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E.1 Calculations for the example in Section 2.2

We first briefly discuss continuity and monotonicity with respect to first-order stochastic dom-

inance. If the set D of CDFs is endowed with the topology of weak convergence of measures,

then continuity follows immediately from the assumption that g is continuous. Next, note

that, for every CDF H , since u is a positive affine transformation of − 1
1+x , it takes values in a

bounded interval; therefore,
∫

u−d H >−∞ and
∫

u+d H <∞, where as usual u− =min(u , 0)

and u+ = max(u , 0). Now consider F,G ∈ D such that F (x ) ≤ G (x ) for all x ≥ 0, i.e., F first-

order stochastically dominates G . Then, Theorem 2.1 in Brumelle and Vickson (1975) implies

that
∫

ud F ≥ ∫ ud G and
∫

x d F ≥ ∫ x d G . Since g is strictly increasing, W (F ) ≥ W (G ), as

required.

Now turn to risk aversion. Assume that G is a mean-preserving spread of F , in the sense

that
∫ x

0
[F (t )−G (t )]d t ≤ 0 for all x ≥ 0, and

∫

x d F =
∫

x d G . Theorem 2.3 in Brumelle and

Vickson (1975) then implies that
∫

ud F ≥ ∫

ud G . In this case, again because g is strictly
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increasing, W (F )≥W (G ).

Finally, note that, if g and u are both differentiable, for any interior bundle f ,

∂ V

∂ fs
( f ) = g ′(

∑

t

u ( ft )Pt )u
′( fs )Ps + g ′(P · f )Ps .

If f = 1S x for some x > 0, then

∂ V

∂ fs
( f ) = g ′(u (x ))u ′(x )Ps + g ′(x )Ps =

�

g ′(u (x ))u ′(x ) + g ′(x )
�

Ps ,

i.e., ∂ V (1S x ) = {∇V (1S x )}= �g ′(u (x ))u ′(x ) + g ′(x )
� ·P , as asserted.

E.2 Calculations for the examples in Sections 2.1 and 2.3

We first verify that the specification of adjustment factors and function in Section 2.3, together

with a uniform baseline prior, ensures strong monotonicity. The same argument applies to the

simpler specification in Section 2.1; we only indicate the minor, required modifications.

We use Eq. (19): first, note that

∂ A

∂ φ j
=−1

2
θ · 2θ −1φ j

1+θ −1φ2
j

=− φ j

1+θ −1φ2
j

. (1)

Hence,
�

�

�

�

∂ A

∂ φ j

�

�

�

�

=
|φ j |

1+θ −1φ2
j

=
|φ j |

1+θ −1|φ j |2 .

Letting t = |φ j |, this is less then one iff t < 1+ θ −1t 2, i.e. iff t 2 − θ t + θ > 0. We study the

function t 7→ t 2 − θ t + θ for t ≥ 0. If t = 0, the function takes the value θ , so we need θ > 0.

The derivative of this function at any t > 0 (which is also the right derivative at 0) is 2t − θ ,

which shows that this function is strictly convex and has a minimum at t = 1
2θ , where it is

equal to 1
4θ

2− 1
2θ

2+θ . This is strictly positive iff − 1
4θ +1> 0, i.e. iff θ < 4, as claimed.

Now consider states s = s1, s2. Only ζ0 has non-zero values, and ζ0(s ) ∈ {1,−1}. Therefore,

if θ ∈ (0, 4),

1− φ0

1+θ −1φ2
0

ζ0(s )− φ1

1+θ −1φ2
1

ζ1(s )≥ 1−
�

�

�

�

φ0

1+θ −1φ2
0

�

�

�

�

> 0.

Similarly, in states s = s3, s4, ζ0(s ) = 0 and ζ1(s ) ∈ {1,−1}, so

1− φ0

1+θ −1φ2
0

ζ0(s )− φ1

1+θ −1φ2
1

ζ1(s )≥ 1−
�

�

�

�

φ1

1+θ −1φ2
1

�

�

�

�

> 0.
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Act P (ζ0u ◦ f k ) P (ζ1u ◦ f k ) Adjustment (omitting 1
2θ )

f 1 α−1 α − log(1+θ −1(α−1)2)− log(1+θ −1α2)

f 2 0 1 − log(1+θ −1)

f 3 −1 0 − log(1+θ −1)

f 4 −α 1−α − log(1+θ −1α2)− log(1+θ −1(1−α)2)

Table 2: Adjustments

so I is strictly increasing.

To adapt the argument to the preferences in Section 2.1, consider only states s1 and s2.

We now show that, if θ increases, the resulting preference is more GM-ambiguity-averse.

By the characterization result in Siniscalchi (2009), it suffices to show that A(φ) is decreasing

in θ for everyφ. Differentiating A(φ)with respect to θ ,

∂ A(φ)
∂ θ

=−1

2

∑

j

log(1+θ −1φ2
j )−

1

2
θ
∑

j

1

1+θ −1φ2
j

(−θ −2φ2
j );

it suffices to show that, for every j andφ j , log(1+θ −1φ2
j )>

θ−1φ2
j

1+θ−1φ2
j
. Let t ≡ θ −1φ2

j , so we need

to show that log(1+t )> t
1+t . Both functions equal zero at t = 0. For t > 0, the derivatives of the

lhs and rhs are 1
1+t and 1·(1+t )−t (1)

(1+t )2 = 1
(1+t )2 respectively. Since (1+ t )2 > 1+ t for t > 0, 1

1+t <
1

(1+t )2 ,

and therefore, for all t > 0, log(1+ t ) =
∫ t

0
1

1+s d s >
∫ t

0
1

(1+s )2 d s = t
1+t , as claimed.

We finally turn to the analysis of the specific parameterization in Section 2.3. The four acts

f 1, . . . , f 4 have the same expected baseline utility: P (u ◦ f k ) = 2α+ 1 for k = 1, . . . , 4. Hence,

their ranking is entirely determined by the adjustment terms A(P (ζ0u ◦ f k ), P (ζi u ◦ f k )).

These are displayed in Table 2.

In order to generate the preferences f 1 ≺ f 2, we need to ensure that A(P (ζ0u ◦ f 1), P (ζ1u ◦
f 1))< A(P (ζ0u ◦ f 2), P (ζ1u ◦ f 2)). Notice that, since (α−1)2 = (1−α)2, this will also ensure that

A(P (ζ0u◦ f 3), P (ζ1u◦ f 3))> A(P (ζ0u◦ f 4), P (ζ1u◦ f 4))and therefore f 3 � f 4, as the adjustments

for f 1 and f 2 are the same as the adjustments for f 4 and f 3 respectively. Thus, we require

− log(1+θ −1(α−1)2)− log(1+θ −1α2)<− log(1+θ −1).
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We now derive a condition on θ that ensures that the above inequality holds.

− log(1+θ −1(α−1)2)− log(1+θ −1α2)<− log(1+θ −1)

⇔ (1+θ −1(1−α)2)(1+θ −1α2)> 1+θ −1⇔ 1+θ −1(1−α)2+θ −1α2+θ −2(1−α)2α2 > 1+θ −1

⇔ (1−α)2+α2+θ −1(1−α)2α2 > 1

⇔ θ −1 >
1−α2− (1−α2)
α2(1−α)2 =

1−α2−1−α2+2α

α2(1−α)2 =
2α(1−α)
α2(1−α)2 =

2

α(1−α)⇔ θ <
α(1−α)

2
.

E.3 SPC, DQC and notions of aversion to ambiguity

In this appendix, we discuss how conditions SPC and DQC (introduced in Appendix C) are

related to notions of aversion to ambiguity that have been discussed in the literature. We start

from DQC, as the “decomposability” assumption V = I ◦u is standard in previous work.

DQC

First, we reiterate that DQC is strictly weaker than convexity in utilities, i.e. uncertainty aver-

sion à la Schmeidler (1989). (Similarly, SPC is strictly weaker than convexity in consumption,

i.e., preference for diversification.) The examples in Section 2 illustrate these points.

Second, when I is regular, ambiguity aversion in the sense of GM implies DQC. In gen-

eral, the latter is strictly weaker: see Example 3 in Appendix A. However, DQC implies GM-

ambiguity aversion under an additional condition that, for instance, is implied by TIC (Defi-

nition 2). Similar results hold for condition SPC and a general V .

Third, Chateauneuf and Tallon (2002) introduce weakenings of convexity in consump-

tion and utility. A preference satisfies preference for sure EU diversification if, for all bundles

f1, . . . , fN that are mutually indifferent and such that, for suitable weights, their utility mixture

is a constant u (x ), it is the case that x ¼ fn for all n . Condition DQC implies a preference for

sure EU diversification. The converse holds in certain special cases: for example, it is true for

Choquet and VEU preferences, by results in Chateauneuf and Tallon (2002) and Siniscalchi

(2009). Whether it holds more generally is an open question.

Chateauneuf and Tallon (2002) also define preference for sure diversification: for all bun-

dles f1, . . . , fN that are mutually indifferent and such that, for suitable weights, their outcome
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mixture is a constant x , it is the case that x ¼ fn for all n . Condition SPC implies a preference

for sure diversification. As above, to what extent the converse implication holds is an open

question.

We now provide formal statements and proofs. First, consider a preference ¼ that admits

a representation of the form V = I ◦u , such that (I , u ) satisfy Assumption 2.

Remark 7 If ∩x>0C (1S x ) 6= ; and DQC holds, then Core I 6= ;. In particular, this is the case if

V satisfies TIC and DQC holds.

Proof: Let P ∈ ∩x>0C (1S x ). Consider a ∈ u (X )S . If a = 1S u (0), then I (a ) = u (0) = P (a ) by

normalization. If a 6= 1S u (0), let x be such that I (a ) = u (x ); this exists by standard arguments.

By DQC, for all Q ∈ ∂ I (1S u (x )), Q (a − 1S u (x )) ≥ 0. Since a 6= 1S u (0), by strong monotonicity

I (a ) > u (0), so x > 0. Hence, there is Q ∈ ∂ I (1S u (x )) such that Q (S ) > 0 and Q/Q (S ) = P .

Therefore, P (a − 1S u (x )) ≥ 0, or P (a ) ≥ P (1S u (x )) = u (x ) = I (a ). Since a was arbitrary, P ∈
Core I .

Under Assumption 2 and DQC, Proposition 12 implies that V satisfies Assumption 1 and

SPC. Hence, by Proposition 8, for every x > 0, C (1S x ) =π(1S x ) and V is nice at 1S x . Therefore,

C (1S x ) 6= ;. Putting these conditions together, since TIC holds,
⋂

x>0 C (1S x ) =
⋂

x>0π(1S x ) =

π(1S ) =C (1S ) 6= ;.

Remark 8 (Preference for sure EU diversification) Suppose that DQC holds. Then, for all bun-

dles f1, . . . , fN and weightsα1, . . . ,αN ≥ 0 such that
∑

i αi = 1, if fi ∼ f j for all i , j , and there exists

x ≥ 0 such that
∑

i αi u ( fi (s )) = u (x ) for all s , then x ¼ fi .

Proof: Fix fi ,αi , i = 1, . . . , N , and x as in the statement. Let y ≥ 0 be such that fi ∼ y for all i ;

this exists by standard arguments. If y = 0, then fi = 0 for all i , so x = 0 because u is strictly

increasing; then, trivially, x ∼ fi for all i . If instead y > 0, DQC implies thatQ (u◦ fi−1S u (y ))≥ 0

for all Q ∈ ∂ I (1S u (y )). By linearity,

Q (1S u (x )−1S u (y )) =Q

�

∑

i

αi u ◦ fi −1S u (y )

�

=Q

�

∑

i

αi [u ◦ fi −1S u (y )]

�

=
∑

i

αiQ (u◦ fi−1S u (y ))≥ 0.
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Since Q (S ) > 0 because I is nice at 1S u (y ) by assumption, u (x ) ≥ u (y ). hence, x ¼ y ∼ fi for

each i .

SPC

Now consider a preference that admits a representation V that is not (necessarily) of the form

I ◦ u . We maintain Assumption 1; in addition, for the first two results, we will assume that V

is normalized: that is, V (1S x ) = x for all x ≥ 0. Notice that V can then be interpreted as a

certainly-equivalent functional: V ( f ) = x if and only if f ∼ x .

The strict core of V is the set SCore V = {P ∈ ∆(S ) : ∀ f ∈ RS
+ non-constant, P ( f ) > V ( f )}.

For instance, if V is the certainty-equivalent function of an EU preference with strictly positive

beliefs P and a strictly concave utility u , then for all non-constant f , V ( f ) = u−1P (u ◦ f ) <

u−1(u (P ( f ))) = P ( f ), so P ∈ SCore V . If instead the preference is risk-neutral, SCore V = ;.
Therefore, a non-empty strict core captures a notion of strict risk/ambiguity aversion.

Remark 9 If V is normalized, nice, and regular at certainty (i.e. at every 1S x , x > 0), and

SCore V 6= ;, then V satisfies SPC.

The proof mimics that of Corollary 13 part 2, with some additional subtleties.

Proof: Fix x > 0 and f 6= 1S x such that V ( f )≥V (1S x ). If f = 1S y , then by strong monotonicity

and the assumption that f 6= 1S x , y > x ; since Q (S ) > 0 for all Q ∈ ∂ V (1S x ) by niceness,

Q (1S y −1S x ) =Q (S )(y − x )> 0 for all such Q .

Now suppose that f is non-constant. As in the proof of Corollary 13 part 2, it is enough

to show that V `(1S x ; f − 1S x ) > 0. Since V is regular, V `(1S x ; f − 1S x ) = −V ◦(1S x ; 1S x − f ) =

−V ′(1S x ; 1S x − f ); furthermore, if V ( f )≥V (1S x ) = x , by normalization, for any P ∈ SCore V ,

−V `(1S x ; f −1S x ) =V ′(1S x ; 1S x − f ) = lim
t ↓0

V (1S x + t [1S x − f ])−V (1S x )
t

=

= lim
t ↓0

V (1S x + t [1S x − f ])− x

t
≤ lim

t ↓0
P (1S x + t [1S x − f ])− x

t
=

= lim
t ↓0

x + t x − t P ( f )− x

t
= x −P ( f )≤V ( f )−P ( f )< 0,

as required. Notice that, while P (1S x + t [1S x − f ]) > V (1S x + t [1S x − f ]) for positive t > 0

because the argument of P and V is non-constant when f is, this may not be true in the limit
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as t ↓ 0. Thus, the first inequality is weak. However, the last inequality is strict, because f is

non-constant and P ∈ SCore V .

Remark 10 If V is normalized, ∩x>0C (1S x ) 6= ;, and SPC holds, then SCore V 6= ;.

Proof: Let P ∈ ∩x>0C (1S x ) and consider f non-constant. Let x ∼ f , which exists by standard

arguments. Since x = V (1S x ) = V ( f ), SPC implies that Q ( f − 1S x ) > 0 for all Q ∈ ∂ V (1S x ).

Hence, in particular, P ( f −1S x )> 0, i.e., P ( f )> x =V ( f ). Therefore P ∈ SCore V .

Remark 11 (Preference for sure diversification) Suppose that SPC holds. Then, for all bun-

dles f1, . . . , fN and weights α1, . . . ,αN ≥ 0 such that
∑

i αi = 1, if fi ∼ f j for all i , j , and there

exists x ≥ 0 such that
∑

i αi fi (s ) = x for all s , then x ¼ fi for all i ; indeed x � fi for all i unless

all fi ’s are constant.

Proof: Fix fi ,αi , i = 1, . . . , N , and x as in the statement. If all fi ’s are constant, then the

assumptions imply that they must all equal 1S x , so the statement holds trivially. By strong

monotonicity, this must be the case if fi ∼ 0 for all i . Thus, assume that they are not all

constant, and that fi � 0 for all i . Let y > 0 be such that fi ∼ y for all i . SPC implies that

Q ( fi −1S y )> 0 for all Q ∈ ∂ V (1S y ) and all fi 6= 1S y . By linearity,

Q (1S x −1S y ) =Q

�

∑

i

αi fi −1S y

�

=Q

�

∑

i

αi [ fi −1S y ]

�

=
∑

i

αiQ (u ◦ fi −1S y )> 0.

The inequality is strict because Q ( fi − 1S y ) > 0 for at least one i . Since Q (S ) > 0 because V is

nice at 1S y by assumption, x > y . Hence, x � y ∼ fi for each i .

E.4 Decomposable representations: Examples

All the following examples feature preferences which have a “decomposable” representation

V = I ◦ u . The first example illustrates that the conditions in Theorem 3 are strictly more

general than those discussed in Appendix C. The second example demonstrates that the con-

ditions in Appendix C may be restrictive when combined with specific assumptions about
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the functional I . The third example shows that the strict quasiconcavity property of Eq. (7) is

strictly weaker than SPC.

Example 3 Let S = {s1, s2}. We define the function V : R2
+→ R, depicted in Figure 5, in three

steps.

First, we define W1 : R2
+→ R by W ( f ) = 1

2

p

f 2 +
q

4+ 1
4 f2+2

p

f 1 − 2. Note that the slope

of the indifference curve of W1 going through the point 1S x (drawn as a dashed black line in

Figure 5) equals − 2
2+
p

x .

Second, we define W2 : R2 → R by specifying the features of its indifference curves. Fix a

constant α (in the picture, α= 1.05). For any x > 0, the indifference curve of W2 going through

1S (αx ) is linear, and parallel to the tangent to the indifference curve of W1 at 1S x . Furthermore,

W2(1Sαx ) =
p

x for all x > 0.1

Finally, we let V ( f ) = max(W1( f ), W2( f )). By construction, at the point 1S x , W2(1S x ) <

W1(1S x ). Thus, for bundles f near the certainty line, V ( f ) = W1( f ). However, since the in-

difference curves of W2 are flat, whereas those of W1 bend inward, for bundles f sufficiently

far from the 45◦ line, W2( f )>W1( f ), so V ( f ) =W2( f ).

Fix an arbitrary, strictly concave function u : R+ → R, and assume that I : u (X )2 → R is

strictly monotonic and such that V = I ◦u . We argue that I is not quasiconcave, and its core

is empty; thus, neither condition 1 nor condition 2 in Corollary 13 applies.

Consider two bundles f , g such that V ( f ) = V (g ) = W2( f ) = W2(g ): that is, f and g lie

on the same indifference curve for V , in a region where V coincides with W2 (see Figure 5).

Since in that region the indifference curve is linear, V ( 12 f + 1
2 g ) = V ( f ). Therefore, I (u ◦ ( 12 f +

1
2 g )) = I (u ◦ f ). However, for every state s , since u is strictly concave and f (s ) 6= g (s ) because

indifference curves are not parallel to the axes, u ( 12 f (s )+ 1
2 g (s ))> 1

2 u ( f (s ))+ 1
2 u (g (s )). Since I is

1The details are as follows. Since the indifference curve of W2 is linear, it consists of points f = ( f1, f2) such that

f2 =m f1 + q ; for f1 = f2 = αx , by assumption the slope is − 2
2+
p

x , so q = 4+
p

x
2+
p

x αx . Hence the indifference curve

of W2 going through 1Sαx has equation f2 = − 2
2+
p

x f1 +
4+
p

x
2+
p

x αx . Since any f ∈ R2
+ lies on a unique indifference

curve, and each indifference curve is parameterized by x , the value of W2( f ) for an arbitrary f ∈ R2
+ can be

computed as follows. First, find the unique x such that f satisfied the linear equation parameterized by x ; this

can be done numerically, using any one-dimensional search algorithm. Second, note that then f lies on the

same indifference curve as 1Sαx , so by assumption W2( f ) =W2(1Sαx ) =
p

x .
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Figure 5: A non-convex preference with an empty core that nevertheless satisfies SPC

strictly monotonic, I (u◦( 12 f + 1
2 g ))> I ( 12 u◦ f + 1

2 u◦g ). Conclude that I (u◦ f )> I ( 12 u◦ f + 1
2 u◦g ):

but then, I is not quasiconcave.

Next, Proposition 16 in Section 5 and Proposition 19 in Appendix D.5 imply that Core I ⊆
⋂

x>0 C (1S x ).2 But, since V =W1 near every constant bundle 1S x , and W1 is smooth, C (1S x ) =

{Px }, where Px identifies the line supporting the upper contour set of W1 at 1S x , which there-

fore has slope − 2
2+
p

x . Since x 6= y implies Px 6= Py , Core I = ;.
Finally, we show that Condition SPC is satisfied. Suppose that V ( f )≥V (1S x ) =W1(1S x ). If

V ( f ) =W1( f ), then W1( f )≥W1(1S x ) implies that∇V (1S x ) · ( f −1S x ) =∇W1(1S x ) · ( f −1S x )> 0

because W1 is strictly quasiconcave. If instead V ( f ) = W2( f ), let y ≥ 0 be such that V ( f ) =

W2( f ) = V (1S y ) =W1(1S y ); this is the case for the points labelled f , x , y in Figure 5. Then y ≥
x , and f lies on an indifference curve for W2 that is parallel to, but higher than the indifference

curve for W1 through 1S y , and hence also higher than the indifference curve for W1 through

1S x . But this means that, again, ∂ V (1S x ) · ( f −1S x ) = ∂W1(1S x ) · ( f −1S x )> 0.

2For every x > 0, Proposition 19 implies that Core I ⊆ πs (1S x ); by parts 2 and 1 of Proposition 16, πs (1S x ) ⊆
π(1S x )⊆C (1S x ) [note that ∂W1(1S x ) 6= 0S , so V is nice at 1S x ]; the claim follows.
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Example 4 (Invariant Biseparable preferences) A preference is invariant biseparable (Ghi-

rardato, Maccheroni, and Marinacci, 2004) if its representation (I , u ) is such that I is positively

homogeneous and constant-additive on its domain: for all α ∈ R and β ∈ R+, I (α+ βa ) =

α+β I (a ) (this implies that I is Lipschitz with constant 1 and normalized). We now show that

MEU preferences are the only invariant biseparable preferences for which condition DQC in

Appendix C holds.

Recall from Ghirardato et al. (2004) that, for an invariant biseparable preference repre-

sented by (I , u ), the functional I admits a unique extension to all of RS , and the Clarke subd-

ifferential at zero, i.e., ∂ I (0S ), consists of probability measures and coincides with ∂ I (1S u (x ))

for all x > 0. Hence, I is nice at 1S u (x ) for every x > 0.

If preferences are MEU, then I is concave, so DQC holds by Corollary 13. Conversely, as-

sume that DQC holds. Let D = ∂ I (0S ) = ∂ I (1S ) ⊆ ∆(S ). Then, Proposition 19 and Corollary

20 in the Appendix imply that D = Core I . But by Proposition 16 in Ghirardato et al. (2004),

D =Core I if and only if I is concave, in which case the preference is MEU.

Thus, for invariant biseparable preferences, the sufficient condition for SPC provided by

Proposition 19 only holds for the special case of MEU. �

Example 5 (Strict pseudoconcavity vs. strict quasiconcavity at a point) Suppose S = {s1, s2, s3};
write the generic vector v ∈RS as v = (v1, v2, v3). Fix a strictly concave, strictly increasing utility

function u :R+→R, a number ε ∈ (0, 1
2 ), let p 1 = (1−ε, ε2 , ε2 ), p 2 = (ε2 , 1−ε, ε2 ), p 31 = ( 23ε, 1

3ε, 1−ε)
and p 32 = ( 13ε, 2

3ε, 1−ε), and finally define I : u (X )S →R

I (a ) =min
�

p 1 ·a , p 2 ·a , max
�

p 31 ·a , p 32 ·a �
�

for every a ∈ u (X )S .

Since all the probabilities defined above are strictly positive, I is strictly increasing. It is

also invariant biseparable. Furthermore, we can normalize u so that u (0) = 0 and u (1) = 1. By

Proposition 12, V = I ◦u satisfies Assumption 1.

We show that V is strictly quasiconcave at every 1S x , x > 0 (i.e., Eq. (7) holds at certainty).

Suppose that V (g ) ≥ V (1S x ) and g 6= 1S x . Then u ◦ g 6= 1S u (x ); therefore, since u is strictly

concave, for every λ ∈ (0, 1), u (λg (s ) + (1−λ)x )≥ λu (g (s )) + (1−λ)u (x ) for every state s , with

at least one strict inequality. Since I is strictly increasing, I (u ◦ (λg +(1−λ)x ))> I (λu ◦g +(1−
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λ)u (x )); and since I is constant-linear, I (λu ◦ g + (1−λ)u (x )) =λI (u ◦ g ) + (1−λ)u (x )≥ u (x ).

This proves the claim.

Since I is invariant biseparable but not concave,3 Example 4 implies that it does not satisfy

DQC. We now show that, in addition, V fails SPC. Let g = (1,δ, 0), where u (δ) = 1−ε. Then we

have p 1 · u ◦ g = p 1 · (1, 1− ε, 0) = (1− ε) + ε(1−ε)
2 , p 2 · u ◦ g = ε

2 + (1− ε)2, p 31 · u ◦ g = 2
3ε+

ε(1−ε)
3

and p 32 · u ◦ g = 1
3ε+

2ε(1−ε)
3 . Thus, for ε small, V (g ) = p 31 · u ◦ g > p 32u ◦ g . Furthermore,

p 32u ◦g ∈ (0, 1), so there is x ∈R++ with u (x ) =V (1S x ) = p 32u ◦g . We then have V (g )>V (1S x ).

However, p 32 ∈C (1S x ) and

p 32 · g = 1

3
ε+

2

3
δε<

1

3
ε+

2

3
(1−ε)ε= p 32 ·u ◦ g = x = p 32 ·1S x ;

the inequality holds because, by strict concavity of u ,

u (δ) = 1−ε= (1−ε) ·1+ε ·0= (1−ε)u (1) +εu (0)< u ((1−ε) ·1+ε ·0) = u (1−ε),

and since u is strictly increasing, δ < 1−ε.

With reference to Example 4, the preference described here is invariant biseparable and

satisifies strict quasiconcavity at every 1S x , x > 0 (cf. Eq. (7)), but is not MEU. It is an open

question whether strict pseudoconcavity at certainty may hold for invariant biseparable pref-

erences that are not MEU. �

E.5 Examples: Convex preferences

We conclude with two examples with convex preferences. Example 6 shows that, even when

all preferences are strictly convex, a non-empty intersection of the supporting-probabilties

sets πi (·) at every full-insurance allocation is necessary for risk sharing. Example 7 instead

illustrates how risk sharing may obtain when TIC fails—that is, when Theorem 3 applies but

4 does not.

Example 6 Let S = {s1, s2}. Agent 1’s preferences are represented by the utility function u1(x ) =

x 0.6 and the differentiable, quasiconcave, but not concave functional

I (a ) =
1

2
a2+

√

√

4+
1

4
a 2

2 +2a1−2.

3Consider a = (2, 1, 0) and b = (1, 2, 0)with linear utility. For ε small, I (a ) = I (b ) = 5
3ε, but I ( 12 a + 1

2 b ) = 3
2ε.
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Agent 2 has EU preferences, with probability P and utility u2(x ) = x 0.8. Figure 6 shows indif-

ference curves for these preferences, drawn as solid blue and red lines respectively. Agent 1’s

and 2’s indifference curves are tangent at the allocation (1S x l , 1S (x̄ −x l )); their common slope

there equals the slope of the two parallel, straight purple lines. (Thus, this slope identifies P .)

Agent 2 has EU preferences, with probability P and utility u2(x ) = x 0.8. Figure 6 shows indif-

ference curves for these preferences, drawn as solid blue and red lines respectively. Agent 1’s

and 2’s indifference curves are tangent at the allocation (1S x l , 1S (x̄ �x l )); their common slope

there equals the slope of the two parallel, straight purple lines. (Thus, this slope identifies P .)

0S

1S !̄

1S x l

1S x hg

Figure 6: A convex preference with empty core.

The figure shows that the slope of 1’s indifference curves at 1S x l and 1S x h is different;

indeed, it may be verified that the slope of the indifference curve of I at 1S� is� 2
�+2 for every� >

u1(0); this is non-zero and strictly decreasing in �. Hence, I is nice at certainty. Furthermore,

since I is quasiconcave and u1 is strictly concave, V1 = I �u1 satisfies SPC by Corollary 13, and

therefore by Proposition 16,⇡s
1(1S x ) =⇡1(1S x ) =C1(1S x ) for all x > 0. In particular,⇡1(1S x ) is a

singleton set. On the other hand, since agent 2’s preferences are consistent with EU,⇡s
2(1S x ) =

⇡2(1S x ) =C2(1S x ) = {P }.
From a decision-theoretic perspective, we observe that agent 1’s preference is uncertainty-

averse in the sense of Schmeidler, 1989, because I is quasiconcave; however, it is not GM-
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Figure 6: A convex preference with empty core.

The figure shows that the slope of 1’s indifference curves at 1S x l and 1S x h is different;

indeed, it may be verified that the slope of the indifference curve of I at 1Sγ is− 2
γ+2 for everyγ>

u1(0); this is non-zero and strictly decreasing in γ. Hence, I is nice at certainty. Furthermore,

since I is quasiconcave and u1 is strictly concave, V1 = I ◦u1 satisfies SPC by Corollary 13, and

therefore by Proposition 16,πs
1(1S x ) =π1(1S x ) =C1(1S x ) for all x > 0. In particular,π1(1S x ) is a

singleton set. On the other hand, since agent 2’s preferences are consistent with EU,πs
2(1S x ) =

π2(1S x ) =C2(1S x ) = {P }.
From a decision-theoretic perspective, we observe that agent 1’s preference is uncertainty-

averse in the sense of Schmeidler, 1989, because I is quasiconcave; however, it is not GM-

ambiguity-averse.4 To see this, note that, by Corollary 13 part 1, together with Corollary 20 in

Appendix C, the core of I must be contained in the setsπ1(1S x ) for all x > 0, but as noted above

4Another example of a preference which is convex but not GM-ambiguity-averse can be found in Cerreia-

Vioglio, Ghirardato, Maccheroni, Marinacci, and Siniscalchi (2011).
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these sets are all singleton (hence, non-empty) and different for different x , so Core I = ;. For

the same reason, TIC fails.

Turn now to risk sharing. The assumptions of Theorem 3 hold. The purple line going

through x l corresponds to a shared supporting probability: that is,π1(1S x l )∩π2(1S (x̄−x l )) 6= ;.
However, the purple line going through x h is tangent to agent 2’s indifference curve, but does

not support agent 1’s indifference curve: therefore, π1(1S x h ) does not intersectπ2(1S (x̄ − x h )).

Thus, condition (iv) in Theorem 3 is violated. Correspondingly, conditions (ii) and (iii) also

fail: the allocation (g , 1S x̄ −g ) is Pareto-efficient, but does not provide full insurance, whereas

the interior, full-insurance allocation (1S x h , 1S (x̄ − x h )) is not Pareto-efficient.

Finally, note that the interior, full-insurance allocation (1S x l , 1S (x̄ −x `)) is Pareto-efficient;

thus, in this economy, condition (i) in Theorem 1 holds. However, as just noted, conditions

(ii)-(iv) in Theorem 3 do not hold. Thus, this example demonstrates that condition (i) cannot

be included in the statement of Theorem 3. �

Example 7 Modify Example 6 by assuming that agent 2’s preferences are MEU, with priors

D ≡ {P ∈∆(S ) : P ({s }) ∈ [0.4, 0.6]}; furthermore, assume that both agents have utility ui (x ) =
p

x . Refer to Figure 7.

Both preferences are strictly convex and admit a decomposable representation Vi = Ii ◦ui ,

i = 1, 2. Observe that Assumption 2 holds; furthermore, the functionals Ii are both quasicon-

cave, so both preferences satisfy SPC by Corollary 13. In addition, agent 2’s preferences satisfy

TIC: this follows because ∂ I2(1S x ) =C2(1S x ) =D for every x > 0.5

From Corollary 13 and Corollary 20 in Appendix C, π2(1S x ) = πc
2(1S x ) = C2(1S x ) = D for

every x > 0. From Proposition 16, since each Vi satisfies SPC,πi (1S x ) =πs
1(1S x ) for i = 1, 2 and

x > 0. Therefore, for every x > 0, π1(1S x )∩π2(1S x ) 6= ;. Proposition 18 and Theorem 3 apply,

and indeed the set of Pareto-efficient and full-insurance allocations coincide.

Since agent 1’s preferences do not satisfy TIC, Theorem 4 does not apply. Indeed, nei-

ther does RSS’s original risk-sharing result (Proposition 9 in their paper): while both agents’

preferences are convex (and indeed 2’s preferences have a concave representation), agent 1’s

5By Proposition 19, C2(1S x ) = C u
2 (1S x ), and C u

2 (1S x ) = D because I2 is the MEU preference functional, with

priors D (Ghirardato et al., 2004).
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Figure 7: Risk sharing with non-constant supporting probabilities at certainty.

supporting probabilities are not constant at certainty. �
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