possible to characterize a version of the VEU repre-
sentation that does not impose “constant absolute ambiguity aversion.” The
resulting model would still feature sign- and translation-invariant adjustments
A(Ep[ζ ·u ◦ f ]), and hence would be consistent with the variability interpreta-
tion described in this paper.35 Such an extension is left to future work.

APPENDIX A: CONDITIONS FOR MONOTONICITY

REMARK 2: If a tuple (u�p�n�ζ�A) satisfies parts 1 and 2 in Defini-
tion 1, n < ∞, and A is continuous on E(u ◦ F0;p�ζ) and differentiable
on E(u ◦ F0;p�ζ) \ A−1(0), then it satisfies part 3 if and only if p(E) +∑

0≤i<n(∂A/∂ϕi)(ϕ)Ep[ζ11E] ≥ 0 for all ϕ /∈A−1(0) and E ∈ Σ.

PROOF: Part 3 is easily seen to be equivalent to the following condition: for
all a ∈ B0(Σ�u(X)), E ∈ Σ, and ε > 0 such that a+ ε1E ∈ B0(Σ�u(X)),

εp(E)+A(Ep[ζ · a] + εEp[ζ · 1E])−A(Ep[ζ · a])≥ 0�(17)

For any ϕ ∈ E(u◦ F0;p�ζ), ifA(ϕ)= 0 or ϕ= Ep[ζ ·a] and a+1Eε ∈ u◦ F0 for
some ε > 0, Eq. (17) readily implies the condition in the remark; if A(ϕ) �= 0,
ϕ = Ep[ζ · a], but a + 1Eε /∈ u ◦ F0 for any ε > 0, then let F = {ω :a(ω) =
maxu(X)}; since a is a simple function, F �= ∅. Consider the sequence (ak)
given by ak = a − 1F 1

k
; for k large, ak ∈ u ◦ F0, A(Ep[ζ · ak]) �= 0, and there

is εk > 0 such that ak + 1Eεk ∈ u ◦ F0. Then p(E) + ∑
0≤i<n(∂A/∂ϕi)(Ep[ζ ·

ak])Ep[ζi · 1E] ≥ 0 for all large k, and the claim follows by continuity of the
partial derivatives ∂A/∂ϕi.

Now suppose the condition in the remark holds and fix a�E�ε > 0 such that
a�a+ 1Eε ∈ u ◦ F0. To simplify the notation, write ϕη = Ep[ζ · a] +ηEp[ζ · 1E]
for all η ∈ [0� ε].

35Axiom 8 would also have to be dropped: after all, its interpretation involves translation-
invariance. In any case, recall that its role is limited even in the present setting.
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Consider first the case A(ϕ0) = 0. Let ε0 = sup{η ∈ [0� ε] :A(ϕη) = 0}. If
ε0 = 0, then A(ϕη) is differentiable for all η ∈ (0� ε) and

εp(E)+A(ϕε)−A(ϕ0)(18)

= 0 ·p(E)+A(ϕ0)−A(ϕ0)

+
∫ ε

0

[
p(E)+

∑
0≤i<n

∂

∂ϕi
A(ϕη)Ep[ζi · 1E]

]
dη

≥ 0�

as required. If ε0 > 0, then by continuity A(ϕε0)= 0 =A(ϕ0), so

ε0p(E)+A(ϕε0)−A(ϕ0)= ε0p(E)≥ 0�(19)

Thus, in particular, if ε0 = ε, Eq. (17) holds. If instead ε0 < 1, then one can
repeat the preceding argument with a′ = a+ ε01E and ε′ = ε− ε0 in lieu of a
and ε. By assumption A(Ep[ζ · a′] +ηEp[ζ · 1E]) �= 0 for all η ∈ (0� ε′), so the
argument just given implies that (ε−ε0)p(E)+A(ϕε)−A(ϕε0)≥ 0. Together
with Eq. (19), this implies that Eq. (17) holds in this case as well.

Consider now the case A(ϕ0) > 0. Let ε1 = sup{η ∈ [0� ε] :A(ϕη) �= 0}.
By continuity of A, ε1 > 0; thus, integrating on (0� ε1) as in Eq. (18) yields
ε1p(E) + A(ϕε1) − A(ϕ0) ≥ 0. If ε1 = ε, the proof is complete; otherwise,
note that by continuity of A, A(ϕε1)= 0. Applying the argument given above
to a′ = a + ε11E and ε′ = ε − ε1 in lieu of a and ε yields (ε − ε1)p(E) +
A(ϕε)−A(ϕε′)≥ 0; together with ε1p(E)+A(ϕε1)−A(ϕ0)≥ 0, this implies
that Eq. (17) holds. Q.E.D.

REMARK 3: If (u�p�n�ζ�A) satisfies parts 1 and 2 in Definition 1, and A is
concave and positively homogeneous, then (u�p�n�ζ�A) satisfies part 3 if and
only if p(E)+A(Ep[ζ · 1E])≥ 0 ∀E ∈ Σ.

PROOF: SinceA is positively homogeneous, it has a unique positively homo-
geneous extension to E(B0(Σ);p�ζ) given by A(Ep[ζ · αa]) = αA(Ep[ζ · a])
for all α > 0 and a ∈ u ◦ F0. Hence, A(Ep[ζ · a]) is well defined for all a ∈
B0(Σ), and A is concave on this domain. Hence, for all ϕ�ψ ∈ E(B0(Σ);p�ζ),
A(ϕ)=A(ψ+ (ϕ−ψ))= 2A( 1

2ψ+ 1
2(ϕ−ψ))≥ 2 1

2A(ψ)+ 2 1
2A(ϕ−ψ), so

A(ϕ−ψ)≤A(ϕ)−A(ψ).
Now suppose that p(E) + A(Ep[ζ · 1E]) ≥ 0 for all E ∈ Σ and consider

a�b ∈ B0(Σ) with a(ω) ≥ b(ω) for all ω. Then a − b ∈ B0(Σ), and since
a(ω) − b(ω) ≥ 0 for all ω, concavity and homogeneity, together with linear-
ity and monotonicity of

∫ ·dp, imply that
∫
(a−b)dp+A(Ep[ζ · (a−b)])≥ 0.

But the argument given above implies thatA(Ep[ζ · (a−b)])≤A(Ep[ζ ·a])−
A(Ep[ζ · b]), so

∫
adp+A(Ep[ζ · a]) ≥ ∫

bdp+A(Ep[ζ · b]). The other di-
rection is immediate. Q.E.D.
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APPENDIX B: PROOFS

B.1. Additional Notation and Preliminaries on Niveloids

The indicator function of an event E ∈ Σ will be denoted by 1E . Inequalities
between two elements a�b of B(Σ) are interpreted pointwise: a≥ bmeans that
a(ω)≥ b(ω) for all ω ∈Ω.

Let Φ ⊂ B(Σ) be convex. A functional I :Φ → R is a niveloid iff I(a) −
I(b) ≤ sup(a − b) for all a�b ∈ Φ; it is normalized if I(γ1Ω) = γ for all
γ ∈ R such that γ1Ω ∈ Φ; it is monotonic iff, for all a�b ∈ Φ, a ≥ b implies
I(a) ≥ I(b); it is constant-mixture invariant iff, for all a ∈ Φ, α ∈ (0�1), and
γ ∈ R with γ1Ω ∈Φ, I(αa+ (1 −α)γ)= I(αa)+ (1 −α)γ; it is vertically invari-
ant iff I(a+γ)= I(a)+γ for all a ∈Φ and γ ∈ R such that a+γ ∈Φ; and it is
affine iff, for all a�b ∈Φ and α ∈ (0�1), I(αa+(1−α)b)= αI(a)+(1−α)I(b).
Maccheroni, Marinacci, and Rustichini (2006) (MMR henceforth) demon-
strated the usefulness of niveloids in decision theory and established useful
results reviewed below.

If Φ= B0(Σ) or Φ= B(Σ), then a functional I :Φ→ R is positively homoge-
neous iff, for all a ∈ Φ and α ≥ 0, I(αa) = αI(a); is c-additive iff I(a + α) =
I(a)+ α for all α ∈ R+ and a ∈Φ; is additive iff I(a+ b)= I(a)+ I(b) for all
a�b ∈Φ; is c-linear iff it is c-additive and positively homogeneous; and is linear
iff it is additive and positively homogeneous.

Let ba(Σ) and ba1(Σ) denote, respectively, the set of finitely additive mea-
sures and the set of charges (finitely additive probabilities) on (Ω�Σ). Recall
that ba(Σ) is isometrically isomorphic to the norm dual of B0(Σ) and B(Σ).
Also, the σ(ba(Σ)�B(Σ)) and σ(ba(Σ)�B0(Σ)) topologies coincide on ba1(Σ);
they are referred to as the weak∗ topology.

Furthermore, if Γ ⊂ R is a nonempty, nonsingleton interval, denote by
B0(Σ�Γ ) and B(Σ�Γ ) the restrictions of B0(Σ) and B(Σ) to functions tak-
ing values in Γ . Then the weak∗ topology on ba1(Σ) also coincides with the
σ(ba(Σ)�B0(Σ�Γ )) and σ(ba(Σ)�B(Σ�Γ )) topologies.

The following useful results on niveloids are owing to or reviewed in MMR.
In particular, item 6 provides a first representation for preferences satisfying
Axioms 1–5.

PROPOSITION 6—MMR: Let Γ be an interval such that 0 ∈ int(Γ ) and
I :B0(Σ�Γ )→ R.

1. If I is a niveloid, it is supnorm, hence Lipschitz continuous.
2. If I :B0(Σ�K)→ R is a niveloid, then it has a (minimal) niveloidal extension

to B(Σ).
3. I is a niveloid iff it is monotonic and constant-mixture invariant.
4. If I is constant-mixture invariant, then it is vertically invariant.
5. If I is vertically invariant, then it has a unique, vertically invariant extension

Î to B0(Σ�Γ )+ R ≡ {a+ 1Ωγ :a ∈ B0(Σ�Γ )�γ ∈ Γ }.
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6. � on F0 satisfies Axioms 1–5 if and only if there is a nonconstant, affine
function u :X → R and a normalized niveloid I :B0(Σ�u(X)) → R such that
f � g iff I(u ◦ f )≥ I(u ◦ g).

The following uniqueness and extension results are straightforward and use-
ful:

COROLLARY 3: If I�u and I ′�u′ provide two representations of � as per the last
point of Proposition 6, then u′ = αu+β (with α> 0) and I ′(αa+β)= αI(a)+β
for all a ∈ B0(Σ�u(X)).

PROOF: Since I and I ′ are normalized, standard results imply that u′ = αu+
β for some α > 0 and β ∈ R. Next, for every a ∈ B0(Σ�Γ ), let f ∈ F0 be such
that u ◦ f = a and x ∼ f : thus, since I and I ′ are normalized, u(x) = I(u ◦
f ) = I(a) and similarly u′(x) = I ′(u′ ◦ f ); that is, αu(x) + β = I ′(αu ◦ f +
β) and therefore αI(a) + β = I ′(αa + β). [Note that this is consistent with
normalization: αI(γ1Ω)= αγ and I ′(αγ1Ω)= αγ.] Q.E.D.

COROLLARY 4: A niveloid I :B0(Σ�Γ )→ R admits a unique niveloidal exten-
sion to B(Σ�Γ ). Therefore, if a preference � on F0 admits a niveloidal represen-
tation (I�u) as in part 6 of Proposition 6, then it admits a unique extension to Fb

that satisfies Axioms 1–5. Together with u, the extension of I to B(Σ�Γ ) represents
the extension of � to Fb.

PROOF: By Proposition 6, there is a minimal niveloidal extension of I to
B(Σ); let Î be its restriction to B(Σ�Γ ). If there is another niveloidal exten-
sion Î ′ of I to B(Σ�Γ ), fix a ∈ B(Σ�Γ ) and a sequence ak → a such that ak ∈
B0(Σ�Γ ) for all k. Then Î(a)= limk Î(a

k)= limk I(a
k)= limk Î

′(ak)= Î ′(a).
Now define �̂ on Fb by f �̂g iff Î(u ◦ f )≥ Î(u ◦ g) for all f�g ∈ Fb. One can

verify that this defines a preference relation that satisfies Axioms 1–5. More-
over, consider a preference �̂′ that satisfies the same axioms and coincides with
� to Fb. The proof of Lemma 28 in MMR applies verbatim to a preference de-
fined on Fb and yields a representation (Î ′�u′), where Î ′ is a niveloid defined
on u′ ◦ Fb. Since F0 ⊂ Fb, we can take u′ = u and Î ′ = I on u ◦ F0. But then
Î ′ = Î, which implies that �̂′ = �̂. Q.E.D.

NOTE: For notational simplicity, the unique extension of a niveloid I :B0(Σ�
Γ ) to B(Σ�Γ ) will also be denoted by I.

B.2. Characterization of Complementary Independence and Crisp Acts

This subsection starts with the “niveloidal representation” of � provided by
part 6. It will first be shown that Axioms 8 and 7 hold if and only if a “baseline
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linear functional” J can be defined. This identifies a baseline prior. Then, it will
be shown that I coincides with J on all crisp acts. Finally, further properties of
the set of crisp acts are investigated.

To simplify the exposition, throughout this section we maintain the following
assumption and definitions: � is represented by I�u as in Proposition 6, with
0 ∈ int(u(X)). The unique extension of I to B(Σ�u(X)), and hence to u ◦ Fb,
is implicitly used wherever it is needed.

Define J :u ◦ Fb → R by letting, for all a ∈ u ◦ Fb and γ ∈ R with γ − a ∈
u ◦ Fb,

J(a)= 1
2
γ+ 1

2
I(a)− 1

2
I(γ− a)�(20)

LEMMA 1: J is a well defined, normalized niveloid. If � satisfies Axioms 7
and 8 on F0, then J is affine on F0 and has a unique, normalized, and positive
linear extension to B(Σ), also denoted J. Conversely, if J is affine on u ◦ F0 (resp.
u ◦ Fb), then � (resp. the extension of � to Fb) satisfies Axioms 7 and 8.

PROOF: J as above is well defined. First, for every a ∈ u ◦ Fb, if γ = infΩ a+
supΩ a, then γ − a = supΩ a− [a− infΩ a] ∈ u ◦ Fb. Furthermore, if γ�γ′ ∈ R

are such that γ−a�γ−a′ ∈ u ◦ Fb, then γ−a= (γ′ −a)+ (γ−γ′), so vertical
invariance of I implies that I(γ− a)= I(γ′ − a)+ γ− γ′, and so 1

2γ− 1
2I(γ−

a) = 1
2γ − 1

2I(γ
′ − a) − 1

2(γ − γ′) = 1
2γ

′ − 1
2I(γ

′ − a), as required. Next, J is
normalized: if γ ∈ u(X), then γ−γ = 0 ∈ u(X), so J(γ)= 1

2γ+ 1
2I(γ)− 1

2I(γ−
γ)= 1

2γ+ 1
2γ+ 0 = γ, because I is normalized and 0 · 1Ω ∈ u ◦ Fb. Finally, J is

a niveloid: for a�b ∈ u ◦ Fb, if α�β ∈ u(X) are such that α− a�β− b ∈ u ◦ Fb,
then

2[J(a)− J(b)] = α+ I(a)− I(α− a)−β− I(b)+ I(β− b)
≤ (α−β)+ sup

Ω

(a− b)+ sup
Ω

(β− b− α+ a)

= 2 sup
Ω

(a− b)�

Turn now to Axioms 8 and 7.
First, it will be shown that � satisfies Axiom 8 if and only if J( 1

2a) = 1
2J(a)

for all a ∈ u ◦ F . Specifically, let F denote either F0 or Fb. Fix f , f̄ , x, and
x̄ as in Axiom 8 and let a ∈ u ◦ F and γ ∈ R be such that a = u ◦ f and γ −
a = u ◦ f̄ . Then 1

2f + 1
2 x̄ ∼ 1

2 f̄ + 1
2x iff I( 1

2a + 1
2u(x̄)) = I( 1

2 f̄ + 1
2u(x)); by

vertical invariance [note that 1
2a�

1
2(γ − a) ∈ u ◦ F ] and the properties of x� x̄,

this equals

I

(
1
2
a

)
+ 1

2
I(γ− a)= I

(
1
2
(γ− a)

)
+ 1

2
I(a)�
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By the definition of J, rearranging terms, this holds iff J( 1
2a)− 1

4γ = 1
2 [J(a)−

1
2γ], that is, J( 1

2a) = 1
2J(a). Thus, if J has this property, then Axiom 8 holds.

Conversely, for any a ∈ u◦ F , there is f ∈ F such that u◦f = a, and as noted in
the first part of this proof, one can find γ ∈ R with γ− a ∈ u ◦ F . Again, there
will be f̄ ∈ F with u ◦ f̄ = γ − a, so that f� f̄ are complementary: if Axiom 8
holds, the argument just given shows that J( 1

2a)= 1
2J(a).

Now assume that J is affine on Fb. Then, in particular, for all a ∈ Fb,
J( 1

2a) = J( 1
2a + 1

2 · 0) = 1
2J(a) + 1

2J(0) = 1
2J(a), and, as shown above, in this

case Axiom 8 holds. Next, consider (f� f̄ ), (g� ḡ), and α as in Axiom 7. Let
a= u◦f and b= u◦g, and let z� z′ ∈ R be such that 1

2u(f (ω))+ 1
2u(f̄ (ω))= z,

1
2u(g(ω))+ 1

2u(ḡ(ω))= z′ for all ω. Finally, let ā= 2z− a and b̄= 2z′ − b, so
ā= u ◦ f̄ and b̄= u ◦ ḡ. Then f � f̄ and g � ḡ imply I(a)≥ I(ā)= I(2z− a),
so J(a) = z + 1

2I(a)− 1
2I(2z − a) ≥ z; similarly, J(b) ≥ z′. If J is affine, then

J(αa+ (1 − α)b)= αJ(a)+ (1 − α)J(b)≥ [αz+ (1 − α)z′], so

I(αa+ (1 − α)b)− I(αā+ (1 − α)b̄)
= I(αa+ (1 − α)b)− I(α[2z− a] + (1 − α)[2z′ − b])
= I(αa+ (1 − α)b)− I(2[αz+ (1 − α)z′] − αa− (1 − α)b)
= 2J(αa+ (1 − α)b)− 2[αz+ (1 − α)z′] ≥ 0�

where the last equality follows from the definition of J. Thus, αf + (1 − α)g�
αf̄ + (1 − α)ḡ, that is, Axiom 7 holds.

Conversely, assume that Axioms 8 and 7 hold on F0. As shown above,
J( 1

2a) = 1
2J(a) for all a ∈ u ◦ F0. It will now be shown that J( 1

2a + 1
2b) =

1
2J(a)+ 1

2J(b) for all a�b ∈ u ◦ F0.
Since 0 ∈ int(u(X)), there is δ > 0 such that [−δ�δ] ⊂ u(X). Assume first

that ‖a‖�‖b‖ ≤ 1
2δ; this implies that (a) a�b�−a�−b ∈ B0(Σ�u(X)) and, fur-

thermore, (b) a − J(a)�b − J(b)� J(a) − a�J(b) − b ∈ B0(Σ�u(X)), because
monotonicity of J implies that J(a)� J(b) ∈ [− 1

2δ�
1
2δ]. Let f�g� f̄ � ḡ ∈ F0 be

such that a− J(a)= u ◦ f , b− J(b)= u ◦ g, J(a)− a= u ◦ f̄ , and J(b)− b=
u ◦ ḡ. Clearly, (f� f̄ ) and (g� ḡ) are complementary pairs. Furthermore, apply-
ing the definition of J with γ = 0, J(a− J(a))= 1

2I(a− J(a))− 1
2I(J(a)− a)

and similarly J(b − J(b)) = 1
2I(b− J(b)) − 1

2I(J(b) − b). Finally, by vertical
invariance of J, J(a− J(a))= J(a)− J(a)= 0 and similarly J(b− J(b))= 0.
Thus, f ∼ f̄ and g ∼ ḡ, so Axiom 7 implies that 1

2f + 1
2g ∼ 1

2 f̄ + 1
2 ḡ. It fol-

lows that I( 1
2 [a − J(a)] + 1

2 [b − J(b)]) = I( 1
2 [J(a) − a] + 1

2 [J(b) − b]) or
J( 1

2 [a− J(a)] + 1
2 [b− J(b)])= 0, but by vertical invariance of J, this is equiva-

lent to J( 1
2a+ 1

2b)= 1
2J(a)+ 1

2J(b), as claimed.
Now, for arbitrary a�b ∈ B0(Σ�u(X)), there is an integer K > 0 such that

2−K‖a‖�2−K‖b‖ ≤ 1
2δ. Then the argument just given shows that J( 1

2(2
−Ka) +



VEU AND ATTITUDES TOWARD VARIATION 837

1
2(2

−K)b) = 1
2J(2

−Ka) + 1
2J(2

−Kb), but it was shown above that, for all c ∈
B0(Σ�u(X)), J( 1

2c)= 1
2J(c), so it follows that

J

(
1
2
a+ 1

2
b

)
= 2KJ

(
2−K

(
1
2
a+ 1

2
b

))

= 2K
1
2
J(2−Ka)+ 2K

1
2
J(2−Kb)= 1

2
J(a)+ 1

2
J(b)�

This implies that J(αa+ (1 − α)b)= αJ(a)+ (1 − α)J(b) for all dyadic ra-
tionals α= k2−K , with k ∈ {0� � � � �K} for some integer K > 0.36 But since these
are dense in [0�1] and J is sup-norm continuous, J is affine. The extension of
J to B(Σ) is now standard. Q.E.D.

By standard results, if J is linear, there exists a unique p ∈ ba1(Σ) such that

∀a ∈ B(Σ)� J(a)=
∫
Ω

adp�(21)

OBSERVATION 1: Note that, if f� f̄ are complementary acts, then f � f̄ iff
J(u ◦ f ) ≥ J(u ◦ f̄ ). Thus, J is identified by preferences over complementary
acts. Lemma 1 then shows that if Axioms 7 and 8 hold, such preferences iden-
tify the baseline prior p.

To investigate further properties of the functional I, a short detour is needed.
Begin by defining and characterizing a binary relation, to be interpreted as “un-
ambiguous preference.” The following lemma adapts notions and employs re-
sults from Ghirardato, Maccheroni, and Marinacci (2004) (GMM henceforth).
Since its proof merely adapts arguments from GMM, it is relegated to the sup-
plemental material.

LEMMA 2: There exists a unique, weak∗ compact and convex set C ⊂ ba1(Σ)
such that, for all a�b ∈ B0(Σ�u(X)),

∀α ∈ (0�1]� c ∈ B0(Σ�u(X)) : I(αa+ (1 − α)c)≥ I(αb+ (1 − α)c)(22)

⇐⇒ ∀q ∈ C :
∫
adq≥

∫
bdq�

Furthermore, for all a�b ∈ B(Σ�u(X)),
∀α ∈ (0�1]� c ∈ B(Σ�u(X)) : I(αa+ (1 − α)c)≥ I(αb+ (1 − α)c)(23)

⇐⇒ ∀q ∈ C :
∫
adq≥

∫
bdq�

36The claim is easily established by induction on K.
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Notation: Let q(a) = ∫
adq for any q ∈ ba1(Σ) and q-integrable function

a :Ω→ R.
Next, some key consequences of linearity of J for the set C are investigated.

LEMMA 3: Assume that J is linear. Then we can make the following state-
ments:

1. p ∈ C and, for all q ∈ C , 2p− q ∈ C .
2. For all a ∈ B(Σ) such that a≥ 0, and for all q ∈ C , 2J(a)≥ q(a). In partic-

ular, for all a�b ∈ B(Σ) and all q ∈ C , 2J(|a− b|)≥ q(|a− b|)≥ |q(a)− q(b)|.

PROOF: Consider a�b ∈ B0(Σ�u(X)) such that −a�−b�2J(a)− a�2J(b)−
b ∈ B0(Σ�u(X)), so J(a) = 1

2I(a)− 1
2I(−a) and similarly for b. Then, for all

λ ∈ (0�1] and d ∈ B0(Σ�u(X)), choose γ so that γ − d ∈ B0(Σ�u(X)). Then
(1−λ)γ−λa−(1−λ)d = λ(−a)+(1−λ)(γ−d) ∈ B0(Σ�u(X)) and similarly
(1 − λ)γ − λb − (1 − λ)d ∈ B0(Σ�u(X)), so the definition of J implies that
I(λa+ (1−λ)d)= 2J(λa+ (1−λ)d)+ I(λ(−a)+ (1−λ)(γ−d))− (1−λ)γ
and I(λb+ (1−λ)d)= 2J(λb+ (1−λ)d)+ I(λ(−b)+ (1−λ)(γ−d))− (1−
λ)γ. Therefore, by linearity of J and canceling common terms, I(λa + (1 −
λ)d)≥ I(λb+ (1 − λ)d) iff 2J(λa)+ I(λ(−a)+ (1 − λ)(γ − d))≥ 2J(λb)+
I(λ(−b)+ (1 − λ)(γ− d)). Since a�b were chosen so that 2J(a)− a�2J(b)−
b ∈ B0(Σ�u(X)), this is also equivalent to I(λ(2J(a)− a)+ (1 − λ)(γ− d))≥
I(λ(2J(b) − b) + (1 − λ)(γ − d)) by vertical invariance. Finally, since d′ ∈
B0(Σ�u(X)) if and only if γ′ − d′ ∈ B0(Σ�u(X)) for some γ′, conclude that
a � b if and only if 2J(a)− a � 2J(b)− b. By Lemma 2, this is equivalent to
the condition

∀q ∈ C� q(a)≥ q(b)(24)

⇐⇒ ∀q ∈ C� 2J(a)− q(a)≥ 2J(b)− q(b)�
For arbitrary a�b ∈ B0(Σ), let α > 0 be such that αa�αb�−αa�−αb�2J(αa)−
αa�2J(αb) − αb ∈ B0(Σ�u(X)) [such an α exists because 0 ∈ u(X)]. Then
Eq. (24) must hold for αa and αb, and positive homogeneity of every q ∈ C
and J implies that it must hold for a and b as well.

Now, for statement 1, define a�0 b for a�b ∈ B0(Σ�u(X)) to mean that the
left-hand side of Eq. (22) holds, as in the proof of Lemma 2. For every q ∈ C ,
2p(Ω) − q(Ω) = 1. Furthermore, for every E ∈ Σ, taking a = 1E and b = 0,
q(E)≥ 0 and so, by Eq. (24), 2p(E)−q(E)≥ 0 as well. Thus, 2p−q ∈ ba1(Σ).
Thus, let D be the weak∗ convex closure of C ∪{2p−q :q ∈ C}. It is clear that for
all a�b ∈ B0(Σ�u(X)), r(a) ≥ r(b) for all r ∈ D implies a �0 b; conversely, if
a�0 b, then q(a)≥ q(b) for all q ∈ C , hence 2J(a)−q(a)≥ 2J(b)−q(b) for all
q ∈ C , and hence r(a)≥ r(b) for all r ∈ D. Since Lemma 2 ensures that C is the
unique set of probability charges that represents �0, C = D, and so for every
q ∈ C , 2p−q ∈ C as well. This immediately implies that p= 1

2q+ 1
2(2p−q) ∈ C .
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For statement 2, note first that for any a ∈ B0(Σ) with a≥ 0, q(a)≥ 0 for all
q ∈ C : hence, by Eq. (24), 2J(a)≥ q(a). The inequality now extends to B(Σ) by
sup-norm continuity of J and q(·). Finally, for any a�b ∈ B(Σ), 2J(|a− b|) ≥
q(|a−b|)≥ |q(a)−q(b)|, where the second equality follows, for example, from
Dudley (1989, Theorem 5.1.1). Q.E.D.

Conclude with a useful “vertical invariance” property.

LEMMA 4: In the setting of Lemma 2, if a�b ∈ B(Σ�u(X)) and for some δ ∈ R,
q(a)= q(b)+ δ for all q ∈ C , then I(a)= I(b)+ δ.

PROOF: Assume first that infb(Ω)� supb(Ω) ∈ int(u(X)). Then there exists
α ∈ (0�1) such that b + αδ ∈ B(Σ�u(X)). For all k ≥ 0, let ak = [1 − (1 −
α)k]a+ (1 − α)kb. Then ak ∈ B(Σ�u(X)) for all k≥ 0. Furthermore,

(1 − α)ak + αa= (1 − α)[1 − (1 − α)k]a+ (1 − α)k+1b+ αa
= [1 − (1 − α)k+1]a+ (1 − α)k+1b= ak+1�

Now write d � d′ to signify that I(αd + (1 − α)c) = I(αd′ + (1 − α)c) for
all α ∈ (0�1] and c ∈ B(Σ�u(X)). By Lemma 2, d � d′ iff q(d)= q(d′) for all
q ∈ C . In particular, � is conic: d � d′ implies that βd+ (1−β)d′′ � βd′ + (1−
β)d′′. Note that � is the symmetric part of the relation � defined in the proof
of Lemma 2.

CLAIM 1: For all k, ak + α(1 − α)kδ ∈ B(Σ�u(X)) and ak+1 � ak + α(1 −
α)kδ.

PROOF: For k = 0, a0 + α(1 − α)0δ = b + αδ ∈ B(Σ�u(X)) by the choice
of δ. Furthermore, for all q ∈ C , q(a1) = q((1 − α)b + αa) = (1 − α)q(b) +
αq(a)= (1 − α)q(b)+ αq(b)+ αδ= q(b)+ αδ= q(a0 + α(1 − α)0δ), so a1 �
a0 + α(1 − α)0δ. By induction, for k> 0,

(1 − α)[ak−1 + α(1 − α)k−1δ] + αa= (1 − α)ak−1 + αa+ α(1 − α)kδ
= ak + α(1 − α)kδ�

Thus, ak + α(1 − α)kδ ∈ B(Σ�u(X)) because a�ak−1 + α(1 − α)k−1δ ∈ B(Σ�
u(X)). Furthermore, if ak � ak−1 + α(1 − α)k−1δ, then also

ak+1 = (1 − α)ak + αa� (1 − α)[ak−1 + α(1 − α)k−1δ] + αa
= ak + α(1 − α)kδ

because � is conic. Q.E.D.
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The claim implies that, for all k ≥ 1, I(ak) = I(ak−1 + α(1 − α)k−1δ) =
I(ak−1) + α(1 − α)k−1δ, where the second equality follows from vertical in-
variance. Thus,

I(ak)= I(b)+ αδ
k−1∑
�=0

(1 − α)� = I(b)+ αδ1 − (1 − α)k
α

= I(b)+ δ[1 − (1 − α)k]�
Since ak → a and I is continuous, the result follows.

If b is arbitrary, for k ≥ 0, let ak = k
k+1a and bk = k

k+1b, so in particu-
lar bk(Ω) ⊂ int(u(X)). Furthermore, for every k ≥ 0 and q ∈ C, q(ak) =
k
k+1q(a) = k

k+1q(b) + k
k+1δ = q(bk) + k

k+1δ, and it has just been shown that
then I(ak) = I(bk)+ k

k+1δ. Since ak → a and bk → b, continuity implies that
I(a)= I(b)+ δ. Q.E.D.

B.3. Monotone Continuity

Assume that Γ is nonsingleton. A functionalH :B0(Σ�Γ )→ R is monotonely
continuous iff, for every α�β�γ ∈ Γ with α > β > γ and every sequence of
events (Ak)⊂ Σ such that Ak ⊃Ak+1 for all n and

⋂
Ak = ∅, there is k such

that H(α− (α− γ)1Ak) > β > H(γ + (α− γ)1Ak)—or, abusing the notation
for binary acts, H(γAkα) > β>H(αAkγ).

Continue to focus on the representation I�u of �; assume w.l.o.g. that
0 ∈ int(u(X)). Clearly, � satisfies Axiom 6 iff I is monotonely continuous.
This property will now be characterized in terms of the functional J defined in
Lemma 1.

LEMMA 5: The following statements are equivalent:
1. I is monotonely continuous.
2. For every decreasing sequence (Ak)⊂ Σ such that

⋂
Ak = ∅, J(1Ak)→ 0.

Thus, if I is monotonely continuous, the charge p representing J is actually
a measure.

PROOF OF LEMMA 5: 1 ⇒ 2: Let α ∈ u(X) be such that α > 0 and
−α ∈ u(X). For every ε ∈ (0�α), there is k′ such that ε > I(α1An′ ) and k′′

such that I(α(1 − 1Ak′′ )) > α − ε (take γ = 0 and β = ε�α − ε in the de-
finition of monotone continuity). Letting k = max(k′�k′′), so A ⊂ Ak′ and
A ⊂ Ak′′ , by monotonicity both ε > I(α1Ak) and I(α(1 − 1Ak)) > α − ε
hold. Furthermore, since −α ∈ u(X), vertical invariance of I implies that
I(α(1 − 1Ak)) = α + I(−α1Ak) > α − ε, that is, ε > −I(−α1Ak). Hence,
ε > 1

2I(α1Ak)− 1
2I(−α1Ak)= J(α1Ak). To sum up, if η≥ 1, then monotonicity
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implies that J(1Ak)≤ η for all k, and for η ∈ (0�1), taking ε= ηα yields k such
that J(1Ak)= 1

α
J(α1Ak) <

1
α
ε= η.

2 ⇒ 1: Fix α�β�γ ∈ u(X) with α > β > γ. Then there is k′ such that J(γ +
(α−γ)1Ak′ ) < γ+ 1

2(β− γ). Let μ= α+ γ, so μ−γ− (α−γ)1A′
k
= α− (α−

γ)1Ak′ ∈ B0(Σ�u(X)). Then, by the definition of J,

γ+ 1
2
(β− γ) > 1

2
μ+ 1

2
I
(
γ+ (α− γ)1Ak′

)
− 1

2
I
(
μ− γ− (α− γ)1Ak′

);
substituting for μ and simplifying this reduces to

1
2
β >

1
2
α+ 1

2
I
(
γ+ (α− γ)1Ak′

) − 1
2
I
(
α− (α− γ)1Ak′

)
≥ 1

2
I
(
γ+ (α− γ)1Ak′

)
�

where the inequality follows from monotonicity of I, as α− (α− γ)1Ak′ ≤ α.
Thus, β > I(γ + (α − γ)1Ak′ ). Similarly, there is k′′ such that J(α − (α −
γ)1Ak′′ ) > α− 1

2(α−β), that is,

α− 1
2
(α−β) < 1

2
μ+ 1

2
I
(
α− (α− γ)1Ak′′

)
− 1

2
I
(
μ− α+ (α− γ)1Ak′′

)
�

and again substituting for μ and simplifying yields

1
2
β <

1
2
γ+ 1

2
I
(
α− (α− γ)1Ak′′

) − 1
2
I
(
γ+ (α− γ)1Ak′′

)
≤ 1

2
I
(
α− (α− γ)1Ak′′

)
�

because γ + (α − γ)1Ak′′ ≥ γ. Thus, I(α − (α − γ)1Ak′′ ) > β. Therefore, by
monotonicity, k = max(k′�k′′) satisfies I(α − (α − γ)1Ak) > β > I(γ + (α −
γ)1Ak), as required. Q.E.D.

B.4. Proof of Theorem 1

It is clear that statement 2 implies 3 in Theorem 1; thus, focus on the non-
trivial implications.
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B.4.1. Statement 3 Implies 1

For all a ∈ u◦ F0, let Jp(a)=
∫
adp and I(a)= Jp(a)+A(Ep[ζa]). Thus, for

all f�g ∈ F0, f � g iff I(u ◦ f )≥ I(u ◦ g). It is easy to verify that I is constant-
mixture invariant and normalized (because Ep[ζi] = 0 for all i and A(0)= 0).
Furthermore, by part 3 of Definition 1, it is monotonic and hence a niveloid by
Proposition 6. This implies that � satisfies the first five axioms in statement 1.
Furthermore, for all a ∈ u ◦ F0, letting γ ∈ u(X) be such that γ− a ∈ u ◦ F0,

J(a)≡ 1
2
γ+ 1

2
Î(a)− 1

2
Î(γ− a)

= 1
2
γ+ 1

2
Jp(a)+ 1

2
A(Ep[ζa])− 1

2
Jp(γ− a)

− 1
2
A

(
Ep[ζ(γ− a)])

= Jp(a)�

as Ep[ζi] = 0 for all i and A(φ) = A(−φ) for all φ ∈ E(F0;p�ζ); thus, the
functional J defined in Lemma 1 coincides with Jp on u ◦ F0, and hence it is
affine; thus, � satisfies Axioms 7 and 8 as well. Moreover, since p is count-
ably additive, if (Ak)⊂ Σ decreases to ∅, J(1Ak)= Jp(1Ak) ↓ 0, and Lemma 5
implies that I is monotonely continuous, so � satisfies Axiom 6.

B.4.2. Statement 1 Implies 2

Since � satisfies Axioms 1–5, it admits a nondegenerate niveloidal rep-
resentation I�u by Proposition 6. Furthermore, it is w.l.o.g. to assume that
0 ∈ int(u(X)). Moreover, since � satisfies Axioms 7 and 8, the functional J
defined in Eq. (20) is affine on u ◦ F0 by Lemma 1. Finally, since � satisfies
Axiom 6, I is monotonely continuous, so Lemma 5 implies that the measure p
representing J is countably additive. This will be the baseline prior in the VEU
representation.

The next step is to construct the adjustment factors (ζi)0≤i<n along the lines
of Section 4.1. A slight detour and a preliminary result are needed to accommo-
date infinite state spaces. LetH be the Hilbert space of (p-equivalence classes
of) Σ-measurable, square-integrable functions onΩ. Let 〈a�b〉 = Ep[ab] for all
a�b ∈H. Recall that since Σ is countably generated, H is separable (cf., e.g.,
Bogachev (2007, Sections 1.12.102 and 4.7.63)).

LEMMA 6: For every q ∈ C , the map a �→ ∫
adq is an L2(p)-continuous linear

functional on H; in particular, J extends to a continuous linear functional on H.
Furthermore, for each such q ∈ C \ {p}, there exists aq ∈ H such that

∫
adq =

〈a�aq〉 for all a ∈H, and supω∈Ω |aq(ω)| = 2.
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PROOF: By Lemma 3,
∫
adq≤ 2J(a) for all a ∈ B(Σ) such that a≥ 0; hence,

possibly by considering truncations and taking suprema,
∫ |a|2 dq ≤ 2J(|a|2)

for all Σ-measurable functions a, where one or both integrals may be infinite.
In particular, every a ∈H is also square-integrable with respect to q, so a �→∫
adq is well defined on H.
Furthermore, if ak → a in the L2(p) norm topology (i.e. J(|ak − a|2)→ 0),

then clearly q(|ak − a|2)→ 0, which implies that q(ak)→ q(a).37 Hence, q(·)
is a continuous linear functional on H.

By the Riesz–Frechet theorem, there exists aq ∈H such that q(a)= 〈a�aq〉.
I claim that aq can be chosen to be bounded. To this end, for every M > 0, let
EM = {ω :aq(ω) >M}. Then

M ·p(EM)≤
∫

1EMaq dp= q(EM)≤ 2p(EM)�

where the second inequality follows from Lemma 3. Then either p(EM) = 0
or M ≤ 2. Therefore, since q is positive, 0 ≤ aq(ω) ≤ 2 p-a.e., so the claim
follows. Q.E.D.

Now define the set

C = {c ∈H :∀q ∈ C� q(c)= J(c)}�(25)

To interpret, recall that an act f in F0 or Fb is crisp iff λf +(1−λ)g∼ λx+(1−
λ)g for all g ∈ F0, λ ∈ (0�1], and x ∈X such that x∼ f . This is equivalent to
I(λu◦ f + (1−λ)u◦g)= λI(u◦ f )+ I((1−λ)u◦g) and, hence, by Lemma 2,
to q(u ◦ f )= I(u ◦ f ) for all q ∈ C . In particular, this implies J(u ◦ f )= I(u ◦
f ) by Lemma 3, and so f is crisp iff u ◦ f ∈ C. The definition of the set C
employs this characterization of crisp acts to identify a class of functions in H
with analogous properties.

Conclude by showing that C is closed in H. By Lemma 6, if (ck) ⊂ C is
such that ck → c for some c ∈ H in the L2(p) norm topology, then J(c) =
limk J(c

k)= limk q(c
k)= q(c) for all q ∈ C ; therefore c ∈ C.

Construction of the Adjustment Factors (ζi)0≤i<n: Observe that {aq − 1Ω :q ∈
C} is a subset of the separable space H and hence admits a countable dense
subset {b0� b1� � � �}. Note that for every i≥ 0, supΩ |bi| ≤ 1 by Lemma 6.

Let NC be the closure in H of the linear span of {b0� b1� � � �}; by Dud-
ley (1989, Corollary 5.4.10), the Hilbert subspace NC has a countable ortho-
normal basis {ζ0� ζ1� � � �}, obtained by applying the Gram–Schmidt procedure
to {b0� b1� � � �}. In particular, note that this procedure ensures that each ζi is
bounded, that is, it is an element of B(Σ).

37If q(|ak − a|2) → 0, then ak converges to a in the L2(q) norm. By Dudley (1989, Theo-
rems 5.5.2 and 5.1.1), ak → a in the L1(q) norm as well, and this implies the claim.
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Consider the orthogonal complement NC⊥ = {c ∈ H :∀b ∈ NC� 〈c�b〉 = 0}.
If c ∈ C, then q(c)= J(c) for all q ∈ C , so in particular 〈c�bi〉 = 0 for all i ≥ 0.
Therefore, 〈c�b〉 = 0 for any b in the linear span of {b0� b1� � � �}, which is the
same as the linear span of {ζ0� ζ1� � � �}. Finally, this implies that 〈c�b〉 = 0 for
all b ∈ NC. Thus, C ⊂ NC⊥. Conversely, if c ∈ NC⊥, then in particular 〈c�aq −
1Ω〉 = 0 for all q ∈ C , that is, q(c) = J(c); hence, c ∈ C. Thus, conclude that
C = NC⊥.

Since 1Ω ∈ C = NC⊥, 〈1Ω�ζi〉 = 0, that is, Ep[ζi] = 0 for all i. Henceforth, let
n denote the number of nonzero ζi’s and assume w.l.o.g. that these are the first
n elements of the sequence ζ0� ζ1� � � � �

Construction of the Adjustment Function A: Define first Ĩ :u ◦ Fb +C → R

by letting Ĩ(a+ c)= I(a)+J(c) for all a ∈ u◦ Fb and c ∈C. This is well posed:
if a+ c = a′ + c′ for a�a′ ∈ u ◦ Fb and c� c′ ∈ C, then a− a′ = c′ − c ∈ C; thus,
for all q ∈ C , q(a)= q(a′ + (a− a′))= q(a′)+ q(c′ − c)= q(a′)+ J(c′ − c), so
that I(a)= I(a′)+ J(c′ − c) by Lemma 4. Thus, I(a)+ J(c)= I(a′)+ J(c′ −
c) + J(c) = I(a′) + J(c′), as needed. Also note that if a ∈ u ◦ Fb, then there
exists γ ∈ R such that γ− a ∈ u ◦ Fb and therefore −a ∈ u ◦ Fb +C because C
contains all constant functions.

Now consider ϕ ∈ E(u ◦ Fb;p�ζ), so there is a ∈ u ◦ Fb such that ϕ =
Ep[ζa] = (〈a�ζi〉)i. Then b = ∑

i ϕiζi is the projection of a onto NC, a− b ∈
NC⊥ = C, and thus b= a+ (b− a) ∈ u ◦ Fb +C. Let A(ϕ)= 1

2 Ĩ(b)+ 1
2 Ĩ(−b).

To see that A(·) is well defined, suppose that ϕ= Ep[ζa′] for some a′ �= a in
u ◦ Fb. Then b is also the projection of a′ onto NC and a′ − b ∈ C, so b= a′ +
(b− a′) ∈ u ◦ Fb + C; thus, A(·) is well defined because so is Ĩ. Furthermore,
0n = Ep[aζ] for a= 0, which is the unique element in NC ∩ C. Thus, A(0n)=
1
2I(0)+ 1

2I(−0)= 0. Finally, if ϕ= Ep[ζa] for some a ∈ u ◦ Fb and b ∈ NC is
the projection of a, then b ∈ u ◦ Fb +C and so −b= ∑

i(−ϕi)ζi ∈ u ◦ Fb +C,
which implies that A(−ϕ)= 1

2 Ĩ(−b)+ 1
2 Ĩ(b)=A(ϕ).

Finally, verify that the map f �→ Ep[u◦f ]+A(Ep[ζu◦f ]) indeed represents
preferences. For a ∈ u◦ Fb, if γ−a ∈ u◦ Fb, then Ep[a]+A(Ep[ζa])= J(a)+
1
2 Ĩ(a)+ 1

2 Ĩ(−a)= 1
2γ+ 1

2I(a)− 1
2I(γ−a)+ 1

2I(a)+ 1
2I(γ−a)+ 1

2J(−γ)= I(a),
decomposing −a as (γ − a) + (−γ) with γ − a ∈ u ◦ Fb and −γ ∈ C. This
completes the proof.

B.4.3. Proof of Corollary 1

By Corollary 4, � has a unique extension to Fb that satisfies Axioms 1–5.
Clearly, this preference also satisfies Axiom 6, and Lemma 1 shows that it satis-
fies Axioms 7 and 8 as well. The argument in the preceding subsection actually
constructs a VEU representation of the extension of � to Fb, which is sharp.

B.4.4. Uniqueness

Consider two VEU representations (u�p�n�ζ�A) and (u′�p′� n′� ζ ′�A′) of
�, and assume that the former is sharp. By standard arguments, u′ = αu+β for
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some α�β ∈ R with α> 0. Consequently, a ∈ u ◦ F0 if and only if αa+β ∈ u′ ◦
F0. Next, for every a ∈ u◦ F0, let I(a)= Ep[a]+A(Ep[ζ ·a]); define I ′ similarly
using the second VEU representation. By Corollary 3, αI(a)+β= I ′(αa+β)
for every a ∈ u ◦ F0. If a�γ − a ∈ u ◦ F0, then αa+ β�α(γ − a)+ β ∈ u′ ◦ F0,
and so, if J and J ′ are the functionals defined from I and I ′, respectively, as in
Eq. (20), then

J ′(αa+β)= α
1
2
γ+β+ 1

2
I ′(αa+β)− 1

2
I ′(α(γ− a)+β)

= α1
2
γ+β+ 1

2
[αI(a)+β] − 1

2
[αI(γ− a)+β]

= αJ(a)+β�
This implies that linear extensions of J and J ′ to B(Σ) coincide, and so p= p′;
hence,

αA(Ep[ζ · a])= αI(a)+β− αJ(a)−β= I ′(αa+β)− J ′(αa+β)(26)

=A′(Ep[ζ ′ · αa])
for all a ∈ u ◦ F0, where the last equality uses the fact that Ep[ζ ′

j] = 0 for all
0 ≤ j < n′. Now, to define a suitable linear surjection T : E(u′ ◦ F0;p�ζ ′)→
E(u◦ F0;p�ζ), suppose that Ep[ζ ′ ·αa] = Ep[ζ ′ ·αb] for a�b ∈ u◦ F0. Let γ ∈ R

be such that γ − b ∈ u ◦ F0, so there is f ∈ F0 such that 1
2a+ 1

2(γ − b)= u ◦ f
or, equivalently, 1

2(αa + β) + 1
2 [α(γ − b) + β] = αu ◦ f + β = u′ ◦ f . But

then Ep[ζ ′ · u′ ◦ f ] = Ep[ζ ′ · 1
2(a − b)] = 0, which implies that f is crisp.38

Since (u�p�n�ζ�A) is sharp, Ep[ζ · u ◦ f ] = 0 and so Ep[ζ · a] = Ep[ζ · b].
Thus, we can define T by letting T(Ep[ζ ′ · αa]) = Ep[ζ · a] for all a ∈ u ◦ F0.
That T is affine and onto is immediate. Finally, if ϕ′ = Ep[ζ ′ · αa], then
A(T(ϕ′)) = A(T(Ep[ζ ′ · αa])) =A(Ep[ζ · a]) = 1

α
A′(Ep[ζ ′ · αa]) = 1

α
A′(ϕ′),

where the second equality follows from the definition of T and the third equal-
ity follows from Eq. (26): thus, A= 1

α
A′ ◦ T .

Finally, if (u′�p�n′� ζ ′�A′) is also sharp, assume that Ep[ζ · a] = Ep[ζ · b]:
arguing as above, if γ − b ∈ u ◦ F0 and u ◦ f = 1

2a+ 1
2(γ − b), then f is crisp.

Since (u′�p�n′� ζ ′�A′) is sharp, Ep[ζ ′ · u′ ◦ f ] = 0, that is, Ep[ζ ′ · αa] = Ep[ζ ′ ·
αb]. Thus, T is a bijection.

B.4.5. Proof of Proposition 1

Recall first that, as shown in the proof of uniqueness, Ep[ζ · a] = 0 implies
that a is a crisp function (in u ◦ F0 or u ◦ Fb).

38For all g ∈ F0 and x ∈X with f ∼ x, Ep[λu′ ◦ f + (1 − λ)u′ ◦ g] +A′(Ep[ζ ′ · [λu′ ◦ f + (1 −
λ)u′ ◦g]])= Ep[λu′ ◦ f + (1−λ)u′ ◦g]+A′(Ep[ζ ′ · (1−λ)u′ ◦g])= Ep[λu′(x)+ (1−λ)u′ ◦g]+
A′(Ep[ζ ′ · [λu′(x)+ (1 − λ)u′ ◦ g]]).
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Part 1. If n = ∞, the statement holds vacuously. Otherwise, observe that
Ep[ζ · u ◦ f1]� � � � �Ep[ζ · u ◦ fm] is a collection of m > n vectors in R

n, so
there must be β1� � � � �βm ∈ R, not all zero, such that

∑
j βjEp[ζ · u ◦ fj] = 0.

Let β̄= ∑
j |βj|> 0. Now define α1� � � � �αm and g1� � � � � gm ∈ Fb by letting (a)

αj = |βj|/β̄ and (b) gj = fj if βj > 0, and gj be such that u ◦ gj = γj − u ◦ fj for
a suitable γj ∈ R otherwise. Then

∑
j αju ◦ gj = 1

β̄

∑
j βju ◦ fj − 1

β̄

∑
j : βj<0βjγj .

Therefore, by construction, Ep[ζ ·∑j αju ◦ gj] = 0, so
∑

j αjgj is a crisp combi-
nation of f1� � � � � fm.

Part 2. Suppose that (u�p�n�ζ�A) is sharp, so in particular the ζi’s are or-
thonormal.

Since each ζi is bounded, there exists γ > 0 such that γζ ′
i ∈ u ◦ Fb for all

i= 0� � � � �m− 1; thus, for each such i, let fi ∈ Fb be such that u ◦ fi = γζ ′
i .

Suppose there exists a crisp combination
∑

j αjgj of f0� � � � � fm−1. For j such
that gj �= fj , suppose that u ◦ gj = γj − u ◦ fj . Also, for all j = 0� � � � �m − 1,
let βj = αj if gj = fj and let βj = −αj otherwise. Then, since (u�p�n�ζ ′�A′) is
sharp, Ep[ζ ′ · ∑j βjζ

′
j] = 1

γ
Ep[ζ · ∑j αju ◦ gj] = 0n, where constants cancel be-

cause Ep[ζ ′] = 0n. But since ζ ′
0� � � � � ζ

′
m−1 are orthonormal, Ep[ζ ′

i ·
∑m−1

j=0 βjζ
′
j] =

βi for 0 ≤ i <m− 1, and not all βi’s are zero: contradiction.
Part 3. Suppose that (u′�p′� n′� ζ ′�A′) is another representation of � on Fb

and, by contradiction, n′ < n. By part 2, there is a tuple f0� � � � � fn′ that admits
no crisp combination; however, by part 1, every tuple of n′ + 1 elements must
contain a crisp combination: contradiction. Thus, n′ ≥ n.

Part 4. If: This part follows from part 2 and the fact that if � is not EU, then
n > 0.

Only if: Since (u�p�n�ζ�A) is sharp and n= 1, � is not EU. Now suppose
that f , g, ḡ, and α are such that both αf + (1 − α)g and αf + (1 − α)ḡ are
crisp. Since the representation is sharp, Ep[ζ · u ◦ [αf + (1 − α)g]] = Ep[ζ ·
u ◦ [αf + (1 − α)ḡ]] = 0; hence, for all f̄ such that (f� f̄ ) are complementary,
also Ep[ζ · u ◦ [αf̄ + (1 − α)g]] = Ep[ζ · u ◦ [αf̄ + (1 − α)ḡ]] = 0. This implies
that there is a tuple of size m = 2 that admits no crisp combinations, which
contradicts part 2. Q.E.D.

B.5. Ambiguity Aversion

PROOF OF COROLLARY 2: If � satisfies Ambiguity Aversion, then I is con-
cave (cf. MMR, p. 28); in particular, if a�γ− a ∈ u ◦ F0,

1
2
γ = I

(
1
2
a+ 1

2
(γ− a)

)
≥ 1

2
I(a)+ 1

2
I(γ− a)

= 1
2

∫
adp+ 1

2
A(Ep[ζ · a])+ 1

2
γ
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− 1
2

∫
adp+ 1

2
A

(
Ep[ζ · (γ− a)])

= 1
2
γ+A(Ep[ζ · a])�

and so A is nonpositive. Finally, A is clearly also concave.
Conversely, suppose that A is concave (hence, also nonpositive). Then I

is concave, so for all f�g ∈ F0 with f ∼ g, I(u ◦ [λf + (1 − λ)g]) ≥ I(u ◦
λf). Q.E.D.

PROOF OF PROPOSITION 2: That condition 3 ⇒ 1 is immediate (consider
the EU preference determined by p and u). To see that condition 3 ⇔ 2, note
that if f� f̄ are complementary, with 1

2f + 1
2 f̄ ∼ z ∈X , f ∼ x, and f̄ ∼ x̄, then

1
2f + 1

2 f̄ � 1
2x+ 1

2 x̄ iff

u(z) ≥ 1
2

∫
u ◦ f dp+ 1

2
A(Ep[ζ · u ◦ f ])

+ 1
2

∫
u ◦ f̄ dp+ 1

2
A(Ep[ζ · u ◦ f̄ ])

= u(z)+A(Ep[ζ · u ◦ f ])�
because Ep[ζ · u ◦ f̄ ] = −Ep[ζ · u ◦ f ] and A is symmetric; hence, the required
ranking obtains iff A(Ep[ζ · u ◦ f ])≤ 0.

Turn now to condition 1 ⇒ 3. Suppose that � is more ambiguity-averse than
some EU preference relation �′. By Corollary B.3 in Ghirardato, Maccheroni,
and Marinacci (2004), one can assume that �′ is represented by the noncon-
stant utility u on X . Arguing by contradiction, suppose that there is f ∈ F0

such that A(Ep[ζ · u ◦ f ]) > 0. Let γ ∈ R be such that γ− u ◦ f ∈ B0(Σ�u(X))

and let f̄ ∈ F0 be such that u ◦ f̄ = γ−u ◦ f . Then A(Ep[ζ ·u ◦ f̄ ])=A(Ep[ζ ·
u ◦ f ]) > 0. Furthermore, 1

2u ◦ f + 1
2u ◦ f̄ = u ◦ ( 1

2f + 1
2 f̄ )= 1

2γ, which implies
A(Ep[ζ · u ◦ ( 1

2f + 1
2 f̄ )]) = A(0) = 0. If now f ∼ x and f̄ ∼ x̄ for x� x̄ ∈ X ,

then 1
2u(x)+ 1

2u(x̄)= 1
2γ+A(Ep[ζ · u ◦ f ]) > 1

2γ, so 1
2x+ 1

2 x̄� 1
2f + 1

2 f̄ . Now
let z ∈ X be such that 1

2f (ω) + 1
2 f̄ (ω) ∼ z for all ω; then 1

2x + 1
2 x̄ � z, so

1
2x+ 1

2 x̄�′ z. But f ∼ x and f̄ ∼ x̄ imply f �′ x and f̄ �′ x̄, and since �′ is an
EU preference, 1

2f + 1
2 f̄ �′ 1

2x+ 1
2 x̄; hence, z �′ 1

2x+ 1
2 x̄, a contradiction.

To see that condition 3 ⇔ 4, consider first the following claim.

CLAIM 2: For a complementary pair (f� f̄ ) such that f ∼ f̄ , 1
2f + 1

2 f̄ ∼ z � f
iff A(Ep[ζ · u ◦ f ])≤ 0.

PROOF: To prove this claim, let 1
2f + 1

2 f̄ ∼ z ∈ X . Then, since f ∼ f̄ and
these acts have the same adjustments,

∫
u ◦ f dp= ∫

u ◦ f̄ dp, so both integrals
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equal u(z). Therefore, 1
2f + 1

2 f̄ ∼ z � f if and only if u(z)≥ u(z)+A(Ep[ζ ·
u ◦ f ])= ∫

u ◦ f dp+A(Ep[ζ · u ◦ f ]). Q.E.D.

Claim 2 immediately shows that condition 3 implies 4. For the converse, as-
sume that Axiom 11 holds and consider the cases (a) � satisfies Certainty In-
dependence or (b) u(X) is unbounded. In case (a), then I is positively ho-
mogeneous, so if ϕ = Ep[ζ · a] for some a ∈ B(Σ�u(X)) and α > 0, then
A(αϕ) = Î(αa) − J(αa) = α[Î(a) − J(a)] = αA(ϕ); that is, A is also posi-
tively homogeneous. In this case, it is w.l.o.g. to assume that u(X) ⊃ [−1�1]
and prove the result for f ∈ F0 such that ‖u ◦ f‖ ≤ 1

3 . This ensures the ex-
istence of f̄ ∈ F0 such that u ◦ f̄ = −u ◦ f , as well as g� ḡ ∈ F0 such that
u ◦ g= u ◦ f − ∫

u ◦ f dp and u ◦ ḡ= u ◦ f̄ − ∫
u ◦ f̄ dp= −u ◦ g. By construc-

tion, (g� ḡ) are complementary and g∼ ḡ, because
∫
u ◦ gdp= ∫

u ◦ ḡ dp= 0.
Claim 2 implies that A(Ep[ζ · u ◦ f ])=A(Ep[ζ · u ◦ g])≤ 0, as required.

In case (b), suppose u(X) is unbounded below (the other case is treated
analogously). Consider f ∈ F0 and construct f̄ ∈ F0 such that u ◦ f̄ = minu ◦
f (Ω) + maxu ◦ f (Ω) − f . Then f and f̄ are complementary. If f ∼ f̄ , then
Claim 2 suffices to prove the result. Otherwise, let δ= ∫

u ◦ f dp− ∫
u ◦ f̄ dp.

If δ > 0, consider f ′ ∈ F0 such that u ◦ f ′ = u ◦ f − δ: then
∫
u ◦ f ′ dp= ∫

u ◦
f̄ dp, and f ′ and f̄ are complementary, so f ′ ∼ f̄ and Claim 2 implies that
A(Ep[ζ · u ◦ f ])=A(Ep[ζ · u ◦ f ′])≤ 0. If instead δ < 0, consider f ′ such that
u ◦ f ′ = f̄ −δ, so again f ∼ f ′ and Claim 2 can be invoked to yield the required
conclusion. Q.E.D.

PROOF OF PROPOSITION 3: Statement 2 ⇒ 1 is immediate, so focus on
statement 1 ⇒ 2. Since constant acts are complementary, assume w.l.o.g.
that u1 = u2 ≡ u; it is also w.l.o.g. to assume that 0 ∈ int(X). Next, consider
a ∈ u ◦ F0 such that −a ∈ u ◦ F0 and let f� f̄ be such that a = u ◦ f and
−a = u ◦ f̄ . Then, by the properties of the VEU representation, f �1 f̄ iff
f �2 f̄ is equivalent to Ep1[a] ≥ 0 iff Ep2[a] ≥ 0. By positive homogeneity, this is
true for all a ∈ B0(Σ); in particular, Ep1[a−Ep1[a]] = 0, so Ep2[a−Ep1[a]] = 0,
that is, Ep1[a] = Ep2[a] for all a ∈ B0(Σ) and the claim follows.

Now suppose that statements 1 and 2 hold, and that the VEU repre-
sentations under consideration are sharp. Then an act f is crisp for �j iff
Ep[ζj · u ◦ f ] = 0. Thus, if ζ1 = ζ2, �1 and �2 admit the same crisp acts. Con-
versely, suppose �1 and �2 admit the same crisp acts; then, for all a ∈ u ◦ F0,
Ep[ζ1 · a] = 0 iff Ep[ζ2 · a] = 0, and by positive homogeneity the same is true
for all a ∈ B0(Σ). Therefore, if Ep[ζ1 ·a] = Ep[ζ1 ·b] for a�b ∈ u◦ F0, then also
Ep[ζ2 · a] = Ep[ζ2 · b] and the converse implication also holds. Hence, we can
define Ā2 : E(u◦ F0;p�ζ1)→ R by Ā2(Ep[ζ1 ·a])=A2(Ep[ζ2 ·a]) to get a new
VEU representation (u�p�n1� ζ1� Ā2) for �2. Q.E.D.
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PROOF OF PROPOSITION 4: Suppose that �1 is more ambiguity-averse than
�2. Pick f ∈ F0 and let x ∈X be such that

u(x)= Ep[u ◦ f ] +A1(Ep[ζ1 · u ◦ f ])�
Then f �2 x and therefore

Ep[u ◦ f ] +A2(Ep[ζ2 · u ◦ f ])≥ u(x)
= Ep[u ◦ f ] +A1(Ep[ζ1 · u ◦ f ])�

which yields the required inequality.
Conversely, suppose

A1(Ep[ζ1 · u ◦ f ])≤A2(Ep[ζ2 · u ◦ f ])
for all f ∈ F0. Then, for all x ∈X , f �1 x implies

Ep[u ◦ f ] +A2(Ep[ζ2 · u ◦ f ]) ≥ Ep[u ◦ f ] +A1(Ep[ζ1 · u ◦ f ])
≥ u(x)�

that is, f �2 x, as required. The final claim is immediate. Q.E.D.

B.6. Updating

For a�b ∈ u ◦ F0, let aEb ∈ u ◦ F0 be the function that equals a on E and
equals b elsewhere.

PROOF OF REMARK 1: Only if: It will be shown that, for any event E ∈
Σ, p(E) = 0 implies I(a) = I(b) for all a�b ∈ u ◦ F0 such that a(ω) =
b(ω) for ω /∈ E. To see this, assume w.l.o.g. that I(a) ≥ I(b) and let α =
max{maxa(Ω)�maxb(Ω)} and β = min{mina(Ω)�minb(Ω)}. Then mono-
tonicity implies that I(αEa) ≥ I(a) ≥ I(b) ≥ I(βEb) = I(βEa). Thus, it is
sufficient to show that I(αEa) = I(βEa). This is immediate if α = β, so as-
sume α> β. Since p(E)= 0, Ep[αEa] = Ep[1Ω\Ea] = Ep[βEa], so if I(αEa) >
I(βEa), it must be the case that A(Ep[ζ · αEa]) > A(Ep[ζ · βEa]). Letting
γ = α+β, as usual γ− αEa�γ−βEa ∈ u ◦ F0. Now

I(γ− αEa)= Ep[[γ− αEa]] +A(
Ep[ζ · [γ− αEa]])

= Ep

[
1Ω\E[γ− a]] +A(−Ep[ζ · αEa])

= Ep

[
1Ω\E[γ− a]] +A(Ep[ζ · αEa])

> Ep

[
1Ω\E[γ− a]] +A(Ep[ζ ·βEa])

= Ep

[
1Ω\E[γ− a]] +A(

Ep[ζ · [γ−βEa)])
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= Ep[γ−βEa] +A(
Ep[ζ · [γ−βEa)])

= I(γ−βEa)�
which is a violation of monotonicity, as γ− α= β< α= γ−β.

If: Suppose that p(E) > 0 and fix x� y ∈ X with x � y . If xEy � y , we are
done. Otherwise, note that xEy ∼ y , that is, [u(x)− u(y)]p(E)+A([u(x)−
u(y)]Ep[ζ · 1E])= 0, implies

A
([u(x)− u(y)]Ep

[
ζ · 1Ω\E

]) =A
([u(x)− u(y)]Ep[ζ · 1E]

)
= −[u(x)− u(y)]p(E);

hence,

I(u ◦ yEx)= u(y)+p(Ω \E)[u(x)− u(y)]
+A([u(x)− u(y)]Ep

[
ζ · 1Ω\E

])
= u(y)+p(Ω \E)[u(x)− u(y)] − [u(x)− u(y)]p(E)
= u(y)+ [u(x)− u(y)][p(Ω \E)−p(E)]< u(x)�

because p(Ω \ E)− p(E) = 1 − 2p(E) < 1 as p(E) > 0. Thus, x � yEx and
again Axiom 12 holds. Q.E.D.

PROOF OF PROPOSITION 5: Since E is not null, p(E) > 0, so p(·|E) is well
defined.

CLAIM 3: If (f� f̄ ) are complementary and constant on Ω \E, then

1
2
f + 1

2
f̄ (ω)∼ 1

2
f̄ + 1

2
f (ω)

holds if and only if u(f (ω))= Ep[u ◦ f ] = Ep[u ◦ f |E] for all ω ∈Ω \E.

PROOF: Let γ ∈ R be such that 1
2γ = 1

2u(f (ω)) + 1
2u(f̄ (ω)) for all ω ∈ Ω.

Also let α = u(f (ω)) and β = u(f̄ (ω)) for any (hence all) ω ∈ Ω \ E. Then
u ◦ f̄ = γ− u ◦ f and β= γ− α. Thus, for ω ∈Ω \E,

I

(
u ◦

(
1
2
f + 1

2
f̄ (ω)

))

= 1
2

Ep[u ◦ f ] + 1
2
β+A

(
1
2

Ep[ζ · u ◦ f ]
)

= 1
2

Ep[u ◦ f ] + 1
2
γ− 1

2
α+A

(
1
2

Ep[ζ · u ◦ f ]
)
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and

I

(
u ◦

(
1
2
f̄ + 1

2
f (ω)

))

= 1
2

Ep[u ◦ f̄ ]dp+ 1
2
α+A

(
1
2

Ep[ζ · u ◦ f̄ ]
)

= 1
2
γ− Ep[u ◦ f ] + 1

2
α+A

(
1
2

Ep[ζ · u ◦ f ]
)
�

where the last equality uses the fact that Ep[ζ · u ◦ f̄ ] = −Ep[ζ · u ◦ f ] and
A is symmetric. Hence, 1

2f + 1
2 f̄ (ω) ∼ 1

2 f̄ + 1
2f (ω) holds if and only if α =

Ep[u ◦ f ]. Furthermore, Ep[u ◦ f ] = Ep[u ◦ f · 1E] + αp(Ω \ E), so it follows
that α= Ep[u ◦ f |E] as well. Q.E.D.

Next, note that the adjustment factors ζE = (ζi�E)0≤i<n defined by Eq. (7) are
easily seen to be bounded and to have zero mean. Also observe that

Ep[ζE · a|E] = p(E){Ep[ζ · a|E] − Ep[a|E]Ep[ζi|E]}(27)

= Ep[ζ · a · 1E] − Ep[a|E]Ep[ζi · 1E]
= Ep

[
ζ · aE(Ep[a|E])]�

where the last equality follows from −Ep[ζi · 1E] = Ep[ζi · 1Ω\E]. To show that
(u�p�n�ζE�A) is a VEU representation, it is sufficient to verify monotonic-
ity. Observe that for a�b ∈ u ◦ F0, a ≥ b implies that Ep[a|E] ≥ Ep[b|E],
and hence aE(Ep[a|E])≥ bE(Ep[b|E]). Since (u�p�n�ζ�A) is a VEU repre-
sentation, Ep[aE(Ep[a|E])] +A(Ep[ζ · aE(Ep[a|E])]) ≥ Ep[bE(Ep[b|E])] +
A(Ep[ζ · bE(Ep[b|E])), that is, by Eq. (27), Ep[a|E] + A(Ep[ζE · a|E]) ≥
Ep[b|E] +A(Ep[ζE · b|E]), as required.

Now suppose part 1 holds. Fix f�g� f̄ � ḡ ∈ F0 as in Axiom 14. By Claim 3,
u ◦ f (ω)= Ep[u ◦ f |E] = Ep[u ◦ f ] and u ◦ g(ω)= Ep[u ◦ g|E] = Ep[u ◦ g] for
all ω ∈Ω \E. Then the axiom implies that f �E g iff f � g, that is, iff

Ep[u ◦ f ] +A(Ep[ζ · u ◦ f ])≥ Ep[u ◦ g] +A(Ep[ζ · u ◦ g])
⇔ Ep[u ◦ f |E] +A(

Ep

[
ζ · u ◦ fE(Ep[u ◦ f |E])])

≥ Ep[u ◦ g|E] +A(
Ep

[
ζ · u ◦ gE(Ep[u ◦ g|E])])

⇔ Ep[u ◦ f |E] +A(Ep[ζE · u ◦ f |E])
≥ Ep[u ◦ g|E] +A(Ep[ζE · u ◦ g|E])�

If now f�g ∈ F0 are arbitrary, let x� y ∈X be such that u(x)= Ep[u ◦ f |E] and
u(y)= Ep[u◦g|E]. Notice that then Ep[u◦fEx] = Ep[u◦fEx|E] = u(x), and
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similarly for gEy . Finally, let f ′ and g′ be such that (fEx� f ′) and (gEy�g′) are
complementary; notice that this requires that f ′ and g′ be constant on Ω \ E.
Then, by Claim 3, the acts fEx, f ′, gEy , and g′ satisfy the assumptions of
Axiom 14, and the argument just given shows that then fEx�E gEy iff Ep[u ◦
f |E]+A(Ep[ζE ·u◦f |E])≥ Ep[u◦g|E]+A(Ep[ζE ·u◦g|E]). But by Axiom 13,
fEx�E gEy iff f �E g, so part 2 holds.

In the opposite direction, assume that part 2 holds. It is then immediate that
Axiom 13 is satisfied. Now assume that f , g, f̄ , and ḡ are as in Axiom 14. Then
Claim 3 shows that u(f (ω))= Ep[u ◦ f |E] and u(g(ω))= Ep[u ◦ g|E] for all
ω ∈Ω \E, so

Ep[u ◦ f |E] +A(Ep[ζE · u ◦ f |E])
= p(E)Ep[u ◦ f |E] +p(Ω \E)u(f (ω))

+A(
Ep

[
p(E)(ζ − Ep[ζ|E])u ◦ f |E])

= Ep[u ◦ f ] +A(
Ep[ζ1Eu ◦ f ] + Ep

[
ζ1Ω\E

]
Ep[u ◦ f |E])

= Ep[u ◦ f ] +A(Ep[ζu ◦ f ])�
and similarly for g, so Axiom 14 holds. Q.E.D.

Conclude by verifying that the “law of iterated conditioning” holds: with no-
tation as in Section 4.4,

ζi�E�F = p(F |E) · [ζi�E − Ep[ζi�E|F]]
= p(F |E)

· [p(E) · (ζi − Ep[ζi|E])− Ep

[
p(E)(ζi − Ep[ζi|E])|F]]

= p(F)ζi −p(F)Ep[ζi|E] −p(F)Ep[ζi|F] +p(F)Ep[ζi|E]
= ζi�F �
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