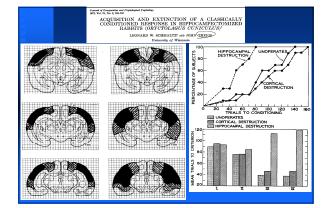
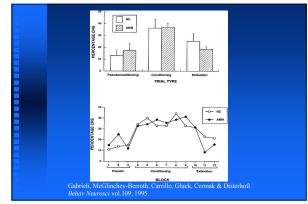
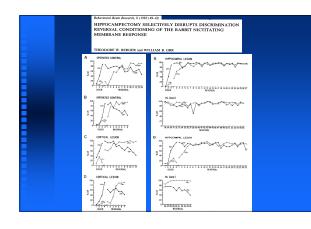
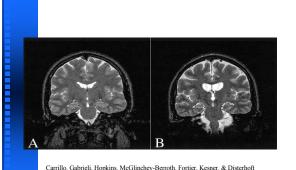
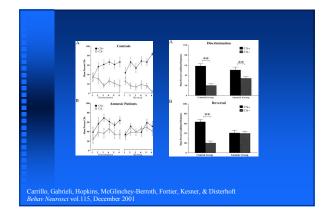

Effects of Temporal Lobe Amnesia, Aging and Awareness on Human Eyeblink Conditioning

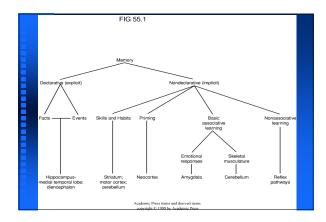


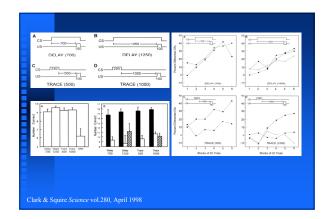

John Disterhoft Department of Physiology Institute for Neuroscience Northwestern University Medical School Chicago IL



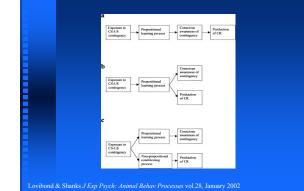


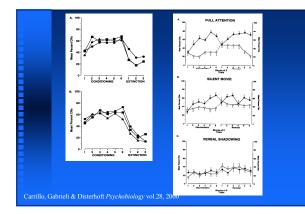






Carrillo, Gabrieli, Hopkins, McGlinchey-Berroth, Fortier, Kesner, & Disterhoft Behav Neurosci vol.115, December 2001



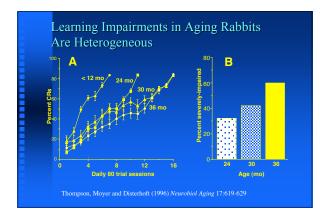


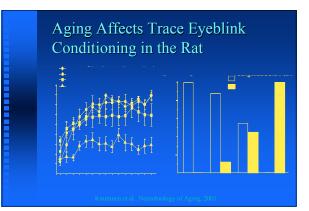
Clark & Squire Psychological Science vol.10, 1999

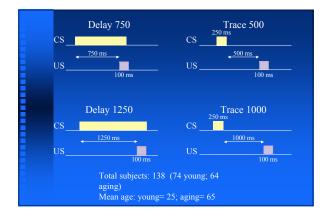
- Movie Questions: lease answer true or false to the following statements about the movie you just finished watchir The main character in this movie is played by the actor named Charlie Chaplain. T F
- 2 The main character falls down a snowy hill and turns into a giant snowball. T F
- In one scene, a dog was eaten by a hungry man. T F
- A bear was shot and killed. T F
- A shoe was cooked and eaten for Thanksgiving dinner. T $\ \mbox{F}$
- There was a drinking contest between two men. T F The main character finds a new pair of shoes in the snow. T
- One man's coat catches on fire. T. F.
- A hungry man thought he saw someone tur
 - One man dies in an avalanche. T F

Correlation of reported awareness with performance in delay EBC

- Hilgard et al ('37): subjects who reported awareness of which CS was reinforced showed better differential EBC in delay discrimination
- Ross & Nelson ('73): "In summary, some addt'l cognitive or awareness process, which are sensitive to a variety of variables that do not affect single-cue conditioning, <u>appear to be</u> involved in differential conditioning..."
- Carrillo et al ('99): performance of a verbal shadowing task or watching a silent movie had a significant effect on a two tone delay discrimination task

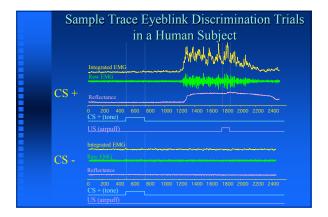

No correlation of awareness with EBC performance

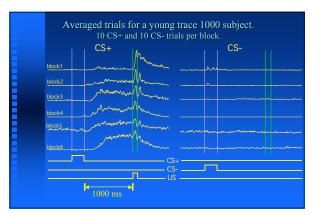

- Grant ('73): awareness of CS-US contingencies is not sufficient and may not be necessary to produce EBC or differential delay conditioning
- Frcka ('83): no significant relationship between measures of awareness and delay discrimination
- Clark & Squire ('98): successful trace discrimination conditioning dependent upon awareness of CS-US contingency, but successful delay discrimination was not dependent upon such awareness

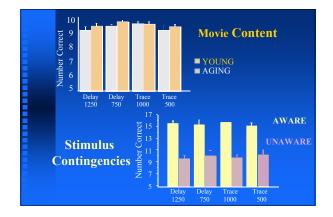

<u>Questions</u>:

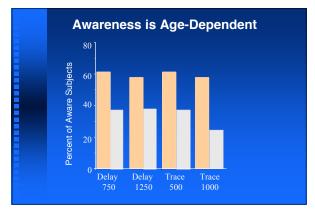
Are learning deficits which interact with awareness an *age-dependent* phenomenon?

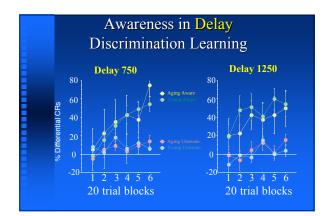
Is awareness related to successful acquisition of trace and/or delay discrimination?

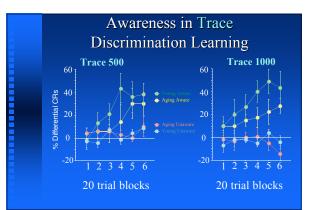


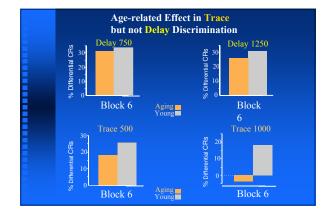


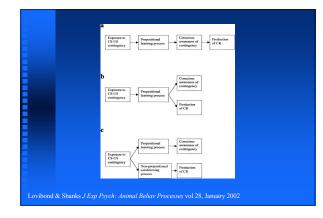


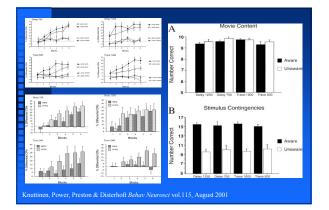

METHODS


- 4 differential conditioning paradigms with either tone or static noise as CS+
- Training consisted of 60 CS+ and 60 CS- trials randomly presented; subjects instructed to watch a silent movie (*Gold Rush*)
- Eyeblink measures recorded via integrated and rectified EMG responses
- Following conditioning: subjects answered questions about *movie content* AND about *temporal relationships* between the CS+, CS-, and US









	Human Eyeblink Conditioning
	Catherine Brawn Fortier (Boston Univ)
	Maria Carrillo (Rush Medical School)
	John Gabrieli (Stanford Univ)
	M-Grace Knuttinen (now at Univ Chicago)
	Regina McGlinchey-Berroth (Harvard Univ)
	Todd Parrish
	Alison Preston (Stanford Univ)
	Craig Weiss
Suppor	rted By

		Patient	Asc	Education	WAIS-R	General	WMS-R			
		no.	(years)	(years)	Verbal IQ	Memory	Attention	Delay		
		1	67	18	126	102	114	50		
		23	37	12	104	88 76	108	71 51		
		4	58	20	109	65	89	61		
		5	67	18	103	68	93	66		
		6	45	16	111	81	107	69 80		
		7	39	13	96	92	98 87	80 50		
Hable 2		age-adji	usted mea	n of 100.	WMS-R sci WAIS-R = Wechsler Me	Wechsler	Adult Inte			
Table 2 Discrimination Task and group	and Reversal CS+	age-adji Scale	usted mea Revised; 3	n of 100. WMS-R = ntage of C CR	WAIS-R = Wechsler Me	Wechsler mory Scale	Adult Inte Revised. (CRs), As	elligence	l Latency CS- CR LAT (ms)	CS- UR AMP (mV)
Discrimination Task and group Discrimination	CS+	age-adju Scale— I: Mean (± S CS—	usted mea Revised; ³ (D) Perce CS+ AMP (n of 100. WMS-R = ntage of C CR mV) 1	WAIS-R = Wechsler Me Conditioned CS+ CR LAT (ms)	Wechsler mory Scale Responses CS+ U AMP (m	Adult Inte Revised (CRs), As (V) /	nplitude, and CS- CR AMP (mV)	CS-CR LAT (ms)	AMP (mV)
Discrimination Task and group		age-adji Scale	usted mea Revised; V D) Perce CS+	n of 100. WMS-R = ntage of C CR mV) 1 : 556.5 41	WAIS-R = Wechsler Me Conditioned CS+ CR	Wechsler mory Scale Responses CS+ U	Adult Inte 	nplitude, and	CS- CR	AMP (mV)
Discrimination Task and group Discrimination Control Amnesic	CS+ 56.3 ± 17.6	age-adju Scale- l: Mean (± S CS- 22.9 ± 16.3	usted mea Revised;) D) Perce CS+ AMP (2,543.5 ±	n of 100. WMS-R = ntage of C CR mV) 1 : 556.5 41 : 713.1 36 : 659.0 41	WAIS-R = Wechsler Me Conditioned CS+ CR LAT (ms)	Wechsler mory Scale Responses CS+ U AMP (m 2,940.5 ± 1	Adult Inte 	nplitude, and CS – CR AMP (mV) 37.9 ± 658.4	CS- CR LAT (ms) 426.6 ± 86.6	