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Recollecting painful or traumatic experiences can be deeply troubling. Sleep may offer
an opportunity to reduce such suffering. We developed a procedure to weaken older
aversive memories by reactivating newer positive memories during sleep. Participants
viewed 48 nonsense words each paired with a unique aversive image, followed by an
overnight sleep. In the next evening, participants learned associations between half of
the words and additional positive images, creating interference. During the following
non-rapid-eye-movement sleep, auditory memory cues were unobtrusively delivered.
Upon waking, presenting cues associated with both aversive and positive images during
sleep, as opposed to not presenting cues, weakened aversive memory recall while increas-
ing positive memory intrusions. Substantiating these memory benefits, computational
modeling revealed that cueing facilitated evidence accumulation toward positive affect
judgments. Moreover, cue-elicited theta brain rhythms during sleep predominantly
predicted the recall of positive memories. A noninvasive sleep intervention can thus
modify aversive recollection and affective responses.

memory updating | targeted memory reactivation | positive memories
memory interference | NREM sleep

Aversive memories can be overwhelming when they intrude on mnemonic awareness,
impair cognitive function, and deteriorate mental health (1, 2). For many years, scientists
have sought methods to help individuals manage these troubling memories (1, 3-6).
However, controlling aversive memories is challenging and effortful, due to their intense
emotional charge and well-consolidated nature (7-10). An alternative, less-studied route
can be weakening aversive memories and even their affective responses during sleep, given
that sleep influences both memory and emotion processing (11, 12). Recent research has
demonstrated that activating positive memories during wakefulness can reduce negative
affect and depressive symptoms in humans, as well as alleviate depression-like behavior
in rodents (13—17). Here, we test a strategy to weaken aversive memories by introducing
positive interfering memories, and then reactivating these memories during subsequent
non-rapid-eye-movement (NREM) sleep.

Cross-species evidence suggests that memories of daily experiences are spontaneously reac-
tivated during sleep, thus contributing to their consolidation (11, 12, 18, 19). Notably,
memory consolidation can be selectively maneuvered by replaying memory-associated sensory
cues during postlearning NREM sleep, a procedure known as targeted memory reactivation
(TMR) (20-23). Although TMR is often used to strengthen memories, it also holds promise
for weakening memories. When reactivating emotional memories during sleep in prior studies,
results have been mixed. Some studies found that TMR strengthens emotional memories and
reduces subjective arousal, while other studies found TMR benefits in neutral relative to
emotional memories or null effects on either memories or emotional responses (24, 25).
Recently, research suggested that TMR could reactivate multiple memory traces during sleep,
either strengthening or weakening episodic memories (26, 27). To the best of our knowledge,
no studies have been designed to weaken previously acquired, older aversive memories during
sleep by reactivating their corresponding, yet recently acquired positive memories.

Examining cue-elicited neural activity during TMR could illuminate neural mechanisms
that drive memory change, potentially deepening our understanding of reactivation of positive
interfering memory during sleep. Specifically, slow-wave sleep (SWS) and spindle-related
sigma power have consistently been shown to play crucial roles in TMR-induced memory
benefits (28-33). In the case of reactivating interfering memories, enhanced beta (16 to 30
Hz) activity may implicate memory interference during sleep and predict postsleep forgetting
(27, 34, 35). Moreover, 4 to 8 Hz theta activity has been associated with emotional processing
and emotional memory reactivation during sleep (36-38). Here, we focused on theta and
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beta activity to elucidate the neural mechanisms underlying the reac-
tivation of interfering positive memories during sleep.

We hypothesized that older aversive memories could be weak-
ened by reactivating their corresponding positive memories dur-
ing NREM sleep. To test this hypothesis, we designed a multiday
procedure (Fig. 1). Participants encoded aversive memories on
Day 1 followed by an overnight sleep for memories to consoli-
date. On Day 2 evening, participants encoded positive memories
that shared the same cues as half of the older aversive memories,
thereby producing interference. During subsequent NREM
sleep, we replayed memory cues associated with both aversive
and positive images to weaken the older aversive memories and
affective responses. Recognizing multiple expressions of emo-
tional memory (9), we assessed both memory (voluntary recall
and involuntary intrusions) and affective responses (subjective
ratings and speeded affect judgments) related to both aversive
and positive memories. Including these measures allowed a sys-
tematic examination of TMR impact on various expressions of
aversive memories.

Our experimental design, with positive memories acquired just
prior to TMR sleep, may facilitate their reactivation during TMR
due to temporal proximity (27, 39). Moreover, this design offers
an intriguing context for exploring how to weaken older aversive
memories. We found that memory cueing during NREM sleep
impaired subsequent recall of aversive memories, together with
increased involuntary intrusions of positive memories. Regarding
affect changes, cueing increased positive affect judgments toward
the cues, and facilitated evidence accumulation toward positive
judgments as revealed by the drift diffusion model (DDM).
Examining cue-elicited EEG activity suggested that TMR prefer-
entially reactivated positive interfering memories during NREM
sleep, as evidenced by cue-elicited theta power predicted subsequent
positive memories.

A

Results

Participants effectively learned aversive associations on Day 1, with
these memories being stronger following Day 1 sleep (SI Appendix,
Fig. S1). In subsequent analyses, we used Day 2 morning cued recall
accuracy as the aversive memory baseline performance. On Day 2
evening, participants learned positive interfering memories by asso-
ciating positive images and half of the pseudowords from Day 1 (i.c.,
interference condition). Participants showed high recognition accu-
racies during learning, demonstrating successful acquisition of pos-
itive interfering memories (S/ Appendix, Fig. S1).

TMR Weakened Older Aversive Memories and Selectively
Improved Positive Memories. To answer our primary research
question about weakening aversive memories, we examined
TMR effects on the recall of eatlier acquired aversive memories
(i.e., T3 on Day 2, Day 3, and 5; for descriptives, SI Appendix,
Table S1). We analyzed item-level aversive memory accuracy
(correctly recalled or not) using a Bayesian linear mixed model
(BLMM), given that this method allowed examining individual
memory items and is well suited for handling hierarchical data
structures with large numbers of random effects and varying slopes
(40). In this model, TMR (Cued vs. Uncued) and interference
(Interference vs. Noninterference) were treated as fixed effects,
while baseline aversive memory accuracy (Remembered vs.
Forgotten) and time (Immediate vs. Delayed) were included as
covariates. We incorporated time as a covariate rather than a fixed
factor, as model comparisons indicated that the current model was
superior to alternative models (i.e., treating time as a fixed factor;
see ST Appendix, Table S2 for model comparison). For consistency,
all main results were analyzed with time treated as a covariate.
Additionally, we provided the results that treated time as a fixed
factor, revealing that TMR effects were more evident during the

Fig. 1. Experimental procedure. (A) On Day 1, participants

Aversive Aversive Positive encoding/ Immediate/ learned 48 unique pseudoword-image pairs with only
encoding baseline tests positive baseline tests delayed tests  2versve Images. On Day 2, 24 of the same pseudowords
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20:00-22:40 8:00-9:00 20:30-22:40 8:00-9:00 memories. L1 and L2 denote the learning task with
24 pairs aversive or positive images, respectively. The 48 images

d) d) <1) were composed of 12 images from four content categories
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During a TMR sleep session, 12 memory cues from the
) interference condition (green sound icon) and 12 from
the noninterference condition (purple sound icon), were
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presented to sleeping participants during NREM sleep.
Additionally, 12 novel pseudowords (gray sound icon) that
were not paired with any images during the experiment
were played as control sounds. TMR cues were presented
in a randomized block manner. (B) The Left panel (purple
box) represents aversive encoding on Day 1 and the
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C accuracy. (C) The Left two panels (black boxes) represent
affect-judgment and affect-rating tasks, and the Right two

Affect Judgement Affect Rating Aversive memory recall Positive memory recall panels (purple and green boxes) illustrate aversive and
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positive cued-recall tasks. During each cued recall task,
participants also reported the presence or absence of
intrusions. T1, T2, T3, and T4 denote an exemplar trial
from the corresponding task. Note that we did not assess
positive intrusions during the Day 1 and Day 2 morning
aversive recall, as positive memories had not yet been
acquired at these time points.
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delayed test (see ST Appendix, Table S3 for immediate and delayed
results).

Results showed that in the interference condition, cueing (cued
vs. uncued) reduced the recall of aversive memories (median, ;=
-0.44, 95% HDI [-0.82, -0.11], Fig. 24). However, in the non-
interference condition, the cueing effect was not significant
(mediandiﬁr: 0.05, 95% HDI [-0.53, 0.64], Fig. 2B). We next
examined the TMR effects on positive interfering memories, using
TMR as fixed factor and positive memory baseline accuracy and
time as covariates. The results revealed a nonsignificant TMR effect
on the recall of positive interfering memories (median ;= -0.18,
95% HDI [-0.23, 0.65]).

'The above results suggested that TMR weakened aversive mem-
ories while not influencing positive interfering memories in the
interference condition. We further examined the concurrent influ-
ence of TMR on both aversive and positive memories in the inter-
ference condition in a single model, with TMR (Cued vs. Uncued)
and valence (Aversive vs. Positive memories) as fixed factors and
time and baseline accuracy as covariates. Collaborating with previ-
ously mentioned results, we found that cueing significantly decreased
aversive memory accuracy (Cued vs. Uncued, median ;= -0.34,
95% HDI [-0.68, -0.01]) without influencing positive memory
accuracy (Cued vs. Uncued, median ,z= 0.16, 95% HDI [-0.28,
0.62]).

We next identified memory items that were forgotten during
the Day 2 evening positive recall but were remembered during
the Day 2 morning aversive recall (Aversive remembered_Positive
forgotten, ~23.6% of all items across participants). We found that
among these items, cueing impaired aversive memories while
strengthened positive memories (aversive, cued vs. uncued, medi-

an = -0.91, 95% HDI [-1.54, -0.24]; positive, cued vs. uncued,

mediandl-f/z«: 1.44, 95% HDI [0.27, 2.90], SI Appendix, Fig. S2).
Thus, TMR weakened aversive memories while improving positive
interfering memories, yet only when aversive memories had inter-
fered the recall of later learned positive memories.

TMR Increased Intrusions of Positive Memory during Aversive
Recall. During the aversive (or positive) memory recall, we also
assessed involuntary intrusions: Following verbal recall to each cue,
participants indicated whether the positive (or aversive) memory
involuntarily intruded into awareness. We employed the BLMM
to examine the TMR effects on positive memory intrusions during
aversive memory recall (T3), while treating time as a covariate for
consistency (see SI Appendix, Table S2 for immediate and delayed
results separately). Note that for positive memory intrusion, there
was no baseline performance because participants had not yet
learned the positive memories on Day 2 morning. Therefore, positive
intrusion was only examined on Day 3 and Day 5. The results
revealed that cueing induced more positive memory intrusions in the
interference condition (mediandiﬂ= 0.37, 95% HDI [0.11, 0.65],
Fig. 2C) but not in the noninterference condition (mediandiﬁp:
-0.01, 95% HDI [-0.59, 0.57], Fig. 2D). In contrast, cucing did
not impact aversive memory intrusions during positive memory
recall (T4) on Day 3 and Day 5 (median,;;= -0.03, 95% HDI
[-0.40, 0.33]). Together, we found that TMR enhanced positive
intrusions during aversive memory recall, but did not influence
aversive intrusions during positive memory recall.

TMR Increased Positive Affect Judgments: Behavioral and Com-
putational Evidence. In addition to memory changes, we were
interested in TMR’s impact on affect changes. For the speeded
affect judgment task, we calculated the positive judgment ratios for
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Fig. 2. TMR weakens earlier acquired aversive memories and strengthens positive interfering memories in the interference condition. Item-level aversive
memory, positive memory, and positive memory intrusions were analyzed using a BLMM. (A) TMR cueing in the interference condition reduced recall accuracy
of aversive memories, (B) but not in the noninterference condition. (C and D) TMR induced more positive memory intrusions in the interference (C) condition
but not in the noninterference (D) condition. In all panels, purple boxes indicate aversive dependent measures, and green boxes represent positive dependent
measures. Within each panel, the left-side density plots are derived from actual data and display the fitted data of the posterior distribution for the respective
dependent variables (A and B: aversive memory recall accuracy; (C and D): positive memory intrusions). The right-side histogram plots illustrate the contrast
between cued and uncued conditions, with horizontal black lines representing the 95% highest density interval (HDI), and vertical gray lines denoting 0. If 0 does

not overlap with the 95% HDI, the result is considered significant.
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each item (i.e., the total number of positive judgments divided by
the total numbers of judgments for the specific item) at three time
points (i.e., Day 2 morning, Day 3 morning, and Day 5 morning).
We next calculated the positivity change scores (Day 3/5 morning
minus Day 2 morning), and submitted it to BLMM to examine how
TMR and interference impacted the positivity change scores using
time as a covariate (see Materials and Methods for model details). Our
findings revealed that compared to uncued items, cueing increased
positivity change scores in the interference (median ;= 0.05, 95%
HDI [0.01, 0.10], Fig. 34) but not in the noninterference condition
(mediandif = 0.01, 95% HDI [-0.04, 0.06], Fig. 3B). The same
analysis on RT changes did not yield significant differences in
either interference (median 4= 0-02,95% HDI [-0.004, 0.04]) or
noninterference condition (mediandlﬁr: 0.02, 95% HDI [-0.005,
0.04]). For the affect rating task, the same analysis was conducted on
valence and arousal changes, which did notyield any significant results
between cued and uncued conditions (-0.093 < median ;< 0.070,
all HDIs overlapped with 0).

To further delineate how TMR may impact the cognitive pro-
cessing underlying the binary speeded affect judgments, we used
a DDM [41-43); sce Fig. 3C and Materials and Methods). We
hypothesized that TMR would influence the starting point (2)
and drift rate (v) in the interference condition. To test this, we
estimated v, z, and vz separately across different conditions in
three different models, while estimating # and r at the participant
level. We implemented a hierarchical Bayesian approach through
the HDDM, which offers more robustness and tolerance for low
trial numbers (44). In our analysis, we incorporated TMR, time,
and their interaction into the regression model of the HDDM

A Interference w

(see Materials and Methods for model details). Model comparison
results suggested that the » model ranked highest. We thus focus
our results on the drift rate model.

Critical to our research question, we were particularly interested
in how cueing changed drift rate from baseline to immediate and
delayed tests. In line with previous analyses, we averaged the
results of immediate and delayed tests and calculated the drift rate
change from presleep to postsleep (see SI Appendix, Fig. S3 for
immediate and delayed results separately). Our analysis revealed
that participants were faster in accumulating evidence toward
making positive judgments for cued items than uncued items
from baseline to immediate and delayed tests (cued vs. uncued,
mediandlﬁr: 0.22, 95% HDI [0.06, 0.37], Fig. 3D).

Unraveling Cue-Elicited EEG Responses during Sleep. Our
behavioral findings indicated that TMR weakened earlier
acquired aversive memories while increasing positive memory
intrusions in the interference condition. To examine how TMR
reactivated aversive and positive memories during NREM sleep,
we extracted cue-locked, time-frequency resolved EEG responses
in the interference and noninterference conditions, and compared
them with the EEG responses elicited by control sounds.

We found that when compared to the control sounds that did
not involve any memory pairs before sleep, both interference and
noninterference memory cues increased EEG power across the
delta, theta, sigma, and beta bands in frontal and central areas
(P juseess < 0.01, corrected for multiple comparisons across time,
frequency, and space, Fig. 4 A-D). However, when contrasting
interference with noninterference memory cues, we did not
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Fig. 3. Computational modeling of affect judgments. Item-level positivity change scores were assessed using a BLMM. (A and B) TMR increased positivity
changes in the interference condition (A) but not in the noninterference condition (B). (C) lllustrates the general processing of the hierarchical DDM (HDDM).
The main parameters of the model include the starting point z, the drift rate v, the decision boundary a, and the nondecision time t, which determine when
sampled sensory evidence (green and purple) leads to a choice that is positive (green, upper boundary) or aversive (purple, lower boundary). (D) TMR facilitated
evidence accumulation toward positive response in affect judgment task. The drift rate was calculated using the HDDM regression module. Within panels A, B,
and D, the left-side density plots display the posterior distribution of the corresponding dependent variables (e.g., positivity change scores and drift rate change)
in cued and uncued conditions. Panels A and B are based on the actual data depicting positivity change scores, whereas panel D is derived from the HDDM
representing drift rate changes, with the displayed distribution illustrating the fitted data of posterior distributions. The right-side histogram plots represent
the contrast between cued and uncued conditions, with horizontal black lines indicating the 95% HDI, and vertical gray lines denoting 0. If 0 does not fall within

the 95% HDI, the result is deemed significant.
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identify any significant clusters (P .,s > 0.05). These findings
suggested that delta-theta and sigma-beta power increases may
indicate memory reactivation during sleep.

We next examined whether cue-elicited theta and beta power
were associated with subsequent memory accuracies (i.e., remem-
bered vs. forgotten) for individual positive or aversive stimulus in
the interference condition, given the relationship between theta
activity and emotional processing (19), and between beta activity
and memory interference during sleep (27, 34). Employing
BLMM across all channels revealed that the cue-elicited theta
power over the right central-parietal region (FC5, C2, C4, CP2,
CP4, TP7) was significantly higher for subsequently remembered
than for forgotten positive memories (median ;= 1.39, 95% HDI
[0.32, 2.43], Fig. 4E). For aversive memories, a few channels’
(Fp2, F6, C5) theta power was higher for remembered than for
forgotten aversive memories (median ;= 1.04, 95% HDI [0.16,
1.86]; Fig. 4F). In contrast, we found no relationships between
cue-elicited beta power and positive or aversive memories (medi-
an s < 0.17, all HDIs overlapped with 0). In addition to inves-
tigating the subsequent memory effect on theta power increase,
we also examined theta and sigma power decrease; however, no
significant results were found (theta: 0.001 < median ;s < 0.099;
Sigma: -0.008 < median, ;s < 0.015; all HDIs overlapped with 0,
SI Appendix, Fig. $4).

Cue-Elicited Theta Power Predicted Memory Changes. Our
previous results revealed that cue-elicited theta power was associated
with subsequent memory accuracies, suggesting that cue-elicited
theta power may track cue-triggered memory reactivation during
sleep. In light of these findings, we proceeded to investigate the
relationship between cue-elicited theta power and TMR effects on
both aversive and positive memories at postsleep tests. To quantify
the relationship between EEG power increases and item-level
aversive and positive memories, we employed BLMM with EEG
power and valence (positive vs. aversive memories) as fixed factors,
incorporating baseline memory accuracy and time as covariates.
Single-item EEG activity was extracted from significant clusters
spanning across all channels and was subsequently averaged across
time points and frequency bands within these clusters. This analysis
incorporated the single-item EEG power from each frequency band
into the model and was repeated for each channel, allowing for
a thorough examination of possible EEG-behavior relationships.

Results revealed that cue-elicited theta power positively predicted
both positive (median,;zs > 0.05, all HDIs did not overlap with 0;
see Fig. 54) and aversive (median ;s > 0.03; see Fig. 58) memory
recall, whereas cue-elicited beta power did not predict either posi-
tive (-0.05 < mediandiﬁrs <0.12) or aversive (-0.06 < mediandlﬁrs <
0.06, all HDIs overlapped with 0) memories. Moreover, there was
no significant difference between the estimated trend of theta’s pre-
dictive capacity for positive and aversive memory retrieval (medi-
an s < 0.03, all HDIs overlapped with 0).

To confirm the robustness of the results, we further examined
this EEG-behavioral relationship at the participant-level. We sim-
ilarly found that cue-elicited theta power significantly predicted
positive memory accuracy across most scalp electrodes (s < 0.05,
FDR corrected, Fig. 5C). However, no such relationship was
observed for aversive memory (Ps > 0.05, FDR corrected, Fig. 5D).
Moreover, the correlation of theta power on positive memory
accuracy was significantly stronger than that on aversive memory
accuracy (zs > 2.13, P__,,..eqs < 0.033). This finding suggested that
at a participant-level, the cue-elicited theta power preferentially
predicted positive over aversive memories.

We further investigated the impact of the positivity strength of
the positive interfering memories (i.e., valence ratings of positive
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images) on the prediction of theta power for positive and aversive
memories. Based on valence ratings of positive images (1 repre-
sents most aversive and 9 represents most positive), we categorized
the positivity strength into low (1 to 3), medium (4 to 6), and
high (7 to 9). We then employed a BLMM to explore how the
positivity strength would modulate the prediction of theta on
positive and aversive memories at an item level.

In this analysis, we included averaged theta power (averaging
across channels that showed significant theta prediction on positive
memories), valence (aversive vs. positive memories), and positivity
strength (low, medium, high), while accounting for time as covar-
iates. Results revealed that when positivity strength was low, theta
power predicted aversive memories (median ;= 0.26, 95% HDI
[0.03, 0.53]) but not positive memories (mediandlﬂ: 0.25, 95%
HDI [-0.03, 0.57]). Conversely, when positivity strength was high,
theta power predicted positive memories (median ;= 0.17, 95%
HDI [0.04, 0.32]) but not aversive memories (mediandlyf: 0.03,
95%HDI [-0.04, 0.11]). For medium positivity strength, theta
power did not predict either aversive or positive memories (medi-
angs < 0.07, all HDIs overlapped with 0, Fig. SE).

We next repeated the same analysis, but using averaged theta
power in predicting aversive memories (averaging across channels
that showed significant theta prediction on aversive memories).
The results indicated that when positivity strength was low, theta
power predicted aversive memories (median ;= 0.25, 95%HDI
[0.03, 0.51]) but not positive memories (me ian ;= 0.17, 95%
HDI [-0.07, 0.45]). For medium and high positivity strength,
theta power did not predict either aversive or positive memories
(median s < 0.13, all HDIs overlapped with 0, Fig. 5£).

Results with the delta frequency band showed a similar pattern
to theta, while we did not observe any effect at sigma or beta bands
(SI Appendix, Fig. S5). Together, these findings suggested that
cueing interfering memories preferentially reactivated the newly
acquired positive memories rather than the older aversive memo-
ries. Importantly, when positivity strength was high, the positive
interference effect was strong, with cue-elicited theta power pref-
erentially predicting positive memories. When positivity strength
was low, the positive interference effect was weak, with cue-elicited
theta power preferentially predicting aversive memories. However,
it shall be noted that the proportion of low positivity strength
trials was small (low: 5.8%, medium: 57.6%, high: 36.6%). This
helps explain that cue-elicited theta power predicted aversive
memories only at the item level, but not at the participant level.

In the noninterference condition wherein cues were only associated
with the older aversive memories, cue-elicited theta, sigma, and beta
power positively predicted aversive memories across multiple channels
at the item-level (theta: median ;4 > 0.07; sigma: median, s > 0.08;
beta: median ;s > 0.14, all HDIs did not overlap with 0), but not at
the participant-level (rs < 0.42, ps > 0.14, FDR corrected). No effects
were found for cue-elicited delta power at either item- (median s <
0.037, all HDIs overlapped with 0) or participant-levels (rs < 0.34,
P, ecieas > 0.63, SI Appendix, Fig. S6).

col

REM Sleep Modulated the TMR Benefits on Positive Intrusions.
Considering the influence of REM sleep on TMR and emotional
memory (45, 46), we explored the relationship between REM
parameters (percentage and REM-theta power) and behavioral
measures (recall, intrusion, and positivity change scores). Consistent
with previous analyses, we first combined the behavioral outcomes
from the immediate and delayed tests. Spearman correlations in
cued and uncued conditions did not find significant correlations
after correction (P, .oq8 > 0.12; see ST Appendix, Tables S5 and S6
for details).
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Fig. 4. EEG response toward interference and noninterference cues. Time-frequency results were averaged across all trials and participants over all electrodes
in the (A) interference and (C) noninterference condition. The power differences between memory cues (B: interference, D: noninterference) and control sounds
are illustrated in the image plot, which displays the t-map from a cluster-based permutation test across time points, frequency bands, and channels. The bottom
topographical plot shows the raw values (Z-scored) of the delta-theta band, while the upper plot presents the raw values of the sigma-beta bands. (E and F) Cue-
elicited theta power for subsequently remembered positive and aversive items was significantly greater than that of forgotten items across different channels;
in all panels, green outlines represent positive memory outcomes; and purple outlines represent aversive memory outcomes. Within panels £ and F, the left-
side density plots are derived from actual data and display the fitted data of the posterior distribution of theta power in remembered and forgotten conditions,
with the right-side histogram plots illustrating the contrast between remembered and forgotten conditions. Horizontal black lines represent the 95% HDI, and
vertical gray lines denote 0. If 0 does not overlap with the 95% HDI, the result is considered as significant.

Next, we examined the immediate and delayed tests separately.
In the cued condition, we found that the REM percentage of Day
2 TMR night positively predicted positive intrusions during the
delayed test (tho (33) = 0.45, P, .ced = 0.04) but not during the
immediate test (tho (33) = 0.17, P, cied = 0-33). Additionally, REM
percentage did not predict aversive intrusions during either the
immediate or delayed tests (P, .eqs > 0.33; see SIAppendix,
Tables S7 and S8). In the uncued condition, no significant corre-
lations were found (2. .eqs > 0.50; see ST Appendix, Tables S5-S9).
Furthermore, the correlation between the REM percentage from
Day 2 sleep and delayed positive intrusion in the cued condition
was significantly larger than in the uncued condition (z = 2.25,

P =0.01). These results suggest that the TMR effect on positive

https://doi.org/10.1073/pnas.2400678121

intrusions during the delayed test is contingent upon REM sleep
following the NREM TMR.

Discussion

This experiment provided new evidence that older aversive memo-
ries can be weakened via sleep reactivation of their corresponding
positive memories that produced interference. Cue presentations
during sleep also increased intrusions of positive memories during
aversive memory recall. Moreover, cueing improved positive mem-
ories when earlier remembered aversive memories interfered with
recall of positive memories during wakefulness. Regarding affect
changes, TMR increased positive judgments toward memory cues,
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facilitating evidence accumulation toward these positive judgments.
Sleep EEG results indicated that cue-elicited theta power predicted
positive memories both at the item- and participant-levels, suggest-
ing that cueing preferentially reactivated the recently acquired pos-
itive memories. Overall, our findings may offer new insights relevant
for the treatment of pathological or trauma-related remembering.

Over the past decade, using TMR to modify memories during
sleep has garnered much attention, particularly with fear conditioning

PNAS 2024 Vol.121 No.31 2400678121

and emotional episodes (37, 47-51). Most of these studies used cues
associated with negative memories, yielding mixed results. A recent
study found that TMR facilitates the retention of neutral, but not
negative, memories (25). These mixed results suggest that weakening
emotional memories via direct cueing can be challenging. We recently
demonstrated that pairing a positive word with an aversive memory
cue during NREM sleep, affect judgments became less negative (37).
Relatedly, research reported that recalling positive memories during
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wakefulness could reduce negative affect and ameliorate depressive
symptoms (15, 16). We thus employed an approach to introduce
positive interference to earlier acquired aversive memories during
wakefulness, followed by reactivating these memories during NREM
sleep. In line with our hypotheses, TMR not only weakened subse-
quent recall of these older aversive memories but also increased intru-
sions of positive memories. Intriguingly, we found that when
remembered aversive memories interfered with the recall of positive
interfering memories (i.e., those aversive remembered and positive
forgotten items), TMR improved recall of these positive memories
while weakening corresponding aversive memories. Our results were
aligned with recent TMR research showing that episodic forgetting
could be induced via reactivating interfering memories during sleep
(26, 27). Going beyond prior research on neutral memories, our
results suggest that TMR preferentially reactivated recently acquired
positive memories and weakened older aversive memories, thus alter-
ing the fate of emotional experiences.

One important goal of emotional memory editing is to alleviate
the affective responses elicited by these memories. While TMR
can be effective in modifying memories, subjective valence or
arousal ratings might not be sensitive to TMR (21). Previous
research suggested that speeded affect judgments might be better
for capturing affective changes due to manipulation during sleep
(37, 52). Here, using a similar affect judgment task, we found that
TMR enhanced positive response changes in comparison to the
uncued condition. Notably, our HDDM analyses showed that
TMR selectively facilitated evidence accumulation toward the
positive response, as evidenced by a higher drift rate. Existing
studies have shown that the drift rate represents the quality of
information obtained from stimuli during the evidence accumu-
lation process, with a higher drift rate indicating lower random
noise (42, 53), and memory can guide this process in preferential
choice tasks (54). Our results are also consistent with a previous
TMR study in which TMR accelerated the evidence accumulation
in a value-based binary choice task (49). Together, these results
suggested that in addition to weakening aversive memories, TMR
can also increase positive affective responses.

Complementing TMR-induced memory and affect benefits, our
sleep EEG analyses provided further insights into the memory
reactivation processes during sleep. First, compared to control
sounds that were not paired with an image, we found that replaying
memory cues elicited theta and beta EEG responses that may indi-
cate memory reactivation (30, 32, 55), with theta activity specifi-
cally linked to emotional memory reactivation (19, 36-38).
Second, examining EEG-behavioral relationships at the item level
revealed that cue-elicited theta activity predicted both positive and
aversive recall, while at the participant level, they predicted positive
but not aversive recall. Moreover, when positivity strength was low
(i.e., valence ratings were negative), cue-elicited theta power pref-
erentially predicted aversive memories but not positive memories.
However, when positivity strength was high (i.e., valence ratings
were highly positive), cue-elicited theta power preferentially pre-
dicted positive memories. An important caveat is that only around
6% of positive images were rated as relatively aversive. These find-
ings suggest that while TMR preferentially reactivated positive
memories, aversive memories may be reactivated when their pos-
itive interfering memories were less positive. This observation can
explain why we detected theta power’s prediction of aversive mem-
ories at the item level but not at the participant level.

Active system consolidation posits that newly acquired memories
are distributed across the hippocampus and neocortex, gradually
becoming less dependent on the hippocampus and more neocortex-
dependent through the triple coupling of hippocampal ripples,
thalamocortical spindles, and neocortical slow oscillations during

https://doi.org/10.1073/pnas.2400678121

NREM sleep (18, 56). While most TMR studies have investigated
memories acquired within hours before sleep (21), some results sug-
gest that TMR may be less effective when reactivating 24-h older
memories (39). Relatedly, using TMR to selectively reactivate over-
lapping memories can weaken older memories (acquired 3 h ago)
while strengthening recent contiguous learning (acquired 5 min ago),
again highlighting that TMR may prioritize recent over earlier mem-
ories (27). While these findings help explain why our TMR proce-
dure preferentially reactivated recently acquired positive memories,
an intriguing question remains—would TMR reactivate positive
memories if they were introduced prior to the aversive memories.
Future research is warranted to test whether TMR prioritizes recency
over valence or vice versa. Furthermore, despite the lack of TMR
effects from reactivating older aversive memories, we observed
intriguing sleep EEG results: cues for older aversive memories also
elicited greater delta-theta and sigma-beta power increases compared
to control sounds. Importantly, cue-elicited theta power increases
positively predicted post-TMR aversive memory accuracy at the item
level. These findings suggested that even if older memories do not
benefit from TMR, memory cues continue to be processed during
sleep, as evidenced by changes in cue-elicited EEG activity (29, 30,
32,55, 57).

Limitations and future directions should be noted. First, although
our experiment aims to weaken aversive memories, the lab-induced
emotional experiences of viewing aversive/positive images may not
mimic typical traumatic experiences. Moreover, finding positive
components within some highly traumatic experiences can be chal-
lenging. The generalizability of the current findings to clinical set-
tings thus remains a critical goal for future research. Future research
should explore ways to introduce positive interfering memories (58),
such as positive autobiographical memories or therapy-related mem-
ories (15, 59), to effectively weaken real-life trauma memories.
Second, the role of REM sleep in modulating emotional memories
shall be further investigated (45, 60, 61). Our TMR was adminis-
tered during SWS, a sleep stage that is critical for memory reacti-
vation and systems consolidation (18, 21, 62). Intriguingly, we also
found that higher REM percentages during the TMR night pre-
dicted more TMR-induced positive memory intrusions, which is
consistent with recent findings suggesting that the REM sleep could
modulate the NREM TMR effects (46, 63, 64). Moreover, admin-
istering TMR during REM sleep can reduce subjective arousal of
negative memories and the frequency of nightmares (48, 59). Based
on these promising results, future studies should further examine
whether REM TMR could similarly weaken aversive memories.

Our results can also be related to retrieval-induced forgetting
(RIF), in which repeated retrieval of selected memories would
inhibit their related yet not retrieved memories, leading to forgetting
of these nonretrieved memories (65). Crucially, evidence suggests
that selective retrieval would recruit the top—down inhibitory con-
trol to actively inhibit the interfering nonretrieved memory traces
rather than disrupting specific reminder-memory associations (66,
67). While our findings and others (26, 27, 34, 68) suggest that TMR
could induce forgetting during sleep, it remains unclear whether
weakened memories would recover or generalize across reminders
or contexts. Future studies should directly elucidate the under-
lying mechanisms and determine the longevity of the observed
benefits.

In sum, our study presents a new approach for weakening older
aversive memories during sleep. Notably, this benefit was achieved
by introducing positive interference, followed by memory cueing
during sleep. Cue-elicited theta power predicted the TMR benefit
in recalling positive memories. More importantly, benefits were
multifaceted, evidenced on voluntary recall, involuntary intrusions,
and speeded affect judgments. By demonstrating the memory and
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affect benefits of reactivating positive interfering memories, our
study invites future research to harness the potential of sleep-based
memory editing techniques in managing aversive memories and
promoting psychological well-being.

Materials and Methods

Participants. A total of 37 participants (25 females and 12 males; Age: mean
= SD, 20 = 2 y) were included in the behavioral analyses. For EEG analyses, we
included 36 participants (one participant's sleep EEG data was not saved properly
due to an experimenter error). An additional 17 participants were recruited, but
their data were excluded from subsequent analyses for the following reasons.
Five participants' data were dropped due to poor recognition accuracy (<50%) on
Day 1 presleep tests. Four participants were unable to fall asleep during the first
night and one on the second night. Data from three participants were removed
as they reported hearing the words while asleep. Data from four participants
were excluded because they had fewer than 36 trials presented during sleep. Our
sample size was determined based on recent within-subject TMR studies, with
sample sizes ranging between 20 and 31 participants (26-28, 48, 57, 69-71).

All participants were native Chinese speakers, with self-reported reqular sleep-
wake cycles. Participants had no history or current diagnosis of neurological or psy-
chiatricillnesses and did not take any medications that influence sleep or mood.
Participants were compensated with monetary incentives for their participation.
The study received ethical approval from the Human Research Ethics Committee
of the University of Hong Kong. All participants provided written informed consent
before the experiment.

stimuli. We generated a set of 48 two-character pseudowords by randomly
combining two neutral characters from the Chinese Affective Words System (72).
The spoken words, which were used as auditory memory cues in later TMR, were
produced using the Text-To-Speech function of iFLYTEK (duration: mean = SD,
779 = 56 ms). Visual stimuli consisted of images that were selected from four
categories: animals, babies, people, and scenes. Each category included 12 pos-
itive and 12 aversive images, resulting in a total of 48 positive and 48 aversive
images. These images were chosen from the International Affective Image System
[IAPS, (73)], the Nencki Affective Image System [NAPS, (74)], and various internet
resources.

Procedures and Tasks. The experimental procedures were introduced to the
participants prior to their first laboratory visit. Participants were told that the study
included two consecutive nights of sleep in the laboratory, along with a series
of computer tasks. As described below, these tasks were conducted during the
daytime and nighttime with EEG recordings.

On Day 1 evening, participants arrived at the laboratory around 20:00. After
EEG setup, they completed the following tasks in order: 1) aversive image rating,
2) cue (pseudowords) - target (aversive image) encoding (48 pairings in each of
2 blocks), 3) cued recall of aversive images (48 pairings), 4) cue (pseudowords)
- target (aversive image) encoding (48 pairings in each of 2 blocks), and 5) cued
recall of aversive images (48 pairings). The first night serves as an adaptation
night, facilitating the consolidation of the newly learned associations. Participants
went to bed around 23:00, with EEG recorded throughout the night.

On Day 2 moming, participants were awakened ataround 7:00. After breakfast
and freshening up, they began the postsleep tasks at approximately 7:30, which
included: 1) a speeded affect judgment task; 2) affect ratings; and 3) cued recall
of aversive images. Participants left the lab upon completing these tasks.

On Day 2 evening, participants returned to the lab at around 20:30. Following
EEG setup, they completed the following tasks in order: 1) positive image rating;
2) cue (pseudoword) - target (positive image) encoding (24 pairings in each of 2
blocks); 3) cued recall of positive images with self-report of involuntary intrusions
of aversive memories (24 pairings); 4) cue (pseudoword) - target (positive image)
encoding (24 pairings in each of 2 blocks); and 5) cued recall of positive images
with intrusion reports of aversive memories (24 pairings). Participants went to
bed around 23:00, and half of the spoken words were played as memory cues
during NREM sleep until approximately 02:00.

On Day 3 morning, participants were provided breakfast upon waking, and
then completed the following tasks in order: 1) a speeded affect judgment task;
2)affectratings; and 3) cued recall of positive memories with intrusion reports of
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aversive memories; and cued recall of aversive memories with intrusion reports
of positive memories. The order of positive and aversive cued recall tasks was
counterbalanced across participants.

On Day 5, participants returned to the lab around 9:00 and completed the
same tasks as on Day 3 morning: 1) a speeded affect judgment task; 2) affect
ratings; and 3) cued recall of positive or aversive memories with intrusion reports
(the order of positive and aversive recall tasks was counterbalanced across par-
ticipants). Last, participants gave semantic similarity ratings of the aversive and
positive images.

Aversive (Day 1 Evening) and Positive (Day 2 Evening) Encoding. During the
Day 1 evening aversive memory encoding task, participants learned 48 unique
cue-target pairs involving pseudowords (cues) and aversive images (targets).
These 48 images consisted of 12 images from each of four content categories
(animals, babies, people, and scenes). During the Day 2 evening session, we
randomly selected cues from half of the pairs (i.e., 24 word-image pairs, with
images from two out of the four categories) and paired these cues with positive
images selected from the same two categories, thus introducing positive inter-
fering memories. This design created two conditions: the interference condition
(pseudowords associated with both an aversive image on Day 1 and a positive
image on Day 2) and the noninterference condition (pseudowords associated
with only an aversive image on Day 1).

The encoding session included four blocks, each containing a passive viewing
task and a recognition task with feedback. During the passive viewing task, each
trial began with fixation (800 to 1,200 ms), followed by simultaneous auditory
and visual presentation of cues (approximately 1,000 ms). Subsequently, auditory
and visual cues were displayed again along with the image (2,000 ms). Visual
cues were shown in the top half of the screen, while the image was shown in the
center. After all pairs (48 word-image pairs for Day 1 aversive encoding and 24
word-image pairs for Day 2 positive encoding), participants took a 1-min break
before starting the recognition task with feedback.

During the recognition task, each trial began with fixation (800 to 1,200 ms),
followed by simultaneous auditory and visual presentation of cues (1,500 ms),
along with three images displayed in the center of the screen. The correctly paired
image was randomly presented in one of three locations. The two filler images
were selected from other learned word-image pairs. Participants used keys "1,
"2", or "3" to indicate the image that was paired with the cue. Regardless of
the participant's response, the correct cue-target pair was presented aurally and
visually again for 1,000 ms as feedback. After this recognition with feedback
task, the mean recognition accuracy was displayed in the center of the screen for
3,000 ms. To increase encoding accuracy, participants completed a cued verbal
recall task after two blocks of passive viewing and recognition with feedback tasks,
followed by another two blocks of passive viewing and recognition with feedback
tasks. Subsequently, participants completed the cued verbal recall task again,
and the memory performance from this task was used in subsequent analysis.

Image/Cue/Word Rating Task. In the image-rating task, participants rated
48 aversive and positive images using a 9-point Likert scale along valence
(extremely aversive to extremely positive) and arousal (extremely calm to
extremely excited). Each trial began with an 800-ms fixation, followed by the
presentation of images at the center of the screen. After participants submitted
their ratings using a computer mouse, a 500-ms blank screen was displayed.
Images were presented in a random order. Results indicated that individuals con-
sistently perceived positive images as positive and negative images as negative
(aversive: 2.99 +0.10; positive: 7.03 £ 0.12,1(36) = 22.0, P < 0.001,d = 3.61).
In the cue-affect-rating task, participants assessed the valence and arousal of
pseudowords while hearing them spoken. The procedure was otherwise identical
to that of the image-rating task.

Speeded Affect Judgment Task. In the speeded affect judgment task (Day 2,
Day 3, and Day 5 mornings), each trial began with an 800 to 1,200 ms fixation,
followed by simultaneous auditory and visual presentation of cues at the center
of the screen for approximately 1,000 ms. Participants were instructed to make a
rapid binary judgment, endorsing the cue as either aversive or positive, by press-
ing the left or right keys within 1.5 s. The intertrial interval was 1 s. Participants
completed four blocks of the task (192 trials). The results from the four blocks were
subsequently averaged per cue to obtain participants' affect responses toward
the memory cues.

https://doi.org/10.1073/pnas.2400678121
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Cued Recall and Involuntary Intrusion Task. In the cued recall task, each
trial began with afixation period lasting between 800 and 1,200 ms across each
trial, followed by the aural presentation of the cue for approximately 1,000 ms.
Participants were instructed to provide a detailed verbal description of the images
paired with the cue within a 15-s interval when the word "speaking” appeared on
the screen. Amicrophone was used to capture responses. The intertrial interval was
3s.Twoindependent raters listened to memory responses to determine whether
the image was uniquely and correctly described (75). In any case of inconsistent
ratings, a third rater reconciled the discrepancy. All raters were blind to the exper-
imental conditions. In the aversive cued recall task (Day 3 and Day 5 morning),
participants were also instructed to report any involuntary intrusion of positive
memories on each trial. They were specifically asked to indicate whether a positive
memory intrusion occurred while recalling the aversive memory. Similarly, in the
positive cued recall task (Day 2 evening and Day 3 and Day5 mornings), partic-
ipants were instructed to report any involuntary intrusion of aversive memories
on each trial. Participants rated the frequency of involuntary intrusions on a scale
ranging from 0 to 2, where 0 represented "never’, 1 represented "rarely”, and 2
represented "often”. Ratings of 1 and 2 were combined to indicate the presence
of intrusions, while a rating of 0 indicated no intrusion (76, 77).

Semantic Similarity Rating. In the final session on Day 5, participants assessed
semantic similarities between aversive and positive images that were paired with
the same cues. This evaluation aimed to determine the extent of interference, as
images with higher conceptual similarity but opposite valence may engender
stronger interference (78-80). Each trial commenced with a 500 ms fixation, fol-
lowed by simultaneous side-by-side presentation of aversive and positive images
that were paired with the same pseudoword (interference trials). Participants
used the mouse to rate the semantic similarity between the two images using a
5-point Likert scale, ranging from 1 (not similar at all) to 5 (extremely similar).
We examined whether semantic similarity rating between two images would
influence TMR effect or EEG-behavioral relationship. Nevertheless, our study did
not reveal any significant findings.

TMR Setup. We randomly selected one category from the interference condi-
tion (12 pseudowords) and one category from the noninterference condition
(12 pseudowords) to serve as cued items in the TMR procedure. The remaining
two categories served as uncued items from interference and noninterference
conditions. Additionally, 12 novel pseudowords that were never paired with any
images were introduced as control sounds, as they would be unlikely to trigger
any retrieval. Consequently, a total of 36 pseudowords (interference, noninterfer-
ence, control) were played during sleep. The 36 cues were presented randomly
in blocks during NREM sleep. Trained experimenters initiated cueing when par-
ticipants had entered SWS for a minimum of 5 min. Cueing was discontinued if
participants entered REM or N1 sleep or exhibited arousal or wakefulness (i.e.,
bursts of muscle activity or alpha activity). Within each block, cues were presented
with an interstimulus interval (ISI) of 4 s, with each cue lasting for 1's, resulting
in a 3-min block duration. Each block was separated by a 60-s interval. Cueing
was terminated upon reaching either 1) 20 blocks of cues, amounting to a total
of 720 trials, or 2) 02:00, whichever occurred first.

All experimental tasks were carried out using Psychopy 3.0 software (81).
During TMR, auditory cues (i.e., spoken words) were delivered at an approximate
sound pressure level of 38 dB through a loudspeaker situated approximately
50 cm above the bed. White noise was played as background throughout the
entire night.

EEG Recording and Preprocessing. Sleep was monitored and recorded using
high-density electroencephalography (EEG), electrooculography (EOG) for eye
movement recording, and mentalis electromyography (EMG) for muscle activity
recording. EEG data were collected using a 64-channel system (eego, eemagine,
ANT, The Netherlands), and impedances were maintained below 20 k<. Signals
were sampled at 500 Hz online, using CPz as the reference. Prior to sleep, two
EMG electrodes were attached bilaterally to the mentalis regions, with a ground
electrode placed on the forehead. For monitoring only, EEG data were bandpass
filtered at 0.5 to 40 Hz, and EOG and EMG were not filtered.

All EEG processing steps were carried out using MNE-Python [v1.5.1, (82)]
and Python 3.8.The processing steps included the following: 1) down-sampling
the EEG data to 200 Hz, 2) applying a 50 Hz notch filter along with 0.1 to 40 Hz
bandpass finite impulse response (FIR)filters, 3) visually identifying and marking
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bad channels, 4) rereferencing the data to the average of all nonmarked electrodes
after excluding M1 and M2, and 5) segmenting continuous EEG data into long
epochs (20 s epochs ranging from —10to 10 s relative to cue onset) for subsequent
time-frequency analysis and sleep event detection. Finally, artifact epochs were
removed through visual inspection, followed by interpolation of bad channels.

Offline Sleep Staging. Sleep stage analyses were conducted using a machine
learning algorithm, the Yet Another Spindle Algorithm [YASA, (83)]. Staging
results were next validated by an experienced sleep researcher. In adherence to
YASA's recommendations, EEG data were initially rereferenced to FPz (or Fp2 if Fpz
was labeled as a bad channel). The C4 (or C3 in instances where C4 was labeled
as a bad channel), and EOG served as input for the algorithm. Five participants
on Day 1 and one participant on Day 2 had Ground or Reference channels dis-
connected during the second half of the night due to head and body movements,
resulting in signal loss of all channels. As a result, we excluded these participants
when reporting sleep staging information. Before calculating sleep staging statis-
tics, artifacts were identified and removed. TMR cueing accuracy was determined
offline based on the results of this automatic sleep staging. Further details on
sleep stages and cueing accuracy can be found in S Appendix, Table S4.

Behavioral Analysis. For the speeded affect judgment task, we computed the
positive response ratio, which ranged from 0 (all responses were aversive) to 1 (all
responses were positive). We then calculated the affect judgment change score by
subtracting the presleep positive response ratio from the postsleep immediate
and delay ratios, resulting in a range from —1to 1, with a larger score indicating
increased positive responses from presleep to postimmediate or postdelay, and
a zero score indicating no changes in affect judgments.

For the affect rating task, we calculated affect rating changes by subtracting
presleep baseline valence/arousal ratings from postsleep immediate and delay
ratings. A higher valence/arousal change score indicated a more positive or arous-
ing change from presleep to postsleep immediate or delay. We then submitted
the affect judgment change, valence change, and arousal changes to a Bayesian
model to quantify the TMR effect at an item level. Regarding memory changes,
we employed Bayesian logistic regression to quantify the TMR effect on memory
accuracy and memory intrusion at the item level, given the binary nature of the
data (i.e., recalled or not, experienced intrusion or not).

EEG Time-Frequency Analyses. For time-frequency analysis, the initial step
was cropping epochs to the interval =2 to 6 s relative to TMR onset. Next, a
continuous wavelet transformation featuring variable cycles (3 cycles in length
at 1 Hz, increasing linearly with frequency up to 15 cycles at 40 Hz) was applied
to the cropped epochs. We thus extracted power values from 1to 40 Hz in incre-
ments of 0.5 Hz and 5 ms intervals. In order to mitigate edge artifacts, epochs
were further cropped to —1 to 4 s relative to TMR onset. Subsequently, spectral
power normalization was applied using Z-score transformation of all trials, with a
baseline interval from —1to —0.2 5. Trial-level time-frequency data were retained
for further analysis. For the contrast between memory cues and control sounds,
trials were averaged for each specific experimental condition within individual
participants. A three-dimensional spatial-temporal-frequency permutation test
(two-tailed, one-sample with randomization of 1,000 and a statistical threshold
of 0.05) was utilized to evaluate significant clusters. This method allowed for
three comparisons: interference and control sound conditions, noninterference
and control sound conditions, and interference and noninterference conditions.

DDM. The DDM was used to decompose the decision-making processes, which
assesses sensory inputs and internal processing related to binary choices by contin-
uously combining sensory information related to two distinct choices (positive and
aversive responses). This integration proceeds until a certain threshold is achieved,
signifying that a sufficient amount of evidence has been collected to confidently
make a decision (84). The DDM separates the decision process into four key param-
eters: the starting point (z) between the two choice boundaries, which reflects a
predecision bias; the nondecision time (t), which accounts for decision-irrelevant
factors; the noisy drift process (v), which represents the accumulation of information
toward the preferred choice boundary; and the choice boundaries (a), which mark
the completion of the decision-making process when the accumulated evidence
reaches either one of them. We utilized a Bayesian hierarchical estimation of the
DDM (HDDM 0.8) implemented in the Docker HDDM framework (85). Our hier-
archical design considered that individual participant parameters are not entirely
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independent but are drawn from a shared distribution. We hypothesized that
both drift rate (v) and starting point (z) would be influenced by TMR manipulation
and test time in the interference and noninterference conditions. Additionally, we
allowed the choice boundary (a) and nondecision time (t) to vary based on TMR and
test time. To approximate the posterior distribution of the model parameters, we
employed Markov Chain Monte Carlo (MCMC) sampling, generating 25,000 sam-
ples and discarding 2,000 as burn-in. Model convergence was assessed through
visual inspection of the traces and autocorrelation of the model parameters, as well
as by computing the Gelman-Rubin R-hat statistic [R-hat < 1.1, (86)].

Due to our assumption that only drift rate and predecision bias would be
affected by our experimental condition, we focused on these parameters. We
applied HDDM regression analysis using the following model:

1) v="1+TMR + Time + TMR * Time

2) z=1+TMR +Time + TMR *Time

3) v,z=1+TMR + Time + TMR *Time

In the above models, the decision boundary (a) and nondecision time (t) were
estimated at the individual level. To identify the best-fitting model, we conducted
model comparisons using leave-one-out cross-validation of the posterior log-
likelihood (LOO-CV) as implemented in the ArviZ package for Python (87). The
top-ranked model, determined by “arviz.compare’, was v = 1 + TMR + Time +
TMR *Time, and thus was reported.

statistics. In the analysis of behavioral data, we employed a paired sample t test
on all 48 memory items to examine the change in aversive memory from presleep
to postsleep on Day 1. Additionally, a repeated measures ANOVA was conducted
to assess the interference memory performance across aversive presleep (Day 1
evening), aversive postsleep (Day 2 morning), and positive presleep conditions
(Day 2 evening). These analyses were conducted to examine whether partici-
pants successfully encoded aversive memories, whether aversive memories were
consolidated following sleep, and how prior aversive memories influenced later
encoding of positive memories when they shared the same cues.

To measure TMR effects, we employed the BLMM to analyze the effect of TMR
in the interference and noninterference conditions. To determine the best-fitted
model, model comparisons were performed utilizing LOO-CV combined with
Pareto-smoothed importance sampling, which was implemented in the loo
package for R (86).

Noninformative priors were utilized in all models. For each model, four MCMC
chains were executed using 5,000 samples, with the initial 500 samples discarded
as a warm-up phase. The Gelman-Rubin r-hat statistic was employed to assess
model convergence [R-hat < 1.1, (81)]. Statistical inferences were based on the
95% HDI of the posterior distribution. Effects were considered significant if the
95% HDI did not encompass 0.

EEG-Behavioral Correlation. For time-frequency analysis, we employed a
cluster-based two-tailed, one-sample permutation test across channels, time
points, and frequency bands with 1,000 randomizations and a statistical threshold
of 0.05 against zero. An alpha level of 0.05 was used for statistical significance
testing. For effect sizes, we reported Cohen's dz in our within-subject design,
accompanying paired sample t tests.

We first investigated whether cue-elicited EEG power was associated with
subsequent memory accuracies (remember vs. forgotten) for positive and for
aversive memories. To achieve this, we employed the following BLMM:

EEG power =1+ memory accuracy * valence + time + (1 + memory accuracy
*valence | participant)

This model allowed us to examine the association between cue-elicited EEG
power and subsequent positive and aversive memory accuracy, while accounting
forindividual differences.
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To quantify the relationship between cue-elicited EEG power and behavioral
measures, we utilized BLMM. EEG Power was extracted from significant clusters at
the item level, and then the cue-elicited power values were submitted to BLMM to
predict memory accuracy, memory intrusion, and positive response changes. For
interference condition, we were interested in the interaction between EEG power
and valence (aversive vs. positive); thus, the following BLMM was employed:

Memory accuracy = 1 + EEG power * valence + baseline accuracy + time +
(1 + EEG power * valence | participant)

By adding baseline accuracy to the model, we examined the predictive effect
of cue-elicited EEG power on TMR-induced memory changes. This analysis was
repeated across all channels and for delta, theta, sigma, and beta bands.

For noninterference condition, the following BLMM was employed:

Aversive memory = 1 + EEG power + baseline accuracy + time + (1 + EEG

power | participant)
To further investigate whether the affect rating of positive images modulated the
power's prediction on aversive and positive memories, we averaged the signifi-
cant channels that predicted positive or aversive memories and submitted them
to the following BLMM:

Memory accuracy = 1+ EEG power * valence * categorical positive image valence
+time + (1 + EEG power * valence * categorical positive image valence | participant)

In this model, the categorical positive image valence represents the divi-
sion of positive image valence ratings into three conditions (low, medium,
high) using the "cut” command in R. All other variables were retained from
the previous model, while baseline accuracy was excluded to decrease model
complexity.

For the analysis of EEG-behavioral relationships, we conducted each model
across all channels. It is important to note that in Bayesian statistics, there is
typically no requirement for multiple comparison corrections (88, 89). This charac-
teristic of the Bayesian approach allows for a more straightforward interpretation
of results across multiple channels in the context of our study.

Data, Materials, and Software Availability. Preprocessed human behavioral
and EEG data are available on the Open Science Framework (OSF) (https://osf.
io/servz/) (90).
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