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A Locally Lipschitz preferences

We consider a preference¼ that admits a monotonic, continuous, normalized, Bernoullian rep-

resentation (I , u ), and introduce a novel axiom that is equivalent to the assertion that I is locally

Lipschitz.1 Recall that xh ∈X denotes the certainty equivalent of act h ∈F .

Axiom 1 (Locally Bounded Improvements) For every h ∈F int, there are y ∈ X and g ∈F with

g (s )� h(s ) for all s such that, for all (hn )⊂F and (λn )⊂ [0, 1]with hn → h and λn ↓ 0,

λn g +(1−λn )hn ≺λn y +(1−λn )xhn eventually.

To gain intuition, focus on the constant sequence with hn = h. Since preferences are Bernoul-

lian, the individual’s evaluation of λy +(1−λ)xh changes linearly with λ. On the other hand, her

evaluation of λg +(1−λ)h may improve in arbitrary non-linear (though continuous) ways as λ

increases from 0 to 1 (recall that g is pointwise preferred to h). The Axiom states that, when λ

is close to 0, this improvement is comparable to the linear change in preference that applies to
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1That is: for every a ∈ int B0(Σ, u (X )), there are ε > 0 and L > 0 such that |I (b )− I (c )| ≤ L‖b − c‖ for all b , c ∈

B0(Σ, u (X ))with ‖b −a‖<ε and ‖c −a‖<ε.
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λy +(1−λ)xh (which may still be very rapid, if y is ‘much’ preferred to xh ). Hence, it imposes a

bound on the instantaneous rate of change in preferences, as a function of λ. Furthermore, this

bound is required to be uniform in a neighborhood of h.

Proposition 1 Let ¼ be a preference that admits a monotonic, continuous, Bernoullian, nor-

malized representation (I , u ). Then ¼ satisfies Axiom 1 if and only if I is locally Lipschitz in the

interior of its domain.

Proof: (If): Functionally, the displayed equation in Axiom 1 is equivalent to

I (λn [u ◦ g −u ◦hn ]+u ◦hn ) = I (λn u ◦ g +(1−λn )u ◦hn )< I (λn u (y )+ (1−λn )u (x n )) =

=λn u (y )+ (1−λn )u (x n ) =λn [u (y )− I (u ◦hn )]+ I (u ◦hn ). (1)

Notice that the second equality uses the assumption that I is normalized. Since u ◦hn → u ◦h in

the sup norm, for every ε∈
�

0, mins [u (g (s ))−u (h(s ))]
�

, and for n large enough, maxs |u (h(s ))−

u (hn (s ))| < mins [u (g (s ))− u (h(s ))]− ε, so that, for every s , u (hn (s )) = u (h(s )) + [u (hn (s ))−

u (h(s ))]< u (h(s ))+mins ′[u (g (s ′))−u (h(s ′))]−ε≤ u (h(s ))+u (g (s ))−u (h(s ))−ε= u (g (s ))−ε.

In other words, u (g (s ))− u (hn (s )) > ε for all s and all n large enough. Moreover, for n large

enough, λnε+hn ∈ B0(Σ, u (X )). Since I is monotonic, and rearranging terms,

I (λnε+u ◦hn )− I (u ◦hn )
λn

< u (y )− I (u ◦hn ) eventually.

Again because u ◦hn → u ◦h, eventually I (u ◦hn )≥ I (u ◦h)−ε, so finally

I (λnε+u ◦hn )− I (u ◦hn )
λn

< u (y )− I (u ◦h)+ε eventually.

This implies that, for a suitable ε> 0, I ◦(u ◦h;ε)≤ u (y )− I (u ◦h)+ε<∞.

To sum up, for every h such that u ◦h ∈ intB0(Σ, u (X )), there are ε > 0 and y ∈ X such that

I ◦(u ◦ h;ε) ≤ u (y )− I (u ◦ h) + ε < ∞. Since I is monotonic, by Proposition 4 in Rockafellar

(1980), I is directionally Lipschitzian; by Theorem 3 therein, the Clarke-Rockafeller derivative

of I in the direction a at u ◦h, denoted I ↑(u ◦h; a ), equals lim infb→a I ◦(u ◦h;b ). Since I ◦(u ◦h; ·) is

monotonic because I is, this implies that, for all a such that a (s )<ε, I ↑(u ◦h; a )≤ I ◦(u ◦h;ε)<

∞. Therefore, the constant function 0 is in the interior of {a : I ↑(u ◦ h; a ) < ∞}. Again by

Theorem 3 in Rockafellar (1980), this implies that I is directionally Lipschitz with respect to the
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vector 0; as noted on p. 267 therein, it is ‘an easy fact to verify’ that this is equivalent to the

assertion that I is locally Lipschitz at u ◦h.

(Only if): Conversely, suppose I is Lipschitz near u ◦h. Since h is interior, I is monotonic and

normalized, and I ◦(u ◦h; ·) is continuous, there is ε> 0 such that I ◦(u ◦h;ε)< u (y )− I (u ◦h)−ε

for some y ∈X . Then, for all (hn )→ h and (λn ) ↓ 0, eventually

I (λn [ε+u ◦hn ]+ (1−λn )u ◦hn )− I (u ◦hn )
λn

=
I (λnε+u ◦hn )− I (u ◦hn )

λn
< u (y )− I (u ◦h)−ε.

Now choose n large enough so that maxs |u (h(s ))−u (hn (s ))| < ε
2

. Then a fortiori, for every s ,

u (h(s ))− u (hn (s )) < ε
2

, i.e. u (h(s )) < u (hn (s )) + ε
2

, and therefore u (h(s )) + ε
2
< u (hn (s )) + ε.

Because h is interior, there is δ ∈ (0, ε
2
] such that u ◦h +δ = u ◦ g for some g ∈ F ; for such g ,

the above argument implies that u (g (s ))< u (hn (s ))+ε for all s , and of course g (s )� h(s ) for all

s . By monotonicity, conclude that, for all n sufficiently large,

I (λn u ◦ g +(1−λn )u ◦hn )− I (u ◦hn )
λn

< u (y )− I (u ◦h)−ε.

Finally, by choosing n large enough, we can ensure that I (u ◦hn )< I (u ◦h)+ε, and therefore

I (λn u ◦ g +(1−λn )u ◦hn )− I (u ◦hn )
λn

< u (y )− I (u ◦hn ).

Rearranging terms yields Eq. (1), so the axiom holds.

B Nice MBL preferences

Proposition 2 A monotonic, isotone and concave function I : B0(Σ,Γ)→ R (for some interval

Γ) is nice everywhere in the interior of its domain.

Proof: Recall that a monotone concave I is locally Lipschitz; furthermore, ∂ I coincides with

the superdifferential of I (e.g. Rockafellar, 1980, p. 278), and it is monotone, in the sense that

∀c , c ′ ∈ int B0(Σ,Γ), Q ∈ ∂ I (c ),Q ′ ∈ ∂ I (c ′), Q(c − c ′)≤Q ′(c − c ′).2 (2)

2Since ∂ I is the superdifferential of I , Q(c ′ − c ) ≥ I (c ′)− I (c ) and Q ′(c − c ′) ≥ I (c )− I (c ′). Summing these

inequalities yields the inequality in the text.
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Fix c ′ ∈ int B0(Σ,Γ) and suppose that Q0 ∈ ∂ I (c ′). Then, for every c ∈ int B0(Σ,Γ) and every

Q ∈ ∂ I (c ), Q(c − c ′) ≤ 0. Since c ′ is interior, the set Γ̂ = Γ∩ {γ ∈ R : γ > c ′(s ) ∀s } is non-empty.

Morevoer, for any γ ∈ Γ̂, and for all Q ∈ ∂ I (1Sγ), Q(1Sγ− c ′)≤ 0. But since γ− c ′(s )> 0 for all s ,

and I is monotonic, this requires that ∂ I (1Sγ) = {Q0} for all γ∈ Γ̂.

In particular, pickα,β ∈ Γ̂, withα>β . Since I is isotone, I (1Sα)> I (1Sβ ). By the mean-value

theorem (Lebourg, 1979), there must be µ∈ (0, 1) and Q ∈ ∂ I (µ1Sα+(1−µ)1Sβ ) = ∂ I ([µα+(1−

µ)β ]1S) such that I (1Sα)− I (1Sβ ) =Q(1Sα−1Sβ ) =Q(1S)(α−β ). But µα+(1−µ)β ∈ Γ̂, so Q =Q0,

and therefore I (1Sα) = I (1Sβ ): contradiction. Therefore, I must be nice at c .

We now provide an axiom for MBL preferences that ensures niceness. There are obvious

similarities with Axiom 1.

Axiom 2 (Non-Negligible Worsenings at h) There are y ∈ X with y ≺ h and g ∈ F with g (s ) ≺

h(s ) for all s such that, for all (hn )⊂F and (λn )⊂ [0, 1]with hn → h and λn ↓ 0,

λn g +(1−λn )hn ≺λn y +(1−λn )xhn eventually.

This axiom rules out the possibility that preferences may be ‘flat’ when moving from h to-

ward pointwise less desirable acts g . We argue as for Axiom 1: the individual’s evaluation of

λy + (1−λ)xh changes linearly with λ, whereas her evaluation of λg + (1−λ)h may worsen in

arbitrary non-linear ways as λ increases from 0 to 1. Axiom 2 states that, when λ is close to 0,

this worsening is comparable to the linear decrease in preference that applies to λy +(1−λ)xh

(which may still be very slow, if y is ‘almost’ as good as xh ).

Mas-Colell (1977) characterizes preferences over consumption bundles (i.e. on Rn
+) repre-

sented by a (locally) Lipschitz and ‘regular’ utility function; his notion of regularity is related to

niceness (cf. p. 1411); for instance, if utility is continuously differentiable, the requirement is

that its gradient be non-vanishing on Rn
++. Mas-Colell’s axiom is not directly related to ours.

Proposition 3 Let¼ be an MBL preference with representation (I , u ), and assume that I is nor-

malized. Then¼ satisfies Axiom 2 at h ∈F int if and only if I is nice at u ◦h.

Proof: (If): As in the proof of Proposition 1, for g , y , (hn ), (λn ) as in the axiom,

I (λn [u ◦ g −u ◦hn ]+u ◦hn )<λn [u (y )− I (u ◦hn )]+ I (u ◦hn ) eventually.
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For n large, ‖u ◦hn−u ◦h‖< 1 and therefore u (hn (s ))−u (g (s )) = [u (hn (s ))−u (h(s ))]+u (h(s ))−

u (g (s )) < 1+maxs [u (h(s ))− u (g (s ))] ≡ δ. Since h(s ) � g (s ) for all s , δ > 0. Furthermore, as

n→∞, eventually λn (−δ)+u ◦hn ∈ B0(Σ, u (X )), and so, by monotonicity of I ,

I (λn (−δ)+u ◦hn )<λn [u (y )− I (u ◦hn )]+ I (u ◦hn ) eventually.

Rearranging,

I (λn (−δ)+u ◦hn )− I (u ◦hn )
λn

< u (y )− I (u ◦hn ) eventually.

Since hn → h and I is continuous, for every ε> 0, eventually I (u ◦hn )≥ I (u ◦h)−ε, and so

I (λn (−δ)+u ◦hn )− I (u ◦hn )
λn

< u (y )− I (u ◦h)+ε eventually.

Therefore, I 0(u ◦h;−δ)≤ u (y )− I (u ◦h)+ε. Since this is true for all ε> 0, I 0(u ◦h;−δ)≤ u (y )−

I (u ◦h)< 0, as y ≺ h. But since I 0(u ◦h;−δ) =maxQ∈∂ I (u ◦h)(−δ)Q(S) =−δminQ∈∂ I (u ◦h)Q(S), and

every Q ∈ ∂ I (u ◦h) is a positive measure because I is monotonic, the zero measure Q0 cannot

belong to ∂ I (u ◦h).

(Only if): Conversely, suppose I is nice at u ◦h. Since h is interior, there is δ > 0 such that

u ◦h −δ = u ◦ g for some g ∈F int. Since Q0 6∈ ∂ I (u ◦h) and I is monotonic,I 0(u ◦h;− 1
2
δ)< 0.

Hence, for all sequences λn → 0 and hn → h (acts), and for all ε∈ (0,−I 0(u ◦h;− 1
2
δ)), eventually

I (λn (− 1
2
δ)+u ◦hn )− I (u ◦hn )

λn
<−ε.

In particular, find y ∈X such that y ≺ h and I (u ◦h)−u (y )<− 1
2

I 0(u ◦h;− 1
2
δ), which is possible

because h is interior. Add − 1
2

I 0(u ◦ h;− 1
2
δ) on both sides of this inequality to conclude that

I (u ◦h)−u (y )− 1
2

I 0(u ◦h;− 1
2
δ)<−I 0(u ◦h;− 1

2
δ), and so eventually

I (λn (− 1
2
δ)+u ◦hn )− I (u ◦hn )

λn
< u (y )− I (u ◦h)+

1

2
I 0(u ◦h;−

1

2
δ).

Also, for n large, I (u (hn ))≤ I (u (h))− 1
2

I 0(u ◦h;− 1
2
δ); conclude that, eventually,

I (λn (− 1
2
δ)+u ◦hn )− I (u ◦hn )

λn
< u (y )− I (u ◦hn ).

Rewriting yields

I (λn [− 1
2
δ+u ◦hn ]+ (1−λn )u ◦hn )<λn [u (y )− I (u ◦hn )]+ I (u ◦hn ) eventually.
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Finally, if n is large enough, ‖u ◦hn −u ◦h‖< 1
2
δ, so for all s ,− 1

2
δ+u (hn (s )) =− 1

2
δ+u (h(s ))+

[u (hn (s ))−u (h(s ))]>−δ+u (h(s )) = u (g (s )). Hence, finally, monotonicity implies

I (λn u ◦ g +(1−λn )u ◦hn )<λn u (y )− (1−λn )I (u ◦hn ) eventually,

as required.

C Calculations for Example 4

Since I is continuously differentiable, it is ‘strictly differentiable’: see Clarke (1983, Corollary to

Prop. 2.2.1). In particular, for all e ∈ B0(Σ), hn → h and λn ↓ 0, (λn )−1
�

I (λn e +(1−λn )hn )− I ((1−

λn )hn )
�

→∇I (h)·e . Hence, if∇I (h)· f >∇I (h)·g , then for all sequencesλn ↓ 0, hn ↓ 0, eventually

(λn )−1
�

I (λn f +(1−λn )hn )− I ((1−λn )hn )
�

> (λn )−1
�

I (λn g +(1−λn )hn )− I ((1−λn )hn )
�

, so Eq.

(7) will hold for n large: hence, in this case f ¼∗h g . This is in particular the case if h1 > h2 ≥ 0.

To analyze cases 2 and 3 in the text, note first that, for any pair f , g ∈F , using the formula

for the difference of two cubes, f ¼ g iff

∑

i=1,2

[P i · ( f − g )]
�

(P i · f )2+(P i · g )2+(P i · f )(P i · g )
�

≥ 0. (3)

Now consider ε, f , g , f ε, g ε as in the text. The rankings λn f ε+(1−λn )hn ¼λn g ε+(1−λn )hn

and λn f ε+(1−λn )k n ¼λn g ε+(1−λn )k n are then equivalent to

∑

i=1,2 P i ·λn [1+2ε,−1+2ε]
n

�

P i ·λn [3+ε, 1+ε]+γ
�2
+
�

P i ·λn [2−ε, 2−ε]+γ
�2
+ (4)

+
�

P i ·λn [3+ε, 1+ε]+γ
��

P i ·λn [2−ε, 2−ε]+γ
�

o

≥ 0,
∑

i=1,2 P i ·λn [1+2ε,−1+2ε]
n

�

P i ·λn [2+ε, 2+ε]+γ
�2
+
�

P i ·λn [1−ε, 3−ε]+γ
�2
+ (5)

+
�

P i ·λn [2+ε, 2+ε]+γ
��

P i ·λn [1−ε, 3−ε]+γ
�

o

≥ 0.

In case 3 (γ= 0), divide Eqs. (4) and (5) by (λn )3 and set ε= 0 to obtain the conditions

(2p −1)
�

(1+2p )2+4+2(1+2p )
�

+(1−2p )
�

(1+2(1−p ))2+4+2(1+2(1−p ))
�

≥ 0,

(2p −1)
�

4+(1+2(1−p ))2+2(1+2(1−p ))
�

+(1−2p )
�

4+(1+2p )2+2(1+2p )
�

≥ 0
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and by inspection the l.h.s. of the second inequality is the negative of the l.h.s. of the first.

Furthermore, the l.h.s of the first condition equals (2p−1)[(1+2p )2−(1+2(1−p ))2+4(2p−1)]> 0,

because p > 1
2

. Therefore, for any n , when ε= 0, Eq. (4) holds as a strict inequality, whereas the

inequality in Eq. (5) fails. Hence, the same is true for any n when ε is positive but small. Thus.

f ε 6¼∗h g ε for any ε≥ 0 if h = [0, 0].

In case 2 (γ> 0), first take ε= 0. We claim that Eqs. (4) and (5) can both hold only if they are

in fact equalities. To see this, note that P1 · [α,β ] = P2 · [β ,α] for any α,β ∈R; hence, when ε= 0

and h = [γ,γ], the l.h.s. of Eq. (5) can be rewritten as

∑

i=1,2

P3−i ·λn [−1, 1]
n

�

P3−i ·λn [2, 2]+γ
�2
+
�

P3−i ·λn [3, 1]+γ
�2
+
�

P3−i ·λn [2, 2]+γ
��

P3−i ·λn [3, 1]+γ
�

o

.

It is apparent that this is the negative of the l.h.s of Eq. (4) when ε= 0 and h = [γ,γ], except that

we first use P2 and then P1, rather than the opposite as in Eq. (4). This proves the claim.

Next, we claim that Eq. (4) holds as a strict inequality, which proves the assertion in the text

that f 6¼∗h g . Since p > 1
2

and γ> 0, the first and third terms in braces are strictly greater for i = 1

than for i = 2. Since P2 · [1,−1] =−P1 · [1, 1], the l.h.s. of Eq. (4) is the difference of these terms,

multiplied by P1 ·λn [1,−1]> 0, and hence it is strictly positive.

Finally, if ε > 0, and since h = [γ,γ], we have ∇I (h) · ( f + ε) =∇I (h) · f +∇I (h) · ε =∇I (h) ·

g +∇I (h) ·ε>∇I (h) · g −∇I (h) ·ε=∇I (h) · (g −ε), which, as noted above, implies that f ε ¼∗h g ε.

As noted in Footnote 10, here ∂ I (0) contains only the zero vector. However, consider the

monotonic, locally Lipschitz functional J : R2 → R given by J (h) =min(I (h), h1 + I (h)). Then

J (h) = I (h) for h ∈R2 with h1 ≥ 0, and ∂ J (0) =
�

[γ, 0] : γ∈ [0, 1]
	

(Clarke, 1983, Theorem 2.5.1).

Since all mixtures in Eq. (8) are non-negative when h ∈R2
+ and ε < 1, even if g is replaced with

g −ε (cf. the definition of k n ), the analysis in Example 4 applies verbatim to J . In particular, for

all ε ∈ [0, 1), now f +ε�C (0) g −ε, but f +ε 6¼∗0 g −ε (the argument in the second paragraph of

Ex. 4 does not apply because J is not (continuously) differentiable at 0).

D Relevant priors: a behavioral test

We conclude by showing that, given an interior act h, whether a probability P ∈ ba1(Σ) belongs

to the set C (h) can be ascertained without invoking Theorems 6 or 7; indeed, using only the
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DM’s preferences. For the result we need a notion of lower certainty equivalent of an act f for

the incomplete, discontinuous preference ¼∗h (cf. the definition of C ∗( f ) in GMM, p. 158).

Definition 1 For any act f ∈ F , a local lower certainty equivalent of f at h ∈ F int is a prize

x f ,h ∈X such that, for all y ∈X , y ≺ x f ,h implies f ¼∗h y and y � x f ,h implies f 6¼∗h y .

Furthermore, fix P ∈ ba1(Σ) and f ∈ F , and suppose that f =
∑n

i=1 x i 1E i for a collection of

distinct prizes x1, . . . ,xn and a measurable partition E1, . . . , En of S. Then, define

xP, f ≡ P(E1)x1+ . . .+P(En )xn .

That is, xP, f ∈ X is a mixture of the prizes x1, . . . ,xn delivered by f , with weights given by the

probabilities that P assigns to each event E1, . . . , En . We then have:

Corollary 4 For any P ∈ ba1(Σ) and h ∈F int such that I is nice at u ◦h, P ∈C (h) if and only if,

for all f ∈F int, x f ,h ´ xP, f .

Proof: We show that u (x f ,h) =minP∈C (h)P(u ◦ f ); thus, the condition in the Corollary states that

P satisfies P(u ◦ f ) ≥minP ′∈C (h)P ′(u ◦ f ) for all interior f , so by linearity P(a ) ≥minP ′∈C (h)P(a )

for all a ∈ B0(Σ), and P ∈C (h) then follows from standard arguments.

If x f ,h is as in Def. 1, then minP∈C (h)P(u ◦ f )≥ u (y ) for all y ≺ x f ,h by (1) in Theorem 6, and

so minP∈C (h)P(u ◦ f )≥ u (x f ,h). Conversely, for every y with u (y )<minP∈C (h)P(u ◦ f ), there are

ε > 0, y ′ ∈ X , and f ′ ∈F with u (y ′) = u (y )+ε, u ◦ f ′ = u ◦ f −ε and u (y ′)≤minP∈C (h)P(u ◦ f ′);

then, by (2) in Theorem 7, since ( f , y ) is a spread of ( f ′, y ′), f ¼∗h y . This implies that y ´ x f ,h .

Hence, minP∈C (h)P(u ◦ f )≤ u (x f ,h) as well.

E Additional properties of¼∗h

In addition to agreeing with ¼ on X , provided ∂ I (u ◦h) 6= {Q0}, ¼∗h satisfies the following addi-

tional properties.

Lemma 5 The preference¼∗h is a monotonic, independent preorder.
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Proof: Monotonicity and reflexivity are immediate from monotonicity of ¼. Transitivity is im-

mediate from the definition of ¼∗h and transitivity of ¼. It remains to be shown that ¼∗h is inde-

pendent: that is, for all k ∈ F and µ ∈ (0, 1], f ¼∗h g iff µ f + (1−µ)k ¼∗h µg + (1−µ)k . Note

that

λn [µ f +(1−µ)k ]+ (1−λn )hn = (λnµ) f +[1− (λnµ)]
�

λn (1−µ)
1− (λnµ)

k +
1−λn

1− (λnµ)
hn

�

≡

≡ λ̄n f +(1− λ̄n )h̄n

with (λ̄n ) ↓ 0 and (h̄n ) → h, and similarly for g . Hence, if f ¼∗h g , then eventually λ̄n f + (1−

λ̄n )h̄n ¼ λ̄n g +(1− λ̄n )h̄n ; repeating the argument for all (λn ), (hn ) implies that µ f +(1−µ)k ¼∗h
µg +(1−µ)k . Conversely, if µ f +(1−µ)k ¼∗h µg +(1−µ)k , define λ̃n , h̃n so that

λ̃n [µ f +(1−µ)k ]+ (1− λ̃n )h̃n =λn f +(1−λn )hn :

this requires λ̃n = λn

µ
, which is in [0, 1] for n large and converges to zero as n→∞, and

u ◦ h̃n =
(1−λn )u ◦hn − λ̃n (1−µ)u ◦k

1− λ̃n
,

which is in B0(Σ, u (X )) for n large (recall that h is interior), and indeed such that h̃n → h.

Note that λ̃n , h̃n do not depend on f . Again, for n large λ̃n [µ f + (1 − µ)k ] + (1 − λ̃n )h̃n ¼

λ̃n [µg +(1−µ)k ]+(1−λ̃n )h̃n , and therefore by construction λn f +(1−λn )hn ¼λn g +(1−λn )hn ,

and so, repeating for all sequences, f ¼∗h g .
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