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Abstract

We provide a simple behavioral definition of ‘subjective mixture’ of acts for a large class
of (not necessarily expected-utility) preferences. Subjective mixtures enjoy the same
algebraic properties as the ‘objective mixtures’ used to great advantage in the decision
setting introduced by Anscombe and Aumann (1963).

This makes it possible to formulate mixture-space axioms in a fully subjective setting.
For illustration, we present simple subjective axiomatizations of some models of choice
under uncertainty, including Bewley’s model of choice with incomplete preferences (2002).

Introduction

The axiomatizations of subjective expected utility (SEU) of Savage (1954) and Anscombe and
Aumann (1963, AA for short) are often contrasted in terms of their analytical complexity and
behavioral content. On one hand, Savage’s theory relies solely upon behavioral data, namely
preferences among acts (i.e., maps assigning consequences to states); in contrast, the AA
decision setting features pre-assigned, ‘objective’ probabilities embedded in the consequence
space. On the other hand, the latter is much more amenable to mathematical treatment
than Savage’s. This is especially apparent in Fishburn’s (1970) well-known reformulation
and extension of AA’s analysis , which employs familiar vector-space arguments.2

The main contribution of this note is to show that it is possible to exploit all the advan-
tages of the approach pioneered by AA and Fishburn (‘AA approach’ for short) relying solely
on behavioral data, and hence retaining the conceptual appeal of Savage’s approach.

In the AA setting, payoffs are lotteries contingent on the output of a randomizing device,
or ‘roulette wheel.’ Postulating the existence of such a device, characterized by objective
probabilities, is generally considered unappealing and philosophically debatable (cf. the ref-
erences cited in Sec. 4). On the other hand, the existence of roulette wheels enables one to

1An extended version of this note is available as an ICER Working Paper (2003). We thank Faruk Gul, Mark
Machina, an editor and three referees and the audiences at the V SAET Conference (Ischia, July 2001) and
the 2001 RUD Conference (Venice, July 2001) for helpful comments. We are also grateful for the hospitality
of: the Department of Economics at Boston University and the Division of HSS at Caltech (Maccheroni),
the MEDS Department at the Kellogg Graduate School of Management and the Department of Economics of
Northwestern University (Siniscalchi). This work was begun while Ghirardato was with the Division of HSS
at Caltech.

2AA assume that the state space is finite, and their original arguments employ the ‘linearity’ property of
von Neumann-Morgenstern utility directly. Most textbook presentations of ‘the AA axiomatization of SEU’
are actually based on Fishburn’s. See also Schmeidler (1989, p. 578).
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define ‘objective mixtures’ of acts; this considerably simplifies the axiomatic derivation of the
SEU model, as well as extensions thereof, as we discuss below.

This note shows that it is possible to define a mixture operation with convenient algebraic
properties in a fully behavioral setting like Savage’s, without the help of a randomizing device.
Our construction requires that preferences satisfy some mild conditions, and that the set of
possible outcomes be sufficiently rich (e.g., an interval in the real line). We show that if these
conditions are met, we can use purely behavioral data to identify the prize z that sits at the
mid-point of the preference interval between two prizes x and y; that is, which satisfies

u(z) =
1
2
u(x) +

1
2
u(y). (1)

Building on Eq. (1), one can define ‘subjective mixtures’ of acts with arbitrary weights.
Subjective mixtures share two important features with AA-style objective mixtures. First,

the set of acts, equipped with the mixture operation, can be viewed as a mixture set; this
makes it is possible to formulate axioms in the style of von Neumann and Morgenstern (1947).
Second, the utility profile of the mixture of two acts (with weights α and 1−α) is the convex
combination of the utility profiles of the latter (with the same weights).3 This simplifies the
construction of mathematical representations.

Thus, subjective mixtures enable us to readily extend AA-style axiomatics and techniques
to a fully subjective environment. For instance, we employ subjective mixtures to offer simple
axiomatizations of Schmeidler’s ‘Choquet expected utility’ (CEU) model (1989), and Gilboa
and Schmeidler’s ‘maxmin expected utility’ (MEU) model (1989). Both models generalize
SEU and were first axiomatized in the AA setting. We provide a similar treatment of Bewley’s
model of choice with incomplete preferences (2002). While previous axiomatizations of CEU
and MEU in fully subjective settings exist, this is to the best of our knowledge the first
such axiomatization of Bewley’s model. Moreover, our explicit adoption of the AA approach
results in more transparent axiomatics and analysis than earlier work (see Section 4 for
discussion). Other fruitful applications are possible; as an example, we briefly discuss ‘menu
choice’ models in the style of Kreps (1979).

1 Preliminaries

The Savage-style setting we use consists of a non-empty set S of states of the world, an
algebra Σ of subsets of S called events, and a non-empty set X of consequences. We denote
by F the set of all the simple acts: finite-valued and Σ-measurable functions f : S → X. For
x ∈ X, with the usual slight abuse of notation we define x ∈ F to be the constant act such
that x(s) = x for all s ∈ S. Given x, y ∈ X and A ∈ Σ, xAy denotes the binary act which
yields x if s ∈ A and y otherwise; FA denotes the set of all such acts.

3In the AA setting, objective mixtures satisfy this property if, as is typically assumed (but see Machina
and Schmeidler (1995)), the decision maker’s preferences over lotteries conform to expected utility. On the
other hand, our subjective mixtures satisfy this property by construction. See Section 2.2 for further details.
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The decision maker’s preferences are given by a binary relation < on F , whose symmetric
and asymmetric components are denoted by ∼ and �. A functional V : F → R is called: a
representation of < if V (f) ≥ V (g) if and only if f < g; monotonic if V (f) ≥ V (g) whenever
f(s) < g(s) for all s ∈ S; nontrivial if V (f) 6= V (g) for some f, g ∈ F .

A set-function ρ : Σ → R+ is a capacity if it is monotone and normalized; that is,
ρ(A) ≤ ρ(B) if A ⊆ B, ρ(S) = 1 and ρ(∅) = 0. A capacity is called a probability if it is
additive; that is ρ(A ∪B) = ρ(A) + ρ(B) if A ∩B = ∅.

1.1 Biseparable Preferences

We first define subjective mixtures for the class of biseparable preferences introduced and
axiomatized by Ghirardato and Marinacci (2001, henceforth GM).4 We do not need all the
structure entailed by that model (see Remark 2), but this simplifies the exposition. Given a
binary relation <, we say that event E ∈ Σ is essential if x � xE y � y for some x, y ∈ X.

Definition 1 A binary relation < on F is a biseparable preference if it has some essential
event E ∈ Σ and a nontrivial and monotonic representation V : F → R for which: 1) there
exists ρ : Σ → [0, 1] such that, for all consequences x < y and all A ∈ Σ,

V (xAy) = u(x) ρ(A) + u(y) (1− ρ(A)), (2)

where u(x) ≡ V (x) for all x ∈ X; 2) V (X) is convex.

GM argue that biseparable preferences are the weakest model achieving a separation of
cardinal state-independent utility and a unique representation of beliefs.5 It encompasses
CEU, MEU (hence SEU) and other well-known decision models, like Gul’s (1991) ‘disap-
pointment aversion’ model.6 It can be seen that if < is a biseparable preference, then: 1) u
is cardinal; 2) ρ is a capacity and it is unique; 3) every act f ∈ F has a certainty equivalent
cf , i.e. an arbitrarily chosen element of the set {x ∈ X : x ∼ f}. Further discussion of the
properties of biseparable preferences is found in GM.

To motivate the requirement that u be cardinal, recall that our chief objective is to identify
for every pair of consequences x and y a third consequence z satisfying Eq. (1). The equality
should hold independently of the normalization of utility: if u and v both represent < on X
and z satisfies Eq. (1), we should also have v(z) = (1/2) v(x)+(1/2) v(y). If the set X is rich
(i.e., u(X) is convex), this is easily seen to imply that v is an affine transformation of u.

4A similar representation appears as an intermediate result in Nakamura (1990) and Casadesus-Masanell,
Klibanoff and Ozdenoren (2000a, 2000b).

5GM’s definition does not require an essential event, but this does not affect the following remarks.
6On the other hand, the preferences of Section 3 and the ‘probabilistically sophisticated’ preferences of

Machina and Schmeidler (1992) may not be biseparable (see GM, Remark 5.1).
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2 Subjective Mixtures

2.1 Definition and Properties

In this section we introduce the key notion of ‘subjective mixture’ of two acts for a biseparable
preference relation < on F that admits an essential event. We first define subjective mixtures
of consequences in terms of the utility u of Definition 1. A behavioral characterization is
provided below.

By way of motivation, temporarily assume that X is the set ∆(Z) of lotteries over a
collection of prizes Z, as in the AA ‘roulette-wheel’ setting. The axiomatizations à la AA
(except for Machina and Schmeidler (1995)) guarantee that the function u is affine on X;
that is, given x, y ∈ X and α ∈ [0, 1], u satisfies u(αx + (1 − α)y) = αu(x) + (1 − α)u(y).7

The latter equality is the result of specific structural and behavioral assumptions in the AA
approach.

Consider now an arbitrary set X, and a biseparable preference with utility u. It is natural
to use affinity as a way of identifying ‘subjective mixtures,’ as follows.

Definition 2 Given x, y ∈ X and α ∈ [0, 1], say that a consequence z ∈ X is an α : 1 − α
utility mixture of x and y if u(z) = αu(x) + (1− α)u(y).

The above definition, which is well-posed as u(X) = V (X) is convex, induces a mixture-
space structure on the set of prizes X, corresponding to the linear structure of u(X). To
elaborate, consider the following abstract definition of mixture set, due to Fishburn (1982):

Definition 3 A triple (M, =̂, +̂) is a generalized mixture set if =̂ is an equivalence relation
on M and +̂ satisfies: for all x, y ∈M and all α, β ∈ [0, 1], αx +̂ (1− α)y ∈M and

M1(=̂) 1x +̂ 0y =̂ x,

M2(=̂) αx +̂ (1− α)y =̂ (1− α)y +̂αx,

M3(=̂) α[βx +̂ (1− β)y] +̂ (1− α)y =̂ αβx +̂ (1− αβ)y.

If we denote by αx ⊕ (1 − α)y an arbitrarily chosen element of the indifference class of
α : 1 − α utility mixtures of x and y, it is clear that (X,∼,⊕) is a generalized mixture set.
Moreover, by definition u(αx⊕ (1−α)y) = αu(x)+ (1−α)u(y). Consequently, it is possible
to define (pointwise) utility mixtures of acts, and hence formulate AA-style axioms in the
present fully subjective environment. See Section 2.2 for illustration.

Turn now to the behavioral characterization of utility mixtures.

Definition 4 Let E be an essential event. Given x, y ∈ X, if x < y we say that a consequence
z ∈ X is a preference average of x and y (given E) if x < z < y and

xE y ∼ cxEz E czEy. (3)

If y < x, z is said a preference average of x and y if it is a preference average of y and x.
7Where αx + (1− α)y is the lottery that yields prize ζ ∈ Z with probability αx(ζ) + (1− α)y(ζ).
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In order to interpret the above definition, consider the following analogy. Fix a function
ϕ : R2 → R such that ϕ(z′, z′′) = ϕ(z′′, z′) for all z′, z′′ ∈ R. Then, given x, y, z ∈ R, it may
be said that z is a ‘ϕ-average’ of x and y if ϕ(x, y) = ϕ(z, z). As is well-known, arithmetic,
geometric and other types of average correspond to specific choices of the function ϕ.

With this analogy in mind, consider consequences z′, z′′ ∈ X such that x < {z′, z′′} < y. It
may be verified that, since < is biseparable, cxEz′ E cz′′Ey ∼ cxEz′′ E cz′Ey: that is, permuting
z′ and z′′ does not affect the decision maker’s preferences. We interpret this as indicating
that the two inner outcomes z′ and z′′ play a symmetric role in his evaluation of these bets.

Now notice that Eq. (3) may be rewritten as follows: cxExE cyEy ∼ cxEz E czEy. In words,
substituting z for the inner x and y in the ‘compound’ act on the left-hand side leaves the
decision maker indifferent.

To summarize, the inner x and y in the compound bet cxExE cyEy play a symmetric role
in the evaluation of the latter, and they can both be replaced with z without changing the
decision maker’s evaluation of the bet. Thus, Definition 4 may be seen as a preference version
of the notion of a ‘ϕ-average.’

The following proposition (see the Appendix for a proof) provides the desired behavioral
characterization of utility mixtures by showing that, if the decision maker’s preferences are
biseparable, then preference averages and (1/2) : (1/2) utility mixtures coincide.

Proposition 1 Let < be a biseparable preference. For each x, y ∈ X and each essential
E ∈ Σ, a consequence z ∈ X is a preference average of x and y given E if and only if

u(z) =
1
2
u(x) +

1
2
u(y).

Hence, preference averages of x and y given E exist for every essential E ∈ Σ, do not depend
either on the choice of E or on the normalization of u, and they form an indifference class.

Remark 2 The condition x < z < y in Definition 4 is necessary for Proposition 1 to hold.
Consider, for example, the CEU preference on S = {0, 1} and X = R with ρ(0) = 0.8,
ρ(1) = 0, and linear utility. Let E = {0}, x = y = 1, and z = 2. Then xEy ∼ cxEz E czEy

but u(z) 6= (1/2)u(x) + (1/2)u(y).

Let w be a preference average of x and y. By Proposition 1, z is a preference average of x
and w if and only if u(z) = (3/4)u(x)+(1/4)u(y); that is, z is a (3/4) : (1/4) utility mixture
of x and y. This allows us to identify (3/4)x ⊕ (1/4) y behaviorally. Proceeding along
these lines and using a standard preference continuity argument, it is possible to identify
behaviorally the α : 1− α utility mixtures of x and y, for any α ∈ [0, 1].

Subjective mixtures of acts may then be defined pointwise, as usual. That is, given
f, g ∈ F and α ∈ [0, 1], αf ⊕ (1−α)g is the act h ∈ F defined by h(s) = αf(s)⊕ (1−α)g(s)
for any s ∈ S.

Remark 3 Our construction does not require the full structure of biseparable preferences
(see our (2001) for further details). Given an essential event E, a ‘local’ version of Proposi-
tion 1 holds for any preference < that satisfies Eq. (2) on the set FE . Preference averages
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thus derived may in general depend on the choice of E; however, this is not the case if <
further satisfies the axiom of ‘certainty independence’ (axiom (i.a) of Prop. 5) with respect
to preference averages constructed using some E. Thus, for most applications of interest,
this weaker assumption suffices to obtain an appropriate mixture-set structure.

2.2 Applications

It is simple to use the notion of subjective mixture to reformulate AA-style axiomatizations
of popular models of decision making under uncertainty in a fully subjective environment.
Axioms have the same interpretation as their ‘objective’ counterparts, and just as easily
translate into assumptions on the functional representation of preferences. Some examples
are provided here; we omit proofs, as they amount to restating the original arguments, after
replacing objective AA-type mixtures with subjective mixtures.

We begin by showing the characterization of Schmeidler’s (1989) CEU model , which
subsumes the classical SEU model. As it is well-known, the CEU model hinges on a weakening
of the classical independence axiom which imposes the independence restriction only for acts
that are ‘commonly monotonic.’ Formally, f, g ∈ F are comonotonic if there are no s, s′ ∈ S
such that f(s) � f(s′) and g(s′) � g(s). The following proposition states that a biseparable
preference satisfies such ‘comonotonic independence’ if and only if it is represented by a
Choquet integral (for a definition of the latter see, e.g., Schmeidler (1989)).

Proposition 4 Let < be a biseparable preference. The following statements are equivalent:

(i) For all comonotonic f, g, h ∈ F , if f < g then α f ⊕ (1− α)h < α g ⊕ (1− α)h for all
α ∈ [0, 1].

(ii) For all f, g ∈ F , f < g if and only if
∫
u(f) dρ ≥

∫
u(g) dρ.

Strengthening (i) by asking that the implication hold for every f, g and h (‘independence’)
yields an axiomatization of SEU corresponding to that of Anscombe and Aumann (1963). In
particular, ρ is then a probability, and a Choquet integral with respect to a probability is a
standard integral (in the sense of Savage (1954)).

Next, we offer a subjective axiomatization of Gilboa and Schmeidler’s MEU model (1989).

Proposition 5 Let < be a biseparable preference. The following statements are equivalent:

(i) For every f, g ∈ F ,

(a) if f < g then α f ⊕ (1− α)x < α g ⊕ (1− α)x for all x ∈ X and α ∈ [0, 1];

(b) if f ∼ g then (1/2) f ⊕ (1/2) g < f .

(ii) There exists a unique nonempty, weak* compact and convex set D of probabilities on Σ
such that for all f, g ∈ F ,

f < g ⇐⇒ min
P∈D

∫
S
u(f) dP ≥ min

P∈D

∫
S
u(g) dP.
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Axiom (i.a) is a further generalization of the independence axiom, requiring only that a
preference be unaffected by arbitrary mixtures with a constant act (observe that constants are
comonotonic with respect to any act). Gilboa and Schmeidler call it ‘certainty independence,’
while they call ‘uncertainty aversion’ the hedging axiom (i.b).

An advantage of the extension of the AA approach outlined here is that the decision
maker’s risk preferences are not required to be linear in objective probabilities when the
latter are part of the model. Suppose that Z is a finite set of prizes and again let X = ∆(Z),
the set of lotteries over Z. Then, given ζ, ζ ′ ∈ Z and the even-chance lottery [ζ, 1/2; ζ ′, 1/2],
it is possible that

1
2
u(ζ) +

1
2
u(ζ ′) = u

(
1
2
ζ ⊕ 1

2
ζ ′

)
6= u

([
ζ,

1
2
; ζ ′,

1
2

])
;

that is, the decision maker’s preference over ∆(Z) is nonlinear in probabilities. For instance,
let v : Z → R and P be a probability on Σ. Consider a decision maker whose preferences
over ∆(Z) are represented by u(x) =

∫
Z v(ζ) d(x(ζ))

2 and whose preferences over F are
represented by V (f) =

∫
S u(f(s)) d(P (s))2, where both integrals are taken in the sense of

Choquet. Because of the nonlinearity of u(·), this decision maker does not satisfy the axioms
of Schmeidler (1989), whereas he satisfies the axioms given above for the CEU model.

The notion of subjective mixture can also be employed to model phenomena that are not
necessarily related to the presence of ambiguity. For example, we can provide (along the
lines of Ozdenoren (2002)) a subjective mixture version of the models based on Kreps (1979),
such as Kreps (1992), Nehring (1999), Dekel, Lipman and Rustichini (2001) and Gul and
Pesendorfer (2001).

3 A Subjective Axiomatization of Bewley’s Model

Finally, we provide a subjective foundation to Bewley’s (2002) model of choice with incom-
plete preferences. For this purpose, we add further requirements on the sets S and X and
modify our basic assumption on preferences, since biseparability implies completeness of <.

Structural Assumption The set X is a connected and compact topological space with topol-
ogy τ . The set S is finite.

Preference Assumption There exists an essential E ∈ Σ such that the restriction of < to
FE has a SEU representation with a τ -continuous utility index u : X → R.

The conditions on X and S are analogous to those in Bewley (2002). For an axiomatization
of the Preference Assumption see, e.g., Chew and Karni (1994).

The convexity of u(X) is now a consequence of the connectedness of X and of the continu-
ity of u. It follows that every act f ∈ FE has a certainty equivalent (clearly, this need not be
true of acts outside FE), so that we can apply Definition 4 to define preference averages, and
thus define subjective mixtures of acts. Such mixtures will in general enjoy all the properties
stated in Proposition 1 except for the possibility of dependence of the notion of mixture on
the event E. As we prove later, such dependence is excluded by the following axioms.
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We require that < satisfies four axioms in addition to the Preference Assumption. The
first axiom allows for incompleteness, the second is a statewise dominance condition.

Axiom B 1 (Preorder) < is reflexive and transitive.

Axiom B 2 (Dominance) For every f, g ∈ F , if f(s) < g(s) for every s ∈ S then f < g.

The third axiom is a standard continuity requirement (cf. Dubra, Maccheroni and Ok
(2001)). The topology τ on X induces the product topology on the set XS of all functions
from S into X. In this topology, a net {fα}α∈D ⊆ F converges to f ∈ F if and only if
fα(s) τ−→ f(s) for all s ∈ S (hence the name of pointwise convergence topology).

Axiom B 3 (Continuity) Let {fα}α∈D ⊆ F and {gα}α∈D ⊆ F be nets that converge point-
wise to f ∈ F and g ∈ F respectively. If fα < gα for all α ∈ D, then f < g.

Finally, we have the independence axiom, which is stronger than the versions in Proposi-
tions 4 and 5 as it applies to arbitrary mixtures of (not necessarily comonotonic) acts.

Axiom B 4 (Independence) For every f, g, h ∈ F and every α ∈ [0, 1],

f < g =⇒ α f ⊕ (1− α)h < α g ⊕ (1− α)h.

The characterization result can now be stated (see the Appendix for a proof).

Proposition 6 Suppose that X and S satisfy the Structural Assumption, and that < satisfies
the Preference Assumption. The preference < satisfies axioms B1–B4 if and only if there exist
a unique nonempty, closed and convex set C of probabilities on Σ such that for all f, g ∈ F ,

f < g ⇐⇒
∫

S
u(f) dP ≥

∫
S
u(g) dP for all P ∈ C. (4)

By Eq. (4) and the Preference Assumption, the set C satisfies P (E) = P ′(E) for all P, P ′ ∈ C.
It follows that the notion of subjective mixture is independent of the essential event used to
construct it: If F 6= E is essential and < is complete on FF , then xF y ∼ cxFz F czFy if and
only if xE y ∼ cxEz E czEy. Hence, F induces the same preference averages as E.

4 The Related Literature

Ever since AA’s seminal paper (1963), it is well-understood that a mixture operation on the
choice set makes it possible to obtain simple and intuitive axiomatizations of preferences under
uncertainty. To the best of our knowledge, ours is the first attempt to provide a generalization
of AA-style axiomatics and techniques that applies to a wide range of preference models;
previous contributions focus on specific preference models.

The paper closest to this is Casadesus-Masanell, Klibanoff and Ozdenoren (2000a), which
provides an axiomatization of the MEU model in a Savage-style setting. Their axioms employ
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standard sequences (a tool from measurement theory) to identify acts whose utility profiles
are convex combinations of the utility profiles of other acts. Thus, although these authors
do not explicitly define a mixture operation, their approach is similar in spirit to ours. Stan-
dard sequences are more complex constructs than our notion of preference average, so the
statements and interpretations of their axioms are more involved than those in (i) of Prop. 5.
However, their characterization result is essentially equivalent to Proposition 5.

Other contributions employ an alternative notion of subjective mixture of acts for ax-
iomatic purposes, without deriving from it a mixture-set structure with the algebraic prop-
erties we look for. Such a mixture notion is due to Gul (1992), and may be briefly described
as follows. Given an event A, call the certainty equivalent of the bet xAy the ‘A-preference
average’ of x and y. Then, define the direct (A-) mixture of two acts the act whose payoff in
state s is the A-preference average of the outcomes assigned to s by the original acts.8

Gul introduces direct mixtures to provide an axiomatization of SEU in a finite state space.
He assumes the existence of an ‘ethically neutral’ event A such that the preference over bets
on A have an SEU representation; in our notation, such that ρ(A) = ρ(Ac) = 1/2. He then
uses A-mixtures to formulate an independence axiom that implies the non-comonotonic form
of axiom (i) discussed after Proposition 4. seen as a special case

In a companion to the paper discussed above, Casadesus et al. (2000b) use direct mixtures
to obtain a different axiomatization of the MEU model. They assume the existence of an
event A such that the bets on A have a SEU representation (i.e., ρ(A) + ρ(Ac) = 1), and use
A-mixtures for their key axioms. While their hedging axiom is analogous to axiom (i.b) of
Prop. 5, their certainty independence axiom is significantly different from axiom (i.a). The
preferences they describe are a subset of those described by Proposition 5.

Chew and Karni (1994) generalize Gul (1992) in two respects. First, they characterize
CEU preferences (their preferences coincide with those described by Proposition 4). Second,
they show that for this purpose it is enough to use direct A-mixtures with respect to an
arbitrary essential event A; i.e., the bets on/against A need not have an SEU representation.
As a consequence, their comonotonic independence axiom is quite dissimilar from ours.9

Machina (2001) differs from all the papers discussed so far: he defines ‘almost-objective’
events in a Savage-style setting. Assuming that the state space has a Euclidean structure and
that preferences satisfy an ‘event smoothness’ condition, he constructs sequences of events
that in the limit are treated ‘as if’ they had an ‘objective’ (agreed upon) probability. He
investigates the properties of such almost-objective events and suggests constructing almost-
objective mixtures of acts. The latter differ from our subjective mixtures, in that they mix
events rather than prizes, and hence do not average (or even require the existence of) utility
profiles state-by-state.

Finally, we note that there exist characterizations of SEU that are similar in spirit to
AA’s original result, but do not postulate the existence of lotteries with objective proba-
bilities. In particular, Pratt, Raiffa and Schleifer (1964) assume that the state space is the

8Formally, the A-mixture of acts f and g is the act f A g defined by f A g(s) = cf(s) A g(s) for every s ∈ S.
9Furthermore, it can be shown that this generalization actually makes it impossible to construct a mixture-

set structure over the set F that preserves the isomorphism with convex combinations of utilities.
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Cartesian product of a finite set E of ‘real-world elementary events’ and the set [0, 1]× [0, 1],
the collection of outcomes of a ‘hypothetical experiment.’ They show that such a device con-
siderably simplifies the development of SEU. However, they do not use it to derive a notion
of mixture, and their analysis does not employ the vector-space techniques that distinguish
the AA approach.
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Appendix

Proof of Prop. 1: Let E ∈ Σ be essential and x, y ∈ X be such that x < y (the argument
for the case y < x is symmetric). A consequence z is such that

x < z < y and xE y ∼ cxEz E czEy (5)

iff u(x) ≥ u(z) ≥ u(y) and V (xE y) = V (cxEz E czEy). Setting r = ρ(E) ∈ (0, 1), we
obtain V (xE y) = u(x)r + u(y)(1 − r), V (xE z) = u(x)r + u(z)(1 − r), and V (z E y) =
u(z)r + u(y)(1− r), so that, in particular, cxEz < czEy. Using these equations, we have

V (cxEz E czEy) = u(cxEz)r + u(czEy)(1− r) = V (xEz)r + V (zEy)(1− r)
= [u(x)r + u(z)(1− r)]r + [u(z)r + u(y)(1− r)](1− r)
= u(x)r2 + u(y)(1− r)2 + 2u(z)r(1− r).

Thus, a consequence z satisfies Eq. (5) iff u(x) ≥ u(z) ≥ u(y) and

u(x)r + u(y)(1− r) = u(x)r2 + u(y)(1− r)2 + 2u(z)r(1− r).

The last equation is in turn equivalent to

u(z) =
u(x) + u(y)

2
(6)

(which also implies u(x) ≥ u(z) ≥ u(y)). Since u(X) is convex, for all x < y there exists a
z ∈ X such that Eq. (6) is satisfied. The other statements follow immediately. Q.E.D.

Proof of Prop. 6: Necessity is straightforward. We prove sufficiency. Let u be the utility
from the Preference Assumption. Since u is nonconstant (recall that E is essential), we
can assume u(X) = [0, 1]. Define a binary relation on B([0, 1]), the class of the simple
Σ-measurable functions S → [0, 1], as follows: For all f, g ∈ F , u(f) % u(g) iff f < g. Then:

• % is well-defined, reflexive and transitive: Assume u(f) = u(f ′) and u(g) = u(g′). By
monotonicity of <, f ∼ f ′ and g ∼ g′, so f < g iff f ′ < g′. Reflexivity and transitivity
follow from the analogous properties of <.

• % is isotonic: u(f(s)) ≥ u(g(s)) for all s ∈ S implies u(f) % u(g) (monotonicity of <).

• % is continuous: Assume that u(fα) → u(f), u(gα) → u(g) and u(fα) % u(gα), hence
fα < gα, for all α ∈ D. Considering subnets, assume that fβ → f ′ and gβ → g′ (recall
that F = XS is compact). By axiom B3 f ′ < g′, so u(f ′) % u(g′). Finally, u(f ′) = u(f)
and u(g′) = u(g). In fact, u(fβ) → u(f ′) (continuity of u) and u(fβ) → u(f) (since
u(fα) → u(f)), and similar considerations hold for u(gβ). Hence u(f) % u(g).

• % is independent: Let f, g, h ∈ F and suppose that u(f) % u(g). Then f < g implies
αf ⊕ (1− α)h < αg ⊕ (1− α)h for all α ∈ [0, 1], by axiom B4. This implies

αu(f) + (1− α)u(h) = u(α f ⊕ (1− α)h)
% u(α g ⊕ (1− α)h) = αu(g) + (1− α)u(h).
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The statement in the proposition now follows from a standard result, whose proof we omit:

Lemma 7 % is a nontrivial, independent, continuous and isotonic preorder on B([0, 1]) if
and only if there exists a unique, nonempty, closed and convex set C of probability measures
on Σ such that

ϕ % ψ ⇐⇒
∫

S
ϕdP ≥

∫
S
ψ dP for all P ∈ C.

Q.E.D.
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