Ambiguity in the small and in the large: Online Appendix

Paolo Ghirardato[§] Marciano Siniscalchi[¶]

June 2012

A Locally Lipschitz preferences

We consider a preference \succeq that admits a monotonic, continuous, normalized, Bernoullian representation (*I*, *u*), and introduce a novel axiom that is equivalent to the assertion that *I* is locally Lipschitz.¹ Recall that $x_h \in X$ denotes the certainty equivalent of act $h \in \mathscr{F}$.

Axiom 1 (Locally Bounded Improvements) For every $h \in \mathscr{F}^{int}$, there are $y \in X$ and $g \in \mathscr{F}$ with $g(s) \succ h(s)$ for all s such that, for $all(h^n) \subset \mathscr{F}$ and $(\lambda^n) \subset [0,1]$ with $h^n \to h$ and $\lambda^n \downarrow 0$,

$$\lambda^n g + (1 - \lambda^n) h^n \prec \lambda^n y + (1 - \lambda^n) x_{h^n}$$
 eventually.

To gain intuition, focus on the constant sequence with $h^n = h$. Since preferences are Bernoullian, the individual's evaluation of $\lambda y + (1-\lambda)x_h$ changes linearly with λ . On the other hand, her evaluation of $\lambda g + (1-\lambda)h$ may improve in arbitrary non-linear (though continuous) ways as λ increases from 0 to 1 (recall that *g* is pointwise preferred to *h*). The Axiom states that, when λ is close to 0, this improvement is comparable to the *linear* change in preference that applies to

[§]Department of Economics and Statistics and Collegio Carlo Alberto, Università di Torino; paolo.ghirardato@carloalberto.org

[&]quot;Northwestern University; marciano@northwestern.edu

¹That is: for every $a \in \text{int } B_0(\Sigma, u(X))$, there are $\epsilon > 0$ and L > 0 such that $|I(b) - I(c)| \le L ||b - c||$ for all $b, c \in B_0(\Sigma, u(X))$ with $||b - a|| < \epsilon$ and $||c - a|| < \epsilon$.

 $\lambda y + (1 - \lambda)x_h$ (which may still be very rapid, if *y* is 'much' preferred to x_h). Hence, it imposes a bound on the instantaneous rate of change in preferences, as a function of λ . Furthermore, this bound is required to be uniform in a neighborhood of *h*.

Proposition 1 Let \succeq be a preference that admits a monotonic, continuous, Bernoullian, normalized representation (*I*, *u*). Then \succeq satisfies Axiom 1 if and only if *I* is locally Lipschitz in the interior of its domain.

Proof: (If): Functionally, the displayed equation in Axiom 1 is equivalent to

$$I(\lambda^{n}[u \circ g - u \circ h^{n}] + u \circ h^{n}) = I(\lambda^{n} u \circ g + (1 - \lambda^{n})u \circ h^{n}) < I(\lambda^{n} u(y) + (1 - \lambda^{n})u(x^{n})) =$$

= $\lambda^{n} u(y) + (1 - \lambda^{n})u(x^{n}) = \lambda^{n}[u(y) - I(u \circ h^{n})] + I(u \circ h^{n}).$ (1)

Notice that the second equality uses the assumption that *I* is normalized. Since $u \circ h^n \to u \circ h$ in the sup norm, for every $\epsilon \in (0, \min_s[u(g(s)) - u(h(s))])$, and for *n* large enough, $\max_s|u(h(s)) - u(h^n(s))| < \min_s[u(g(s)) - u(h(s))] - \epsilon$, so that, for every *s*, $u(h^n(s)) = u(h(s)) + [u(h^n(s)) - u(h(s))] < u(h(s)) + \min_{s'}[u(g(s')) - u(h(s'))] - \epsilon \le u(h(s)) + u(g(s)) - u(h(s)) - \epsilon = u(g(s)) - \epsilon$. In other words, $u(g(s)) - u(h^n(s)) > \epsilon$ for all *s* and all *n* large enough. Moreover, for *n* large enough, $\lambda^n \epsilon + h^n \in B_0(\Sigma, u(X))$. Since *I* is monotonic, and rearranging terms,

$$\frac{I(\lambda^n \epsilon + u \circ h^n) - I(u \circ h^n)}{\lambda^n} < u(y) - I(u \circ h^n) \quad \text{eventually.}$$

Again because $u \circ h^n \to u \circ h$, eventually $I(u \circ h^n) \ge I(u \circ h) - \epsilon$, so finally

$$\frac{I(\lambda^n \epsilon + u \circ h^n) - I(u \circ h^n)}{\lambda^n} < u(y) - I(u \circ h) + \epsilon \quad \text{eventually.}$$

This implies that, for a suitable $\epsilon > 0$, $I^{\circ}(u \circ h; \epsilon) \le u(y) - I(u \circ h) + \epsilon < \infty$.

To sum up, for every *h* such that $u \circ h \in \operatorname{int} B_0(\Sigma, u(X))$, there are $\epsilon > 0$ and $y \in X$ such that $I^\circ(u \circ h; \epsilon) \leq u(y) - I(u \circ h) + \epsilon < \infty$. Since *I* is monotonic, by Proposition 4 in Rockafellar (1980), *I* is directionally Lipschitzian; by Theorem 3 therein, the Clarke-Rockafeller derivative of *I* in the direction *a* at $u \circ h$, denoted $I^{\uparrow}(u \circ h; a)$, equals $\liminf_{b \to a} I^\circ(u \circ h; b)$. Since $I^\circ(u \circ h; \cdot)$ is monotonic because *I* is, this implies that, for all *a* such that $a(s) < \epsilon$, $I^{\uparrow}(u \circ h; a) \leq I^\circ(u \circ h; \epsilon) < \infty$. Therefore, the constant function 0 is in the interior of $\{a : I^{\uparrow}(u \circ h; a) < \infty\}$. Again by Theorem 3 in Rockafellar (1980), this implies that *I* is directionally Lipschitz with respect to the

vector 0; as noted on p. 267 therein, it is 'an easy fact to verify' that this is equivalent to the assertion that *I* is locally Lipschitz at $u \circ h$.

(Only if): Conversely, suppose *I* is Lipschitz near $u \circ h$. Since *h* is interior, *I* is monotonic and normalized, and $I^{\circ}(u \circ h; \cdot)$ is continuous, there is $\epsilon > 0$ such that $I^{\circ}(u \circ h; \epsilon) < u(y) - I(u \circ h) - \epsilon$ for some $y \in X$. Then, for all $(h^n) \rightarrow h$ and $(\lambda^n) \downarrow 0$, eventually

$$\frac{I(\lambda^n[\epsilon+u\circ h^n]+(1-\lambda^n)u\circ h^n)-I(u\circ h^n)}{\lambda^n}=\frac{I(\lambda^n\epsilon+u\circ h^n)-I(u\circ h^n)}{\lambda^n}< u(y)-I(u\circ h)-\epsilon.$$

Now choose *n* large enough so that $\max_{s} |u(h(s)) - u(h^{n}(s))| < \frac{\epsilon}{2}$. Then a fortiori, for every *s*, $u(h(s)) - u(h^{n}(s)) < \frac{\epsilon}{2}$, i.e. $u(h(s)) < u(h^{n}(s)) + \frac{\epsilon}{2}$, and therefore $u(h(s)) + \frac{\epsilon}{2} < u(h^{n}(s)) + \epsilon$. Because *h* is interior, there is $\delta \in (0, \frac{\epsilon}{2}]$ such that $u \circ h + \delta = u \circ g$ for some $g \in \mathscr{F}$; for such *g*, the above argument implies that $u(g(s)) < u(h^{n}(s)) + \epsilon$ for all *s*, and of course $g(s) \succ h(s)$ for all *s*. By monotonicity, conclude that, for all *n* sufficiently large,

$$\frac{I(\lambda^n u \circ g + (1 - \lambda^n) u \circ h^n) - I(u \circ h^n)}{\lambda^n} < u(y) - I(u \circ h) - \epsilon.$$

Finally, by choosing *n* large enough, we can ensure that $I(u \circ h^n) < I(u \circ h) + \epsilon$, and therefore

$$\frac{I(\lambda^n u \circ g + (1 - \lambda^n) u \circ h^n) - I(u \circ h^n)}{\lambda^n} < u(y) - I(u \circ h^n).$$

Rearranging terms yields Eq. (1), so the axiom holds.

B Nice MBL preferences

Proposition 2 A monotonic, isotone and concave function $I : B_0(\Sigma, \Gamma) \to \mathbb{R}$ (for some interval Γ) is nice everywhere in the interior of its domain.

Proof: Recall that a monotone concave *I* is locally Lipschitz; furthermore, ∂I coincides with the superdifferential of *I* (e.g. Rockafellar, 1980, p. 278), and it is monotone, in the sense that

$$\forall c, c' \in \text{int } B_0(\Sigma, \Gamma), Q \in \partial I(c), Q' \in \partial I(c'), \qquad Q(c-c') \le Q'(c-c').^2$$
(2)

²Since ∂I is the superdifferential of I, $Q(c' - c) \ge I(c') - I(c)$ and $Q'(c - c') \ge I(c) - I(c')$. Summing these inequalities yields the inequality in the text.

Fix $c' \in \text{int } B_0(\Sigma, \Gamma)$ and suppose that $Q_0 \in \partial I(c')$. Then, for every $c \in \text{int } B_0(\Sigma, \Gamma)$ and every $Q \in \partial I(c)$, $Q(c - c') \leq 0$. Since c' is interior, the set $\hat{\Gamma} = \Gamma \cap \{\gamma \in \mathbb{R} : \gamma > c'(s) \forall s\}$ is non-empty. Morevoer, for any $\gamma \in \hat{\Gamma}$, and for all $Q \in \partial I(1_s\gamma)$, $Q(1_s\gamma - c') \leq 0$. But since $\gamma - c'(s) > 0$ for all s, and I is monotonic, this requires that $\partial I(1_s\gamma) = \{Q_0\}$ for all $\gamma \in \hat{\Gamma}$.

In particular, pick $\alpha, \beta \in \hat{\Gamma}$, with $\alpha > \beta$. Since *I* is isotone, $I(1_S\alpha) > I(1_S\beta)$. By the mean-value theorem (Lebourg, 1979), there must be $\mu \in (0, 1)$ and $Q \in \partial I(\mu 1_S \alpha + (1 - \mu) 1_S \beta) = \partial I([\mu \alpha + (1 - \mu)\beta] 1_S)$ such that $I(1_S\alpha) - I(1_S\beta) = Q(1_S\alpha - 1_S\beta) = Q(1_S)(\alpha - \beta)$. But $\mu \alpha + (1 - \mu)\beta \in \hat{\Gamma}$, so $Q = Q_0$, and therefore $I(1_S\alpha) = I(1_S\beta)$: contradiction. Therefore, *I* must be nice at *c*.

We now provide an axiom for MBL preferences that ensures niceness. There are obvious similarities with Axiom 1.

Axiom 2 (Non-Negligible Worsenings at *h*) *There are* $y \in X$ *with* $y \prec h$ *and* $g \in \mathscr{F}$ *with* $g(s) \prec h(s)$ *for all s such that, for all* $(h^n) \subset \mathscr{F}$ *and* $(\lambda^n) \subset [0,1]$ *with* $h^n \to h$ *and* $\lambda^n \downarrow 0$,

$$\lambda^n g + (1 - \lambda^n) h^n \prec \lambda^n y + (1 - \lambda^n) x_{h^n}$$
 eventually.

This axiom rules out the possibility that preferences may be 'flat' when moving from *h* toward pointwise less desirable acts *g*. We argue as for Axiom 1: the individual's evaluation of $\lambda y + (1 - \lambda)x_h$ changes linearly with λ , whereas her evaluation of $\lambda g + (1 - \lambda)h$ may worsen in arbitrary non-linear ways as λ increases from 0 to 1. Axiom 2 states that, when λ is close to 0, this worsening is comparable to the *linear* decrease in preference that applies to $\lambda y + (1 - \lambda)x_h$ (which may still be very slow, if *y* is 'almost' as good as x_h).

Mas-Colell (1977) characterizes preferences over consumption bundles (i.e. on \mathbb{R}^n_+) represented by a (locally) Lipschitz and 'regular' utility function; his notion of regularity is related to niceness (cf. p. 1411); for instance, if utility is continuously differentiable, the requirement is that its gradient be non-vanishing on \mathbb{R}^n_{++} . Mas-Colell's axiom is not directly related to ours.

Proposition 3 Let \succeq be an MBL preference with representation (I, u), and assume that I is normalized. Then \succeq satisfies Axiom 2 at $h \in \mathscr{F}^{int}$ if and only if I is nice at $u \circ h$.

Proof: (If): As in the proof of Proposition 1, for g, y, (h^n) , (λ^n) as in the axiom,

$$I(\lambda^n[u \circ g - u \circ h^n] + u \circ h^n) < \lambda^n[u(y) - I(u \circ h^n)] + I(u \circ h^n) \quad \text{eventually.}$$

For *n* large, $||u \circ h^n - u \circ h|| < 1$ and therefore $u(h^n(s)) - u(g(s)) = [u(h^n(s)) - u(h(s))] + u(h(s)) - u(g(s)) < 1 + \max_s [u(h(s)) - u(g(s))] \equiv \delta$. Since $h(s) \succ g(s)$ for all $s, \delta > 0$. Furthermore, as $n \to \infty$, eventually $\lambda^n(-\delta) + u \circ h^n \in B_0(\Sigma, u(X))$, and so, by monotonicity of I,

$$I(\lambda^n(-\delta) + u \circ h^n) < \lambda^n[u(y) - I(u \circ h^n)] + I(u \circ h^n) \quad \text{eventually.}$$

Rearranging,

$$\frac{I(\lambda^n(-\delta) + u \circ h^n) - I(u \circ h^n)}{\lambda^n} < u(y) - I(u \circ h^n) \quad \text{eventually}.$$

Since $h^n \to h$ and *I* is continuous, for every $\epsilon > 0$, eventually $I(u \circ h^n) \ge I(u \circ h) - \epsilon$, and so

$$\frac{I(\lambda^n(-\delta)+u\circ h^n)-I(u\circ h^n)}{\lambda^n} < u(y)-I(u\circ h)+\epsilon \quad \text{eventually.}$$

Therefore, $I^0(u \circ h; -\delta) \leq u(y) - I(u \circ h) + \epsilon$. Since this is true for all $\epsilon > 0$, $I^0(u \circ h; -\delta) \leq u(y) - I(u \circ h) < 0$, as $y \prec h$. But since $I^0(u \circ h; -\delta) = \max_{Q \in \partial I(u \circ h)} (-\delta)Q(S) = -\delta \min_{Q \in \partial I(u \circ h)}Q(S)$, and every $Q \in \partial I(u \circ h)$ is a positive measure because I is monotonic, the zero measure Q_0 cannot belong to $\partial I(u \circ h)$.

(Only if): Conversely, suppose *I* is nice at $u \circ h$. Since *h* is interior, there is $\delta > 0$ such that $u \circ h - \delta = u \circ g$ for some $g \in \mathscr{F}^{\text{int}}$. Since $Q_0 \notin \partial I(u \circ h)$ and *I* is monotonic, $I^0(u \circ h; -\frac{1}{2}\delta) < 0$. Hence, for all sequences $\lambda^n \to 0$ and $h^n \to h$ (acts), and for all $\epsilon \in (0, -I^0(u \circ h; -\frac{1}{2}\delta))$, eventually

$$\frac{I(\lambda^n(-\frac{1}{2}\delta)+u\circ h^n)-I(u\circ h^n)}{\lambda^n} < -\epsilon.$$

In particular, find $y \in X$ such that $y \prec h$ and $I(u \circ h) - u(y) < -\frac{1}{2}I^0(u \circ h; -\frac{1}{2}\delta)$, which is possible because h is interior. Add $-\frac{1}{2}I^0(u \circ h; -\frac{1}{2}\delta)$ on both sides of this inequality to conclude that $I(u \circ h) - u(y) - \frac{1}{2}I^0(u \circ h; -\frac{1}{2}\delta) < -I^0(u \circ h; -\frac{1}{2}\delta)$, and so eventually

$$\frac{I(\lambda^n(-\frac{1}{2}\delta)+u\circ h^n)-I(u\circ h^n)}{\lambda^n} < u(y)-I(u\circ h)+\frac{1}{2}I^0(u\circ h;-\frac{1}{2}\delta).$$

Also, for *n* large, $I(u(h^n)) \le I(u(h)) - \frac{1}{2}I^0(u \circ h; -\frac{1}{2}\delta)$; conclude that, eventually,

$$\frac{I(\lambda^n(-\frac{1}{2}\delta)+u\circ h^n)-I(u\circ h^n)}{\lambda^n} < u(y)-I(u\circ h^n).$$

Rewriting yields

$$I(\lambda^n [-\frac{1}{2}\delta + u \circ h^n] + (1 - \lambda^n)u \circ h^n) < \lambda^n [u(y) - I(u \circ h^n)] + I(u \circ h^n) \quad \text{eventually.}$$

Finally, if *n* is large enough, $||u \circ h^n - u \circ h|| < \frac{1}{2}\delta$, so for all $s, -\frac{1}{2}\delta + u(h^n(s)) = -\frac{1}{2}\delta + u(h(s)) + [u(h^n(s)) - u(h(s))] > -\delta + u(h(s)) = u(g(s))$. Hence, finally, monotonicity implies

$$I(\lambda^n u \circ g + (1 - \lambda^n) u \circ h^n) < \lambda^n u(y) - (1 - \lambda^n) I(u \circ h^n) \quad \text{eventually},$$

as required.

C Calculations for Example 4

Since *I* is continuously differentiable, it is 'strictly differentiable': see Clarke (1983, Corollary to Prop. 2.2.1). In particular, for all $e \in B_0(\Sigma)$, $h^n \to h$ and $\lambda^n \downarrow 0$, $(\lambda^n)^{-1} [I(\lambda^n e + (1 - \lambda^n)h^n) - I((1 - \lambda^n)h^n)] \to \nabla I(h) \cdot e$. Hence, if $\nabla I(h) \cdot f > \nabla I(h) \cdot g$, then for all sequences $\lambda^n \downarrow 0$, $h^n \downarrow 0$, eventually $(\lambda^n)^{-1} [I(\lambda^n f + (1 - \lambda^n)h^n) - I((1 - \lambda^n)h^n)] > (\lambda^n)^{-1} [I(\lambda^n g + (1 - \lambda^n)h^n) - I((1 - \lambda^n)h^n)]$, so Eq. (7) will hold for *n* large: hence, in this case $f \succeq_h^* g$. This is in particular the case if $h_1 > h_2 \ge 0$.

To analyze cases 2 and 3 in the text, note first that, for any pair $f, g \in \mathscr{F}$, using the formula for the difference of two cubes, $f \succeq g$ iff

$$\sum_{i=1,2} [P^i \cdot (f-g)] \left[(P^i \cdot f)^2 + (P^i \cdot g)^2 + (P^i \cdot f)(P^i \cdot g) \right] \ge 0.$$
(3)

Now consider ϵ , f, g, f_{ϵ} , g_{ϵ} as in the text. The rankings $\lambda^n f_{\epsilon} + (1 - \lambda^n)h^n \succeq \lambda^n g_{\epsilon} + (1 - \lambda^n)h^n$ and $\lambda^n f_{\epsilon} + (1 - \lambda^n)k^n \succeq \lambda^n g_{\epsilon} + (1 - \lambda^n)k^n$ are then equivalent to

$$\begin{split} \sum_{i=1,2} P^{i} \cdot \lambda^{n} [1+2\epsilon,-1+2\epsilon] \left\{ \begin{bmatrix} P^{i} \cdot \lambda^{n} [3+\epsilon,1+\epsilon]+\gamma \end{bmatrix}^{2} + \begin{bmatrix} P^{i} \cdot \lambda^{n} [2-\epsilon,2-\epsilon]+\gamma \end{bmatrix}^{2} + & (4) \\ & + \begin{bmatrix} P^{i} \cdot \lambda^{n} [3+\epsilon,1+\epsilon]+\gamma \end{bmatrix} \begin{bmatrix} P^{i} \cdot \lambda^{n} [2-\epsilon,2-\epsilon]+\gamma \end{bmatrix} \right\} \geq 0, \\ \sum_{i=1,2} P^{i} \cdot \lambda^{n} [1+2\epsilon,-1+2\epsilon] \left\{ \begin{bmatrix} P^{i} \cdot \lambda^{n} [2+\epsilon,2+\epsilon]+\gamma \end{bmatrix}^{2} + \begin{bmatrix} P^{i} \cdot \lambda^{n} [1-\epsilon,3-\epsilon]+\gamma \end{bmatrix}^{2} + & (5) \\ & + \begin{bmatrix} P^{i} \cdot \lambda^{n} [2+\epsilon,2+\epsilon]+\gamma \end{bmatrix} \begin{bmatrix} P^{i} \cdot \lambda^{n} [1-\epsilon,3-\epsilon]+\gamma \end{bmatrix} \right\} \geq 0. \end{split}$$

In case 3 ($\gamma = 0$), divide Eqs. (4) and (5) by $(\lambda^n)^3$ and set $\epsilon = 0$ to obtain the conditions

$$(2p-1)\left[(1+2p)^2+4+2(1+2p)\right]+(1-2p)\left[(1+2(1-p))^2+4+2(1+2(1-p))\right] \ge 0,$$

$$(2p-1)\left[4+(1+2(1-p))^2+2(1+2(1-p))\right]+(1-2p)\left[4+(1+2p)^2+2(1+2p)\right] \ge 0,$$

and by inspection the l.h.s. of the second inequality is the negative of the l.h.s. of the first. Furthermore, the l.h.s of the first condition equals $(2p-1)[(1+2p)^2-(1+2(1-p))^2+4(2p-1)] > 0$, because $p > \frac{1}{2}$. Therefore, for any n, when $\epsilon = 0$, Eq. (4) holds as a strict inequality, whereas the inequality in Eq. (5) fails. Hence, the same is true for any n when ϵ is positive but small. Thus. $f_{\epsilon} \not\geq_{h}^{*} g_{\epsilon}$ for any $\epsilon \ge 0$ if h = [0,0].

In case 2 ($\gamma > 0$), first take $\epsilon = 0$. We claim that Eqs. (4) and (5) can both hold only if they are in fact equalities. To see this, note that $P^1 \cdot [\alpha, \beta] = P^2 \cdot [\beta, \alpha]$ for any $\alpha, \beta \in \mathbb{R}$; hence, when $\epsilon = 0$ and $h = [\gamma, \gamma]$, the l.h.s. of Eq. (5) can be rewritten as

$$\sum_{i=1,2} P^{3-i} \cdot \lambda^{n} [-1,1] \left\{ \left[P^{3-i} \cdot \lambda^{n} [2,2] + \gamma \right]^{2} + \left[P^{3-i} \cdot \lambda^{n} [3,1] + \gamma \right]^{2} + \left[P^{3-i} \cdot \lambda^{n} [2,2] + \gamma \right] \left[P^{3-i} \cdot \lambda^{n} [3,1] + \gamma \right] \right\}.$$

It is apparent that this is the negative of the l.h.s of Eq. (4) when $\epsilon = 0$ and $h = [\gamma, \gamma]$, except that we first use P^2 and then P^1 , rather than the opposite as in Eq. (4). This proves the claim.

Next, we claim that Eq. (4) holds as a strict inequality, which proves the assertion in the text that $f \not\geq_h^* g$. Since $p > \frac{1}{2}$ and $\gamma > 0$, the first and third terms in braces are strictly greater for i = 1 than for i = 2. Since $P^2 \cdot [1, -1] = -P^1 \cdot [1, 1]$, the l.h.s. of Eq. (4) is the difference of these terms, multiplied by $P^1 \cdot \lambda^n [1, -1] > 0$, and hence it is strictly positive.

Finally, if $\epsilon > 0$, and since $h = [\gamma, \gamma]$, we have $\nabla I(h) \cdot (f + \epsilon) = \nabla I(h) \cdot f + \nabla I(h) \cdot \epsilon = \nabla I(h) \cdot \epsilon$ $g + \nabla I(h) \cdot \epsilon > \nabla I(h) \cdot g - \nabla I(h) \cdot \epsilon = \nabla I(h) \cdot (g - \epsilon)$, which, as noted above, implies that $f_{\epsilon} \succeq_{h}^{*} g_{\epsilon}$.

As noted in Footnote 10, here $\partial I(0)$ contains *only* the zero vector. However, consider the monotonic, locally Lipschitz functional $J : \mathbb{R}^2 \to \mathbb{R}$ given by $J(h) = \min(I(h), h_1 + I(h))$. Then J(h) = I(h) for $h \in \mathbb{R}^2$ with $h_1 \ge 0$, and $\partial J(0) = \{[\gamma, 0] : \gamma \in [0, 1]\}$ (Clarke, 1983, Theorem 2.5.1). Since all mixtures in Eq. (8) are non-negative when $h \in \mathbb{R}^2_+$ and $\epsilon < 1$, even if g is replaced with $g - \epsilon$ (cf. the definition of k^n), the analysis in Example 4 applies verbatim to J. In particular, for all $\epsilon \in [0, 1)$, now $f + \epsilon \succ_{C(0)} g - \epsilon$, but $f + \epsilon \not\succeq_0^* g - \epsilon$ (the argument in the second paragraph of Ex. 4 does not apply because J is not (continuously) differentiable at 0).

D Relevant priors: a behavioral test

We conclude by showing that, given an interior act h, whether a probability $P \in ba_1(\Sigma)$ belongs to the set C(h) can be ascertained without invoking Theorems 6 or 7; indeed, using only the DM's preferences. For the result we need a notion of lower certainty equivalent of an act f for the incomplete, discontinuous preference \succeq_h^* (cf. the definition of $C^*(f)$ in GMM, p. 158).

Definition 1 For any act $f \in \mathscr{F}$, a **local lower certainty equivalent** of f at $h \in \mathscr{F}^{\text{int}}$ is a prize $\underline{x}_{f,h} \in X$ such that, for all $y \in X$, $y \prec \underline{x}_{f,h}$ implies $f \succeq_h^* y$ and $y \succ \underline{x}_{f,h}$ implies $f \nvDash_h^* y$.

Furthermore, fix $P \in ba_1(\Sigma)$ and $f \in \mathscr{F}$, and suppose that $f = \sum_{i=1}^n x_i \mathbf{1}_{E_i}$ for a collection of distinct prizes x_1, \ldots, x_n and a measurable partition E_1, \ldots, E_n of *S*. Then, define

$$x_{P,f} \equiv P(E_1)x_1 + \ldots + P(E_n)x_n.$$

That is, $x_{P,f} \in X$ is a mixture of the prizes x_1, \ldots, x_n delivered by f, with weights given by the probabilities that P assigns to each event E_1, \ldots, E_n . We then have:

Corollary 4 For any $P \in ba_1(\Sigma)$ and $h \in \mathscr{F}^{int}$ such that *I* is nice at $u \circ h$, $P \in C(h)$ if and only if, for all $f \in \mathscr{F}^{int}$, $\underline{x}_{f,h} \preccurlyeq x_{P,f}$.

Proof: We show that $u(\underline{x}_{f,h}) = \min_{P \in C(h)} P(u \circ f)$; thus, the condition in the Corollary states that P satisfies $P(u \circ f) \ge \min_{P' \in C(h)} P'(u \circ f)$ for all interior f, so by linearity $P(a) \ge \min_{P' \in C(h)} P(a)$ for all $a \in B_0(\Sigma)$, and $P \in C(h)$ then follows from standard arguments.

If $\underline{x}_{f,h}$ is as in Def. 1, then $\min_{P \in C(h)} P(u \circ f) \ge u(y)$ for all $y \prec \underline{x}_{f,h}$ by (1) in Theorem 6, and so $\min_{P \in C(h)} P(u \circ f) \ge u(\underline{x}_{f,h})$. Conversely, for every y with $u(y) < \min_{P \in C(h)} P(u \circ f)$, there are $\epsilon > 0, y' \in X$, and $f' \in \mathscr{F}$ with $u(y') = u(y) + \epsilon, u \circ f' = u \circ f - \epsilon$ and $u(y') \le \min_{P \in C(h)} P(u \circ f')$; then, by (2) in Theorem 7, since (f, y) is a spread of $(f', y'), f \succeq_h^* y$. This implies that $y \preccurlyeq \underline{x}_{f,h}$. Hence, $\min_{P \in C(h)} P(u \circ f) \le u(\underline{x}_{f,h})$ as well.

E Additional properties of \succeq_h^*

In addition to agreeing with \succeq on *X*, provided $\partial I(u \circ h) \neq \{Q_0\}, \succeq_h^*$ satisfies the following additional properties.

Lemma 5 The preference \succeq_h^* is a monotonic, independent preorder.

Proof: Monotonicity and reflexivity are immediate from monotonicity of \succeq . Transitivity is immediate from the definition of \succeq_h^* and transitivity of \succeq . It remains to be shown that \succeq_h^* is independent: that is, for all $k \in \mathscr{F}$ and $\mu \in (0, 1]$, $f \succeq_h^* g$ iff $\mu f + (1 - \mu)k \succeq_h^* \mu g + (1 - \mu)k$. Note that

$$\lambda^{n}[\mu f + (1-\mu)k] + (1-\lambda^{n})h^{n} = (\lambda^{n}\mu)f + [1-(\lambda^{n}\mu)]\left\{\frac{\lambda^{n}(1-\mu)}{1-(\lambda^{n}\mu)}k + \frac{1-\lambda^{n}}{1-(\lambda^{n}\mu)}h^{n}\right\} \equiv \bar{\lambda}^{n}f + (1-\bar{\lambda}^{n})\bar{h}^{n}$$

with $(\bar{\lambda}^n) \downarrow 0$ and $(\bar{h}^n) \to h$, and similarly for g. Hence, if $f \succeq_h^* g$, then eventually $\bar{\lambda}^n f + (1 - \bar{\lambda}^n)\bar{h}^n \succeq \bar{\lambda}^n g + (1 - \bar{\lambda}^n)\bar{h}^n$; repeating the argument for all $(\lambda^n), (h^n)$ implies that $\mu f + (1 - \mu)k \succeq_h^* \mu g + (1 - \mu)k$. Conversely, if $\mu f + (1 - \mu)k \succeq_h^* \mu g + (1 - \mu)k$, define $\tilde{\lambda}^n, \tilde{h}^n$ so that

$$\tilde{\lambda}^n [\mu f + (1-\mu)k] + (1-\tilde{\lambda}^n)\tilde{h}^n = \lambda^n f + (1-\lambda^n)h^n :$$

this requires $\tilde{\lambda}^n = \frac{\lambda^n}{\mu}$, which is in [0,1] for *n* large and converges to zero as $n \to \infty$, and

$$u \circ \tilde{h}^n = \frac{(1-\lambda^n)u \circ h^n - \tilde{\lambda}^n (1-\mu)u \circ k}{1-\tilde{\lambda}^n}$$

which is in $B_0(\Sigma, u(X))$ for *n* large (recall that *h* is interior), and indeed such that $\tilde{h}^n \to h$. Note that $\tilde{\lambda}^n, \tilde{h}^n$ do not depend on *f*. Again, for *n* large $\tilde{\lambda}^n[\mu f + (1-\mu)k] + (1-\tilde{\lambda}^n)\tilde{h}^n \succeq \tilde{\lambda}^n[\mu g + (1-\mu)k] + (1-\tilde{\lambda}^n)\tilde{h}^n$, and therefore by construction $\lambda^n f + (1-\lambda^n)h^n \succeq \lambda^n g + (1-\lambda^n)h^n$, and so, repeating for all sequences, $f \succeq_h^* g$.

References

Frank H. Clarke. Optimization and Nonsmooth Analysis. J. Wiley, New York, 1983.

- G. Lebourg. Generic differentiability of Lipschitzian functions. *Transactions of the American Mathematical Society*, pages 125–144, 1979.
- A. Mas-Colell. The recoverability of consumers' preferences from market demand behavior. *Econometrica: Journal of the Econometric Society*, pages 1409–1430, 1977.
- R. Tyrrell Rockafellar. Generalized directional derivatives and subgradients of nonconvex functions. *Canadian Journal of Mathematics*, XXXII:257–280, 1980.