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Abstract

This paper analyzes a model of decision under ambiguity, deemed vector expected utility or VEU.

According to the proposed model, an act f :Ω→X is evaluated via the functional

V ( f ) =

∫

Ω

u ◦ f dp+A

�∫

Ω

u ◦ f dm

�

,

where u : X →R is a von Neumann-Morgenstern utility function, p is a baseline probability measure,
∫

Ω
u ◦ f dm is a adjustment vector of finite or countably infinite dimension, whose i -th component is

the Lebesgue integral
∫

u ◦ f dmi of the real function u ◦ f with respect to a signed measure m i on Ω,

and the function A is symmetric about zero: A(ϕ) = A(−ϕ). The signed measures (m i )0≤i<n encode

the possibility that ambiguity about certain events may (partially) “cancel out.” The adjustment term

A(
∫

u ◦ f dm) reflects the variability of the act f around its baseline expected utility
∫

u ◦ f dp.

A behavioral characterization of the VEU model is provided. Furthermore, an updating rule for

VEU preferences is proposed and characterized. The suggested updating rule facilitates the analysis

of sophisticated dynamic choice with VEU preferences.

1 Introduction

The issue of ambiguity in decision-making has received considerable attention in recent years, both

from a theoretical perspective and in applications to contract theory, information economics, finance,

and macroeconomics. As Daniel Ellsberg [13] first observed, individuals may find it difficult to assign

probabilities to certain events when available information is deemed scarce or unreliable. In these cir-

cumstances, agents may avoid taking actions whose ultimate outcomes depend crucially upon the re-

alization of such ambiguous events, and instead opt for “safer” alternatives. Several decision models
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have been developed to accommodate these patterns of behavior: these models represent ambiguity via

multiple priors (Gilboa and Schmeidler [25]; Ghirardato, Maccheroni and Marinacci [22]), non-additive

beliefs (Schmeidler [48]), second-order probabilities (Klibanoff, Mukerjee and Marinacci [34]; Nau [41];

Ergin and Gul [17]), relative entropy (Hansen and Sargent [29]; Hansen, Sargent and Tallarini [30]), or

variational methods (Maccheroni, Marinacci and Rustichini [37]).

This paper proposes a decision model that incorporates key insights from Ellsberg’s original analysis,

as well as from cognitive psychology and recent theoretical contributions on the behavioral implications

of ambiguity. According to the proposed model, the individual evaluates uncertain prospects, or acts,

by a process suggestive of anchoring and adjustment (Tversky and Kahneman [56]). The “anchor” is the

expected utility of the prospect under consideration, computed with respect to a baseline probability;

the “adjustment” depends upon its variation away from the anchor at states that the individual deems

ambiguous. Formally, an act f , mapping each state ω ∈ Ω to a consequence x ∈ X , is evaluated via the

functional

V ( f ) =

∫

Ω

u ◦ f dp+A

�∫

Ω

u ◦ f dm

�

. (1)

In Eq. (1), u : X → R is a von Neumann-Morgenstern utility function; p is a baseline probability on Ω;
∫

Ω
u ◦ f dm is a adjustment vector of finite or countably infinite dimension, whose i -th component is

the Lebesgue integral
∫

u ◦ f dmi of the real function u ◦ f with respect to a signed measure m i on Ω;

and A is a symmetric function: A(−φ) = A(φ) for every vector φ. I deem the proposed model vector

expected utility, or VEU. The main result of this paper is a behavioral characterization of preferences that

conform to the VEU model; an analysis of updating and dynamic choice for this family of preferences is

also provided.

Three key features of the VEU representation are worth emphasizing. First, prospects are evalu-

ated by means of a baseline prior, adjusted to account for ambiguity. Hillel Einhorn and Robin Hogarth

[11, 12, 31]were the first to propose such an anchoring-and-adjustment strategy as a plausible approach

to decisions under ambiguity. The cited papers explore the implications of this strategy in a series of ex-

periments, dealing primarily with choice among binary lotteries. Ellsberg’s seminal paper also suggests

that, when faced with an ambiguous choice situation, “by compounding various probability judgments

of various degrees of reliability, [the individual] can eliminate certain probability distributions over states

of nature as ‘unreasonable,’ assign weights to others and arrive at a composite ‘estimated’ distribution”

([13], p. 661; italics added for emphasis). Additional contributions emphasizing the role of reference

priors will be discussed in §5.1.

Second, decomposing the adjustment term in Eq. (1) into a suitable function A(·) and a collection

(m i )0≤i<n of signed measures provides a direct, explicit representation of eventwise complementarity—

a key behavioral feature of ambiguous events highlighted in the analysis of Larry Epstein and Jiankang

Zhang [15]. To illustrate this notion and provide a simple application of the decision model of Eq. (1),
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consider Ellsberg’s three-color urn experiment. A ball is to be drawn from an urn containing 30 red balls,

and 60 blue and green balls; the proportion of blue vs. green balls is unknown. Denote by f R , f B , f RG, f BG

the acts that yield $10 if a red (resp. blue, red or green, blue or green) ball is drawn, and $0 otherwise. As

reported by Ellsberg, the modal preferences are

f R � f B and f RG ≺ f BG . (2)

Epstein and Zhang suggest that “[t]he intuition for this reversal is the complementarity between G and

B—there is imprecision regarding the likelihood of B , whereas {B ,G } has precise probability 2
3 ” ([15], p.

271). The proposed model enables a representation of the preferences in Eq. (2) that closely matches

this interpretation: let p be uniform on the state space Ω= {R ,G , B}, assume w.l.o.g. that u is linear, and

let m0 be the signed measure given by

m0({R}) = 0, m0({B}) =
1

3
, m0({G }) =−

1

3
.

Finally, let A(φ) = −|φ| for every φ ∈ R. Thus, in this example, n = 1: one-dimensional adjustment

vectors suffice. The interpretation of the adjustment measure m0 is as follows: since A(m0({G })) =
A(m0({B}), G and B are “equally ambiguous”; however, m0({G }) +m0({B}) = 0, so their ambiguities

“cancel out.” This algebraic cancellation corresponds to Epstein and Zhang’s notion of complementar-

ity. It is then easily verified that V ( f R ) = 10
3 , V ( f B ) = 0, V ( f RG) = 10

3 and V ( f BG) = 20
3 , consistently with the

preferences in Eq. (2).1

Third, the symmetry property of the functional A (that is, the requirement that A(ϕ) = A(−ϕ) for

all vectors ϕ) supports the intuition that the adjustment applied to the baseline expected-utility (EU)

evaluation of an act f is related to the variability, or dispersion, of the outcomes delivered by f at dif-

ferent states. In economic applications of decision models reflecting a concern of ambiguity, interesting

patterns of behavior often arise out of the agents’ desire to reduce outcome or utility variability (usually

referred to as “hedging” or “utility smoothing”); for instance, see Bose, Ozdenoren and Pape [5], Epstein

and Schneider [14], Ghirardato and Katz [21], or Mukerji [40]. Indeed, Schmeidler [48] suggests that “am-

biguity aversion” can be defined as a preference for “smoothing or averaging utility distributions” [48,

p. 582]; other authors have further investigated this and related hedging-based characterizations of am-

biguity attitudes (for instance, Chateauneuf and Tallon [7]; Gilboa and Schmeidler [25]; Klibanoff [33];

Kopylov [36]; Maccheroni, Marinacci and Rustichini [37]). Thus, outcome or utility variability plays a key

role in the evaluation of acts under ambiguity; the VEU representation makes this role explicit.

To elaborate, recall that virtually all classical measures of variability or dispersion for random vari-

ables, such as the variance and mean absolute deviation, the range2, Gini’s mean difference (cf. e.g.

1For instance, V ( f RG) = 10 · 2
3
−
�

�10 ·0+0 · 1
3
+10 ·

�

− 1
3

��

�= 20
3
−
�

�− 10
3

�

�= 10
3

.
2As well as the interquantile range for continuous random variables.
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Yitzhaki [58]), or the peakedness ordering (Bickel and Lehmann [4]), are invariant to translation and sign

changes: for any constant c , the random variables Y and c−Y are considered to be equally dispersed. In-

tuitively, these measures reflect the extent of deviations from a reference point, or across different states,

rather than the direction of these deviations, or the location of the reference point itself.

In a decision setting à la Anscombe-Aumann [1], this invariance property may be translated as fol-

lows. Say that two acts f and f̄ are complementary if their 50%:50% mixture is a constant act; it is easy

to see that, for a suitable constant c , the utility profiles of f and f̄ satisfy u ◦ f̄ = c −u ◦ f . Thus, com-

plementary acts exhibit the same utility or outcome variability according to classical measures. Hence,

if adjustments to the baseline evaluation of acts reflect their variability, then complementary acts should

receive the same adjustment. The symmetry property of the functional A ensures that this is the case.3

The main novel axiom in this paper, Complementary Independence, is chiefly responsible for this sym-

metry property.

One additional consequence of this property, and indeed of the Complementary Independence ax-

iom, deserves special emphasis. Symmetry implies that adjustment terms cancel out when comparing

two complementary acts using the VEU representation in Eq. (1); thus, the ranking of complementary

acts is effectively determined by their baseline EU evaluation. Conversely, preferences over complemen-

tary acts uniquely identify the baseline prior: there is a unique probability p and a cardinally unique

utility function u such that, for all complementary acts f and f̄ , f ¼ f̄ iff
∫

u ◦ f dp ≥
∫

u ◦ f̄ dp. Thus,

baseline priors have a simple behavioral interpretation in the present setting: they provide a represen-

tation of the individual’s preferences over complementary acts. This implies that, under Complementary

Independence, the baseline prior is behaviorally identified independently of other elements of the VEU

representation; Sec. 4.4 elaborates on this point.

It is worth emphasizing that the functional representation in Eq. (1) is flexible enough to accommo-

date a broad range of attitudes towards ambiguity, while at the same time allowing for numerical and

analytical tractability. The preferences in the preceding example display ambiguity aversion as defined

by Schmeidler [48]; correspondingly, the adjustment function A is non-positive and concave. As will be

shown in Sec. 4.1, a non-positive, but not necessarily concave adjustment function instead characterizes

ambiguity aversion in the more general sense of Ghirardato and Marinacci [24]. Indeed, the VEU model

can accommodate even more complex attitudes towards ambiguity; for instance, Sec. 4.5 provides a

simple, tractable (in particular, differentiable) representation of VEU preferences that exhibit ambiguity

appeal for small stakes and ambiguity aversion for large stakes—a pattern that has been documented in

experiments (e.g. Hogarth and Einhorn [31], Koch and Schunk [35]).

This paper also proposes a possible updating rule for VEU preferences, and provides a behavioral

3To further elaborate, recall that the signed measures (m i )0≤i<n in the VEU representation are assumed to satisfy m i (Ω) = 0;

thus, if f and f̄ are complementary,
∫

u ◦ f̄ dm=−
∫

u ◦ f dm. Since A is symmetric, A
�∫

u ◦ f dm
�

= A
�∫

u ◦ f̄ dm
�

.
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characterization. Consider an individual with VEU preference, represented by a baseline prior p , a col-

lection of signed measures (m i )0≤i<n , and a functional A as in Eq. (1). Then, under suitable assumptions,

upon learning that an event E has occurred, the individual again holds VEU preferences; her baseline

probability is the standard Bayesian update p (·|E ) of p , she employs the same adjustment functional A,

and the i -th updated signed measure mE ,i is obtained from the corresponding measure m i by letting

mE ,i (F ) =m i (F ∩E )+p (F |E ) ·m i (Ω \E )

for all events F . This characterization makes it possible to analyze sophisticated choice in dynamic de-

cision problems using a recursive formulation: this observation is developed in Sec. 4.2.

The paper is organized as follows. Section 2 provides preliminary definitions and results. Section 3

presents the main characterization result. Section 4 contains additional results and examples. Finally,

Section 5 discusses the related literature (§5.1), as well as additional features and extensions of the VEU

representation (§5.2). All proofs, as well as additional technical results, are in the Appendix.

2 Preliminaries

2.1 Adjustment Tuples and Vectors

Consider a set Ω (the state space) and a sigma-algebra Σ of subsets of Ω (events). Adopt the following

conventional notation: for any interval Γ⊂R, B0(Σ,Γ) is the set of bounded, Σ-measurable simple func-

tions on Ω taking values in Γ, and B (Σ,Γ) is its sup-norm closure; if Γ = R, these sets will be denoted

simply as B0(Σ) and B (Σ). The collection of bounded, countably additive measures on Σ, is denoted by

ca(Σ), whereas ca1(Σ) indicates the set of countably additive probability measures on (Ω,Σ).

As noted in the Introduction, the VEU representation employs collections of signed measures to en-

code adjustments to the baseline EU evaluation of acts. Such “adjustment measures” are normalized so

as to reflect the fact that the empty event ; and the certain event Ω are not subject to ambiguity. These

collections can be finite or countably infinite; in the latter case, adjustment measures are also required

to be uniformly bounded and uniformly continuous. The following definition provides the details, and

introduces additional, useful notation. Observe that, by Theorem 3.1, if the state space Ω is finite, then

VEU preferences can always be represented using finitely many adjustment measures.

Definition 1 An adjustment tuple of size n ∈Z+ ∪{∞} is a collection m = (m i )0≤i<n ⊂ ca(Σ) such that

1. m i (Ω) =m i (;) = 0 for 0≤ i < n ;

2. for every E ∈Σ there exists N (E )∈R such that |m i (E )|<N (E ) for 0≤ i < n ; and
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3. for all sequences (Ek )k≥0 ⊂Σwith Ek ⊃ Ek+1 for all k ≥ 0 and
⋂

k Ek = ;, sup0≤i<n |m i (Ek )| → 0.

Denote the set of adjustment tuples of size n by M n (Σ). For every a ∈ B (Σ) and m = (m i )0≤i<n ∈M n (Σ),

define the adjustment vector
∫

a dm by
∫

a dm= 0 if n = 0, and

∫

a dm=

�∫

a dmi

�

0≤i<n

otherwise. For any interval Γ⊂R, the range of m and Γ is the set R0(m ,Γ) =
¦∫

a dm : a ∈ B0(Σ,Γ)
©

.

Observation: adjustments as vector measures. Every adjustment tuple m = (m i )0≤i<n defines a count-

ably additive set function m̂ on Σ taking values in the Banach space `n
∞ of supnorm-bounded n-vectors;

that is, m̂ is an `n
∞–valued vector measure (cf. e.g. Dunford and Schwartz [10], §IV.10). Furthermore, for

every function a ∈ B (Σ), the (real-valued) vector
∫

a dm defined above coincides with the vector integral

of a with respect to m̂ (cf. [10], pp. 322-323). In other words,
∫

a dm may equivalently viewed as a collec-

tion of scalar integrals, or as the integral of a with respect to a vector-valued measure. This connection is

made precise in Sec. A.1 of the Appendix; however, it is worth emphasizing that the results in this paper

do not depend upon the mathematics of vector measures.

2.2 Decision Setting and VEU representation

Consider a convex set X of consequences (outcomes, prizes). As in Anscombe-Aumann [1], X could

be the set of finite-support lotteries over some underlying collection of (deterministic) prizes, endowed

with the usual mixture operation. Alternatively, the set X might be endowed with a subjective mixture

operation, as in [6] or [23].

Next, let L 0 be the set of simple acts on the state space (Ω,Σ), i.e. the family ofΣ-measurable functions

from Ω to X with finite range. With the usual abuse of notation, denote by x the constant act assigning

the consequence x ∈X to eachω∈Ω. The main object of interest is a preference relation ¼ on L 0.

A precise definition of the VEU representation can now be provided. The following notation is useful:

for a function u : X →R, u (X ) = {u (x ) : x ∈X }; also, 0n denotes the zero vector in Rn (0≤ n ≤∞).

Definition 2 A tuple (u , p , n , m , A) is a VEU representation of a preference relation¼ on L 0 if

1. u : X →R is non-constant and affine, p ∈ ca1(Σ), n ∈Z+ ∪{∞} and m ∈M n (Σ);

2. A : R0(m , u (X ))→R satisfies

(a) for all sequences (ϕk )k≥0 ⊂R0(m , u (X )) such that sup0≤i<n |ϕk | → 0, A(ϕk )→ 0;

(b) for all ϕ ∈R0(m , u (X )), A(ϕ) = A(−ϕ);
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3. for all a ,b ∈ B0(Σ, u (X )), a (ω)≥b (ω) for allω∈Ω implies
∫

a dp+A(
∫

a dm)≥
∫

b dp+A(
∫

b dm);

and, for every pair of acts f , g ∈ L 0,

f ¼ g ⇔
∫

Ω

u ◦ f dp+A

�∫

Ω

u ◦ f dm

�

≥
∫

Ω

u ◦ g dp+A

�∫

Ω

u ◦ g dm

�

. (3)

Condition 2(a) implies the normalization A(0n ) = 0 (take ϕk = 0n for all k ): if all ambiguity about an

act cancels out, then there is no adjustment to the baseline evaluation. Therefore, for general sequences

converging to 0n , this condition imposes supnorm-continuity at the origin. Condition 2(b) is the central

symmetry assumption discussed in the Introduction (cf. in particular Footnote 3).

Condition 3 ensures monotonicity of the VEU representation. Simple examples show that mono-

tonicity necessarily involves a joint restriction on p , m and A.4 In many cases of interest, easy-to-check

necessary and sufficient conditions can be provided: see Appendix A.2 for details.

It is useful to point out that the functional A, and hence the entire VEU representation, is not re-

quired to be positively homogeneous. This makes it possible to accommodate, for instance, members

of the “variational preferences” family studied by Maccheroni, Marinacci and Rustichini [37] that satisfy

the key symmetry requirement of this paper; furthermore, it enables differentiable specifications of the

adjustment functional A, which would otherwise be precluded.

Finally, it is convenient to define a notion of “parsimonious” VEU representation. This is motivated

by the decision-theoretic notion of “crisp acts” due to Ghirardato, Maccheroni and Marinacci [22]. Say

that an act f ∈ L 0 is crisp if, for every x ∈X that satisfies f ∼ x , and for every g ∈ L 0 and λ∈ (0, 1],

λg +(1−λ)x ∼λg +(1−λ) f . (4)

That is, a crisp act “behaves like its certainty equivalent”: in particular, as discussed in Ghirardato et

al. [22], it does not provide a “hedge” against the ambiguity that influences any other act g .5 Constant

acts are obviously crisp; correspondingly, any VEU representation of the preference ¼ assigns them the

zero adjustment vector. Since crisp acts behave like constant acts, it seems desirable to ensure that their

associated adjustment vector also be zero. This is the key requirement of the following definition.

Definition 3 A VEU representation (u , p , n , m , A) of a preference relation¼ on L 0 is sharp if

1. for any crisp act f ∈ L 0,
∫

u ◦ f dm= 0n ; and

4Refer to the three-color-urn example in the Introduction, and let f ′B be a bet that yields 20 dollars if B obtains; since A(ϕ) =

−|ϕ|, A(
∫

f ′B dm) < A(
∫

f B dm), even though
∫

f ′B dm = 20
3
> 10

3
=
∫

f B dm. Taking A(ϕ) = |ϕ| instead shows that no general

assumption may be made regarding the direction of monotonicity for A alone.
5The present definition is weaker than the one provided by [22]: in particular, it allows for preferences that do not have a

positively homogeneous representation. The two definitions are equivalent if positive homogeneity holds.
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2. if (u ′, p ′, n ′, m ′, A ′) is another VEU representation of¼ that satisfies Condition 1, then n ′ ≥ n .

As an immediate and intuitively appealing implication of Condition 1, note that, for an EU preference,

all acts are crisp; thus, the unique sharp VEU representation of an EU preference features n = 0, i.e. an

empty adjustment tuple.

It is sometimes convenient to employ VEU representations that are not sharp: see, for instance, the

analysis of updating in Sec. 4.2. However, a notion of sharp representation provides a way to assess the

complexity of the complementarity patterns that the individual perceives among ambiguous events. Ex-

ample 1 in the following section provides a simple application of these ideas, and a geometric intuition.

3 Axiomatic Characterization of VEU preferences

It will be useful to assume that (Ω,Σ) is a standard Borel space (Kechris [32]): that is, Σ is the Borel sigma-

algebra generated by a Polish topology τ on Ω. This is best viewed as a structural assumption on the

sigma-algebra Σ: the generating topology τ plays no role in the analysis. All finite and countably infinite

sets, as well as all Borel subsets of Euclidean n-space, are standard Borel spaces, as are many spaces of

functions that arise in the theory of continuous-time stochastic processes.

Mixtures, or convex combinations of acts are taken pointwise: for every pair of acts f , g ∈ L 0 and for

any α∈ [0, 1], α f +(1−α)g is the act assigning the consequence α f (ω)+ (1−α)g (ω) to each stateω∈Ω.

Axioms 3.1–3.4 are standard:

Axiom 3.1 (Weak Order) ¼ is transitive and complete.

Axiom 3.2 (Monotonicity) For all acts f , g ∈ L 0, f (ω)¼ g (ω) for allω∈Ω implies f ¼ g .

Axiom 3.3 (Continuity) For all acts f , g , h ∈ L 0, the sets {α∈ [0, 1] :α f +(1−α)g ¼ h} and {α∈ [0, 1] : h ¼
α f +(1−α)g } are closed.

Axiom 3.4 (Non-Degeneracy) Not for all f , g ∈ L 0, f ¼ g .

Next, a weak form of the Anscombe-Aumann [1] Independence axiom, due to Maccheroni, Marinacci

and Rustichini [37], is assumed.

Axiom 3.5 (Weak Certainty Independence) For all acts f , g ∈ L 0, x , y ∈ X and α ∈ (0, 1): α f +(1−α)x ¼
αg +(1−α)x implies α f +(1−α)y ¼αg +(1−α)y .

Loosely speaking, preferences are required to be invariant to translations of utility profiles, but not to

rescaling (note that the same weight α is employed when mixing with x and with y ). As discussed in [37],
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this axiom weakens Gilboa and Schmeidler [25]’s Certainty Independence, which requires invariance to

both translation and rescaling. Since Certainty Independence will be referenced below, it is useful to

reproduce it here, even though it is not assumed in Theorem 3.1.

Axiom 3.5∗ (Constant-Act Independence) For all acts f , g ∈ L 0, h ∈ L c and α ∈ (0, 1): f ¼ g implies

α f +(1−α)h ¼αg +(1−α)h.

To ensure that all measures in the representation are countably additive, adopt the following axiom,

which is in the spirit of Arrow [2].6 A similar representation could be obtained without it, but it would

not be possible to restrict attention to adjustment vectors of finite or countably-infinite dimension. To

state the axiom, for every pair x , y ∈X and E ∈Σ, denote by x E y the act that yields x at every stateω∈ E

and y elsewhere.

Axiom 3.6 (Monotone Continuity) For all sequences (Ak )k≥1 ⊂ Σ such that Ak ⊃ Ak+1 and
⋂

k Ak = ;,
and all x , y , z ∈X such that x � y � z , there is k ≥ 1 such that z Ak x � y � x Ak z .

In order to state the novel axioms in this paper, a preliminary definition is required. Intuitively, it

identifies pairs of acts whose utility profiles are “mirror images.”

Definition 4 Two acts f , f̄ ∈ L 0 are complementary if and only if, for any two statesω,ω′ ∈Ω,

1

2
f (ω)+

1

2
f̄ (ω)∼

1

2
f (ω′)+

1

2
f̄ (ω′).

If two acts f , f̄ ∈ L 0 are complementary, then ( f , f̄ ) is referred to as a complementary pair.

If preferences over X can be represented by a von Neumann-Morgenstern utility function u (·)—which

is the case under Axioms 3.1 through 3.5—then the utility profiles of the acts f and f̄ , denoted u ◦ f

and u ◦ f̄ respectively, satisfy u ◦ f̄ = k −u ◦ f for some constant k ∈ R. Thus, complementarity is the

preference counterpart of algebraic negation.

Notice that, if ( f , f̄ ) and (g , ḡ ) are complementary pairs of acts, then, for any weight α ∈ [0, 1], the

mixtures α f +(1−α)g and α f̄ +(1−α)ḡ are themselves complementary.

The Complementary Independence axiom may now be formulated.

Axiom 3.7 (Complementary Independence) For any two complementary pairs ( f , f̄ ) and (g , ḡ ) in L 0,

and all α∈ [0, 1]: f ¼ f̄ and g ¼ ḡ imply α f +(1−α)g ¼α f̄ +(1−α)ḡ .

6Chateauneuf et al. [8] show that a similar (simpler) axiom delivers countable additivity of priors for α-maxmin preferences.

Ghirardato et al. [22] obtain countable additivity for preferences that only satisfy the first five axioms in the text by imposing

monotone continuity on a derived preference relation. Here, due to Axiom 3.7, it is possible to provide a simple axiom on the

primitive preference ¼, even if the latter is not a member of the α-maxmin family.
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Axiom 3.7 is motivated by the intuition that VEU preferences rank acts according to a baseline EU

evaluation, adjusted to reflect a concern for utility or outcome variability around the baseline. Observe

first that, for EU preferences, f ¼ f̄ and g ¼ ḡ imply that α f + (1−α)g ¼ α f̄ + (1−α)ḡ regardless of

whether or not the acts under consideration are pairwise complementary; indeed, under Axioms 3.1—

3.4, this property is equivalent to the standard Independence axiom, and hence characterizes EU prefer-

ences. Next, recall that complementary acts are “mirror images” of each other; therefore, as noted in the

Introduction, virtually all classical measures of dispersion for random variables would attribute them the

same variability. But, if adjustments reflect a concern for variability, complementary acts should then

be subject to the same adjustment. Therefore, preferences over complementary acts cannot be driven

by differences in their adjustments: pairwise complementary acts are effectively ranked consistently with

their baseline evaluation. Axiom 3.7 then reflects an observable implication of the assumption that such

baseline evaluations conform to EU.

A final axiom is required:

Axiom 3.8 (Complementary Translation Invariance) For all complementary pairs ( f , f̄ ), and all x , x̄ ∈
X with f ∼ x and f̄ ∼ x̄ : 1

2 f + 1
2 x̄ ∼ 1

2 f̄ + 1
2 x .

Similarly to Complementary Independence, Axiom 3.8 captures a behavioral implication of the as-

sumption that the adjustment applied to the baseline EU evaluation of complementary acts is the same.

Observe first that, if the preference relation ¼ is consistent with EU, the property in the Axiom holds

regardless of whether or not f and f̄ are complementary. Indeed, a stronger property holds for EU pref-

erences: if the prizes x and x̄ are “translated” in utility space by the same amount, thereby obtaining

two new prizes y , ȳ , then it is also the case that 1
2 f + 1

2 ȳ ∼ 1
2 f̄ + 1

2 y . If now the individual evaluates the

complementary acts f and f̄ by applying the same adjustment to their baseline evaluation, then the

prizes x ∼ f and x̄ ∼ f̄ will differ from the baseline evaluation of f and f̄ by the same utility shift, intu-

itively corresponding to the extent of their common adjustment. Furthermore, the mixtures 1
2 f + 1

2 x̄ and
1
2 f̄ + 1

2 x are ranked according to the individual’s baseline preference, because they are complementary.

Therefore, if baseline preferences are consistent with EU, the preceding observation implies that these

mixtures should be indifferent, as required by the Axiom.

Complementary Translation Invariance should be viewed as less central to the characterization of

VEU preferences than Complementary Independence (Axiom 3.7). Indeed, Axiom 3.8 is redundant in

two important cases. First, Axiom 3.8 is implied by Axioms 3.1–3.5 and 3.7 if the utility function rep-

resenting preferences over X is unbounded either above or below,7 as is the case for the majority of

7A proof is available upon request. Also note that unboundedness of the utility function follows from well-known behavioral

axioms: see e.g. [37].
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monetary utility functions employed in applications. Second, regardless of the utility function, if prefer-

ences satisfy Axioms 3.1–3.4 and 3.5∗ (instead of Axiom 3.5), then it is trivial to verify that the indifference

required by Axiom 3.8 holds regardless of whether or not f and f̄ are complementary; in other words, Ax-

iom 3.8 is automatically satisfied by all “invariant biseparable” preferences à la Ghirardato, Maccheroni

and Marinacci [22].8 Thus, Axiom 3.8 is only required to accommodate preferences that simultaneously

violate Axiom 3.5∗ and are represented by a bounded utility function on X .9

The main result of this paper can now be stated.

Theorem 3.1 Consider a preference relation¼ on L 0. The following statements are equivalent:

(1) The preference relation¼ satisfies Axioms 3.1–3.8.

(2) ¼ admits a sharp VEU representation (u , p , n , m , A).

(3) ¼ admits a VEU representation (u , p , n , m , A).

In (2), if (u ′, p ′, n ′, m ′, A ′) is another VEU representation of¼, then p ′ = p , u ′ =αu +β for some α,β ∈R
with α> 0, and there exists a linear surjection T : R0(m ′, u ′(X ))→R0(m , u (X )) such that

∀a ′ ∈ B0(Σ, u ′(X )), T

�∫

a ′dm′
�

=
1

α

∫

a ′dm and A ′
�∫

a ′dm′
�

=αA

�

T

�∫

a ′dm′
��

. (5)

If (p , u ′, n ′, m ′, A ′) is sharp, then n = n ′ and T is a bijection. Finally, if Ω is finite, then n ≤ |Ω| −1.

The primary message of Theorem 3.1 is the equivalence of (1) and (2): Axioms 3.1–3.8 are equivalent

to the existence of a sharp VEU representation. However, as noted in Sec. 2.2, it is sometimes convenient

to employ VEU representations that are not sharp. Theorem 3.1 ensures that the resulting preferences

will still satisfy Axioms 3.1–3.8. To put it differently, if a preference admits a VEU representation, then it

also admits a sharp VEU representations.

The second part of Theorem 3.1 indicates the uniqueness properties of the VEU representation. In

particular, the baseline probability measure p is unique, and the adjustment tuple m and function A are

unique up to transformations that preserve both the affine structure of the set R0(m , u (X )) of adjustment

vectors, as well as the actual adjustment associated with each element in that set.

To elaborate, recall that the role of the adjustment tuple m is to capture the patterns of “complemen-

tarity” among different events; for instance, if ambiguity about two events E and F cancels out, then

8This broad class includes for instance all multiple-priors, α-maximin, and Choquet-Expected Utility preferences.
9Imposing unbounded utility functions, or the full Certainty Independence axiom, seems too high a price to pay to dispense

with Axiom 3.8, especially because none of the main results in this paper require these stronger assumptions.
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m (E )+m (F ) = 0.10 In order for another measure m ′ to capture the same complementarities as the mea-

sure m , it must be the case that also m ′(E )+m ′(F ) = 0. Similarly, complementarities among adjustment

vectors associated with different acts must be preserved. The existence of a functional T with the prop-

erties listed in Theorem 3.1 ensures this. As the following example illustrates, this imposes considerable

restrictions on transformations of a given adjustment that can be deemed inessential.

Example 1 Refer to the ambiguity-averse VEU preferences described in the Introduction in the context

of the Ellsberg Paradox. In particular, recall that Ω= {R , B ,G } and m0({R}) = 0, m0({B}) =−m0({G }) = 1
3 ;

the fact that the latter two adjustments have opposite signs indicates that ambiguity about B and G

“cancels out.” Now let m = (m0), so n = 1; indeed, note that R(m , u (X )) is the entire real line.

Now consider a two-element tuple m ′ ∈M 2(Σ) and let A ′(ϕ) = −
p

ϕ2
1 +ϕ

2
2 for all ϕ ∈ R2. Suppose

there exists a map T as in Theorem 3.1. The fact that A ′ = A ◦T implies that, in particular, A ′(m ′({R})) =
A(T (m ′({R}))) = A(m ({R})) = 0, so m ′({R}) = 0. Similarly, T (m ′({B ,G })) =m ({B ,G }) = 0, so A ′ = A ◦ T

implies A ′(m ′({B ,G })) = 0, and so m ′({B}) =−m ′({G }). Finally, A ′(m ′({B})) = 1
3 = A ′(m ′({G })).

In other words, m ′ encodes exactly the same information about B and G as m : the two events are

equally ambiguous, but their ambiguities “cancel out”. Of course, m does so in a more parsimonious

way. This can also be seen geometrically: m ′({B}) and m ′({B}) are opposite points on a circle centered

at the origin with radius equal to 1
3 , and R(m ′, u (X )) is a line through the origin. This intuitively suggests

that ambiguity in the Ellsberg Paradox is really “one-dimensional”, regardless of the particular vector

representation one chooses.

4 Additional Results

4.1 Ambiguity Aversion

This section analyzes ambiguity aversion for VEU preferences. Two established definitions of this con-

cept are considered: the first, due to Schmeidler [48], identifies ambiguity aversion with a preference for

mixtures; the second, due to Ghirardato and Marinacci [24], captures a wider range of aversive attitudes

towards ambiguity, and turns out to have a natural characterization for VEU preferences.

Begin with Schmeidler’s classical axiom. Intuitively, an individual who is ambiguity-averse according

to the proposed definition values mixtures because they “smooth” utility profiles (cf. Schmeidler [48, p.

582]; Klibanoff [33, p. 290]). This has an straightforward characterization for VEU preferences, stated

below as a Corollary to the main representation result provided in Sec. 3.

Axiom 4.1 (Ambiguity Aversion) For all acts f , g ∈ L 0 and α∈ (0, 1): f ∼ g implies α f +(1−α)g ¼ g .

10Here and in the following, for any adjustment tuple m and event E , m (E ) =
∫

1E dm= (m i (E ))0≤i<n .
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Corollary 4.1 Consider a preference relation¼ on L 0 for which (1) in Theorem 3.1 holds, and let A be as

in (2). Then¼ satisfies Axiom 4.1 if and only if A is non-positive and concave.

Thus, as expected, Axiom 4.1 implies that the adjustment functional is non-positive and concave.

However, for VEU preferences, it seems intuitive to associate non-positive, but not necessarily concave

adjustment terms with a form of ambiguity aversion. It turns out that this notion is precisely captured

by Ghirardato and Marinacci’s “comparative” definition:

Definition 5 Given two preference relations ¼1 and ¼2 on L 0, say that ¼1 is comparatively ambiguity-

averse iff¼2 is consistent with expected utility and, for all f ∈ L 0 and x ∈X ,

f ¼1 x ⇒ f ¼2 x .

The reader is directed to [24] for a discussion of this definition. Finally, comparative ambiguity aversion

can also be characterized using weaker forms of Axiom 4.1 for VEU preferences.

Axiom 4.2 (Simple Ambiguity Aversion) For all complementary pairs ( f , f̄ ) and prizes x , x̄ ∈X such that

f ∼ x and f̄ ∼ x̄ : 1
2 f + 1

2 f̄ ¼ 1
2 x + 1

2 x̄ .

Axiom 4.3 (Minimal Ambiguity Aversion) For all complementary pairs ( f , f̄ )with f ∼ f̄ , 1
2 f + 1

2 f̄ ¼ f .

Both axioms have the standard hedging interpretation, but concern complementary pairs, rather than

arbitrary pairs of acts. Axiom 4.3 is related to Chateauneuf and Tallon’s “diversification” property (see

[7]). The main result of this subsection can now be stated.

Proposition 4.2 Let ¼ be a preference relation with VEU representation (u , p , n , m , A). Then the follow-

ing statements are equivalent:

(1)¼ is comparatively ambiguity-averse.

(2)¼ satisfies Axiom 4.2.

(3) For all f ∈ L 0, A(
∫

u ◦ f dm)≤ 0.

If u (X ) is unbounded above or below, or if¼ satisfies Axiom 3.5∗, then (1)–(3) are equivalent to

(4)¼ satisfies Axiom 4.3.

Example 2 Let Ω = {ω1,ω2,ω3} and X = R, and a preference ¼ with VEU representation (u , p , 2, m , A),

where u (x ) = x , p is uniform, m0({ω1}) =m1({ω2}) = −m0({ω2}) = −m1({ω3}) = ε ∈
�

0, 1
3

�

, and A(ϕ) =

−min(|ϕ0|, |ϕ1|). It is easy to verify that (u , p , 2, m , a ) satisfies Def. 2; in particular, A is differentiable

everywhere except at points where it takes the value 0, so Remark A.1 in the Appendix and the assumed

restrictions on ε imply that the monotonicity requirement is met.

13



These preferences are comparatively ambiguity-averse by Proposition 4.2; however, they do not sat-

isfy the standard Ambiguity Aversion axiom (i.e. Axiom 4.1): for instance, if u ◦ f = [1, 0, 0] and u ◦ g =

[0, 0, 1] (obvious notation), then f ∼ g , but 1
2 f + 1

2 g ≺ f .

4.2 Updating

The theory developed so far only applies to one-period choice problems. This section proposes an up-

dating rule for VEU preferences; sophisticated dynamic choice is briefly discussed in §4.3. Throughout

this subsection, two binary relations on L 0 will be considered: ¼ denotes the individual’s ex-ante pref-

erences, whereas ¼E denotes her preferences conditional upon the event E ∈ Σ. To keep notation to a

minimum, the event E will be fixed throughout.

As for conditional EU preferences, to ensure that updating is well-defined, it is necessary that the

conditioning event E “matter” for the individual. This leads to the following standard requirement.

Axiom 4.4 (E is not null) There exist acts f , g ∈ L 0 such that f (ω) = g (ω) for allω 6∈ E and f � g .

Due to symmetry, the above requirement has a straightforward characterization for VEU preferences.

Remark 4.1 Let¼ be a VEU preference, with baseline prior p . Then Axiom 4.4 holds iff p (E )> 0.

As is the case for conditional EU preferences, it will be assumed throughout that the evaluation of

acts upon learning that the event E has occurred does not depend upon the consequences that might

have been obtained if, counterfactually, E had not obtained. This leads to the following, standard axiom.

Axiom 4.5 (Conditional Preference) For all f , g ∈ L 0: if f (ω) = g (ω) for allω∈Ω \E , then f ∼E g .

The main axiom of this section can be informally stated as follows: if two acts have the same baseline

evaluation both ex-ante and conditional upon E , and the outcomes they deliver differ from the baseline

only on the event E , then their ex-ante and conditional ranking should be the same. This is consistent with

the proposed interpretation of VEU preferences. Consider an individual whose preferences are VEU both

ex-ante and conditional on E . Upon learning that E has occurred, her evaluation of an act f may change

for two reasons: the baseline EU evaluation of f may change, and outcome variability in states outside

E no longer matters. But if one restricts attention to acts for which the baseline evaluation does not

change upon conditioning on E , and which exhibit no variation away from the baseline at states outside

E to begin with, it seems plausible to assume that the individual’s evaluation of such acts will not change.

These special acts can be characterized by a behavioral condition that, once again, involves the no-

tion of complementarity. Consider two complementary acts h, h̄ ∈ L 0 that are constant on Ω \ E : that is,
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h(ω) = h(ω′) and h̄(ω) = h̄(ω′) for allω,ω′ ∈Ω \E . Suppose that, for any (hence all)ω∈Ω \E ,

1

2
h +

1

2
h̄(ω)∼

1

2
h̄ +

1

2
h(ω). (6)

If the preference relation ¼ happens to be consistent with EU, then Eq. (6), together with complemen-

tarity, readily imply that h ∼ h(ω) for any (hence all) ω ∈ Ω \ E .11 This indicates that h(ω) is a certainty

equivalent of h ex-ante. However, intuitively, h(ω) can also be viewed as a “conditional certainty equiva-

lent” of h given E : since h(ω′) = h(ω) for allω′ ∈Ω\E , the ranking h ∼ h(ω) suggests that receiving h(ω)

for sure at states in E is just as good for the individual as allowing the act h to determine the ultimate

prize she will receive conditional upon E .12 Thus, for an EU preference, Eq. (6) implies that the act h has

the same certainty equivalent both ex-ante and conditional upon E .

For general VEU preferences, the above intuition obviously does not apply: it may well be the case

that h 6∼ h(ω) for ω ∈ Ω \ E . However, recall that Complementary Independence (Axiom 3.7) implies

that VEU preferences always rank complementary acts in accordance with their baseline EU evaluation.

Since the mixture acts in Eq. (6) are complementary, the above intuition does apply to the EU preference

determined by the individual’s baseline prior. One then concludes that, if Eq. (6) holds, then h(ω) is a

baseline certainty equivalent of h, both ex-ante and conditional upon E ; this is formally verified in the

proof of Proposition 4.3. Furthermore, it is clear that h deviates from this baseline only at states in E .

Thus, Eq. (6) identifies the class of acts that should be ranked consistently by prior and conditional VEU

preferences.

Axiom 4.6 (Baseline-Variation Consistency)

For all complementary pairs ( f , f̄ ) and (g , ḡ ) such that f , f̄ , g , ḡ are constant on Ω \ E and, for every

ω∈Ω \E , 1
2 f + 1

2 f̄ (ω)∼ 1
2 f̄ + 1

2 f (ω) and 1
2 g + 1

2 ḡ (ω)∼ 1
2 ḡ + 1

2 g (ω): f ¼E g if and only if f ¼ g .

Proposition 4.3 Consider a preference relation ¼ on L 0 having a VEU representation (u , p , n , m , A), an

event E ∈ Σ, and another binary relation ¼E on L 0. Assume that ¼E is complete and transitive, and that

Axiom 4.4 holds. Then the following are equivalent.

(1) Axioms 4.5 and 4.6 hold;

(2)¼E has a VEU representation
�

u , p (·|E ), n , mE , A
�

, where mE = (m i ,E )0≤i<n satisfies

∀F ∈Σ, 0≤ i < n m i ,E (F ) =m i (E ∩ F )+p (F |E )m i (Ω \E ). (7)

11By complementarity, 1
2

h + 1
2

h̄ ∼ 1
2

h(ω) + 1
2

h̄(ω); by Independence, combining this relation with Eq. (6) yields 1
2

h + 1
2

k ∼
1
2

h(ω)+ 1
2

k , with k = 1
2

h̄ + 1
2

h̄(ω). Invoking Independence once more yields h(ω)∼ h.
12Indeed, this condition may be used to characterize Bayesian updating for EU preferences, as well as prior-by-prior Bayesian

updating for MEU preferences: see Pires [42].
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In other words, under the proposed axioms, the updated preference is also VEU; its baseline proba-

bility is the Bayesian update of the prior, the functional A and utility u are unchanged, and the posterior

adjustment tuple mE is obtained from the prior tuple by Eq. (7). It should be noted that the resulting

VEU representation is not necessarily sharp, even if the ex-ante representation is.

To gain some intuition for the updating rule in Eq. (7), consider a probability measure µ ∈ ca1(Σ).

Standard Bayesian updating on an event E ∈ Σ may be viewed as a process whereby the mass µ(Ω \ E )

placed on the event that did not obtain is redistributed to states in E . In particular, since

∀F ∈Σ, µ(F |E ) =µ(F ∩E )+µ(F |E )µ(Ω \E ),

the Bayesian updating process can be seen as adding a fraction µ(F |E ) of the mass µ(Ω\E ) to the ex-ante

probability mass of F ∩E . It should then be clear that Eq. (7) performs a similar operation, except that it

adds fractions of the “mass” m (Ω \E ) to the “mass” m (F ∩E ).

The updating rule in Eq. (7) satisfies convenient and natural properties of conditional measures.

Fix an adjustment tuple m ∈ M n (Σ); it is immediate to verify that m i ,E (E ) = 0 for every index i : this

is the conditional counterpart of the normalization property m i (Ω) = 0 for unconditional adjustment

measures. Furthermore, a version of the “law of iterated conditioning” holds. Fix three events E , F,G ∈Σ
such that G ⊂ F ⊂ E , and for all i ∈ {0, . . . , n − 1}, let m i ,E ,F be the signed measure obtained from m i ,E

by applying Eq. (7). Then m i ,E ,F (G ) = m i ,F (G ) for all indices i . That is: conditioning on E first, then

conditioning the resulting measure on F yields the same tuple of signed measures as conditioning on F

directly. This property is shared by some, but not all updating rules for known decision models under

ambiguity: for instance, the “maximum-likelihood” rule for multiple-priors preferences (cf. Gilboa and

Schmeidler [26]) violates it.

4.3 Recursion: An Example

The conditional preferences derived in Proposition 4.3 only satisfy a weak form of dynamic consistency.

Thus, the proposed updating rule must be complemented with a criterion, such as consistent planning

(Strotz [54]), to resolve possible conflicts between the ex-ante and ex-post evaluation of future choices.

However, the updating rule axiomatized in the preceding section allows for a recursive formulation of the

consistent-planning problem. This section sketches the basic idea, and then illustrates it by means of a

simple example; a full treatment is left for future work.

It is immediate to verify that, ifF ⊂ Σ is a finite partition of Ω, and for every E ∈ F the tuple mE is

defined as in Eq. (7),
∫

a dmi =
∑

E∈F

∫

E

a dmi ,E +m i (E ) ·
∫

a dp(·|E ). (8)
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Notice that the integrals in the r.h.s. are, respectively, the adjustment vector and baseline for the function

a conditional upon each event E . In other words, the adjustment vector
∫

a dm can be obtained from the

conditional vectors
∫

E
a dp(·|E ) and

∫

E
a dmE for all E ∈F , just like the baseline

∫

a dp can be obtained

from the conditional baseline integrals.

This suggests a recursive approach to the solution of dynamic decision problems via consistent plan-

ning. Loosely speaking, the conditional integrals
∫

E
a dp and

∫

E
a dmi ,E are part of the VEU “value func-

tion” obtained by solving the one-step-ahead problem; these can be plugged into the current-period

problem, as is the case for EU preferences. Example 3 below illustrates this approach in a very simple

setting with two decision epochs.

To conclude, note that, if there are more than two decision epochs, posterior adjustment measures

can be constructed in two equivalent ways, because the proposed updating rule satisfies the law of iter-

ated conditioning. It is of course possible to fix a prior adjustment tuple on the entire state space, and

derive from it the relevant time-t conditional adjustment tuples by applying Eq. (7). However, alter-

natively, adjustment tuples can be constructed by iterated one-step-ahead conditioning, which may be

especially convenient if uncertainty has a Markov structure.

Example 3 Consider a 3-period (t = 0, 1, 2) consumption-savings problem. The agent’s initial endow-

ment is w0 > 0, and her per-period utility is v (x ) = x 1−γ

1−γ , with γ> 1 for definiteness; consumption streams

are evaluated by discounting at the rate δ ∈ (0, 1). The output of the sole productive activity in the econ-

omy is characterized by a rate of return that can be either rH or rL < rH . At the beginning of periods

t = 0, 1, given her current wealth w t , the agent sets the quantity s t to be saved, and consumes the rest;

then the rate of return rt is realized, and the period ends. At the beginning of the following period,

w t+1 = s t rt . At time t = 2 there is no decision to be made: the agent consumes the entire output.

To describe the possible realizations of the production process at times 0 and 1, let Ω = {(r0, r1) :

r0, r1 ∈ {rH , rL}}. Assume a uniform baseline p , and an adjustment given by

n = 1, m0({(rH , rH )}) =m0({(rL , rL)}) = ε=−m0({(rH , rL)}) =−m0({(rL , rH )}) and A(ξ) =−|ξ|

with 0 ≤ ε ≤ 1
4 . This is one of the simplest possible specifications for the problem under consideration;

it is inspired by the analysis of dilation in Seidenfeld and Wasserman [49]. Intuitively, the agent does not

perceive any ambiguity about the marginal probability of high or low returns in either period; however,

there is ambiguity about the correlation of outcomes.

Letting Ht = {(r0, r1) : rt = rH } and similarly for L t , and applying Eq. (7), we get m0,H0 (H1) = ε =

−m0,H0 (L 1) and similarly m0,L 0 (H1) = −ε = −m0,L 0 (L 1). Thus, after observing the realization of time-0

production, time-1 returns become ambiguous. If r0 = rH and wealth equals w1, the agent solves

max
0≤s1≤w1

v (w1− s1)+δ
§1

2
v (rH s1)+

1

2
v (rLs1)

ª

−
�

�δ [εv (rH s1)−εv (rLs1)]
�

� (9)
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(here and in the following, the term corresponding to the current payoff does not appear in the adjust-

ment term, because it is constant and so is assigned a zero adjustment “vector”). Since v is increasing,

the adjustment δε[v (rH s1)−vLs1)] is positive, so the agent will behave as if the probability of high output

was 1
2 −ε; then, simple (and standard) manipulations show that

s1(w1) = α1w1, (10)

V
p

1 (w1) ≡ v (w1− s1)+δ
§1

2
v (rH s1)+

1

2
v (rLs1)

ª

=β1v (w1), (11)

V m
1,H (w1) ≡ δ [εv (rH s1)−εv (rLs1)] =βm

1 v (w1), (12)

where the constants α1, β1 and βm
1 depend upon the parameters γ,δ,ε, rL , rH but not on w1. The results

in Eqs. (10) and (11) are well-known; note however that a similarly convenient expression is obtained for

the adjustment “vector” V m
1,H (w1). Finally, if r0 = rL , the agent solves a problem similar to that in Eq. (9),

except that the adjustment vector is V m
1,L(w1)≡ δ[−εv (rH s1)+εv (rLs1)] =−V m

1,H (w1); this clearly leads to

the same solution and baseline utility.

It is now possible to contrast the direct approach to sophisticated choice and the recursive approach

suggested by Eq. (8). In the direct approach, time-0 savings s0 are determined by maximizing the entire

ex-ante VEU functional, substituting for the optimal time-1 choice as a function of savings in time 0 and

the realized rate of return. That is, using w1 = r0s0 and so s1 =α1r0s0, one must solve

max
0≤s0≤w0

v (w0− s0) +
∑

(r0,r1)∈Ω

1

4

�

δv ((1−α1)r0s0)+δ2v (r1α1r0s0)
�

− (13)

−

�

�

�

�

�

∑

(r0,r1)∈Ω
m ({r0, r1})

�

δv ((1−α)r0s0)+δ2v (r1α1r0s0)
�

�

�

�

�

�

.

Taking a recursive approach instead, invoking Eq. (8) and taking care to discount appropriately, at time

t = 0 the agent solves

max
0≤s0≤w0

v (w0− s0)+δ
§1

2
V

p
1 (rH s0)+

1

2
V

p
1 (rLs0)

ª

−
�

�

�δ
�

V m
1,H (rH s0)+V m

1,L(rLs0)
�

�

�

�,

which, substituting for V
p

1 , V m
1,H and V m

1,L , yields

max
0≤s0≤w0

v (w0− s0)+δ
§1

2
β1v (rH s0)+

1

2
β1v (rLs0)

ª

−
�

�

�δ
�

βm
1 v (rH s0)−βm

1 v (rLs0)
�

�

�

�. (14)

Even in this very simple example, the objective function in Eq. (14) is slightly easier to analyze than

Eq. (13); also, Eq. (14) shows that the time-0 problem is structurally analogous to the time-1 problem,

except that the “discount factor” is δβ1. Arguing as in the time-1 problem, the agent behaves as if the

probability of high output was 1
2 +

βm
1
β1

;13 optimal time-0 savings are then given by s0 = α0w0, where α0

has an expression analogous to α1.

13It turns out that βm
1 < 0 for γ > 1; since v is increasing, |δβm

1 [v (rH s0)− v (rL s0)]| = −δβm
1 [v (rH s0)− v (rL s0)]. Also, in the

parameter range under consideration, 1
2
+βm

1 ∈ (0, 1).
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4.4 Complementary Independence for Other Decision Models

This section investigates the implications of the Complementary Independence axiom for certain well-

known preference models. It will be shown that this axiom makes it possible to identify a baseline prior

from behavioral primitives, independently of the functional representation of preferences. Furthermore,

the specific role of this prior in the different models under consideration will be clarified.14

Begin with what are perhaps the two best-known models of decision under ambiguity: the maxmin-

expected utility (MEU) or multiple-priors model of Gilboa and Schmeidler [25], and Schmeidler’s [48]

Choquet-expected utility (CEU) model. A MEU preference is characterized by a utility function u and a

weak∗ closed, convex set C ⊂ ba1(Σ) of probability charges; the representing functional can be written as

I ◦u : L 0 → R, where I (a ) =minq∈C

∫

a dq for all a ∈ B0(Σ). Also recall that a capacity is a set function

v : Σ→ [0, 1] such that (1) v (;) = 0 and v (Ω) = 1, and (2) A, B ∈ Σ and A ⊂ B imply v (A) ≤ v (B ). A CEU

preference is represented by the functional Iv ◦u : L 0→R, where Iv is the Choquet integral with respect

to the capacity v (see [48]).

Preferences conforming to these models satisfy Axioms 3.1–3.4 and Certainty Independence (Axiom

3.5∗), which is stronger than Axiom 3.5. MEU preferences additionally satisfy Axiom 4.1, Ambiguity Aver-

sion; CEU preferences satisfy a stronger independence axiom, deemed Comonotonic Independence.

Proposition 4.4 (Complementary Independence for MEU and CEU preferences)

(1) A MEU preference¼ satisfies Axiom 3.7 if and only if there is p ∈C such that, for all q ∈C , 2p−q ∈C

(that is, p is the barycenter of C ).

(2) A CEU preference ¼ satisfies Axiom 3.7 if and only if there is p ∈ ba1(Σ) such that, for all E ∈ Σ,

v (E )+ [1−v (Ω \E )] = 2p (E ).

In (1) and (2), p ∈ ba1(Σ) is the unique probability charge that satisfies f ¼ f̄ ⇔
∫

u ◦ f dp≥
∫

u ◦ f̄ dp for

all complementary pairs ( f , f̄ ), where u is the utility function in the MEU or CEU representation of¼.

Thus, for both MEU and CEU preferences, Complementary Independence identifies a baseline prior

that, as in the VEU model, represents preferences over complementary acts. Observe that the set func-

tion E 7→ 1− v (Ω \ E ) is also a capacity, sometimes denoted v̄ and referred to as the dual of the capacity

v . Thus, Complementary Independence corresponds to the property that 1
2 v + 1

2 v̄ = p .

Ghirardato, Maccheroni and Marinacci [22] provide a general representation for the family of prefer-

ences that satisfy the MEU axioms minus Ambiguity Aversion. As a preliminary step in the proof of the

14The models considered here are consistent with the axioms in Sec. 3, but the results provided here do not rely on this.
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main characterization result (Theorem 3.1), the present paper extends the Ghirardato et al. representa-

tion to preferences that satisfy the weaker Axiom 3.5 in lieu of Certainty Independence. The interested

reader is referred to Sec. B.2 in the Appendix.

Turn now to the variational preferences characterized by Maccheroni, Marinacci and Rustichini [37]:

given a utility function u : X →R,

f ¼ g ⇔ min
q∈ba1(Σ)

�∫

u ◦ f dq+ c ∗(q )

�

≥ min
q∈ba1(Σ)

�∫

u ◦ g dq+ c ∗(q )

�

,

where, denoting by x f a certainty equivalent of the act f for every f ∈ L 0, the function c ∗ : ba1(Σ) →
R+ ∪{∞} is defined by

c ∗(q ) = sup
f ∈L 0

�

u (x f )−
∫

u ◦ f dq

�

.

Maccheroni et al. [37] show that variational preferences are characterized by Axioms 3.1–3.4 and Ambi-

guity Aversion (Axiom 4.1). The following result shows that Complementary Independence corresponds

to a natural symmetry property of the “cost function” c ∗, and again identifies a unique baseline prior.

Proposition 4.5 (Complementary Independence for Variational Preferences) Let¼be a variational pref-

erence, and assume that the utility function u is unbounded either above or below. Then ¼ satisfies

Axiom 3.7 if and only if there exists p ∈ ba1(Σ) such that

∀q ∈ ba1(Σ), 2p −q ∈ ba1(Σ)⇒ c ∗(q ) = c ∗(2p −q ) and 2p −q 6∈ ba1(Σ)⇒ c ∗(q ) =∞.

In particular, c ∗(p ) = 0. Finally, p is the unique probability charge such that, for all complementary pairs

( f , f̄ ), f ¼ f̄ ⇔
∫

u ◦ f dp≥
∫

u ◦ f̄ dp.

The reader is referred to [37] for a discussion of the unboundedness assumption.

4.5 More Examples

4.5.1 Variation and distance-based adjustments

As can be expected in light of the discussion in the Introduction, a natural class of VEU preferences is

obtained by adopting one of the standard measures of dispersion as the adjustment function A. This

subsection discusses interesting special cases, corresponding to the combination of specific dispersion

measures with specific adjustment tuples.

Assume first, for simplicity, that Ω is finite, let Σ = 2Ω, and write Ω = {ω0, . . . ,ωn}; correspondingly,

identify ba1(Σ) with ∆(Ω) ≡ {p ∈ Rn+1
+ :

∑n
i=0 p i = 1}, the unit simplex in Rn+1. Fix a strictly positive
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baseline probability p ∈ ∆(Ω). Grant and Kaji [27] consider the preference functional I : B0(Σ) → R
defined by

∀a ∈Rn+1 = B0(Σ), I (a ) =
n
∑

i=0

p i a i −ε

√

√

√

√

n
∑

i=0

p i

 

a i −
n
∑

j=0

p i a j

!2

≡ Ep (a )−εσp (a );

they show that I is monotonic provided mini p i ≥ ε2

1+ε2 , in which case the resulting preferences are con-

sistent with the MEU model. It is easy to see that these preferences also satisfy Complementary Indepen-

dence, and are thus also VEU preferences; in particular, a corresponding adjustment tuple m ∈M n (Σ)

and function A : Rn+1 → R are given by m i ({ωi }) = 1− p i and m i ({ωj }) = −p j for all i and j 6= i , and

A(ϕ) =−ε
p
∑n

i=0 p iϕ
2
i .

One shortcoming of the “mean–standard-deviation preferences” defined above is that they necessar-

ily violate monotonicity when the state spaceΩ is infinite (cf. Grant and Kaji [27]). If instead dispersion is

measured by the Gini mean difference (Yitzhaki [58]; Yitzhaki and Olkin [59]), monotonicity is preserved.

In particular, for an arbitrary measurable space (Ω,Σ), the functional I : B0(Σ)→R defined by

I (a ) = Ep [a ]−
1

2
θ

∫∫

|a (ω)−a (ω′)|p (dω′) p (dω)

is monotonic for all θ ∈ [0, 1] (cf. [59], Eqs. 3.1 and 3.2), and characterizes well-defined VEU preferences.

IfΩ is finite, the adjustment term can be represented via the adjustment tuple m = (m i j )i 6=j ∈M n (n+1)(Σ)

such that m i j ({ωi }) = 1 = −m i j ({ωj }) and m i j ({ωk }) = 0 for all k 6= i , j , together with the function

A :Rn (n+1)→R such that A(ϕ) =− 1
2θ
∑n

i=0

∑

j 6=i p i p j |ϕi j |.

A different class of ambiguity-averse VEU preferences can be constructed via distance functions.

Again assume that Ω is finite, fix a baseline probability p ∈ ∆(Ω), and consider a constant ε > 0 such

that p i ≡ p ({ωi }) > ε for every i = 0, . . . , n . Now define an adjustment tuple m ∈ M n (Ω) and a corre-

sponding adjustment function A : Rn+1 → R by m i ({ωi }) = n
n+1ε and m i ({ωj }) = − 1

n+1ε for all i and

j 6= i , and A(ϕ) =−
p
∑n

i=0ϕ
2
i ; then, for every vector a ∈ B0(Σ, u (X )) =Rn+1,

I (a )≡
∫

a dp+A

�∫

a dm

�

=
n
∑

i=0

a i p i −ε

√

√

√

√

n
∑

i=0

 

a i −
1

n +1

n
∑

j=0

a j

!2

. (15)

Notice that the VEU preferences defined by (u , p , n , m , A) are differentiable everywhere except “at cer-

tainty.” It turns out that the resulting preferences are also consistent with the MEU decision model:

Remark 4.2 For every a ∈Rn+1, I (a ) =minq∈C

∫

a dq, where C =
n

q ∈∆(Ω) :
p

∑n
i=0(qi −p i )2 ≤ ε

o

.
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4.5.2 Ambiguity Attitudes and Outcome Size

In the examples considered so far, the individual’s ambiguity attitudes are qualitatively the same for

all acts under consideration: in particular, for a VEU decision-maker with baseline prior p and utility

function u who is ambiguity-averse in the sense of Def. 5, the certainty equivalent of every act f is

not greater than its “unambiguous” certainty equivalent u−1
�∫

u ◦ f dp
�

. However, there is evidence

that some individuals might be ambiguity-seeking when contemplating small-stake bets, and ambiguity-

averse when considering large bets. For instance, this is documented in recent experimental work by

Koch and Schunk [35]; earlier evidence along the same lines can be found in Hogarth and Einhorn [31].15

Incidentally, an analogous pattern has been broadly documented in the setting of risky choice: subjects

display risk-seeking attitudes when stakes are low, and risk-averse behavior for larger bets (Prelec and

Lowenstein [43] deem this the “peanuts effect”).

I now indicate a possible VEU representation of this preference pattern. The cited experiments deal

with draws from an urn of unknown composition, so it is enough to consider the state space Ω= {ω,ω′};
for simplicity, the baseline probability p will be taken to be uniform, and utility will be assumed linear.

It is sufficient to consider a scalar adjustment m ∈M 1(Ω); finally, fix a real number t ≥ 1 and let

A(ϕ) = log
�

1+ t 2
�

−
1

2
log
�

1+(ϕ+ t )2)
�

−
1

2
log
�

1+(ϕ− t )2
�

.

The function A is positive for ϕ ∈
�

−
p

2(t 2−1),
p

2(t 2−1)
�

, and has a unique (positive) maximum at

either side of zero; for values of ϕ outside this interval, it becomes negative. Notice that this function is

differentiable everywhere, and its derivative lies between −1 and 1; by Remark A.1 in the Appendix, the

VEU preferences characterized by (u , p , 1, m , A)will be monotonic if p (E )≥ |m (E )| for all events E .

Take t = 3 and m ({ω}) =−m ({ω′}) = 0.2, and consider the acts f , g such that

f (ω) = 10, g (ω) = 1000, f (ω′) = g (ω′) = 0.

Intuitively, f corresponds to a “small” bet on the event that ω occurs, whereas g is a “large” bet on the

same event. The “unambiguous” certainty equivalents of these acts are, respectively,
∫

f dp = 5 and
∫

g dp= 500; the certainty equivalent of f is approximately 5.33> 5, whereas the certainty equivalent of

g is 491.71 < 500. Thus, this individual displays ambiguity-seeking preferences for the small bet f , and

ambiguity-averse behavior for the large bet g .16

15Specifically, Table 4 in [31] shows that the fraction of subjects who display ambiguity-averse preferences in the experiments

under consideration increases with outcome size; the subsequent discussion on p. 798 indicates that subjects not classified as

ambiguity-averse are to be considered ambiguity-seeking. Hence, there a fraction of subjects must display ambiguity-seeking

preferences for small stakes, and switch to ambiguity-averse behavior for large stakes.
16More generally, whenever g (ω) > 20, the certainty equivalent of g is smaller than its unambiguous certainty equivalent

500; and whenever f (ω)< 20, the certainty equivalent of f is greater than 5.
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5 Discussion

5.1 Related Literature

In the context of choice under risk, Quiggin and Chambers [44, 45] analyze models featuring an exoge-

nously given, objective reference probability p . Under suitable assumptions, a random variable y is

evaluated according to the difference between its expectation Ep (y )with respect to p , and a “risk index”

ρ(y )—a representation that is clearly reminiscent of the VEU representation.17

Similar functional forms also appear in the social-choice literature. A classic result due to Roberts

[46] characterizes social-welfare functionals that evaluate a profile u 1, . . . , u I of utility imputations ac-

cording to the form ū − g (u 1− ū , . . . , u I − ū ), where ū = 1
I

∑

i u i . Ben-Porath and Gilboa [3] characterize

orderings over income distributions that can be represented in what is essentially a special case of the

VEU functional, with the uniform distribution as reference probability. Incidentally, the adjustment part

of the representation in [3] has an interesting interpretation in terms of adjustment tuples (cf. Def. 1).

While these contributions are not directly relevant to choice under uncertainty, it is worth empha-

sizing that representations similar to the one proposed here have proved effective in a variety of settings.

The literature on model uncertainty, initiated by Lars Hansen, Thomas Sargent and coauthors (see

e.g. [29, 30]), also prominently features a reference prior; the focus in this literature is largely on applica-

tions to macroeconomics and finance, rather than on behavioral foundations. An interesting axiomati-

zation has recently been provided by Strzalecki [55]; see also Wang [57].

A recent paper by Grant and Polak [28] provides a “primal representation” of Maccheroni et al.’s vari-

ational preferences model [37] in a finite-states setting, and generalizes it by relaxing translation invari-

ance (monotonicity and ambiguity aversion are also weakened). The representation Grant and Polak

propose is related to the ones in Quiggin and Chambers [45] and Roberts [46]: each act f is evaluated by

aggregating a “reference expected utility” term Ep [u ◦ f ], where p denotes a suitable reference prior, and

an “ambiguity index” ρ(·) that depends upon the utility differences u ( f (ωi ))−Ep [u ◦ f ] in each stateωi .

Grant and Polak show that variational preferences aggregate these two components additively, whereas

relaxing translation invariance leads to more general aggregators.

In comparison with the VEU representation proposed here, the reference prior in [28] is defined by a

geometric, rather than behavioral condition, and is not unique in general. More precisely, in the space of

utility profiles, the prior p in [28] corresponds to a hyperplane supporting the individual’s indifference

curves at a point on the certainty line. Decision models featuring a kink at certainty (e.g. MEU, CEU

or invariant biseparable preferences) allow for multiple supporting hyperplanes, and hence multiple

reference priors as defined in [28]. One way to ensure uniqueness is to assume that indifference curves

17See also Epstein [16] and Safra and Segal [47].
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are “flat” or smooth at certainty; but, in this case, the prior p only reflects (indeed, under smoothness,

approximates) local behavior around the certainty line. The baseline prior in the VEU representation is

instead uniquely identified by the individual’s preferences over complementary acts. Hence, every act

contributes to the behavioral identification of the baseline prior in the VEU representation; conversely,

the baseline prior provides a behaviorally significant contribution to the VEU evaluation of every act.

Furthermore, Grant and Polak maintain a form of ambiguity aversion, which is required for the exis-

tence of a supporting hyperplane at certainty; the VEU representation instead allows for arbitrary ambi-

guity attitudes. Finally, the ambiguity indexρ in [28] is not invariant to sign changes; the VEU adjustment

functional A instead satisfies this invariance property, which supports the intuition that adjustments to

baseline evaluations reflect outcome variability, or dispersion.

On the other hand, the analysis of VEU preferences provided in this paper does assume translation

invariance (cf. Axiom 3.5); however, see §5.2 below.

Decision models that incorporate a reference prior have also been analyzed in environments where

the objects of choice either consists of, or include sets of probabilities. In Stinchcombe [53], Gajdos, Tal-

lon and Vergnaud [19] and Gajdos, Hayashi, Tallon and Vergnaud [20], the reference prior is characterized

as the Steiner point of the set of probabilities under consideration. In Gajdos, Tallon and Vergnaud [18]

and Wang [57], each object of choice explicitly indicates the reference prior. The present paper comple-

ments the analysis in these contributions by offering a characterization of a decision model featuring a

baseline prior in a fully subjective environment.

Kopylov [36] axiomatizes a special case of maxmin-expected utility preferences, where the character-

izing set of priors is generated by ε-contamination: that is, it takes the form {(1−ε)p+εq : q ∈∆}, where

p serves as a reference prior and∆ is a set of “contaminating” probability measures. While the prior p is

endogenously derived, the set∆must be specified exogenously.

Finally, recall that, for any capacity (non-additive set function) v , the Moebius inverse µ of v , is a set

function with the property that v (E ) can be obtained as the sum of µ(F ), for all F ⊂ E . The quantity µ(F )

is interpreted as the “weight of evidence” supporting F , independently of its subsets; see Shafer [50] for

details. In a somewhat “dual” fashion, the adjustment measures (m i )0≤i<n in the VEU model represents

the interaction patterns among ambiguous events; loosely speaking, it indicates how evidence about one

event can be combined with evidence about another.18

5.2 Additional Features and Extensions

Probabilistic Sophistication. It is possible to construct examples of non-EU VEU preferences that are

probabilistically sophisticated in the sense of Machina and Schmeidler [38]. A precise characterization

18I thank Peter Wakker for pointing out this connection.
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of probabilistic sophistication for VEU preferences is left for future work; however, Sec. B.10 in the Ap-

pendix provides a simple, related result that sheds further light on the central role of baseline probabili-

ties in the VEU model.

Specifically, given a preference relation¼ on L 0, define the induced likelihood ordering ¼`⊂Σ×Σ by

∀E , F ∈Σ, E ¼` F ⇔ x E y ¼ x F q for all x , y ∈X with x � y .

Proposition B.15 in Sec. B.10 shows that, if ¼ is a VEU preference, then the induced likelihood ordering

is represented by a (convex-ranged) probability measure µ if and only if µ is the baseline prior for ¼.

Translation-invariance. Because they satisfy the Weak Certainty Independence axiom 3.5, VEU pref-

erences are invariant to “translation in utility space”; in the language of Grant and Polak [28], they dis-

play “constant absolute ambiguity aversion,” as do, for instance, MEU, CEU, variational and invariant-

biseparable preferences.

It should be emphasized that this is solely a consequence of Axiom 3.5: in particular, the key novel

axiom in the characterization of the VEU representation, namely Complementary Independence (Axiom

3.7, is consistent with departures from translation invariance. Consider an “aggregator” function W :

R2→R, strictly increasing in both arguments.19 Also let u , p , m and A be as in the VEU representation.

Then one may consider preferences defined by

∀ f , g ∈ L 0 f ¼ g ⇔ W

�∫

u ◦ f dp, A

�∫

u ◦ f dm

��

≥W

�∫

u ◦ g dp, A

�∫

u ◦ g dm

��

;

thus, the representation considered in this paper corresponds to the aggregator W (x , y ) = x + y . It is

then clear that Axiom 3.7 holds for such preferences: to elaborate, if the acts f and f̄ are complementary,

A(
∫

u ◦ f dm) = A(
∫

u ◦ f̄ dm), and therefore the ranking of f and f̄ is still determined by their baseline

expected utilities because W is strictly increasing; this immediately implies the claim.

Therefore, it may be possible to relax Axiom 3.5 to characterize a version of the VEU representation

that does not necessarily satisfy “constant absolute ambiguity aversion.” Notice that the proposed gener-

alized VEU representation would still feature sign- and translation-invariant adjustments A(
∫

u ◦ f dm),

and hence would be fully consistent with the variability interpretation described in this paper.20 Such an

extension is left to future work.

Finite adjustment tuples. In applications, it is convenient to consider representations featuring a

finite number of adjustment tuples. Theorem 3.1 shows that this is without loss of generality, if the state

space is finite. For general state spaces, the approach in Siniscalchi [52] provides one way to guarantee

by means of behavioral axioms that finitely many adjustment measures are sufficient.

19That is, such that x ≥ x ′ and y > y ′, or x > x ′ and y ≥ y ′, both imply W (x , y )>W (x ′, y ′).
20Axiom 3.8 may impose restrictions on the aggregator W . However, recall from Sec. 3 that this axiom may be dropped by

ensuring that utility is unbounded, as in Maccheroni, Marinacci and Rustichini [37] or Grant and Polak [28].
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A Appendix: Miscellanea

A.1 Adjustment tuples and vector measures

Consider an adjustment tuple m ∈M n (Σ), 0< n ≤∞, and let m̂ :Σ→Rn be defined as in Sec. 2.1. By assumption,

for every E ∈ Σ, there is N (E ) <∞ such that supi |m i (E )| ≤ N (E ); hence, one can view m̂ as a map from Σ to `n
∞,

the set of supnorm-bounded real sequences of n terms (which of course coincides withRn if n <∞). Moreover, by

the Nicodym boundedness theorem (cf. Dunford and Schwartz [10], §IV.9.8), this implies that sup{|m i (E )| : 0≤ i <

n , E ∈ Σ} <∞; in turn, this implies that m̂ is a vector measure with bounded semi-variation (cf. [10], §IV.10.3-4):

that is, letting Π denote the set of all finite Σ-measurable partitions of Ω,

‖m̂‖(Ω)≡ sup
π∈Π,ε1,ε2,...∈[−1,1]

sup
0≤i<n

�

�

�

�

�

∑

Ak∈π
εk m̂ (Ak )

�

�

�

�

�

<∞.

Integration with vector measures of bounded semivariation can be defined as in the development of the Lebesgue

theory. For every simple function a =
∑K

k=1αk 1Ek ∈ B0(Σ), define
∫

a dm̂ =
K
∑

k=1

αk m̂ (Ek ).

Next, for any a ∈ B (Σ), consider a sequence (a k )k≥1 ⊂ B0(Σ) such that a k → a in the sup norm; then let
∫

a dm̂ = lim
k→∞

∫

a k dm̂ ,

where the limit is taken w.r.to the `∞ norm. It is simple to verify that these definitions are well-posed (for a ∈ B0(Σ),

the integral is the same for any representation of a as a linear combination of indicator functions; and for a ∈ B (Σ),

the integral is the same for all approximating sequences of simple functions).

The equality
∫

a dm̂ =
�∫

a dmi

�

0≤i<n
is true by definition for a ∈ B0(Σ). Furthermore, since m̂ has bounded

semivariation,

∞> sup
π∈Π(E ),ε1,ε2,...∈[−1,1]

sup
i

�

�

�

�

�

∑

Ak∈π
εk m i (Ak )

�

�

�

�

�

≥ sup
π∈Π(E ),ε1,ε2,...∈[−1,1]

�

�

�

�

�

∑

Ak∈π
εk m i (Ak )

�

�

�

�

�

≥

≥ sup
π∈Π(E )

�

�

�

�

�

∑

Ak∈π
sgn(m i (Ak ))m i (Ak )

�

�

�

�

�

= sup
π∈Π(E )

∑

Ak∈π
|m i (Ak )|,

where sgn(x ) equals −1, 0, 1 iff x is negative, zero, or positive respectively, and the last expression is the total vari-

ation v (m i ,Ω) of the scalar, signed measure m i on the set Ω. Hence, v (m i ,Ω) ≤ ‖m̂‖(Ω) < ∞ for all 0 ≤ i < n .

Consequently, for every b ∈ B (Σ),
�

�

∫

b dmi

�

�< ‖b‖ · ‖m‖(Ω). But this implies that, if a k → a in the supremum norm

and every a k is simple,
�

�

∫

a k dmi−
∫

a dmi

�

� ≤ ‖a k −a‖ · ‖m̂‖ → 0, and hence
∫

a k dmi →
∫

a dmi , uniformly in i ,

which implies that
∫

a dm̂ =
�∫

a dmi

�

0≤i<n
.

A.2 Conditions for Monotonicity

Remark A.1 If a tuple (u , p , n , m , A) satisfies Conditions 1 and 2 in Def. 2, n <∞, and A is continuous on R0(m , u (X ))

and differentiable on R0(m , u (X ))\A−1(0), then it satisfies Condition 3 if and only if p (E )+
∑

0≤i<n
∂ A
∂ ϕi
(ϕ)m i (E )≥ 0

for all ϕ 6∈ A−1(0).
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Proof: It is easy to see that Condition 3 is equivalent to the following requirement: for all a ∈ B0(Σ, u (X )), E ∈ Σ
and ε> 0 such that a +ε1E ∈ B0(Σ, u (X )):

εp (E )+A(

∫

a dm+εm (E ))−A(

∫

a dm)≥ 0. (16)

For any ϕ ∈ R0(m , u (X )), if A(ϕ) = 0 or ϕ =
∫

a dm and a + 1Eε ∈ B0(Σ, u (X )) for some ε > 0, Eq. (16) readily

implies the condition in the Remark; if A(ϕ) 6= 0, ϕ =
∫

a dm, but a + 1Eε 6∈ B0(Σ, u (X )) for any ε > 0, then let

F = {ω : a (ω) =max u (X )}; since a takes up finitely many distinct values, it must be the case that F 6= ;. In this

case, consider the sequence (a k ) given by a k = a − 1F
1
k

; for k sufficiently large, a k ∈ B0(Σ, u (X )), A(
∫

a k dm) 6= 0,

and there is εk > 0 such that a k + 1Eεk ∈ B0(Σ, u (X )). Then p (E ) +
∑

0≤i<n
∂ A
∂ ϕi
(
∫

a k dm)m i (E ) ≥ 0 for all large k ,

and the claim follows by continuity of the partial derivatives ∂ A
∂ ϕi

.

Now suppose the condition in the Remark holds, and fix a , E ,ε > 0 such that a , a + 1Eε ∈ B0(Σ, u (X )); to

simplify the notation, write ϕη =
∫

a dm+ηm (E ) for all η∈ [0,ε].

Consider first the case A(ϕ0) = 0. Let ε0 = sup{η ∈ [0,ε] : A(ϕη) = 0}. If ε0 = 0, then A(ϕη) is differentiable for

all η∈ (0,ε), and

εp (E )+A(ϕε)−A(ϕ0) = 0 ·p (E )+A(ϕ0)−A(ϕ0)+

∫ ε

0



p (E )+
∑

0≤i<n

∂

∂ ϕi
A(ϕη)m i (E )



 dη≥ 0, (17)

as required. If ε0 > 0, then by continuity A(ϕε0 ) = 0= A(ϕ0), so

ε0p (E )+A(ϕε0 )−A(ϕ0) = ε0p (E )≥ 0. (18)

Thus, in particular, if ε0 = ε, Eq. (16) holds. If instead ε0 < 1, then one can repeat the preceding argument with

a ′ =
∫

a dm+ε01E and ε′ = ε−ε0 in lieu of a and ε; by assumption A(
∫

a ′dm+ηm (E )) 6= 0 for all η∈ (0,ε′), so the

argument just given implies that (ε−ε0)p (E )+A(ϕε)−A(ϕε0 )≥ 0; together with Eq. (18), this implies that Eq. (16)

holds in this case as well.

Consider now the case A(ϕ0)> 0. Let ε1 = sup{η ∈ [0,ε] : A(ϕη) 6= 0}. By continuity of A, ε1 > 0; thus, integrat-

ing on (0,ε1) as in Eq. (17) yields ε1p (E )+A(ϕε1 )−A(ϕ0)≥ 0. If ε1 = ε the proof is complete. Otherwise, note that,

by continuity of A, A(ϕε1 ) = 0. Letting a ′ = a +ε11E and ε′ = ε−ε1 in lieu of a and ε, and applying the argument

given above yields (ε−ε1)p (E )+A(ϕε)−A(ϕε′ )≥ 0; together with ε1p (E )+A(ϕε1 )−A(ϕ0)≥ 0, this implies that Eq.

(16) holds.

Remark A.2 If a tuple (u , p , n , m , A) satisfies Conditions 1 and 2 in Def. 2 and A is concave and positively homo-

geneous, then (u , p , n , m , A) satisfies Condition 3 if and only if p (E )+A(m (E ))≥ 0 for all E ∈Σ.

Proof: Since A is positively homogeneous, it has a unique positively homogeneous extension to R0(m ,R) given by

A(
∫

αa dm) =αA(
∫

a dm) for allα> 0 and a ∈ B0(Σ, u (X )). Hence, A(
∫

a dm) is well-defined for all a ∈ B0(Σ), and A

is also concave on this domain. It follows that, for allϕ,ψ∈R0(m ,R), A(ϕ) = A(ψ+(ϕ−ψ)) = 2A( 1
2
ψ+ 1

2
(ϕ−ψ))≥

2 1
2

A(ψ)+2 1
2

A(ϕ−ψ), so A(ϕ−ψ)≤ A(ϕ)−A(ψ).

Now suppose that p (E ) +A(m (E )) ≥ 0 for all E ∈ Σ, and consider a ,b ∈ B0(Σ,R) with a (ω) ≥ b (ω) for all ω.

Then a − b ∈ B0(Σ,R), and since a (ω)− b (ω) ≥ 0 for all ω, concavity and homogeneity, together with linearity
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and monotonicity of
∫

·dp, imply that
∫

(a − b )dp+ A(
∫

(a − b )dm) ≥ 0. But the argument given above implies

that A(
∫

(a −b )dm) ≤ A(
∫

a dm)− A(
∫

b dm), so
∫

a dp+ A(
∫

a dm) ≥
∫

b dp+ A(
∫

b dm). The other direction is

immediate.

A.3 Examples

Proof of Remark 4.2: Fix a non-constant a ∈ Rn+1; since both the functional I and the MEU functional are

constant-linear, it is enough to consider vectors a such that
∑

i a i = 0. Now consider the problem minq∈C

∫

a dq;

the constraint set can be written as C =
¦

q ∈Rn+1
+ :

∑

i (qi −p i )2 ≤ ε2,
∑

i qi = 1
©

, so the Lagrangian is

∑

i

a i qi +λ

�

∑

i

(qi −p i )2−ε2

�

+µ(1−
∑

i

qi )

with λ≥ 0, µ∈R and qi ≥ 0 for all i . Differentiating with respect to qi and equating to 0 yields a i +2λ(qi −p i )−µ=
0 (the assumption that p i > ε implies that qi > 0 at the optimum, so the first-order condition must hold with

equality). Assuming further that λ> 0, summing over all i , and invoking the constraint
∑

i qi = 1 yields µ= 0, and

so qi = p i − 1
2λ

a i . Now using the other constraint (which must hold with equality by standard arguments) yields
∑

i
1

4λ2 a 2
i = ε

2, so 2λ= 1
ε

p
∑

i a 2
i , which is indeed strictly positive because a is non-constant; thus, finally

qi = p i −ε
a i

Æ

∑n
j=0 a 2

j

=⇒
n
∑

i=0

a i qi =
n
∑

i=0

a i p i −ε
n
∑

i=0

a i ·
a i

Æ

∑n
j=0 a 2

j

=
n
∑

i=0

a i p i −ε

s

n
∑

i=0

a 2
i = I (a ).

B Appendix: Proofs

B.1 Additional Notation and Preliminaries on Niveloids

Throughout this Appendix, if Ω is endowed with a topology, the set of continuous real functions on Ω will be de-

noted by C (Ω). Furthermore, ba(Σ) and ba1(Σ) indicate, respectively, the set of finitely additive measures and the

set of charges (finitely additive probabilities) on (Ω,Σ); recall that ba(Σ) is isometrically isomorphic to the norm

dual of B0(Σ) and B (Σ), and similarly, if Ω is a compact metric space, ca(Σ) is isometrically isomorphic to the norm

dual of C (Ω). Recall that theσ(ba(Σ, B (Σ)) andσ(ba(Σ), B0(Σ)) topologies coincide on ba1(Σ), the set of probability

charge; they are referred to as the weak∗ topology.

Furthermore, if Γ⊂R is a non-empty, non-singleton interval, denote by B0(Σ,Γ), B (Σ,Γ) and C (Σ,Γ) the restric-

tions of B0(Σ), B (Σ) and C (Σ) to functions taking values in Γ. Then the weak∗ topology on ba1(Σ) also coincides

with theσ(ba(Σ), B0(Σ,Γ)) andσ(ba(Σ), B (Σ,Γ)) topologies.

The indicator function of an event E ∈ Σ will be denoted by 1E . Inequalities between two elements a ,b of

B0(Σ), B (Σ) or C (Ω) are interpreted pointwise: a ≥b means that a (ω)≥b (ω) for allω∈Ω.

Let Φ ⊂ B (Σ) be convex. A functional I : Φ→ R is a niveloid iff I (a )− I (b ) ≤ sup(a −b ) for all a ,b ∈ Φ; it is

normalized if I (γ1Ω) = γ for all γ ∈ R such that γ1Ω ∈ Φ; monotonic iff, for all a ,b ∈ Φ, a ≥ b implies I (a ) ≥ I (b );

constant-mixture invariant iff, for all a ∈ Φ, α ∈ (0, 1), and γ ∈ R with γ1Ω ∈ Φ, I (αa + (1−α)γ) = I (αa ) + (1−α)γ;
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vertically invariant iff I (a + γ) = I (a ) + γ for all a ∈ Φ and γ ∈ R such that a + γ ∈ Φ; and affine iff, for all a ,b ∈ Φ
and α∈ (0, 1), I (αa +(1−α)b ) =αI (a )+ (1−α)I (b ). Maccheroni, Marinacci and Rustichini [37] (MMR henceforth)

demonstrated the usefulness of niveloids in decision theory, and established certain useful results reviewed below.

If Φ = B0(Σ) or Φ = B (Σ), then a functional I : Φ → R is positively homogeneous iff, for all a ∈ Φ and α ≥ 0,

I (αa ) = αI (a ); c-additive iff I (a + α) = I (a ) + α for all α ∈ R+ and a ∈ Φ; additive iff I (a + b ) = I (a ) + I (b ) for

all a ,b ∈ Φ; c-linear iff it is c-additive and positively homogeneous; and linear iff it is additive and positively

homogeneous.

The following useful results on niveloids are due to or reviewed in MMR. In particular, item 6 provides a first

representation for preferences satisfying the basic axioms considered here, except for the symmetry requirements.

Proposition B.1 (MMR) Let Γ be an interval such that 0∈ int(Γ) and I : B0(Σ, K )→R.

1. If I is a niveloid, it is is supnorm, hence Lipschitz continuous.

2. If I : B0(Σ, K )→R is a niveloid, then it has a (minimal) niveloidal extension to B (Σ).

3. I is a niveloid iff it is monotonic and constant-mixture invariant.

4. If I is constant-mixture invariant, then it is vertically invariant.

5. If I is vertically invariant, then it has a unique, vertically invariant extension Î to B0(Σ,Γ)+R≡ {a +1Ωγ : a ∈
B0(Σ,Γ),γ∈ Γ}.

6. A preference¼ on L 0 satisfies Axioms 3.1–3.4 if and only if there is a non-constant, affine function u : X →R
and a normalized niveloid I : B0(Σ, u (X ))→R such that f ¼ g iff I (u ◦ f )≥ I (u ◦ g ).

The following uniqueness result is straightforward:

Corollary B.2 If I , u and I ′, u ′ provide two representations of¼ as per the last point of Prop. B.1, then u ′ =αu +β

(with α> 0) and I ′(αa ) =αI (a ) for all a ∈ B (Σ, u (X )).

Proof: Since I and I ′ are normalized, standard results imply that u ′ =αu+β for someα> 0 andβ ∈R. Next, for ev-

ery a ∈ B (Σ,Γ), let f ∈ L 0 be such that u ◦ f = a and x ∼ f : thus, since I and I ′ are normalized, u (x ) = I (u ◦ f ) = I (a )

and similarly u ′(x ) = I ′(u ′◦ f ), i.e. αu (x )+β = I ′(αu ◦ f +β ), soαu (x ) = I ′(αu ◦ f )by vertical invariance [the require-

ment thatαu ◦ f +β ∈ B0(Σ, u ′(X )) is trivially satisfied, asαu ◦ f +β = u ′◦ f ∈ B0(Σ, u ′(X ))]. But thenαI (a ) = I ′(αa ),

as required. [Note that this is consistent with normalization: αI (γ1Ω) =αγ and I ′(αγ1Ω) =αγ.]

B.2 A generalized α-MEU representation

This subsection extends the characterization results of Ghirardato, Maccheroni and Marinacci [22] (GMM hence-

forth) to allow for the weakened c-Independence axiom adopted here (Axiom 3). This entails replicating and often
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modifying their arguments and conclusions, so as not to rely upon positive homogeneity of I . The main objective

is to represent a normalized niveloid I : B0(Σ,Γ) in the form

I (a ) = γ(a )min
q∈C

∫

a dq+[1−γ(a )]max
q∈C

∫

a dq, (19)

where C ⊂ ba1(Σ) is weak∗ closed and convex, and γ : B0(Σ,Γ) → [0, 1] is such that γ(a ) = γ(b ) whenever there

is δ ∈ R such that
∫

a dq =
∫

b dq + δ for all q ∈ C . As the construction carried out below demonstrates, the

set C can be viewed as providing a representation of “unambiguous preferences,” as is the case in the original

setting adopted by GMM. Also, while C can no longer be identified with the Clarke differential of I at 0, its support

functional has a similar interpretation as the Clarke (lower) derivative of I in GMM. This turns out to be sufficient

for the purposes of constructing the VEU representation.

The first step in this construction is to define and characterize an “unambiguous” ordering on utility profiles.

Note that GMM first define an “unambiguous preference relation” ¼∗ on acts, and then translate that into an or-

dering over their utility profiles; since this paper does not focus on the interpretation of ¼∗, a more direct route is

taken; the techniques, however, are similar.

Lemma B.3 Let Γ⊂R be a non-singleton interval and I : B0(Σ,Γ)→R be a niveloid. Define a binary relation � on

B0(Σ,Γ) by

∀a ,b ∈ B0(Σ,Γ), a �b ⇔ ∀α∈ (0, 1], c ∈ B0(Σ,Γ) : I (αa +(1−α)c )≥ I (αb +(1−α)c ).

Then there is a unique, weak∗ compact and convex set C ⊂ ba1(Σ) such that a �b iff
∫

a dq≥
∫

b dq for all q ∈C .

Note: write “a 'b ” for “a �b and b � a .”

Proof: It will be shown that � is a monotonic, conic, continuous and non-trivial preorder; the result then follows

from Proposition A.2 in GMM. The arguments closely mimic Prop. 4 in GMM.

� is monotonic: if a (ω) ≥ b (ω) for all ω, then also αa (ω) + (1−α)c (ω) ≥ αb (ω) + (1−α)c (ω) for all α ∈ (0, 1].

Since I is monotonic, I (αa +(1−α)c )≥ I (αb +(1−α)c ), i.e. a �b .

� is reflexive: follows from monotonicity.

� is transitive: if a � b and b � c , then for all α ∈ (0, 1] and all d , I (αa + (1− α)d ) ≥ I (αb + (1− α)d ) ≥
I (αc +(1−α)d ), so a � c .

� is conic (i.e. independent): if α ∈ (0, 1), then, for all β ∈ (0, 1], note that β [αa + (1− α)c ] + (1− β )d =
βαa +(1−βα)[β (1−α)

1−βα c + 1−β
1−βαd ] and similarly for b . Thus, a �b implies, in particular, that

I (β [αa +(1−α)c ]+ (1−β )d ) = I

�

βαa +(1−βα)
�

β (1−α)
1−βα

c +
1−β

1−βα
d

��

≥

≥ I

�

βαb +(1−βα)
�

β (1−α)
1−βα

c +
1−β

1−βα
d

��

= I (β [αb +(1−α)c ]+ (1−β )d )

for all β ∈ (0, 1], so αa +(1−α)c �αb +(1−α)c . The case α= 1 is trivial.

� is continuous: if a n → a and b n → b in B0(Σ,Γ), then for every α and c , I (αa n +(1−α)c )→ I (αa +(1−α)c )
and similarly for b because I is supnorm-continuous, and the claim follows.
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Finally, � is nontrivial: consider γ,γ′ ∈ Γ such that γ > γ′; by monotonicity, γ � γ′, and if also γ � γ′, then

I (αγ+(1−α)c )≤ I (αγ′+(1−α)c ) for all c ∈ B0(Σ,Γ) and α∈ (0, 1]: for α= 1, one obtains I (γ)≤ I (γ′), but by vertical

invariance I (γ) = I (γ′+(γ−γ′)) = I (γ′)+γ−γ′ > I (γ′): contradiction. Thus, γ� γ′ but not γ′ � γ, as required.

Recall that a niveloid I : B0(Σ,Γ)→ R has a minimal extension to a niveloid Î : B (Σ)→ R. The next Lemma

shows that (1) the extension is unique on B (Σ,Γ), and (2) if � is extended to B (Σ,Γ), then it is represented by the

set C as in Lemma B.3.

Lemma B.4 Assume that 0 ∈ int(Γ). Then a niveloid I : B0(Σ,Γ)→ R has a unique niveloidal extension to B (Σ,Γ),

denoted by Î . Furthermore, define the relation �̂ on B (Ω,Σ) by

∀a ,b ∈ B (Σ,Γ), a �̂b ⇔ ∀α∈ (0, 1], c ∈ B (Σ,Γ) : Î (αa +(1−α)c )≥ Î (αb +(1−α)c ).

Then �̂ extends� in Lemma B.3, and a �̂b iff
∫

a dq≥
∫

b dq for all q ∈C , where C is as in that Lemma.

Proof: Let Ĩ be the (minimal) niveloidal extension of I to B (Σ); its restriction to B (Σ,Γ), denoted Î , is an extension

of I to B (Σ,Γ) (i.e. it is a niveloid on the latter set). Furthermore, suppose there is another extension I ′ : B (Σ,Γ)→R
of I , and take a ∈ B (Σ,Γ). There is a sequence (a k ) ⊂ B0(Σ,Γ) such that a k → a ; since both Î and I ′ are supnorm

continuous, Î (a ) = limk Î (a k ) = limk I ′(a k ) = I ′(a ); thus, the niveloidal extension of I to B (Σ,Γ) is unique.

Turn to the relation �̂. Note first that, if Î (λa + (1−λ)c )≥ Î (λb + (1−λ)c ) for all c ∈ B0(Σ,Γ), then this is true

also for all c ∈ B (Σ,Γ), because Î is continuous. This implies that �̂ extends �.

Suppose that a ,b ∈ B (Σ,Γ) and a �̂b , so Î (λa + (1−λ)c ) ≥ Î (λb + (1−λ)c ) for all λ ∈ (0, 1] and c ∈ B0(Σ,Γ).

Now note that, for every c ∈ B0(Σ,Γ) and λ ∈ (0, 1], λ( 1
2

a ) + (1−λ)c = 1
2
λa + (1− 1

2
λ) 1−λ

1− 1
2
λ

c , and 1−λ
1− 1

2
λ

c ∈ B0(Σ,Γ);

similarly for b . Therefore, 1
2

a �̂ 1
2

b . Also, since 0 ∈ int(Γ), sup 1
2

a (Ω) < sup Γ and inf 1
2

b (Ω) > inf Γ, so there are

sequences (a k ), (b k )⊂ B0(Σ,Γ) such that a k ↓ 1
2

a and b k ↑ 1
2

b ;21 for such sequences, by monotonicity of Î , one has

I (λa k +(1−λ)c ) = Î (λa k +(1−λ)c )≥ Î (λ 1
2

a +(1−λ)c )≥ Î (λ 1
2

b +(1−λ)c )≥ Î (λb k +(1−λ)c ) = I (λb k +(1−λ)c )
for all λ ∈ (0, 1] and c ∈ B0(Σ,Γ), and therefore

∫

a k dq ≥
∫

b k dq for all q ∈ C . Thus, also
∫

1
2

a dq ≥
∫

1
2

b dq, i.e.
∫

a dq≥
∫

b dq for all q ∈C .

Conversely, suppose that
∫

a dq ≥
∫

b dq for all q ∈ C . Fix α ∈ (0, 1); clearly,
∫

(αa )dq ≥
∫

(αb )dq for all

q ∈ C , and sup αa , inf αb ∈ (inf Γ, sup Γ). Consider sequences (a k ), (b k ) such that a k ↓ αa and b k ↑ αb . Then
∫

a k dq ≥
∫

b k dq for all q ∈ C , so Î (λa k + (1−λ)c ) = I (λa k + (1−λ)c ) ≥ I (λb k + (1−λ)c ) = Î (λb k + (1−λ)c ) for

all λ and c ∈ B0(Σ,Γ), and by continuity Î (λ(αa )+ (1−λ)c )≥ Î (λ(αb )+ (1−λ)c ). Letting α→ 1 and again invoking

continuity shows that a �b .

The following result identifies a useful vertical-invariance property relating Î and the set C .

Lemma B.5 In the setting of Lemma B.4, if a ,b ∈ B (Σ,Γ) and, for some δ ∈R,
∫

a dq=
∫

b dq+δ for all q ∈C , then

Î (a ) = Î (b )+δ.

21Suppose inf c (Ω) > inf Γ and sup c (Ω) < sup Γ. For each k = 0, 1, . . . and ` = 0, . . . , 2k , let γ`,k = inf c (Ω) + `

2k [sup c (Ω)−
inf c (Ω)]; then let a k (ω) =min`=0,...,k {γ`,k : c (ω)≤ γ`,k } and b k (ω) =max`=0,...,k {γ`,k : c (ω)≥ γ`,k }. Then a k ↓ c and b k ↑ c .
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Proof: Assume first that inf b (Ω), sup b (Ω) ∈ int(Γ). Then there exists α ∈ (0, 1) such that b +αδ ∈ B (Σ,Γ). For all

k ≥ 0, let a k = [1− (1−α)k ]a +(1−α)k b . Then a k ∈ B (Σ,Γ) for all k ≥ 0; furthermore,

(1−α)a k +αa = (1−α)[1− (1−α)k ]a +(1−α)k+1b +αa = [1− (1−α)k+1]a +(1−α)k+1b = a k+1.

Claim: for all k , a k +α(1−α)kδ ∈ B (Σ,Γ) and a k+1'̂a k +α(1−α)kδ.

Proof : For k = 0, a 0 +α(1−α)0δ = b +αδ ∈ B (Σ,Γ) by the choice of δ; furthermore, for all q ∈ C ,
∫

a 1 dq =
∫

[(1−α)b +αa ]dq= (1−α)
∫

b dq+α
∫

a dq= (1−α)
∫

b dq+α
∫

b dq+αδ=
∫

b dq+αδ=
∫

[a 0+α(1−α)0δ]dq,

so a 1 ' a 0+α(1−α)0δ. By induction, for k > 0,

(1−α)[a k−1+α(1−α)k−1δ]+αa = (1−α)a k−1+αa +α(1−α)kδ= a k +α(1−α)kδ;

thus, a k +α(1−α)kδ ∈ B (Σ,Γ) because a , a k−1 +α(1−α)k−1δ ∈ B (Σ,Γ); furthermore, if a k '̂a k−1 +α(1−α)k−1δ,

then also

a k+1 = (1−α)a k +αa '̂(1−α)[a k−1+α(1−α)k−1δ]+αa = a k +α(1−α)kδ

because '̂ is a conic preorder.22

The claim implies that, for all k ≥ 1, Î (a k ) = Î (a k−1+α(1−α)k−1δ) = Î (a k−1)+α(1−α)k−1δ, where the second

equality follows from vertical invariance; thus,

Î (a k ) = Î (b )+αδ
k−1
∑

`=0

(1−α)` = Î (b )+αδ
1− (1−α)k

α
= Î (b )+δ[1− (1−α)k ].

Since a k → a and Î is continuous, the result follows.

If b is arbitrary, for k ≥ 0, let a k = k
k+1

a and b k = k
k+1

b , so in particular b k (Ω) ⊂ int(Γ); furthermore, for every

k ≥ 0 and q ∈ C ,
∫

a k dq = k
k+1

∫

a dq = k
k+1

∫

b dq+ k
k+1
δ =

∫

b k dq+ k
k+1
δ, and it has just been shown that then

Î (a k ) = Î (b k )+ k
k+1
δ. Since a k → a and b k →b , continuity implies that Î (a ) = Î (b )+δ.

With I , Î and C as in Lemmata B.3 and B.4, define, for every a ∈ B (Σ,Γ):

C (a ) =

¨∫

a dq : q ∈C

«

, Cmin(a ) = min C (a ), Cmax(a ) = max C (a )

I0(a ) = inf
b∈B0(Σ,Γ),λ∈(0,1]

1

λ

�

Î (λa +(1−λ)b )− I ((1−λ)b )
�

Î0(a ) = inf
b∈B (Σ,Γ),λ∈(0,1]

1

λ

�

Î (λa +(1−λ)b )− Î ((1−λ)b )
�

I 0(a ) = sup
b∈B0(Σ,Γ),λ∈(0,1]

1

λ

�

Î (λa +(1−λ)b )− I ((1−λ)b )
�

Î 0(a ) = sup
b∈B (Σ,Γ),λ∈(0,1]

1

λ

�

Î (λa +(1−λ)b )− Î ((1−λ)b )
�

.

Clearly (take λ = 1) I0(a ) ≤ I (a ) ≤ I 0(a ); also, if I is positive homogeneous, then I0(a ) = infb∈B0(Σ,Γ) Î (a +b )− I (a )

etc., which, as shown in GMM, is the (lower) Clarke derivative of Î at 0. Finally, notice that I0 and Î0 differ in that

the “perturbation” b is chosen from B0(Σ,Γ) and B (Σ,Γ) respectively.

The following Lemma provides the sought-after GMM-type representation of Î .

22The proof is identical to that given in Lemma B.3; alternatively, it follows from the representation provided in Lemma B.4.
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Lemma B.6 Let I , Î and C be as in Lemmata B.3 and B.4. For all a ∈ B (Σ,Γ), Cmin(a ) = I0(a ) = Î0(a ) and Cmax(a ) =

I 0(a ) = Î 0(a ). Furthermore, there is a function γ : B (Σ,Γ)→R such that

∀a ∈ B (Σ,Γ), Î (a ) = γ(a )Cmin(a )+ [1−γ(a )]Cmax(a ), (20)

where γ(a ) is uniquely defined whenever Cmin(a ) < Cmax(a ). If a ,b ∈ B (Σ,Γ) and δ ∈ R are such that
∫

a dq =
∫

b dq+δ and Cmin(a )<Cmax(a ), then γ(a ) = γ(b ).

Proof: Observe first that, for every ε > 0, if 1
λ
[Î (λa +(1−λ)b )− Î ((1−λ)b ) ∈ [Î0(a ), Î0(a )+ε) for some b ∈ B (Σ,Ω),

then there is b ′ ∈ B0(Σ,Ω) such that 1
λ
[Î (λa + (1−λ)b ′)− Î ((1−λ)b ′) ∈ [Î0(a ), Î0(a ) + ε) as well; thus, I0 = Î0, and

similarly I 0 = Î 0.

Observe first that I0,Cmin, I 0,Cmax are monotonic functionals. Now assume that inf a (Ω, sup a (Ω) ∈ int(Γ).

Then, by monotonicity, Cmin(a ),Cmax(a ) ∈ Γ, and mimicking GMM’s Lemma B.4, observe that Cmin(a )� a : hence,

for all λ ∈ (0, 1] and all b ∈ B0(Σ,Γ), Î (λa + (1−λ)b ) ≥ Î (λCmin(a ) + (1−λ)b ) = λCmin(a ) + Î ((1−λ)b ), where the

equality follows by vertical invariance, and this implies that Cmin(a )≤ I0(a ).

Conversely, by definition I0(a )≤ 1
λ
[I (λa +(1−λ)b )− I ((1−λ)b )] for all λ ∈ (0, 1] and b ∈ B0(Σ,Γ), i.e. λI0(a )+

I ((1−λ)b )≤ I (λa +(1−λ)b ), i.e. I (λI0(a )+ (1−λ)b )≤ I (λa +(1−λ)b ) by vertical invariance. By monotonicity of

I0, I0(a )∈ Γ, so I0(a )� a , which implies that I0(a )≤
∫

a dq for all q ∈C , and hence that I0(a )≤Cmin(a ).

Now note that Cmin is positively homogeneous; furthermore, αI0(a ) ≤ I0(αa ) for all α ∈ (0, 1) and a ∈ B (Σ,Γ).

To see this, suppose that, for some α ∈ (0, 1), ε > 0, λ ∈ (0, 1] and b ∈ B0(Σ,Γ) are such that 1
λ
[Î (λ(αa ) + (1−

λ)b )− I ((1−λ)b )] ≤ I0(αa ) + ε; but b ′ = 1−λ
1−λαb ∈ B (Σ,Γ), and so I0(a ) ≤ 1

λα
[Î (λαa + (1−λα)b ′)− I ((1−λα)b ′)] =

1
λα
[Î (λ(αa ) + (1−λ)b )− I ((1−λ)b )] ≤ 1

α
[I0(αa ) + ε]. Thus, αI0(a ) ≤ I0(αa ), as claimed. Finally, for an arbitrary

a ∈ B (Σ,Γ), let a k = k
k+1

a for k ≥ 0; then inf a k (Ω), sup a k (Ω) ∈ Γ, so I0(a k ) = Cmin(a k ) for all k ; by the claim

just proved, for k ≥ 1, I0(a ) ≤ k+1
k

I0(a k ) = k+1
k

Cmin(a k ) = Cmin(a ). Suppose the inequality is strict; then there is

b ∈ B0(Σ,Γ) and λ∈ (0, 1] such that 1
λ
[Î (λa +(1−λ)b )− I ((1−λ)b ] =Cmin(a )−ε for some ε> 0. Let k be such that

|Cmin(a )−Cmin(a k )|< ε
2

and

�

�

�

�

1

λ
[Î (λa +(1−λ)b )− I ((1−λ)b ]−

1

λ
[Î (λa k +(1−λ)b )− I ((1−λ)b ]

�

�

�

�

<
ε

2
.

Then Cmin(a k ) = I0(a k )≤ 1
λ
[Î (λa k +(1−λ)b )− I ((1−λ)b ]<Cmin(a k ), a contradiction. Thus, I0(a ) =Cmin(a ) for all

a ∈ B (Σ,Γ). The argument for I 0 and Cmax is analogous.

Turn now to the representation of Î . Let γ(a ) = Î (a )−Cmax(a )
Cmin(a )−Cmax(a )

if Cmin(a ) < Cmax(a ), and define γ(a ) arbitrary

otherwise. Then it is clear that Eq. (20) obtains. Furthermore, if a ,b ,δ are as in the statement, then Cmin(a ) =

Cmin(b )+δ and Cmax(a ) =Cmax(b )+δ; furthermore, by Lemma B.5, Î (a ) = Î (b )+δ. Thus,

γ(a ) =
Î (a )−Cmax(a )

Cmin(a )−Cmax(a )
=

Î (b )+δ−Cmax(b )−δ
Cmin(b )+δ−Cmax(b )−δ

=
Î (b )−Cmax(b )

Cmin(b )−Cmax(b )
= γ(b ),

as required.

Finally, a characterization of crisp acts (cf. §2.2) is provided.
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Lemma B.7 Consider a preference ¼ that has a niveloidal representation (I , u ), with 0 ∈ int(u (x )). For any act

f ∈ L 0, the following are equivalent:

(1) f is crisp;

(2) u ◦ f ' I (u ◦ f );

(3) minq∈C

∫

u ◦ f dq=maxq∈C

∫

u ◦ f dq, where C is as in Lemma B.3.

Proof: (1)⇒ (2): by assumption, f ∼ x implies λ f + (1−λ)g ∼ λx + (1−λ)g for all g ∈ L 0 and λ ∈ [0, 1]; that is,

I (λu ◦ f +(1−λ)u ◦g ) = I (λu (x )+(1−λ)u ◦g ) for all λ∈ [0, 1]. Since f ∼ x implies I (u ◦ f ) = u (x ), the claim follows.

(2)⇒ (1): by Lemma B.3, u ◦ f ' I (u ◦ f ) implies that
∫

u ◦ f dq= I (u ◦ f ) for all q ∈C , and the claim follows.

(3) ⇒ (1): by Lemma B.6, Cmin(u ◦ f ) ≤ I (u ◦ f ) ≤ Cmax(u ◦ f ); by assumption, Cmin(u ◦ f ) = Cmax(u ◦ f ), so

I (u ◦ f ) =
∫

u ◦ f dq for all q ∈C . Thus, if x ∼ f , then u (x ) =
∫

u ◦ f dq for all q ∈C . But this implies that u ◦ f ' u (x ),

i.e. for all g ∈ L 0 and λ ∈ [0, 1], I (λu ◦ f +(1−λ)u ◦ g ) = I (λu (x )+ (1−λ)u ◦ g ), i.e. λ f +(1−λ)g ∼ λx +(1−λ)g .

Hence, f is crisp.

B.3 Functional Characterizations of Complementary Independence

This subsection provides the key steps in the characterization of VEU preferences. The starting point is the “niveloidal

representation” of¼ provided by Part 6, which was shown to also have a GMM-type formulation in §B.2. It will first

be shown that Axioms 3.8 and 3.7 hold if and only if a “baseline linear functional” J can be defined. Then, the lin-

earity of the functional J is related to the GMM-type representation of I : specifically, it is shown to correspond to

(1) symmetry of the set C of probabilities in Eq. (19) around the probability p that represents J , and (2) a symmetry

property of the weight function γ(·).

Lemma B.8 Let ¼ be represented by I , u as in Prop. B.1, and assume wlog that 0 ∈ int(u (X )). Define a functional

J : B0(Σ, u (X ))→R by letting, for all a ∈ B0(Σ, u (X )) and γ∈Rwith γ−a ∈ B0(Σ, u (X )), J (a ) = 1
2
γ+ 1

2
I (a )− 1

2
I (γ−a ).

Then J is a well-defined, normalized niveloid; furthermore, ¼ satisfies Axioms 3.8 and 3.7 if and only if J is affine;

in this case, J has a unique, normalized and positive linear extension to B (Σ).

Corollary B.9 (Extension to B (Σ, u (X ))) The unique niveloidal extension Î of I to B (Σ, u (X )) satisfies J (a ) = 1
2
γ+

1
2

Î (a )− 1
2

Î (γ−a ) for all a ,γ−a ∈ B (Σ, u (X )).

Proof: J as above is well-defined: first, for every a ∈ B0(Σ, u (X )), if γ= infΩa + supΩa , then γ−a = supΩa − [a −
infΩa ]∈ B0(Σ, u (X )); furthermore, if γ,γ′ ∈R are such that γ−a ,γ−a ′ ∈ B0(Σ, u (X )), then γ−a = (γ′−a )+ (γ−γ′),
so vertical invariance of I implies that I (γ−a ) = I (γ′−a )+γ−γ′, and so 1

2
γ− 1

2
I (γ−a ) = 1

2
γ− 1

2
I (γ′−a )− 1

2
(γ−γ′) =

1
2
γ′− 1

2
I (γ′−a ), as required. Next, J is normalized: if γ∈ u (X ), then γ−γ= 0∈ u (X ), so J (γ) = 1

2
γ+ 1

2
I (γ)− 1

2
I (γ−γ) =

1
2
γ+ 1

2
γ+ 0 = γ, because I is normalized and 0 · 1Ω ∈ B0(Σ, u (X )). Finally, J is a niveloid: for a ,b ∈ B0(Σ, u (X )), if

α,β ∈ u (X ) are such that α−a ,β −b ∈ B0(Σ, u (X )), then

2[J (a )− J (b )] = α+ I (a )− I (α−a )−β − I (b )+ I (β −b )≤

≤ (α−β )+ sup
Ω
(a −b )+ sup

Ω
(β −b −α+a ) = 2 sup

Ω
(a −b ).
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Turn now to Axioms 3.8 and 3.7.

First, it will be shown that ¼ satisfies Axiom 3.8 if and only if J ( 1
2

a ) = 1
2

J (a ) for all a ∈ B0(Σ, u (X )). Fix f , f̄ ,x , x̄

as in Axiom 3.8 and let a ∈ B0(Σ, u (X )) and γ ∈R be such that a = u ◦ f and γ−a = u ◦ f̄ ; then 1
2

f + 1
2

x̄ ∼ 1
2

f̄ + 1
2

x

iff I ( 1
2

a + 1
2

u (x̄ )) = I ( 1
2

f̄ + 1
2

u (x )); by vertical invariance [note that 1
2

a , 1
2
(γ−a )∈ B0(Σ, u (X ))] and the properties of

x , x̄ , this equals

I (
1

2
a )+

1

2
I (γ−a ) = I (

1

2
(γ−a ))+

1

2
I (a ).

By the definition of J , rearranging terms, this holds iff J ( 1
2

a )+ 1
4
γ= 1

2
[J (a )+ 1

2
γ], i.e. J ( 1

2
a ) = 1

2
J (a ). Thus, if J has

this property, then Axiom 3.8 holds. Conversely, for any a ∈ B0(Σ, u (X )), there is f ∈ L 0 such that u ◦ f = a , and

as noted in the first part of this proof, one can find γ ∈R with γ−a ∈ B0(Σ, u (X )); again, there will be f̄ ∈ L 0 with

u ◦ f̄ = γ−a , so that f , f̄ are complementary: if Axiom 3.8 holds, the argument just given shows that J ( 1
2

a ) = 1
2

J (a ).

Now assume that J is affine; then, in particular, for all a ∈ B0(Σ, u (X )), J ( 1
2

a ) = J ( 1
2

a + 1
2
· 0) = 1

2
J (a )+ 1

2
J (0) =

1
2

J (a ), and, as shown above, in this case Axiom 3.8 holds. Next, consider ( f , f̄ ), (g , ḡ ) and α as in Axiom 3.7. Let

a = u ◦ f , b = u ◦ g , and let z , z ′ ∈ R be such that 1
2

u ( f (ω)) + 1
2

u ( f̄ (ω)) = z , 1
2

u (g (ω)) + 1
2

u (ḡ (ω)) = z ′ for all ω;

finally, let ā = 2z−a and b̄ = 2z ′−b , so ā = u ◦ f̄ and b̄ = u ◦ ḡ . Then f ¼ f̄ and g ¼ ḡ imply I (a )≥ I (ā ) = I (2z−a ),

so J (a )≥ z + 1
2

I (a )− 1
2
(2z −a ) = z ; similarly, J (b )≥ z ′. If J is affine, then J (αa +(1−α)b ) = αJ (a )+ (1−α)J (b )≥

[αz +(1−α)z ′], so

I (αa +(1−α)b )− I (αā +(1−α)b̄ ) = I (αa +(1−α)b )− I (α[2z −a ]+ (1−α)[2z ′−b ]) =

= I (αa +(1−α)b )− I (2[αz +(1−α)z ′]−αa − (1−α)b ) = 2J (αa +(1−α)b )−2[αz +(1−α)z ′]≥ 0.

where the last equality follows from the definition of J . Thus, α f +(1−α)g ¼α f̄ +(1−α)ḡ , i.e. Axiom 3.7 holds.

Conversely, assume that Axioms 3.8 and 3.7 hold. The argument given above shows that J ( 1
2

a ) = 1
2

J (a ) for all

a ∈ B0(Σ, u (X )); it will now be shown that J ( 1
2

a + 1
2

b ) = 1
2

J (a )+ 1
2

J (b ) for all a ,b ∈ B0(Σ, u (X )).

Since 0 ∈ int(u (X )), there is δ > 0 such that [−δ,δ] ⊂ u (X ). Assume first that ‖a‖,‖b‖ ≤ 1
2
δ; this implies

that (a) a ,b ,−a ,−b ∈ B0(Σ, u (X )), and furthermore (b) a − J (a ),b − J (b ), J (a )−a , J (b )−b ∈ B0(Σ, u (X )), because

monotonicity of J implies that J (a ), J (b )∈ [− 1
2
δ, 1

2
δ]. Let f , g , f̄ , ḡ ∈ L 0 be such that a− J (a ) = u ◦ f , b− J (b ) = u ◦g ,

J (a )−a = u ◦ f̄ and J (b )−b = u ◦ ḡ . Clearly, ( f , f̄ ) and (g , ḡ ) are complementary pairs; furthermore, applying the

definition of J with γ= 0, J (a− J (a )) = 1
2

I (a− J (a )− 1
2

I (J (a )−a ) and similarly J (b− J (b )) = 1
2

I (b− J (b ))− 1
2

I (J (b )−
b ); finally, by vertical invariance of J , J (a− J (a )) = J (a )− J (a ) = 0 and similarly J (b− J (b )) = 0. Thus, f ∼ f̄ and g ∼
ḡ , so Axiom 3.7 implies that 1

2
f + 1

2
g ∼ 1

2
f̄ + 1

2
ḡ . It follows that I ( 1

2
[a− J (a )]+ 1

2
[b− J (b )]) = I ( 1

2
[J (a )−a ]+ 1

2
[J (b )−b ]),

or J ( 1
2
[a − J (a )]+ 1

2
[b − J (b )]) = 0; but by vertical invariance of J , this is equivalent to J ( 1

2
a + 1

2
b ) = 1

2
J (a )+ 1

2
J (b ),

as claimed.

Now, for arbitrary a ,b ∈ B0(Σ, u (X )), there is an integer K > 0 such that 2−K ‖a‖, 2−K ‖b‖ ≤ 1
2
δ. Then the

argument just given shows that J ( 1
2
(2−K a )+ 1

2
(2−K )b ) = 1

2
J (2−K a )+ 1

2
J (2−K b ); but it was shown above that, for all

c ∈ B0(Σ, u (X )), J ( 1
2

c ) = 1
2

J (c ), and so it follows that

J
�1

2
a +

1

2
b
�

= 2K J
�

2−K
�1

2
a +

1

2
b
��

= 2K 1

2
J (2−K a )+2K 1

2
J (2−K b ) =

1

2
J (a )+

1

2
J (b ).

This implies that J (αa +(1−α)b ) =αJ (a )+ (1−α)J (b ) for all dyadic rationals α= k 2−K , with k ∈ {0, . . . , K } for

some integer K > 0.23 But since these are dense in [0, 1] and J is supnorm-continuous, J is affine. The extension

23The claim is easily established by induction on K .
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of J to B (Σ) is now standard.

Finally, to prove the Corollary, if a ,γ−a ∈ B (Σ,Γ), there is a sequence (a k )⊂ B0(Σ,Γ) such that a k → a and, for

all k , minΩa k > infΩa and maxΩa k < supΩa ;24 thus, γ−a k (ω)≤ γ−min a k <γ− inf a = γ+ sup(−a ) = sup(γ−a ),

and similarly γ−a k (ω)> inf(γ−a ). It follows that γ−a k ∈ B0(Σ, u (X )) for all k , and so J (a k ) = 1
2
γ+ 1

2
I (a k )− 1

2
I (γ−

a k ) = 1
2
γ+ 1

2
Î (a k )− 1

2
Î (γ−a k ), so the claim follows by continuity of Î .

Next, the implications of the linearity of J for the GMM representation of I are investigated. The following

notation is convenient: let C = {Q ∈ B ∗(Σ) : ∃q ∈ C s.t. ∀a ∈ B (Σ), T (a ) =
∫

a dq}. Also, say that C is symmetric

around some Q̂ ∈ B ∗(Σ) iff, for every Q ∈C , 2Q̂ −Q ∈C (which implies that Q̂ ∈C as well).

Lemma B.10 In the setting of Lemma B.8, the functional J is affine on B0(Σ, u (X )) if and only if C is symmetric

around J and γ(a ) = γ(α− a ) for all a ∈ B0(Σ, u (X )) such that Cmin(a ) < Cmax(a ) and α ∈ R such that α− a ∈
B0(Σ, u (X )).

Corollary B.11 (Extension to B (Σ, u (X ))) The functional γ(·) also satisfies γ(a ) = γ(α − a ) whenever a ,α − a ∈
B (Σ, u (X )), α∈R, and Cmin(a )<Cmax(a ).

Corollary B.12 (Symmetry of C ) If J is linear, let p ∈ ba1(Σ) be such that J (a ) =
∫

a dp for all a ∈ B (Σ). Then C is

symmetric around p : if q ∈C , then 2p −q ∈C .

Proof: Let Qmin
b ∈ arg minQ∈CQ(b ) and Qmax

b ∈ arg maxQ∈CQ(b ) for any b ∈ B0(Σ). Two preliminary observations

will be useful.

Claim 1: regardless of whether or notC is symmetric, Qmin
b (b ) =Qmax

β−b (b ) for all β ∈R.

Claim 2: if C is symmetric around some Q̂ ∈ C , then Qmin
b (b ) +Qmax

b (b ) = 2Q̂(b ). To prove this claim, note

that, by definition, Qmin
b (b ) ≤Q(b ) for all Q ∈ C . Now fix one such Q . Then, in particular, Qmin

b (b ) ≤ 2Q̂(b )−Q(b ),

because 2Q̂ −Q ∈C . Hence 2Q̂(b )−Qmin
b (b )≥Q(b ): that is, for all Q ∈C , 2Q̂(b )−Qmin

b (b )≥Q(b ). Thus, Qmax
b (b ) =

2Q̂(b )−Qmin
b (b ).

Now, for necessity, suppose that a ,α−a ∈ B0(Σ, u (X )) and calculate:

J (a ) =
1

2
α+

1

2
γ(a )Qmin

a (a )+
1

2
[1−γ(a )]Qmax

a (a )−

−
1

2
γ(α−a )Qmin

α−a (α−a )−
1

2
[1−γ(α−a )]Qmax

α−a (α−a ) =

=
1

2
γ(a )Qmin

a (a )+
1

2
[1−γ(a )]Qmax

a (a )−
1

2
γ(a )Qmin

α−a (−a )−
1

2
[1−γ(a )]Qmax

α−a (−a ) =

= γ(a )
�1

2
Qmin

a (a )+
1

2
Qmin
α−a (a )

�

+[1−γ(a )]
�1

2
Qmax

a (a )+
1

2
Qmax
α−a (a )

�

.

Now Claim 1 implies that each term in square brackets equals 1
2
Qmin

a (a ) + 1
2
Qmax

a (a ); since furthermore C is sym-

metric around some Q̂ ∈ C , Claim 2 implies that the expressions in square brackets equal Q̂(a ), and necessity

follows.

24For each k = 0, 1, . . . and ` = 0, . . . , 2k , let α`,k = inf a (Ω) + `

2k [sup a (Ω)− inf a (Ω)]; also define ā = 1
2
[inf a (Ω) + sup a (Ω)].

Finally, let a k (ω) = 1
k+1

ā + k
k+1

min`=0,...,k {α`,k : a (ω)≤α`,k }.
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Now turn to sufficiency. For every a ∈ B0(Σ, u (X )), let µ(a ) =min a (Ω)+max a (Ω), so µ(a )− a ∈ B0(Σ, u (X ))

and J (a ) = 1
2
µ(a )+ 1

2
I (a )− 1

2
I (αa −a ).

Claim 3: for every a ∈ B0(Σ, u (X )), J (a ) = 1
2
µ(a )+ 1

2
I0(a )− 1

2
I0(µ(a )−a ).

Three algebraic facts are key to the proof of Claim 3. First, for all λ ∈ (0, 1), µ(λa ) = λµ(a ); second, although in

general µ(λa+(1−λ)b ) 6=λµ(a )+(1−λ)µ(b ), it is nevertheless the case that [λµ(a )+(1−λ)µ(b )]−[λa+(1−λ)b ] =
λ(µ(a )−a )+ (1−λ)(µ(b )−b )∈ B0(Σ, u (X )). Third, µ(µ(a )−a ) =µ(a ). Combining these facts, one obtains

[λµ(a )+ (1−λ)µ(b )]−λ[µ(a )−a ]− (1−λ)b ∈ B0(Σ, u (X )).

As a consequence, the definition of J implies that

2J
�

λ[µ(a )−a ]+ (1−λ)b
�

= [λµ(a )+ (1−λ)µ(b )]+ I
�

λ[µ(a )−a ]+ (1−λ)b
�

− (21)

− I
�

[λµ(a )+ (1−λ)µ(b )]−λ[µ(a )−a ]− (1−λ)b
�

.

Similar, but simpler calculations yield

2J
�

(1−λ)b
�

= (1−λ)µ(b )+ I
�

(1−λ)b
�

− I
�

(1−λ)µ(b )− (1−λ)b
�

. (22)

One can then calculate:

−I0
�

µ(a )−a
�

=− inf
b∈B0(Σ,u (X )),λ∈(0,1]

1

λ

h

I
�

λ[µ(a )−a ]+ (1−λ)b
�

− I
�

(1−λ)b
�i

=

=− inf
b∈B0(Σ,u (X )),λ∈(0,1]

1

λ

h

2J
�

λ(µ(a )−a )+ (1−λ)b
�

+

+ I
�

�

λµ(a )+ (1−λ)µ(b )
�

−λ[µ(a )−a ])− (1−λ)b
�

−λµ(a )− (1−λ)µ(b )−

−2J
�

(1−λ)b
�

− I
�

(1−λ)µ(b )− (1−λ)b
�

+(1−λ)µ(b )
i

=

= 2J (a )−µ(a )− inf
b∈B0(Σ),λ∈(0,1]

1

λ

h

I
�

λa +(1−λ)[µ(b )−b ]
�

− I
�

(1−λ)[µ(b )−b ]
�

=

= 2J (a )−µ(a )− I0(a ).

The second equality follows by using Eqs. (21) and (22) to substitute for I (λ[µ(a )−a ]+(1−λ)b ) and I ((1−λ)b ). The

third equality follows by canceling the terms (1−λ)µ(b ), using the fact that J is linear, then canceling one of the

terms µ(a ) and finally simplifying and rewriting the arguments of the two functionals I . Finally, the last equality

follows by noting that b ∈ B0(Σ, u (X )) if and only if µ(b )−b ∈ B0(Σ, u (X )).

Claim 3 implies that C is symmetric around J . To see this, pick Q ∈ C , so Q(a ) ≥ I0(a ) = Cmin(a ) for all

a ∈ B0(Σ, u (X )); then, for all a ,

2J (a )−Q(a ) =µ(a )+ I0(a )− I0(µ(a )−a )−Q(a )≤µ(a )− I0(µ(a )−a ),

or equivalently I0(µ(a ) − a ) ≤ 2J (µ(a ) − a ) −Q(µ(a ) − a ) for all a ; since, again, a ∈ B0(Σ, u (X )) iff µ(a ) − a ∈
B0(Σ, u (X )), this is also equivalent to

∀a ∈ B0(Σ, u (X )), I0(a )≤ 2J (a )−Q(a ).
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Now recall that I0 =Cmin, and standard separation results25 imply that

C =

¨

q ∈ ba1(Σ) :∀a ∈ B0(Σ, u (X )),

∫

a dq≥Cmin(a )

«

;

then, it follows that 2J −Q ∈C . SinceC is convex and non-empty, this also implies that it must contain J as well.

Finally, with Qmin
a , etc. defined as above, and letting α=µ(a ) for simplicity,

2J (a ) = α+γ(a )Qmin
a (a )+ [1−γ(a )]Qmax

a (a )−γ(α−a )Qmin
α−a (α−a )− [1−γ(α−a )]Qmax

α−a (α−a ) =

= α+γ(a )Qmin
a (a )+ [1−γ(a )]Qmax

a (a )−γ(α−a )Qmax
a (α−a )− [1−γ(α−a )]Qmin

a (α−a ) =

= [γ(a )+1−γ(α−a )]Qmin
a (a )+ [1−γ(a )+γ(α−a )]Qmax

a (a ) =

= [Qmin
a (a )+Qmax

a (a )]+ [γ(a )−γ(α−a )][Qmin
a (a )−Qmax

a (a )] =

= 2J (a )+ [γ(a )−γ(α−a )][Qmin
a (a )−Qmax

a (a )],

where the last equality follows from the fact that C is symmetric around J (see Claim 2 at the beginning of this

proof). If Qmin
a (a )<Qmax

a (a ), equality can only obtain if γ(a ) = γ(α−a ), as claimed.

To prove the first Corollary, suppose a ,α−a ∈ B (Σ,Γ) for someα∈R and consider a sequence (a k )⊂ B0(Σ, u (X ))

such that a k → a and, for each k , inf a (Ω)<min a k (Ω)≤max a k (Ω)< sup a (Ω). Then, as in the proof of the Corol-

lary to Lemma B.8, α− a k ∈ B0(Σ, u (X )), so that γ(a ) = Î (a )−Cmax(a )
Cmin(a )−Cmax(a )

= limk→∞
I (a k )−Cmax(a k )

Cmin(a k )−Cmax(a k ) = limk→∞γ(a k ) =

limk→∞γ(α−a k ) = limk→∞
I (α−a k )−Cmax(α−a k )

Cmin(α−a k )−Cmax(α−a k ) =
Î (α−a )−Cmax(α−a )

Cmin(α−a )−Cmax(α−a ) = γ(α−a ). The second Corollary is straightfor-

ward.

B.4 Monotone Continuity

Assume that Γ is non-singleton. A functional H : B0(Σ,Γ)→ R is monotonely continuous iff, for every α,β ,γ ∈ Γ
with α > β > γ and every sequence of events (Ak ) ⊂ Σ such that Ak ⊃ Ak+1 for all n and ∩Ak = ;, there is k such

that H (α− (α−γ)1Ak )>β >H (γ+(α−γ)1Ak )—or, abusing the notation for binary acts, H (γAkα)>β >H (αAkγ).

Continue to focus on the representation I , u of ¼; assume wlog that 0 ∈ int(u (X )). Clearly, ¼ satisfies Axiom

3.6 iff I is monotonely continuous. This property will now be characterized in terms of the functional J defined

in Lemma B.8, and the set C defined in Lemma B.3. One implication will be that C consists of countably addi-

tive measures; Lemma B.14 will establish a useful consequence of this fact: it is possible to restrict attention to a

countable subset of measures.

Lemma B.13 The following statements are equivalent:

(1) I is monotonely continuous;

(2) For every decreasing sequence (Ak )⊂Σ such that
⋂

Ak = ;, J (1Ak )→ 0;

25Call C ′ the set in the r.h.s.; clearly, C ⊂C ′, so suppose there is q ∈C ′ \C . Since C is weak∗ closed and {q} is weak∗ compact,

by a version of the Separating Hyperplane Theorem (See Megginson, Theorem 2.2.28) there is a weak∗ continuous T : ba(Σ)→R
such that T q < infq ′∈C T q ′; furthermore, T q ′ =

∫

a dq′ for some a ∈ B0(Σ) (cf. Megginson, Prop. 2.6.4), and it can be assumed

wlog that a ∈ B0(Σ, u (X )). But then
∫

a dq<Cmin(a ), a contradiction.
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If the functional J is linear, then (2) above is also equivalent to

(3) for every decreasing sequence (Ak )⊂Σ such that
⋂

Ak = ;, and for every ε> 0, there is k such that q (Ak )<ε

for all q ∈C .

As noted above, (3) implies in particular that every q ∈C is a probability measure.

Proof: (1)⇒ (2): letα∈ u (X ) be such thatα> 0 and−α∈ u (X ). For every ε∈ (0,α), there is k ′ such that ε> I (α1An ′ )

and k ′′ such that I (α(1− 1Ak ′′ )) > α− ε (take γ = 0 and β = ε,α− ε in the definition of monotone continuity).

Letting k = max(k ′, k ′′), so A ⊂ Ak ′ and A ⊂ Ak ′′ , by monotonicity both ε > I (α1Ak ) and I (α(1− 1Ak )) > α− ε
hold; furthermore, since −α ∈ u (X ), vertical invariance of I implies that I (α(1− 1Ak )) = α+ I (−α1Ak ) > α− ε, i.e.

ε > −I (−α1Ak ). Hence, ε > 1
2

I (α1Ak )−
1
2

I (−α1Ak ) = J (α1Ak ). To sum up, if η ≥ 1, then monotonicity implies that

J (1Ak )≤η for all k ; and for η∈ (0, 1), taking ε=ηα yields k such that J (1Ak ) =
1
α

J (α1Ak )<
1
α
ε=η, as required.

(2) ⇒ (1): Fix α,β ,γ ∈ u (X ) with α > β > γ; then there is k ′ such that J (γ+ (α− γ)1Ak ′ ) < γ+
1
2
(β − γ). Let

µ=α+γ. so µ−γ− (α−γ)1A ′k
=α− (α−γ)1Ak ′ ∈ B0(Σ, u (X )): then, by the definition of J ,

γ+
1

2
(β −γ)>

1

2
µ+

1

2
I (γ+(α−γ)1Ak ′ )−

1

2
I (µ−γ− (α−γ)1Ak ′ );

substituting for µ and simplifying this reduces to

1

2
β >

1

2
α+

1

2
I (γ+(α−γ)1Ak ′ )−

1

2
I (α− (α−γ)1Ak ′ )≥

1

2
I (γ+(α−γ)1Ak ′ ),

where the inequality follows from monotonicity of I , as α− (α−γ)1Ak ′ )≤ α. Thus, β > I (γ+(α−γ)1Ak ′ ). Similarly,

there is k ′′ such that J (α− (α−γ)1Ak ′′ )>α−
1
2
(α−β ), i.e.

α−
1

2
(α−β )<

1

2
µ+

1

2
I (α− (α−γ)1Ak ′′ )−

1

2
I (µ−α+(α−γ)1Ak ′′ ),

and again substituting for µ and simplifying yields

1

2
β <

1

2
γ+

1

2
I (α− (α−γ)1Ak ′′ )−

1

2
I (γ+(α−γ)1Ak ′′ )≤

1

2
I (α− (α−γ)1Ak ′′ ),

because γ+ (α− γ)1Ak ′′ ≥ γ. Thus, I (α− (α− γ)1Ak ′′ ) > β . Therefore, by monotonicity, k = max(k ′, k ′′) satisfies

I (α− (α−γ)1Ak )>β > I (γ+(α−γ)1Ak ), as required.

Turning now to the final statement, note that J ∈ C by Lemma B.10, so (3) clearly implies (2). In the oppo-

site direction, fix a sequence as in (2) and (3), let p ∈ C represent J , and choose ε > 0; then there is k such that

J (1Ak ) = p (Ak )< 1
2
ε. If now q (Ak )≥ ε for some q ∈C , then q ′ = 2p −q satisfies q ′(Ak )<ε−ε= 0, and Lemma B.10

implies that q ′ ∈C : but this contradicts the fact that C consists of probability charges. Therefore, q (Ak )< ε for all

q ∈C , as claimed.

Lemma B.14 Suppose that Ω is a compact metric space and Σ is its Borel sigma-algebra. Let C ⊂ ca1(Σ) be

σ(ca(Σ), B (Σ))-compact and symmetric around some p ∈C . Then:

(i) for every ε> 0 there is δ> 0 such that, for every E ∈Σ, p (E )<δ implies q (E )<ε for all q ∈C .

(ii) there exists a countable subset D ⊂ C such that, for every a ∈ B (Σ), q ∈ C , and ε > 0, there is q ′ ∈ D with

|
∫

a dq−
∫

a dq′|<ε.
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Proof: Since σ(ca(Σ), B (Σ)) ⊂ σ(ca(Σ),C (Ω)), C is also σ(ca(Σ),C (Ω))-compact. Since the σ(ca(Σ),C (Ω)) topology

is metrizable, there is a countableσ(ca(Σ),C (Ω))-dense subset D of C .

Notice that, for every E ∈ Σ and q ∈ C , q (E ) ≤ 2p (E ). To see this, suppose that q (E ) > 2p (E ) for some E and

q . Since C is symmetric around p , q ′ = 2p − q ∈ C ; but then q ′(E ) = 2p (E )− q (E ) < 0, which contradicts the

assumption that C ⊂ ca1(Σ). Part (i) then follows immediately.

Now consider a ∈ B (Σ), q ∈ C \D, and ε > 0. If ‖a‖ = 0, so a = 0, there is nothing to prove; thus, assume

‖a‖> 0. By (i), there is δ> 0 such that q ′′(E )< ε
6‖a‖ for all q ′′ ∈C and E ∈Σ such that p (E )<δ. By Lusin’s Theorem

on measurable functions (Kechris [32, Thm. 17.12]), there exists b ∈ C (Ω) such that p ({ω : b (ω) 6= a (ω)}) < δ;

moreover, b can be chosen so that ‖b‖ ≤ ‖a‖.26 Therefore, for all q ′′ ∈C , q ′′({ω : b (ω) 6= a (ω)})< ε
6‖a‖ , so

�

�

�

�

∫

Ω

a dq′′−
∫

Ω

b dq′′
�

�

�

�

=

�

�

�

�

�

∫

{ω:a (ω)6=b (ω)}
(a −b ) dq′′

�

�

�

�

�

≤ 2‖a‖
ε

6‖a‖
=
ε

3
.

Finally, by assumption, there is a sequence {q n } ⊂D such that q n →q in theσ(ca(Σ),C (Ω)) topology. Hence, there

is n such that |
∫

b dqn −
∫

b dq|< ε
3

. Thus,

�

�

�

�

∫

a dq−
∫

a dqn

�

�

�

�

≤
�

�

�

�

∫

a dq−
∫

b dq

�

�

�

�

+

�

�

�

�

∫

b dq−
∫

b dqn

�

�

�

�

−
�

�

�

�

∫

b dqn −
∫

a dqn

�

�

�

�

<ε.

Note: the preceding result does not actually require symmetry: the existence of p ∈ C as in (i) follows from a

theorem of Bartle, Dunford and Schwartz (cf. [9, Corollary 6, p. 14]).

B.5 Proof of Theorem 3.1

Recall that, for any vector measure m on Σ and interval Γ⊂R, R0(m ,Γ) =
¦∫

a dm : a ∈ B0(Σ,Γ)
©

. It is convenient

to extend this to images of functions in B (Σ,Γ): let R(m ,Γ) =
¦∫

a dm : a ∈ B (Σ,Γ)
©

. Clearly, R(m ,Γ) is the closure

of R0(m ,Γ).27 It is clear that (2) implies (3) in Theorem 3.1; thus, focus on the non-trivial implications.

B.5.1 (3) implies (1)

For all a ∈ B0(Σ, u (X )), let Jp (a ) =
∫

a dp and I (a ) = Jp (a ) +A(
∫

a dm); thus, for all f , g ∈ L 0, f ¼ g iff I (u ◦ f ) ≥
I (u ◦ g ). It is easy to verify that I is constant-mixture invariant and normalized (because m (Ω) = 0 and A(0) = 0);

furthermore, by part 3 of Def. 2, it is monotonic, and hence a niveloid by Prop. B.1. This implies that¼ satisfies the

first five axioms in (1). Furthermore, for all a ∈ B (Σ,Γ), letting µ∈ u (X ) be such that µ−a ∈ B0(Σ, u (X )),

J (a )≡
1

2
µ+

1

2
Î (a )−

1

2
Î (µ−a ) =

1

2
µ+

1

2
Jp (a )+

1

2
A

�∫

a dm

�

−
1

2
Jp (µ−a )−

1

2
A

�∫

(µ−a )dm

�

= Jp (a ),

26If ‖b‖> ‖a‖, consider the function b ′ such that b ′(ω) =max(−‖a‖, min(‖a‖,b (ω))) for everyω∈Ω.
27If ϕ ∈ R(m ,Γ) then there is a ∈ B (Σ,Γ) and (a k )k≥0 ⊂ B0(Σ,Γ) such that ϕ =

∫

a dm and a k → a , so
∫

a k dmi →ϕ uniformly

in i ; hence, R(m ,Γ)⊂ cl R0(m ,Γ). The other inclusion is obvious.
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because again m (Ω) = 0 and A(φ) = A(−φ) for all φ ∈ R(m ,Γ); thus, the functional J defined in Lemma B.8 coin-

cides with Jp , and hence it is affine; thus, ¼ satisfies Axioms 3.7 and 3.8 as well. It remains to be shown that I is

monotonely continuous. To see this, fix a sequence (Ak )⊂Σ decreasing to ;, and note that, for α>β >γ in Γ,

I (γ+(α−γ)1Ak ) = γ+(α−γ)p (Ak )+A((α−γ)m (Ak )), I (γ+(α−γ)1Ak ) =α− (α−γ)p (Ak )+A(−(α−γ)m (Ak )).

Since p is countably additive and the m i ’s are uniformly countably additive, p (Ak ) → 0 and supi |m i (Ak )| → 0;

furthermore, since A(·) is supnorm-continuous at 0n , A(m (Ak ))→ 0 and A(−m (Ak ))→ 0. Hence, I (γ+(α−γ)1Ak ) ↓ γ
and I (γ+(α−γ)1Ak ) ↑α, which implies that, for some k , I (γ+(α−γ)1Ak )>β > I (γ+(α−γ)1Ak ). Thus, I is monotonely

continuous, so ¼ satisfies Axiom 3.6.

B.5.2 (1) implies (2)

Since (Ω,Σ) is standard Borel, it is sufficient to establish the claim under the additional assumption that Ω is a

compact metric space and Σ is its Borel sigma-algebra.28

Since ¼ satisfies Axioms 3.1–3.5, it admits a non-degenerate niveloidal representation I , u by Proposition B.1;

furthermore, it is wlog to assume that 0 ∈ int(u (X )). Moreover, since ¼ satisfies Axioms 3.7 and 3.8, the functional

J defined in Lemma B.10 is affine on B0(Σ, u (X )); finally, since ¼ satisfies Axiom 3.6, I is monotonely continuous.

In the following, Î will denote the unique niveloidal extension of I to B (Σ, u (X )).

Let C be the set of probability charges delivered by Lemma B.3. Let p be the probability charge representing

J , so by Lemma B.10, p ∈ C and C is symmetric around p . By Lemma B.13, C ⊂ ca(Σ), and furthermore for every

sequence (Ak ) decreasing to ;, supq∈C q (Ak )→ 0. Finally, let D ⊂C be the set delivered by (ii) of Lemma B.14.

Note that, by Lemma B.4, for all b ,b ′ ∈ B (Σ, u (X )),
∫

b dq=
∫

b ′dq for all q ∈C implies that Î (b ) = Î (b ′). I claim

that, for all b ,b ′ ∈ B (Σ, u (X )),
∫

b dq =
∫

b ′dq for all q ∈ D implies
∫

b dq =
∫

b ′dq for all q ∈ C , or, equivalently,

that
∫

b dq= 0 for all q ∈D implies that
∫

b dq= 0 for all q ∈C . Consider b ∈ B (Σ, u (X )) and q ∈C \D; assume that
∫

b dq′ = 0 for all q ′ ∈ D. Suppose there is q ∈ C with |
∫

b dq| = ε > 0: then (ii) in Lemma B.14 yields q ′ ∈ D with

|
∫

b dq−
∫

b dq′|<ε, so |
∫

b dq′|> 0, a contradiction.

Now define a collection m = (m i )0≤i<∞ of signed measures by letting m i (E ) = qi (E )− p (E ) for every E ∈ Σ
and i ∈ {0, 1, . . .}, where q0,q1, . . . is an enumeration of D. Clearly, for each i , m i ∈ ca1(Σ), m i (;) = m i (Ω) = 0,

and |m i (E )| ≤ |qi (E )− p (E )| ≤ 2. Moreover, let (Ak )k≥0 ⊂ Σ be a sequence decreasing to ;; since, as noted above,

supq∈C q (An )→ 0,

sup
i
|m i (Ak )|= sup

i
|qi (Ak )−p (Ak )| ≤ sup

i
qi (Ak )+p (Ak )→ 0,

i.e. m i (Ak )→ 0 uniformly in i ; thus, m is an adjustment tuple as per Def. 1.

Next, suppose that a ,b ∈ B0(Σ, u (X )) are such that
∫

a dm=
∫

b dm; therefore, for all q ∈D,
∫

a dq=
∫

b dq+δ,

where δ=
∫

a dp−
∫

b dp. By Lemma B.5, this implies that Î (a ) = Î (b )+δ. Furthermore, suppose that α−a ,β−b ∈

28Since (Ω,Σ) is standard Borel, there exists a Borel isomorphismσ :Ω→ K (cf. Kechris [32], p.90), where K is compact metric

and endowed with the Borel sigma-algebra; if Ω is countable, let K =Ω, endowed with the Fort topology (fix a pointω ∈ Ω and

declare E ⊂ Ω to be open if either (i) ω 6∈ E or (ii) ω ∈ E and Ω \ E is finite). Let Lσ0 be the set of simple, Borel-measurable

functions from K to X , and define a binary relation ¼σ on Lσ0 by letting f ◦σ−1 ¼σ g ◦σ−1 iff f ¼ g for all f , g ∈ L 0. Then

it is clear that ¼ satisfies any one of the axioms in Sec. 3 if and only if ¼σ does, too. Finally, if ¼σ has a VEU representation

(u , pσ, n , mσ, A), then ¼ has a VEU representation (u , pσ ◦σ, n , mσ ◦σ, A).
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B0(Σ, u (X )) for α,β ∈R; then
∫

[α−a ]dq=α−
∫

a dq=α−
∫

b dq−δ=
∫

[β −b ]dq+α−β −δ

for all q ∈C , and therefore Î (α−a ) = Î (β −b )+α−β −δ. Hence,

Î (a )− J (a ) = Î (a )−
1

2
α−

1

2
Î (a )+

1

2
Î (α−a ) =

1

2
Î (a )+

1

2
Î (α−a )−

1

2
α=

=
1

2
Î (b )+

1

2
δ+

1

2
Î (β −b )+

1

2
(α−β )−

1

2
δ−

1

2
α=

1

2
Î (b )+

1

2
Î (β −b )−

1

2
β = Î (b )− J (b ).

Therefore, it is possible to define a functional A : R(m , u (X ))→ R by letting A(φ) = Î (a )− J (a ) for every φ ∈ `∞
such that φ =

∫

a dm for some a ∈ B (Σ, u (X )). Also, the map a 7→ J (a ) +A(
∫

a dm) coincides with Î , and hence is

monotonic by assumption, as required by Def. 2.

It will now be shown that A is supnorm-continuous at 0 ∈ R∞. Observe first that
∫

0Ωdm = 0 ∈ `∞, where

0Ω(ω) = 0 for allω; thus, A(0) = Î (0)− J (0) = 0. Moreover, ifφ =
∫

a dm and α−a ∈ B (Σ, u (X )), then A(φ) = 1
2

I (a )+
1
2

I (α−a )− 1
2
α. Now, using the GMM-like representation of Î in Lemma B.6, and the fact that γ(a ) = γ(α−a )≡ γ,

Î (a ) = γmin
q∈C

∫

a dq+(1−γ)max
q∈C

∫

a dq= γ inf
q∈D

∫

a dq+(1−γ)sup
q∈D

∫

a dq=

= γ inf
i

∫

a d(mi+p)+ (1−γ)sup
i

∫

a d(mi+p) = J (a )+γ inf
i
φi +(1−γ)sup

i
φi

and similarly for Î (α−a ), we get

2A(φ) = Î (a )+ Î (α−a )−α=

= J (a )+γ inf
i
φi +(1−γ)sup

i
φi + J (α−a )+γ inf

i
(−φi )+ (1−γ)sup

i
(−φi )−α=

= γ inf
i
φi +(1−γ)sup

i
φi −γsup

i
φi − (1−γ) inf

i
φi =

= (2γ−1) inf
i
φi +(1−2γ)sup

i
φi = (2γ−1)[inf

i
φi − sup

i
φi ].

Since γ∈ [0, 1], it follows that, for allφ ∈R(m , u (X )),

inf
i
φi − sup

i
φi ≤ 2A(φ)≤ sup

i
φi − inf

i
φi .

Ifφn → 0 in `∞, then infi φ
n
i → 0 and supi φ

n
i → 0, so A(φn )→ 0= A(0), as required.29

Thus, (u , p ,∞, m , A) is a VEU representation of ¼. It remains to be shown that there is a sharp VEU represen-

tation. Suppose that f ∈ L 0 is crisp and f ∼ x . By Lemma B.7,
∫

u ◦ f dq = u (x ) for all q ∈ C ; since p ∈ C , also
∫

u ◦ f dp= u (x ). Hence,
∫

u ◦ f dmi =
∫

u ◦ f dqi −
∫

u ◦ f dp= 0 for all i = 0, 1, . . ., as required in (1) of Def. 3. Since

there is at least one representation (u , p ,∞, m , A) that satisfies this property, it is clear that there is one adjustment

that satisfies (2) in that definition, i.e. a sharp VEU representation.

Turn now to the case of Ω finite. Each signed measure m0, m1, . . . can be viewed as a point in the finite-

dimensional space RΩ. Let n ′ be the maximal number of linearly independent coordinate measures; note that,

29For every ε> 0 there is n (ε) such that |φn
i |<ε for all n ≥ n (ε); hence, for such n , ε≥ supi φ

n
i ≥ infi φ

n
i ≥ ε.
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due to the normalization m i (Ω) = 0, n ′ ≤ |Ω| − 1. By relabeling, one can assume w.l.o.g. that m0, . . . , mn ′−1 are a

maximal collection of linearly independent measures. Let m ′ = (m0, . . . , n n ′−1) and define A ′ : R(m ′, u (X )) → R
by A ′(

∫

a dm′) = A(
∫

a dm) for every a ∈ B (Σ, u (X )). This definition is well-posed: if a ,b ∈ B (Σ, u (X )) satisfy
∫

a dm′ =
∫

b dm′, i.e.
∫

a dmj =
∫

b dmj for j = 0, . . . , n ′ − 1, then also
∫

a dmi =
∫

b dmi for all i ≥ n ′, because

each such m i must be a linear combination of m0, . . . , mn ′−1. Also, clearly, m ′ ∈M n ′ (Σ), and it is easy to check that

A ′(0) = 0, A ′ is symmetric, and a 7→
∫

a dp+A ′(
∫

a dm′) is monotonic; furthermore, if f ∈ L 0 is crisp, then it was

shown above that
∫

u ◦ f dm= 0, so a fortiori
∫

u ◦ f dm′ = 0. I now claim that A ′ is continuous at 0.

For every i ≥ 0, let αi = (αi 0, . . . ,αi n ′−1) ∈ Rn ′ be the unique vector such that m i =
∑n ′−1

j=0 αi j m j . Clearly, for

everyω ∈ Ω, |m i (ω)| ≤ |qi (ω)|+ |p (ω)| ≤ 2; hence, {m1, m2, . . .} is a bounded subset of RΩ. Moreover, for every j =

0, . . . , n ′− 1 the “coordinate functional” A j associating with each point of the form µ=
∑n ′−1

j=0 αj m j the coefficient

αj is bounded (cf. Megginson [39], Thm. 1.4.12). These two facts imply that ᾱ ≡ maxj=0,...,n ′−1 supi≥0 |αi j | < ∞.

Thus, consider a sequence {ϕk } ⊂ R(m ′, u (X )) such that ϕk → 0, and for each k , let a k ∈ B (Σ, u (X )) be such that
∫

a k dm′ =ϕk . Then, for all i ≥ 0,

�

�

�

�

∫

a k dmi

�

�

�

�

=

�

�

�

�

�

n ′−1
∑

j=0

αi j

∫

a k dmj

�

�

�

�

�

≤
n ′−1
∑

j=0

|αi j |
�

�

�ϕk
j

�

�

�≤ ᾱ
n ′−1
∑

j=0

�

�

�ϕk
j

�

�

� .

Thus, ϕk → 0 implies that
∫

a k dmi → 0 uniformly in i ≥ 0. Then limk→∞A ′(ϕk ) = limk→∞A(
∫

a k dm) = 0, as

required. Therefore, (u , p , n ′, m ′, A ′) is VEU representation that satisfies (1) in Def. 3, and such that n ′ ≤ |Ω| − 1. It

follows that, as claimed, any minimal VEU representation will employ an adjustment tuple of size at most n ′.

Observation: the above proof of (1) ⇒ (2) actually constructs a representation of the extension Î of I to

B (Σ, u (X )). Therefore, as usual, the VEU representation (u , p , n , m , A) applies to the unique continuous extension

of ¼ to L(¼), the class of ¼-bounded, Σ-measurable acts.

B.5.3 Uniqueness

By standard arguments, u ′ = αu +β for some α,β ∈ R with α > 0; consequently, ψ ∈ R0(m , u (X )) if and only if

αψ ∈ R0(m ′, u (X )); the constant β can be disregarded, as m (Ω) = 0 and m ′(Ω) = 0. Next, for every a ∈ B0(Σ, u (X )),

let I (a ) =
∫

a dp+A(
∫

a dm); define I ′ similarly using the second VEU representation. By Cor. B.2, αI (a ) = I ′(αa )

for every a ∈ B0(Σ, u (X )); hence, if J and J ′ are the corresponding functionals defined as in Lemma B.8, their

extension to B (Σ) coincides, and so p = p ′; hence,

αA

�∫

a dm

�

=αI (a )−αJ (a ) = I ′(αa )− J ′(αa ) = A ′ (αa ) (23)

for all a ∈ B0(Σ, u (X )). Now, to define a suitable linear surjection T : R0(m ′, u ′(X ))→ R0(m , u (X )), suppose that
∫

αa dm′ =
∫

αb dm′ for a ,b ∈ B0(Σ, u (X )); clearly, for allψ′ ∈ R0(m ′, u ′(X )) and λ ∈ (0, 1], A ′((1−λ)ψ′+λ
∫

α(a −
b )dm′) = A ′((1−λ)ψ′+0) = A ′((1−λ)ψ′). Now pickψ∈R0(m , u (X )), so there is c ∈ B0(Σ, u (X )) such that

∫

c dm=ψ;
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then, for all λ∈ (0, 1],

A

�

(1−λ)ψ+λ
∫

(a −b )dm

�

= A

�∫

[(1−λ)c +λ(a −b )]dm

�

=
1

α
A ′
�∫

α[(1−λ)c +λ(a −b )]dm′
�

=

=
1

α
A ′
�∫

α(1−λ)c dm′
�

= A

�∫

(1−λ)c dm

�

= A(ψ);

the second and fourth equalities follow from Eq. (23). In particular, A(
∫

(a −b )dm) = 0. Now let γ ∈ u (x ) be such

that γ−b ∈ B0(Σ, u (x )); then there is f ∈ L 0 such that 1
2

a + 1
2
(γ−b ) = u ◦ f . Now

∫

u ◦ f dm = 1
2

∫

(a −b )dm, so

A(
∫

u ◦ f dm) = 0, and if f ∼ x ∈X , then u (x ) =
∫

u ◦ f dp. Therefore, for every g ∈ L 0 and λ∈ (0, 1],

I (u ◦ [(1−λ)g +λ f ]) = (1−λ)
∫

u ◦ g dp+λ

∫

u ◦ f dp+A

�

(1−λ)
∫

u ◦ g dm+λ

∫

u ◦ f dm

�

=

= (1−λ)
∫

u ◦ g dp+λu (x )+A

�

(1−λ)
∫

u ◦ g dm+λ
1

2

∫

(a −b )dm

�

=

= (1−λ)
∫

u ◦ g dp+λu (x )+A

�

�

1−
1

2
λ
� 1−λ

1− 1
2
λ

∫

u ◦ g dm+
1

2
λ

∫

(a −b )dm

�

=

= (1−λ)
∫

u ◦ g dp+λu (x )+A

�

�

1−
1

2
λ
� 1−λ

1− 1
2
λ

∫

u ◦ g dm

�

=

= (1−λ)
∫

u ◦ g dp+λu (x )+A

�

(1−λ)
∫

u ◦ g dm

�

= I (u ◦ [(1−λ)g +λx ]).

The third equality is justified by noting that, for any γ ∈ u (X ), 1−λ
1− 1

2
λ

u ◦ g +
1
2
λ

1− 1
2
λ
γ ∈ B0(Σ, u (X )), and of course

∫

γdm = 0. Thus, the act f is crisp, and applying (1) in Def. 3 to (u , p , n , m , A),
∫

(a −b )dm = 2
∫

u ◦ f dm = 0.

Thus, we can define T by letting T (
∫

αa dm′) =
∫

a dm for all a ∈ B0(Σ, u (X )). That T is affine is immediate, as is

the fact that T is onto. Finally, if ϕ′ =
∫

αa dm′, then A(T (ϕ′)) = A(T (
∫

αa dm′)) = A(
∫

a dm) = 1
α

A ′(
∫

αa dm′) =
1
α

A ′(ϕ′), where the second equality follows from the definition of T , and the third from Eq. (23): thus, A = 1
α

A ′ ◦T .

Finally, if (u ′, p ′n ′, m ′, A ′) is also sharp, then n = n ′; furthermore, assume that
∫

a dm =
∫

b dm: then, since also

(u ′, p ′, n ′, m ′, A ′) satisfies (1) in Def. 3, the argument used above to show that T is well-defined can be employed to

show that
∫

a dm=
∫

b dm implies
∫

αa dm′ =
∫

αb dm′, so T is a bijection.

B.6 Ambiguity Aversion

Proof of Corollary 4.1

If ¼ satisfies Ambiguity Aversion, then I is concave (cf. MMR, p. 28); in particular, if a ,γ− a ∈ B0(Σ, u (X )),
1
2
γ= I ( 1

2
a+ 1

2
(γ−a ))≥ 1

2
I (a )+ 1

2
I (γ−a ) = 1

2

∫

a dp+ 1
2

A(
∫

a dm)+ 1
2
γ− 1

2

∫

a dp+ 1
2

A(
∫

(γ−a )dm) = 1
2
γ+A(

∫

a dm),

and so A is non-positive. Finally, A is clearly also concave.

Conversely, suppose that A is concave (hence, also non-positive). Then I is concave, so for all f , g ∈ L 0 with

f ∼ g , I (u ◦ [λ f +(1−λ)g ])≥ I (u ◦λ f ).

Proof of Proposition 4.2

(3) ⇒ (1) is immediate (consider the EU preference determined by p and u ). To see that (3) ⇔ (2), note

that, if f , f̄ are complementary, with 1
2

f + 1
2

f̄ ∼ z ∈ X , f ∼ x and f̄ ∼ x̄ , then 1
2

f + 1
2

f̄ ¼ 1
2

x + 1
2

x̄ iff u (z ) ≥
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1
2

∫

u ◦ f dp+ 1
2

A(
∫

u ◦ f dm)+ 1
2

∫

u ◦ f̄ dp+ 1
2

A(
∫

u ◦ f̄ dm) = u (z )+A(
∫

u ◦ f dm), because
∫

u ◦ f̄ dm=−
∫

u ◦ f dm

and A is symmetric; hence, the required ranking obtains iff A(
∫

u ◦ f dm)≤ 0.

Turn now to (1) ⇒ (3). Suppose that ¼ is more ambiguity-averse than some EU preference relation ¼′. By

Corollary B.3 in [22], one can assume that ¼′ is represented by the non-constant utility u on X . Arguing by con-

tradiction, suppose that there is f ∈ L 0 such that A(
∫

u ◦ f dm)> 0. Let γ ∈R be such that γ−u ◦ f ∈ B0(Σ, u (X )),

and f̄ ∈ L 0 such that u ◦ f̄ = γ− u ◦ f . Then A(
∫

u ◦ f̄ dm) = A(
∫

u ◦ f dm) > 0; furthermore, 1
2

u ◦ f + 1
2

u ◦ f̄ =

u ◦ ( 1
2

f + 1
2

f̄ ) = 1
2
γ, which implies A(

∫

u ◦ ( 1
2

f + 1
2

f̄ )dm) = A( 1
2
γm (Ω)) = A(0) = 0. If now f ∼ x and f̄ ∼ x̄ for x , x̄ ∈X ,

then 1
2

u (x )+ 1
2

u (x̄ ) = 1
2
γ+A(ϕ)> 1

2
γ, so 1

2
x + 1

2
x̄ � 1

2
f + 1

2
f̄ . Now let z ∈X be such that 1

2
f (ω)+ 1

2
f̄ (ω)∼ z for allω;

then 1
2

x + 1
2

x̄ � z , so 1
2

x + 1
2

x̄ �′ z . But f ∼ x and f̄ ∼ x̄ imply f ¼′ x and f̄ ¼′ x̄ , and since ¼′ is an EU preference,
1
2

f + 1
2

f̄ ¼′ 1
2

x + 1
2

x̄ ; hence, z ¼′ 1
2

x + 1
2

x̄ , a contradiction.

To see that (3) ⇔ (4), consider first the following Claim: for a complementary pair ( f , f̄ ) such that f ∼ f̄ ,
1
2

f + 1
2

f̄ ∼ z ¼ f iff A(
∫

u ◦ f dm)≤ 0. To prove this claim, let 1
2

f + 1
2

f̄ ∼ z ∈X : then, since f ∼ f̄ and these acts have

the same adjustments,
∫

u ◦ f dp=
∫

u ◦ f̄ dp, so both integrals equal u (z ). Therefore, 1
2

f + 1
2

f̄ ∼ z ¼ f if and only

if u (z )≥ u (z )+A(
∫

u ◦ f dm) =
∫

u ◦ f dp+A(
∫

u ◦ f dm).

The Claim immediately shows that (3) implies (4). For the converse, assume that Axiom 4.3 and consider the

cases (a)¼ satisfies C-Independence or (b) u (X ) is unbounded. In case (a), then I is positively homogeneous, so if

ϕ =
∫

a dm for some a ∈ B (Σ, u (X )) and α > 0, then A(αϕ) = Î (αa )− J (αa ) = α[Î (a )− J (a )] = αA(ϕ): that is, A is

also positively homogeneous. In this case, it is wlog to assume that u (X ) ⊃ [−1, 1] and prove the result for f ∈ L 0

such that ‖u ◦ f ‖ ≤ 1
3

. This ensures the existence of f̄ ∈ L 0 such that u ◦ f̄ = −u ◦ f , as well as g , ḡ ∈ L 0 such that

u ◦ g = u ◦ f −
∫

u ◦ f dp and u ◦ ḡ = u ◦ f̄ −
∫

u ◦ f̄ dp = −u ◦ g . By construction, (g , ḡ ) are complementary and

g ∼ ḡ , because
∫

u ◦ g dp =
∫

u ◦ ḡ dp = 0. The above Claim implies that A(
∫

u ◦ f dm) = A(
∫

u ◦ g dm) ≤ 0, as

required.

In case (b), suppose u (X ) is unbounded below (the other case is treated analogously). Consider f ∈ L 0 and

construct f̄ ∈ L 0 such that u ◦ f̄ =min u ◦ f (Ω)+max u ◦ f (Ω)− f . Then f , f̄ are complementary. If f ∼ f̄ , then

the Claim suffices to prove the result. Otherwise, let δ=
∫

u ◦ f dp−
∫

u ◦ f̄ dp. If δ > 0, consider f ′ ∈ L 0 such that

u ◦ f ′ = u ◦ f −δ: then
∫

u ◦ f ′dp =
∫

u ◦ f̄ dp and f ′, f̄ are complementary, so f ′ ∼ f̄ and the Claim implies that

A(
∫

u ◦ f dm) = A(
∫

u ◦ f ′dm) ≤ 0. If instead δ < 0, consider f ′ such that u ◦ f ′ = f̄ −δ, so again f ∼ f ′ and the

Claim can be invoked to yield the required conclusion.

B.7 Updating

For a ,b ∈ B0(Σ, u (X )), denote by a Eb the element of B0(Σ, u (X )) that coincides with a on E and with b elsewhere.

Proof of Remark 4.1.

Only if: it will be shown that, for any event E ∈ Σ, p (E ) = 0 implies I (a ) = I (b ) for all a ,b ∈ B0(Σ, u (X )) such

that a (ω) = b (ω) for ω 6∈ E . To see this, assume wlog that I (a ) ≥ I (b ), and let α = max{max a (Ω), max b (Ω)}
and β = min{min a (Ω), min b (Ω)}. Then monotonicity implies that I (αE a ) ≥ I (a ) ≥ I (b ) ≥ I (βEb ) = I (βE a ).

Thus, it is sufficient to show that I (αE a ) = I (βE a ). This is immediate if α = β , so assume α > β . Since p (E ) = 0,
∫

αE a dp =
∫

Ω\E a dp =
∫

βE a dp, so if I (αE a ) > I (βE a ), it must be the case that A(
∫

αE a dm) > A(
∫

βE a dm).
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Letting γ=α+β , as usual γ−αE a ,γ−βE a ∈ B0(Σ, u (X )); now

I (γ−αE a ) =

∫

[γ−αE a ]dp+A

�∫

[γ−αE a ]dm

�

=

∫

Ω\E
[γ−a ]dp+A

�

−
∫

αE a dm

�

=

=

∫

Ω\E
[γ−a ]dp+A

�∫

αE a dm

�

>

∫

Ω\E
[γ−a ]dp+A

�∫

βE a dm

�

=

=

∫

Ω\E
[γ−a ]dp+A

�∫

[γ−βE a )dm

�

=

∫

[γ−βE a ]dp+A

�∫

[γ−βE a )dm

�

= I (γ−βE a ),

which is a violation of monotonicity, as γ−α=β <α= γ−β .

If: suppose that p (E )> 0, and fix x , y ∈ X with x � y . If x E y � y , we are done. Otherwise, note that x E y ∼ y ,

i.e. [u (x )− u (y )]p (E ) + A([u (x )− u (y )]m (E )) = 0, implies A([u (x )− u (y )]m (Ω \ E )) = A([u (x )− u (y )]m (E )) =

−[u (x )−u (y )]p (E ); hence,

I (u ◦ y E x ) = u (y )+p (Ω \E )[u (x )−u (y )]+A([u (x )−u (y )]m (Ω \E )) =

= u (y )+p (Ω \E )[u (x )−u (y )]− [u (x )−u (y )]p (E ) = u (y )+ [u (x )−u (y )][p (Ω \E )−p (E )]< u (x ),

because p (Ω \E )−p (E ) = 1−2p (E )< 1 as p (E )> 0. Thus, x � y E x , and again Axiom 4.4 holds.

Proof of Proposition 4.3. Since E is not null, p (E )> 0, so p (·|E ) is well-defined. Begin with the following

Claim: If ( f , f̄ ) is a complementary pair, f and f̄ are constant on Ω \E , and for allω∈Ω \E , then

1

2
f +

1

2
f̄ (ω)∼

1

2
f̄ +

1

2
f (ω)

holds if and only if u ( f (ω)) =
∫

u ◦ f dp=
∫

E
u ◦ f dp(·|E ) for allω∈Ω \E .

Proof of the Claim: Let γ ∈ R be such that 1
2
γ = 1

2
u ( f (ω)) + 1

2
u ( f̄ (ω)) for all ω ∈ Ω; also let α = u ( f (ω)) and

β = u ( f̄ (ω)) for any (hence all)ω∈Ω \E . Then u ◦ f̄ = γ−u ◦ f and β = γ−α; thus, forω∈Ω \E ,

I
�

u ◦
�1

2
f +

1

2
f̄ (ω)

��

=
1

2

∫

u ◦ f dp+
1

2
β +A

�

1

2

∫

u ◦ f dm

�

=

=
1

2

∫

u ◦ f dp+
1

2
γ−

1

2
α+A

�

1

2

∫

u ◦ f dm

�

and

I
�

u ◦
�1

2
f̄ +

1

2
f (ω)

��

=
1

2

∫

u ◦ f̄ dp+
1

2
α+A

�

1

2

∫

u ◦ f̄ dm

�

=

=
1

2
γ−

∫

u ◦ f dp+
1

2
α+A

�

1

2

∫

u ◦ f dm

�

,

where the last equality uses the fact that
∫

u ◦ f̄ dm = −
∫

u ◦ f dm and A is symmetric. Hence, 1
2

f + 1
2

f̄ (ω) ∼
1
2

f̄ + 1
2

f (ω) holds if and only if α =
∫

u ◦ f dp. Furthermore,
∫

u ◦ f dp =
∫

E
u ◦ f dp+αp (Ω \ E ), so it follows that

α=
∫

E
u ◦ f dp(·|E ) as well.
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Next, note that the tuple of set functions mE = (m i ,E )0≤i<n defined by Eq. (7) is easily seen to be an element of

M n
∞(Σ); in particular, for all F ∈Σ, |m i ,E (F )| ≤ |m i (F ∩E )|+ |m i (Ω\E )| ≤N (F ∩E )+N (Ω\E ) for all i , and if (Fk ) ↓ ;,

then sup0≤i<n |m i ,E (F )| ≤ sup0≤i<n |m i (Fk ∩E )|+p (Fk |E )N (Ω\E )→ 0. Furthermore, mE (E ) =m (E )+p (E |E )m (Ω\
E ) = 0 as well. Note also that, for all a ∈ B (Σ),

∫

E
a dmE =

∫

E
a dm+

∫

E
a dp(·|E )m (Ω \ E ); this is immediate for

indicator functions, holds by linearity on B0(Σ), and extends to B (Σ) by continuity.

The tuple (n , mE , A) is an adjustment for p (·|E ); to verify monotonicity, observe that, for a ,b ∈ B0(Σ, u (X )), a ≥
b implies that

∫

a dp(·|E ) ≥
∫

b dp(·|E ), and hence a E
�∫

E
a dp(·|E )

�

≥ b E
�∫

E
b dp(·|E)

�

. Since (n , m , A) is an ad-

justment for p ,
∫

a E
�∫

E
a dp(·|E )

�

dp+A(
∫

a E
�∫

E
a dp(·|E )

�

dm)≥
∫

b E
�∫

E
b dp(·|E )

�

dp+A(
∫

b E
�∫

E
b dp(·|E )

�

dm),

i.e. equivalently
∫

E
a dp(·|E )+A(

∫

E
a dmE )≥

∫

E
b dp(·|E )+A(

∫

E
b dmE ), as required.

Now suppose (1) holds. Fix f , g , f̄ , ḡ ∈ L 0 as in Axiom 4.6. By the Claim, u ◦ f (ω) =
∫

E
u ◦ f dp(·|E ) =

∫

u ◦ f dp

and u ◦ g (ω) =
∫

E
u ◦ g dp(·|E ) =

∫

u ◦ g dp for allω∈Ω \E . Then the Axiom implies that f ¼E g iff f E g , i.e. iff

∫

u ◦ f dp+A

�∫

u ◦ f dm

�

≥
∫

u ◦ g dp+A

�∫

u ◦ g dm

�

⇔
∫

E

u ◦ f dp(·|E )+A

�∫

E

u ◦ f dm+m (Ω \E )

∫

E

u ◦ f dp(·|E )
�

≥
∫

E

u ◦ g dp(·|E )+A

�∫

E

u ◦ g dm+m (Ω \E )

∫

E

u ◦ g dp(·|E )
�

⇔
∫

E

u ◦ f dp(·|E )+A

�∫

E

u ◦ f dmE

�

≥
∫

E

u ◦ g dp(·|E )+A

�∫

E

u ◦ g dmE

�

.

If now f , g ∈ L 0 are arbitrary, let x , y ∈X be such that u (x ) =
∫

E
u ◦ f dp(·|E ) and u (y ) =

∫

E
u ◦ g dp(·|E ). Notice that

then
∫

u ◦ f E x dp =
∫

E
u ◦ f E x dp(·|E ) = u (x ), and similarly for g E y . Finally, let f ′, g ′ be such that ( f E x , f ′) and

(g E y , g ′) are complementary; notice that this requires that f ′, g ′ be constant on Ω\E . Then, by the Claim, the acts

f E x , f ′, g E y , g ′ satisfy all the assumptions of Axiom 4.6, and the preceding argument just given shows that then

f E x ¼E g E y iff
∫

E
u ◦ f dp(·|E )+A(

∫

E
u ◦ f dmE )≥

∫

E
u ◦g dp(·|E )+A(

∫

E
u ◦g dmE ). But by Axiom 4.5, f E x ¼E g E y

iff f ¼E g , so (2) holds.

In the opposite direction, assume that (2) holds. It is then immediate that Axiom 4.5 is satisfied. Now assume

that f , g , f̄ , ḡ are as in Axiom 4.6. Then the Claim shows that u ( f (ω)) =
∫

E
u ◦ f dp(·|E ) and u (g (ω)) =

∫

E
u ◦g dp(·|E)

for all ω ∈ Ω \ E , so
∫

E
u ◦ f dp(·|E) + A(

∫

E
u ◦ f dmE) = p (E )

∫

E
u ◦ f dp(·|E ) + p (Ω \ E )u ( f (ω)) + A(

∫

u ◦ f dm+

u ( f (ω))m (Ω\E )) =
∫

u ◦ f dp+A(
∫

u ◦ f dm), and similarly
∫

E
u ◦ g dp(·|E )+A(

∫

E
u ◦ g dmE ) =

∫

u ◦ g dp+A(
∫

u ◦
g dm), so that Axiom 4.6 holds.

Conclude by verifying that the “law of iterated conditioning” holds: with notation as in §4.2,

m i ,E ,F (G ) =m i ,E (G )+p (G |F )m i ,E (Ω \ F ) =m i ,E (G )−p (G |F )m i ,E (F ) =

=m i (G )−p (G |E )m i (E )−p (G |F )m i (F )+p (G |F )p (F |E )m i (E ) =

=m i (G )−p (G |F )m i (F ) =m i ,F (G ).
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B.8 Proof of Proposition 4.4

(1) follows immediately from Lemma B.10. For (2), notice that the Choquet integral is positively homogeneous;

hence, I has a unique extension from B0(Σ, u (X )) to B0(Σ), and J (a ) = 1
2

I (a )− 1
2

I (−a ) for all a ∈ B0(Σ). If ¼ sat-

isfies Complementary Independence, then, using the VEU representation, I (1E ) = p (E ) +A(m (E )) and I (−1E ) =

−p (E ) + A(−m (E )) = −p (E ) + A(m (E )), so I (1E )− I (−1E ) = 2p (E ). On the other hand, using the CEU represen-

tation, Iv (E ) = v (E ) and Iv (−1E ) = −[1− v (Ω \ E )]; since I = Iv , the claim follows. In the opposite direction,

suppose that a =
∑K

k=1αk 1Ek for a partition E1, . . . , EK of Ω and numbers α1 < α2 < . . . < αK . Then Iv (a ) =
∑K

k=1αk

�

v
�

∪K
`=k E`

�

−v
�

∪K
`=k+1E`

��

and similarly, invoking the condition in the Proposition,

Iv (−a ) =
K
∑

k=1

(−αk )
�

v
�

∪k
`=1E`

�

−v
�

∪k−1
`=1 E`

��

=

=
K
∑

k=1

(−αk )
�

2p
�

∪k
`=1E`

�

−1+v
�

∪K
`=k+1E`

�

−2p
�

∪k−1
`=1 E`

�

+1−v
�

∪K
`=k E`

��

=−2
K
∑

k=1

αk p (Ek )+ Iv (a ),

and so 1
2

I (a )− 1
2

I (−a ) = J (a ), where J is the linear functional represented by p . The claim now follows from

Lemma B.8.

B.9 Proof of Proposition 4.5

The preference ¼ has a niveloidal representation Ic ∗ , u , where Ic (a ) =minq∈ba1(Σ)
∫

a dq+ c ∗(q ). For conciseness,

say that c ∗ is symmetric around p ∈ ba1(Σ) iff it satisfies the condition in Prop. 4.5. By Lemma B.8, Axiom 3.7 holds

iff the functional J defined by J (a ) = 1
2
γ+ 1

2
Ic ∗ (a )− 1

2
Ic ∗ (γ−a ) is affine. Thus it suffices to show that J is affine iff

c ∗ is symmetric around p .

Suppose that c ∗ is symmetric around p . Consider a complementary pair ( f , f̄ ), and let z ∈ X be such that
1
2

f (ω)+ 1
2

f̄ (ω)∼ z ; thus, a ≡ u ◦ f = 2u (z )−u ◦ f̄ ≡ γ−u ◦ f̄ . Now let q ∗ ∈ arg minq∈ba1(Σ)
∫

a dq+c ∗(q ); since clearly

c ∗(q ∗)<∞, 2p −q ∗ ∈ ba1(Σ) and c ∗(q ∗) = c ∗(2p −q ∗). Now, for all q ∈ ba1(Σ) such that 2p −q ∈ ba1(Σ),
∫

(γ−a )d(2p −q )+ c ∗(2p −q ) = γ−2

∫

a dp+

∫

a dq+ c ∗(q )≥

≥ γ−2

∫

a dp+

∫

a dq∗+ c ∗(q ∗) =

∫

(γ−a )d(2p −q ∗)+ c ∗(2p −q ∗).

Since any q ∈ ba1(Σ) such that 2p−q ∈ ba1(Σ) can obviously be written as q = 2p−[2p−q ], and all other q ∈ ba1(Σ)

have c ∗(q ) = ∞, it follows that Ic ∗ (γ− a ) = γ− 2
∫

a dp+
∫

a dq∗ + c ∗(2p − q ∗) = γ− 2
∫

a dp+ Ic ∗ (a ); therefore,

J (a ) = 1
2
γ+ 1

2
Ic ∗ (a )− 1

2
Ic ∗ (γ−a ) =

∫

a dp, i.e. J is affine and represented by p .

In the opposite direction, suppose that γ+ 1
2

Ic ∗ (a )− 1
2

Ic ∗ (γ−a ) =
∫

a dp for all a ,γ−a ∈ B0(Σ); also, for every

f ∈ L 0, let m f ∈ X be such that u (m f ) = 1
2

minω∈Ωu ( f (ω)) + 1
2

maxω∈Ωu ( f (ω)), and recall that u (x f ) = Ic ∗ (u ◦ f ).
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For every q ∈ ba1(Σ) such that 2p −q ∈ ba1(Σ),

c ∗(2p −q ) = sup
f ∈L 0

u (x f )−
∫

u ◦ f d(2p −q ) =−2

∫

u ◦ f dp+ sup
f ∈L 0

Ic ∗ (u ◦ f )−
∫

(−u ◦ f )dq=

=−2

∫

u ◦ f dp+ sup
f ∈L 0

2

∫

u ◦ f dp+ Ic ∗ (2u (m f )−u ◦ f )−2u (m f )−
∫

(−u ◦ f )dq=

= sup
f ∈L 0

Ic ∗ (2u (m f )−u ◦ f )−
∫

[2u (m f )−u ◦ f ]dq= sup
f ∈L 0

Ic ∗ (u ◦ f )−
∫

u ◦ f dq= c ∗(q );

the last step follows because, for every f ∈ L 0, there is f̄ ∈ L 0 such that u ◦ f̄ = 2u (m f )− u ◦ f , and therefore

computing the supremum over f ∈ L 0 is the same as computing it over the complementary acts f̄ constructed

from each f ∈ L 0 in this way. If instead 2p −q 6∈ ba1(Σ) but c ∗(q )<∞, the above calculations still show that

sup
f ∈L 0

u (x f )−
∫

u ◦ f d(2p −q ) = c ∗(q )<∞.

Now 2p (Ω)−q (Ω) = 1, so there must be E ∈Σ such that 2p (E )−q (E )< 0. Therefore,

sup
f ∈L 0

u (x f )−
∫

u ◦ f d(2p −q ) = sup
f ∈L 0

Ic ∗ (u ◦ f )−
∫

u ◦ f d(2p −q )≥

≥ sup
α,β∈u (X ):α>β

Ic ∗ (β +(α−β )1E )−
∫

[β +(α−β )1E ]d(2p−q) =

= sup
α,β∈u (X ):α>β

Ic ∗ (β +(α−β )1E )−β − (α−β )[2p (E )−q (E )]≥

≥ sup
α,β∈u (X ):α>β

β −β − (α−β )[2p (E )−q (E )] =∞

which contradicts c ∗(q ) < ∞. The second equality follows from the fact that 2p (Ω) − q (Ω) = 1, and the sec-

ond inequality follows from monotonicity of Ic ∗ ; the final equality uses the fact that u (X ) is unbounded and

2p (E )−q (E )< 0.

B.10 Probabilistic Sophistication for VEU preferences

An induced likelihood ordering ¼` is represented by a probability µ ∈ ca1(Σ) iff, for all E , F ∈ Σ, E ¼` F iff µ(E ) ≥
µ(F ). Finally, a probability measure µ is convex-ranged iff, for every event E ∈ Σ such that µ(E )> 0, and for every

α∈ (0, 1), there exists A ∈Σ such that A ⊂ E and µ(A) =αµ(E ).

Proposition B.15 Fix a VEU preference relation ¼ and let p ∈ ca1(Σ) be the corresponding baseline probability. If

the induced likelihood ordering¼` is represented by a convex-ranged probability measure µ∈ ca1(Σ), then µ= p1.

Proof: Fix x , y ∈ X with x � y . Since the ranking of bets x E y is represented by µ and also by the map defined by

E 7→ u (x )p (E )+u (y )p (E c )+A([u (x )−u (y )]m (E )), there exists an increasing function g : [0, 1]→ [u (y ), u (x )] such
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that u (x )p (E )+u (y )p (E c )+A([u (x )−u (y )]m (E )) = g (µ(E )) for all events E [this function g will in general depend

upon x and y , but this is inconsequential]. Hence, recalling that m (Ω \E ) =−m (E ) and A is symmetric,

g (µ(E ))− g (1−µ(E )) = [u (x )−u (y )](2p (E )−1) (24)

for all events E ∈ Σ. Since g is increasing, so is the map γ 7→ g (γ)− g (1− γ); thus, µ(E ) = µ(F ) if and only if

p (E ) = p (F ). Now, since µ is convex-ranged, for any integer n there exists a partition {E n
1 , . . . , E n

n } of Ω such that

µ(E n
j ) =

1
n

for all j = 1, . . . , n ; correspondingly, p (E n
j ) = p (E n

k ) for all j , k ∈ {1, . . . , n}, and therefore p (E n
j ) =

1
n

for all

j = 1, . . . , n . This implies that, for every event E such that µ(E ) is rational, p (E ) =µ(E ).

To extend this equality to arbitrary events, note that, for every event E such thatµ(E )> 0 and number r <µ(E ),

since µ is convex-ranged, there exists L ⊂ E such that µ(L) = r
µ(E )µ(E ) = r . Similarly, for every event E such that

µ(E ) < 1 and number r > µ(E ), there exists an event U ⊃ E such that µ(U ) = r : to see this, note that µ(Ω \ E ) > 0

and 1− r <µ(Ω \E ), so there exists L ⊂Ω \E such that µ(L) = 1− r ; hence, U =Ω \ L has the required properties.

Now consider sequences of rational numbers {`n }n≥0 ⊂ [0, 1] and {u n }n≥0 ⊂ [0, 1] such that `n ↑ µ(E ) and

u n ↓ µ(E ); by the preceding argument, for every n ≥ 1 there exist sets L n ⊂ E ⊂ Un such that µ(L n ) = `n and

µ(Un ) = u n . It was shown above that p (L n ) = µ(L n ) and p (Un ) = µ(Un ); moreover, L n ⊂ E ⊂ Un implies that

p (L n )≤ p (E )≤ p (Un ). Therefore, p (E ) =µ(E ), as required.
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