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A Locally Lipschitz preferences

We consider a preference = that admits a monotonic, continuous, normalized, Bernoullian rep-
resentation (/, u), and introduce a novel axiom that is equivalent to the assertion that I is locally

Lipschitz.! Recall that x;, € X denotes the certainty equivalent of act h € Z.

Axiom 1 (Locally Bounded Improvements) For every h € Z'™, there arey € X and g € & with
g(s)> h(s) for all s such that, for all(h")C % and(A")C [0,1] with h" — h and A" | 0,

Atg+(1-A"h" < A"y +(1—=A")x),»  eventually.

To gain intuition, focus on the constant sequence with h” = h. Since preferences are Bernoul-
lian, the individual’s evaluation of Ay 4+(1—A)x), changes linearly with A. On the other hand, her
evaluation of Ag 4+ (1 —A)h may improve in arbitrary non-linear (though continuous) ways as A
increases from 0 to 1 (recall that g is pointwise preferred to h). The Axiom states that, when A

is close to 0, this improvement is comparable to the linear change in preference that applies to
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IThat is: for every a € int By(%, u(X)), there are € > 0 and L > 0 such that |I(b) — I(c)| < L||b — c|| for all b,c €
Bo(X%, u(X)) with ||b — a|| < e and ||c — al| < e.



Ay +(1 — A)x;, (which may still be very rapid, if y is ‘much’ preferred to x;). Hence, it imposes a
bound on the instantaneous rate of change in preferences, as a function of A. Furthermore, this

bound is required to be uniform in a neighborhood of #.

Proposition 1 Let = be a preference that admits a monotonic, continuous, Bernoullian, nor-
malized representation (I, u). Then = satisfies Axiom 1 if and only if I is locally Lipschitz in the

Interior of its domain.

Proof: (If): Functionally, the displayed equation in Axiom 1 is equivalent to

IA"[uog—uoh"|+uoh")=I(A"uog+(1—-A"Yuoh™)<IA"u(y)+(1—-A"u(x"))=

=A"u(y)+QQ-2A"u(x")=A"[u(y)—I(uwoh™)]+1(uoh"). @

Notice that the second equality uses the assumption that I is normalized. Since uoh” — uoh in
the sup norm, for every e € (0, min,[u(g(s))— u(h(s))]), and for n large enough, max; |u(h(s))—
u(h"(s)) < mins[u(g(s)) — u(h(s))] — €, so that, for every s, u(h"(s)) = u(h(s))+ [u(h"(s)) —
u(h(s))] < u(h(s))+ming[u(g(s"))— u(h(s)] — € < u(h(s))+u(g(s))—u(h(s))—e =u(g(s)) —e.
In other words, u(g(s)) — u(h"(s)) > € for all s and all n large enough. Moreover, for n large
enough, A€ + h" € By(%, u(X)). Since I is monotonic, and rearranging terms,

I(A"e+uoh™)—I(uoh)
)L"

<u(y)—I(uoh") eventually.

Again because u o h" — u o h, eventually I(u o h"*) > I(u o h) — €, so finally

I(A"e+uoh™)—I(uoh)
7(."

<u(y)—I(uoh)+e€ eventually.

This implies that, for a suitable € >0, I°(u o h;€) < u(y)—I(u o h)+ € < 0.

To sum up, for every h such that u o h € intBy(%, u(X)), there are € > 0 and y € X such that
I°(uoh;e) < u(y)—I(uoh)+ e < oo. Since I is monotonic, by Proposition 4 in Rockafellar
(1980), I is directionally Lipschitzian; by Theorem 3 therein, the Clarke-Rockafeller derivative
of I in the direction a at uoh, denoted I'(uoh; a), equals liminf,_,, I°(uoh;b). Since I°(uoh;-)is
monotonic because I is, this implies that, for all a such that a(s)<e, IT(uoh;a)<I°(uoh;€)<
oo. Therefore, the constant function 0 is in the interior of {a : I'(u o h;a) < oo}. Again by

Theorem 3 in Rockafellar (1980), this implies that I is directionally Lipschitz with respect to the
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vector 0; as noted on p. 267 therein, it is ‘an easy fact to verify’ that this is equivalent to the
assertion that [ is locally Lipschitz at u o h.

(Only if): Conversely, suppose I is Lipschitz near uoh. Since h is interior, I is monotonic and
normalized, and I°(u o h;-) is continuous, there is € > 0 such that I°(uoh;e) < u(y)—I(uoh)—e
for some y € X. Then, for all (k") — h and (A") | 0, eventually

I(A"[e+uoh®|+(1—A"uoh™)—I(uoh") I(A"e¢+uoh”)—I(uoh™)
AR B An

<u(y)—I(uoh)—e.

Now choose n large enough so that max; |u(h(s)) — u(h"(s))| < g Then a fortiori, for every s,
u(h(s)) — u(h™(s)) < §, i.e. u(h(s)) < u(h"(s))+ %, and therefore u(h(s))+ 5 < u(h"(s))+e.
Because h is interior, there is 6 € (0, g] such that uoh+0 = u o g for some g € Z; for such g,
the above argument implies that u(g(s)) < u(h"(s))+e€ for all s, and of course g(s) > h(s) for all
s. By monotonicity, conclude that, for all n sufficiently large,

IA"uog+(1—-A")uoh™)—I(uoh")
)Ln

<u(y)—I(uoh)—e.

Finally, by choosing 7 large enough, we can ensure that I(uz o h") < I(u o h)+ €, and therefore

IA"uog+(1—A"uoh™)—I(uoh")
)(.n

<u(y)—I(uoh™).

Rearranging terms yields Eq. (1), so the axiom holds. B

B Nice MBL preferences

Proposition 2 A monotonic, isotone and concave function I : By(X,T") — R (for some interval

') is nice everywhere in the interior of its domain.

Proof: Recall that a monotone concave [ is locally Lipschitz; furthermore, d I coincides with

the superdifferential of I (e.g. Rockafellar, 1980, p. 278), and it is monotone, in the sense that

Ve, €int By(X,T), Qe dI(c),Q €dI(c), Q(c—c)<Q'(c—c")? 2)

2Since 01 is the superdifferential of I, Q(¢’ — ¢) > I(¢’) — I(c) and Q'(c — ¢’) > I(c) — I(¢’). Summing these

inequalities yields the inequality in the text.



Fix ¢’ € int By(X%,I') and suppose that Q, € JI(c’). Then, for every ¢ € int By(%,T") and every
Qe dI(c), Q(c — ¢’) < 0. Since ¢’ is interior, the set ' =T N{y €R : y > ¢/(s) Vs} is non-empty.
Morevoer, for any y €I, and for all Q € 8 1(1sy), Q(1sy — ¢’) < 0. But since y — ¢’(s) > 0 for all s,
and I is monotonic, this requires that 9 I(15y) = {Q,} forall y T

In particular, pick a, 8 €T, with @ > . Since I isisotone, I(1sa) > I(1s3). By the mean-value
theorem (Lebourg, 1979), there mustbe u€(0,1)and Qe d I(ulsa+(1—u)lsf)=20I([ua+(1—
u)B11s) such that I(1sa)— (1) = Q(lsa—1s8) = Q(1s) (@ — B). But ua+(1—p)B €', 50 Q =Qy,

and therefore I(1sa) = I(15): contradiction. Therefore, I must be nice at c. B

We now provide an axiom for MBL preferences that ensures niceness. There are obvious

similarities with Axiom 1.

Axiom 2 (Non-Negligible Worsenings at 1) Therearey € X withy < h and g € ¥ with g(s) <
h(s) for all s such that, for all(h") C % and(A") C [0,1] with h"™ — h and A" | 0,

Atg+(1-A"h" < A"y +(1—=A")x),»  eventually.

This axiom rules out the possibility that preferences may be ‘flat’ when moving from # to-
ward pointwise less desirable acts g. We argue as for Axiom 1: the individual’s evaluation of
Ay + (1 — A)xj, changes linearly with A, whereas her evaluation of Ag + (1 — A)h may worsen in
arbitrary non-linear ways as A increases from 0 to 1. Axiom 2 states that, when A is close to 0,
this worsening is comparable to the linear decrease in preference that applies to Ay +(1 —A)xj,
(which may still be very slow, if y is ‘almost’ as good as x,).

Mas-Colell (1977) characterizes preferences over consumption bundles (i.e. on R”) repre-
sented by a (locally) Lipschitz and ‘regular’ utility function; his notion of regularity is related to
niceness (cf. p. 1411); for instance, if utility is continuously differentiable, the requirement is

that its gradient be non-vanishing on R” . . Mas-Colell’s axiom is not directly related to ours.

Proposition 3 Let = be an MBL preference with representation (I, u), and assume that I is nor-

malized. Then = satisfies Axiom 2 at h € Z™ ifand only if I is nice at u o h.
Proof: (If): As in the proof of Proposition 1, for g, y,(h"),(A") as in the axiom,
IA"uog—uoh|+uoh™)<A"[u(y)—I(uoh™)]+1I(uoh™) eventually.
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For n large, ||[uoh™ —uoh|| < 1 and therefore u(h"(s))—u(g(s)) = [u(h"(s))—u(h(s))]+u(h(s))—
u(g(s)) < 1+ max[u(h(s))—u(g(s))] =o. Since h(s) >~ g(s) for all s, 6 > 0. Furthermore, as

n — oo, eventually A"(—0)+ u o h" € By(%, u(X)), and so, by monotonicity of I,
IA"(=0)+uoh™)<A"[u(y)—I(uoh™)]+I(uoh™) eventually.

Rearranging,

I(A"(=6)+uoh™)—I(uoh™)
An

<u(y)—I(uoh™) eventually.

Since h" — h and [ is continuous, for every € > 0, eventually I(u o h") > I(u o h) — €, and so

I(A"(=0)+uoh™)—I(uoh")
An

<u(y)—I(uoh)+e€ eventually.

Therefore, I°(uoh;—06) < u(y)—I(uoh)+e. Since this is true forall € > 0, I°(uoh;—6) < u(y)—
I(uoh)<0,asy < h. Butsince I°(u o h; —0) = maXges 1(uoh)(—0)Q(S) = —0 Minges 1(uon) Q(S), and
every Q € dI(u o h) is a positive measure because I is monotonic, the zero measure Q, cannot
belong to dI(u o h).

(Only if): Conversely, suppose I is nice at u o h. Since h is interior, there is 0 > 0 such that
uoh—06=uog forsome g €.Z™, Since Qy ¢ dI(u o h) and I is monotonic,I%(u o h;—%&) <0.
Hence, for all sequences A" — 0 and h" — h (acts), and for all e € (0,—I°(u o h; —%5 )), eventually

I(A”(—%(S)—I— uoh™)—I(uoh")
<
n

—€.

In particular, find y € X such that y < h and I(uoh)—u(y) < —31°(u o h; —36), which is possible
because # is interior. Add —%I O%u o h;—§5 ) on both sides of this inequality to conclude that
I(uoh)—u(y)— %IO(u o h;—%5) <—I%uo h;—%é), and so eventually

Ian —%6)+uoh”)—](uoh”)
An

1 1
<u(y)—I(uoh)+ Elo(u o h;—56).

Also, for n large, I(u(h")) < I(u(h))— 31%(u o h;—38); conclude that, eventually,

I(A”(—%5)+ uoh")—I(uoh)
)Ll’l

<u(y)—I(uoh").
Rewriting yields
I(A”[—%ﬁ +uoh"|+(1-AYuoh™)<A*u(y)—I(uoh™)]+I(uch™) eventually.
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Finally, if n is large enough, ||z o h" —u o h|| < %5, so for all s, —%5 +u(h(s))= —%5 +u(h(s))+

[u(h"(s))—u(h(s))] >—0+ u(h(s))=u(g(s)). Hence, finally, monotonicity implies
IA"uog+(1—-AYuoh™) <A u(y)—(1—A")I(uoh™) eventually,

as required. H

C Calculations for Example 4

Since I is continuously differentiable, it is ‘strictly differentiable’: see Clarke (1983, Corollary to
Prop. 2.2.1). In particular, for all e € By(X), k" — hand A" | 0, (A*)" [I[(A"e+(1—A")h")—I((1—
A"M)h")] — VI(h)-e. Hence, if VI(h)- f > VI(h)-g, then for all sequences A" | 0, h" | 0, eventually
(A LI f +(1 = AmRm) = I(1 = Am)hm)] > (An) L [I(An g +(1— A")hm) — I((1 — A")h)], s Eq.
(7) will hold for n large: hence, in this case f =} g. This is in particular the case if i, > h, > 0.
To analyze cases 2 and 3 in the text, note first that, for any pair f, g € .7, using the formula
for the difference of two cubes, f = g iff
Y [P(f-g) [(P' fR+(P - g+ (P fYP - g)] >0. 3)
i=1,2
Now consider €, f, g, fe, g as in the text. The rankings A" f. +(1—A")h" = A" g.+(1 —A")h"
and A" f. +(1—A")k" = A"g.+(1 — A")k" are then equivalent to

Zizl,zP"-/\”[1+26,—1+26]{ [PF2"B+e1+el+y] + [PA"2—e2—el+7] + @
+ [P A"[3+€,1+€l+7] [P A"[2—€,2—€]+7] }zo,
Zi:LZP"-A”[1+26,—1+2€]{ [Pi-A”[2+6,2+€]+y]2+[pi.ln[l_e’s_e]_i_y]z_i_ 5)

+[PiAT 2+ e, 24 €l +7] [PATI— 63—l +7] } 0.
In case 3 (y =0), divide Egs. (4) and (5) by (A")3 and set € =0 to obtain the conditions

@p-1[(1+2pP+4+201+2p)| +(1-2p) [1+2(1 - p)P+4+2(1+2(1 - p))] >0,

@p—1) [4+1+201—p)F+2(1+2(1—p))| +(1—2p) [4+ 1 +2p)* +2(1+2p)] 20



and by inspection the Lh.s. of the second inequality is the negative of the Lh.s. of the first.
Furthermore, the L.h.s of the first condition equals (2p—1)[(1+2p)*—(1+2(1—p))*+4(2p—1)] > 0,
because p > % Therefore, for any n, when € =0, Eq. (4) holds as a strict inequality, whereas the
inequality in Eq. (5) fails. Hence, the same is true for any n when € is positive but small. Thus.
fe #), g forany € > 0if h =10, 0].

In case 2 (y > 0), first take € = 0. We claim that Egs. (4) and (5) can both hold only if they are
in fact equalities. To see this, note that P! [a, f] = P?- B, a] for any «, f € R; hence, when € =0
and h =[y,7], the Lh.s. of Eq. (5) can be rewritten as
S P L [P 22,214 y] [P A 4y [P A2 2] [P A, 1 +]
i=1,2
It is apparent that this is the negative of the L.h.s of Eq. (4) when € =0 and & = [y, 7], except that
we first use P? and then P!, rather than the opposite as in Eq. (4). This proves the claim.

Next, we claim that Eq. (4) holds as a strict inequality, which proves the assertion in the text
that f 4} g. Since p > % and y > 0, the first and third terms in braces are strictly greater for i =1
than for i = 2. Since P?-[1,—1] =—P!-[1,1], the Lh.s. of Eq. (4) is the difference of these terms,
multiplied by P'- A*[1,—1] > 0, and hence it is strictly positive.

Finally, if € > 0, and since h = [y,y], we have VI(h)-(f+€)=VI(h):- f+VI(h)-e =VI(h)-
g+VI(h)-€ >VI(h)-g—VI(h)-e =VI(h)-(g —¢), which, as noted above, implies that f. =}, g..

As noted in Footnote 10, here J I(0) contains only the zero vector. However, consider the
monotonic, locally Lipschitz functional J : R? — R given by J(h) = min(I(h), h; + I(h)). Then
J(h)=I(h) for h € R? with h; >0, and 2 J(0) = {[y,0] : y €[0,1]} (Clarke, 1983, Theorem 2.5.1).
Since all mixtures in Eq. (8) are non-negative when h € R? and € < 1, even if g is replaced with
g — € (cf. the definition of k"), the analysis in Example 4 applies verbatim to /. In particular, for
all € €[0,1), now f + € =cq) § — €, but f+ € %} g — € (the argument in the second paragraph of

Ex. 4 does not apply because J is not (continuously) differentiable at 0).

D Relevant priors: a behavioral test

We conclude by showing that, given an interior act &, whether a probability P € ba,(>) belongs

to the set C(h) can be ascertained without invoking Theorems 6 or 7; indeed, using only the
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DM’s preferences. For the result we need a notion of lower certainty equivalent of an act f for

the incomplete, discontinuous preference =} (cf. the definition of C*(f) in GMM, p. 158).

Definition 1 For any act f € 7, a local lower certainty equivalent of f at h € Z™ is a prize

x,, €Xsuchthat forally €X,y <x,, implies f =), y and y > x ., implies f %] y.

Furthermore, fix P € ba;(X) and f € %, and suppose that f = Z?le,-l g, for a collection of

distinct prizes x;,..., X, and a measurable partition Ej,..., E, of S. Then, define
xpr=P(E\)x1+...+P(E,)x,.

That is, xpy € X is a mixture of the prizes x,,...,x, delivered by f, with weights given by the

probabilities that P assigns to each event Ej, ..., E,. We then have:

Corollary 4 For any P € ba,(X) and h € Z™ such that I is nice at u o h, P € C(h) if and only if,

forall f € 7™, x ), <X Xpy.

Proof: We show that u(x f ») = minpecn) P(u o f); thus, the condition in the Corollary states that
P satisfies P(u o f) > minpecp) P/(u o f) for all interior f, so by linearity P(a) > minpecn) P(a)
for all a € By(X), and P € C(h) then follows from standard arguments.

Ifgfyh is as in Def. 1, then minpecy P(w o f) > u(y) forall y < X by (1) in Theorem 6, and
so minpecn P(u o f) > u(ﬁfyh). Conversely, for every y with u(y) < minpecp) P(u o f), there are
e>0,y’eX,and f'eZ withu(y)=u(y)+e, uof'=uof—eand u(y’) <minpecp P(uo f');
then, by (2) in Theorem 7, since (f,y) is a spread of (f*,y’), f %), y. This implies that y < x .

Hence, minpecn P(u o f) < u(gfyh) aswell. H

E Additional properties of =

In addition to agreeing with = on X, provided 9 I(u o h) # {Qo}, =), satisfies the following addi-

tional properties.

Lemma5 The preference =, is a monotonic, independent preorder.



Proof: Monotonicity and reflexivity are immediate from monotonicity of »=. Transitivity is im-
mediate from the definition of =}, and transitivity of >=. It remains to be shown that =} is inde-
pendent: thatis, forall k € # and u € (0,1}, f =), giff uf +(1 —w)k =, ug +(1 —u)k. Note

that

)Ln _ _An
A”[uf+(1—u)k]+(1—7t”)h”=(/1"u)f+[1—(/1"u)]{ -, 1 h}

1-(A"u)  1—=(A"u)
=A"f+(1—A")h"

with (A7) | 0 and (k") — h, and similarly for g. Hence, if f =), &, then eventually Arf4+(1—

AR = A" g +(1— A")h"; repeating the argument for all (A7), (k") implies that uf +(1 — u)k =},

ug +(1—u)k. Conversely, if uf + (1 —u)k =), ug +(1 —u)k, define A", hm so that
Auf+Q—wkl+Q =AD" =A"f+(1—A")h":
this requires = ’L—", which is in [0, 1] for n large and converges to zero as n — 0o, and
LR (I—A")uohl"—;n”(l—u)uolc’

which is in By(%, u(X)) for n large (recall that h is interior), and indeed such that h" — h.

Note that A7, 4" do not depend on f. Again, for n large A7[uf + (1 — pk] + (1 — An)h" =
A [ug+(1—p)k]+(1—A")h", and therefore by construction A f+(1—A")h" = A" g +(1—A")h",

and so, repeating for all sequences, f =), g. B
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