Using machine learning and qualitative interviews to
design a five-question women’s agency index*

Seema Jayachandran Monica Biradavolu Jan Cooper
Northwestern University QualAnalytics Harvard University

March 23, 2021

Abstract

We propose a new method to design a short survey measure of a complex concept such as women’s agency. The approach combines mixed-methods data collection and machine learning. We select the best survey questions based on how strongly correlated they are with a “gold standard” measure of the concept derived from qualitative interviews. In our application, we measure agency for 209 women in Haryana, India, first, through a semi-structured interview and, second, through a large set of close-ended questions. We use qualitative coding methods to score each woman’s agency based on the interview, which we treat as her true agency. To identify the close-ended questions most predictive of the “truth,” we apply statistical algorithms that build on LASSO and random forest but constrain how many variables are selected for the model (five in our case). The resulting five-question index is as strongly correlated with the coded qualitative interview as is an index that uses all of the candidate questions. This approach of selecting survey questions based on their statistical correspondence to coded qualitative interviews could be used to design short survey modules for many other latent constructs.

Keywords: women’s empowerment, survey design, feature selection, psychometrics
JEL Codes: C83, D13, J16, O12

*Corresponding author: seema@northwestern.edu. We thank Ambika Chopra, Anubha Agarwal, Sahiba Lal, Azfar Karim, Bijoyetri Samaddar, Vrinda Kapoor, Ashley Wong, Jacob Gosselin, and Akhila Kovvuri for excellent research assistance, and the Bill and Melinda Gates Foundation for funding the study. We also thank Markus Goldstein, Jessica Heckert, Varun Kshirsagar, Hazel Malapit, Ruth Meinzen-Dick, Amber Peterman, Agnes Quisumbing, Anita Raj, Biju Rao, Greg Seymour, and several seminar and conference participants for helpful feedback. The study received institutional review board approval from Northwestern University and the Institute for Financial Management and Research, Chennai.
1 Introduction

Women’s agency — or their ability to make and act on their choices for their lives — is an important concept in research and policy related to gender equality. Many policies aim to increase women’s agency, as a means for them to improve their health, economic security, and so forth, or as an end in itself.

Agency is a psychological construct, or a postulated attribute, which unlike, say, height, is not directly observable (Cronbach and Meehl, 1955). It is also multi-faceted: It encompasses the many domains of one’s life including reproductive health, employment, and civic engagement, and has both an instrumental component and an intrinsic one. The complexity of agency makes it a challenge to measure quantitatively.

Nonetheless, researchers often want a measure of women’s agency for use in statistical analyses. When evaluating the effects of an intervention, a researcher might want to test for an increase in agency (i.e., use the measure as an outcome variable) or investigate whether women with more agency enjoy larger benefits from the intervention (i.e., use it for subgroup analysis). An accurate and precise measure of agency is important for these purposes. Otherwise, one does not know whether a lack of statistical evidence that a program improved women’s agency is due to the absence of an effect or to the inadequacy of the measure.

While the complexity of agency suggests the need for a long survey module, researchers often seek a short module, particularly if agency is a secondary focus of their study. A longer module could elicit more information but would be costlier to implement in terms of money and respondents’ time.

In this study, we develop a new short survey module on women’s agency. Our contribution lies in the innovative way we select the survey questions. We choose them based on criterion validity. That is, we evaluate our measure vis-à-vis a “gold standard” measure of the construct (DeVon et al., 2007). We start with a “true” measure — one derived from a qualitative interview — and then select the best set of questions to combine into an index based on their statistical correspondence with the “truth.” We carry out this exercise through mixed-methods data collection in rural Haryana, India, and then data analysis.

How well a psychometric (e.g., an agency index) captures the concept it is trying to measure is called its validity (Jose et al., 2017). One type of validity is content validity, which assesses whether a measure covers all facets of the construct. Qualitative methods

1It is not one of our study’s aims to contribute to how agency is conceptualized. We follow the literature here, focusing on a woman’s instrumental agency (“power to”) and intrinsic agency (“power within”), specifically within her household and marriage (Rowlands, 1997; Kabeer, 1999). The next section reviews the literature that conceptualizes agency.
are often used to assess the content validity of survey questions and ensure that they are meaningful in the local context (Camfield et al., 2009; Small et al., 2008; Kanbur and Shaffer, 2007; Rao, 2002; Shaffer, 2013).

With construct validity, the researcher uses theory to predict that a construct is related to another variable. One might posit that women’s agency is related to another factor Z because Z increases agency or agency increases Z. Then one judges a measure of agency based on its correlation with Z. An example of an agency index developed using construct validity is the Survey-based Women’s Empowerment Index (SWPER), which is a combination of Demographic and Health Survey questions chosen because of their strong correlation with gender gaps in health and education (Ewerling et al., 2017). The premise behind the measure is that women’s agency narrows these gender gaps, or when these gaps narrow, women acquire more agency. An advantage of construct validity is we almost always have data on factors that might affect or be affected by a construct. The disadvantage is we are rarely certain that women’s agency causes or is caused by Z; it is theoretically possible that women’s agency and education gender gaps have a weak association, for example.

Our approach, criterion validity, also uses the correlation between the measure in question and another variable, but here the other variable is a second, “gold standard” measure of the same construct. There is, of course, no perfect or “true” measure of women’s agency. In practice, we design a women’s agency index by benchmarking it against a better way of measuring women’s agency, one that provides richer data. If a richer measure exists, then why not always use it? Because doing so is often impractical. The better measures we use are more time-intensive, skill-intensive, logistically complex, or expensive, and thus are infeasible to include in most large-N studies.

The primary “gold standard” we use are semi-structured interviews conducted by trained qualitative researchers. We use qualitative coding methods to score each woman’s agency as conveyed through the interview. These interviews provide in-depth and nuanced data

2Researchers might collect qualitative data from the study population as a first step and use it to design new survey questions. Studies that take a qualitative-first approach have used various methods, including open-ended interviews (Camfield and Ruta, 2007; Woodcock et al., 2009), life histories (Quisumbing, 2011), participatory techniques (Hargreaves et al., 2007), and longer-term ethnographic engagement (Crede and Borrego, 2013; Jha et al., 2007; Ware et al., 2003). Qualitative methods are also used to improve the validity of proposed questions through open-ended debriefing techniques during piloting of the questions. Techniques include interviews and group discussions with respondents about how they understood the questions, asking them to think aloud as they answer them, or having a panel of experts review the questions (Bowden et al., 2002; Durham et al., 2011; Latcheva, 2011; Cohen and Saisana, 2014; Greco et al., 2018).

3In addition to validity, another characteristic of a measure is its reliability, or how consistent the value would be if the measure were used again in the exact same context with the same person. Test-retest correlation is an example of a way to assess reliability.
but require highly skilled staff to conduct and code them. We also collected a second “gold standard” measure of agency based on an experimental economics lab game. In the game, which we adopt from Almås et al. (2018), each woman makes a real-stakes choice between money for herself or her husband. This lab game adds logistical complexity and costs to the fieldwork, but observed behavior (“revealed preferences”) might be less subject to social desirability bias than survey responses. We use these two quite different “gold standards” out of recognition that researchers likely differ in which they prefer, according to their methodological taste. We conduct the lab game among 443 women and choose a subsample of 209 of them for the semi-structured interviews.

The third way we measure women’s agency is through close-ended survey questions. We ask a long list of questions, drawing on existing survey instruments. Our objective at the data collection stage was to be comprehensive and agnostic about which were the best questions, and then to later use a data-driven approach to select the best ones. There is nothing special about five questions, but this length seems appropriate for survey designers seeking a short module on agency. Another benefit of a short validated module is that it could serve as a common set of questions to use in surveys. Each research team could opt to include many other questions on agency too, but the common questions would allow for better comparisons across data sets, without being too onerous to include.

The goal of our statistical analysis is to identify the best close-ended questions to field from among many candidates. The algorithms we use build on standard supervised machine learning techniques, adding a constraint on the number of survey questions that are selected. This type of problem is referred to as feature selection. We apply three feature selection algorithms. Our preferred algorithm is LASSO stability selection, in which the top questions are those selected most frequently when LASSO is repeatedly run on subsamples of the data (Meinshausen and Bühlmann, 2010). This method has previously been used by Kshirsagar et al. (2017) to choose a small set of survey questions for a proxy-means test of household poverty, for example.\footnote{McBride and Nichols (2018) also use machine learning to design a survey-based proxy for poverty, and Knippenberg et al. (2019) do so for food insecurity.} We view this as the algorithm that best balances multiple objectives such as transparency of the predictive model, ease of implementation, and avoidance of over-fitting the data. The second algorithm is a more complex procedure using random forest that has more flexibility to fit non-linear relationships in the data (Genuer et al., 2010). The third algorithm, backward sequential selection, is more prone to over-fitting but is the simplest one (Liu and Motoda, 1998). It uses only standard linear regressions: We start with the full set of survey questions and iteratively remove the question that leads
to the smallest decrease in the set’s explanatory power, stopping when the desired number of questions remain.

Turning to our results, when we use the qualitative interviews as the “gold standard,” all three of the statistical algorithms produce an index of women’s agency that is quite strongly correlated with the interview score. There is considerable overlap in the top questions selected by each algorithm. In addition, the five-question indices are considerably more correlated with the “truth” than if we had chosen the subset of questions randomly. More strikingly, they have more explanatory power than indices constructed from all 63 candidate questions, either their first principal component or a standardized index that averages them. Interestingly, the algorithm-selected questions are quite specific ones about decision-making in particular situations, rather than questions that ask women about their power in general.

The lab game was ineffective in measuring agency in our study. The premise of the game is that a woman with less agency will more often choose money for herself because she would not have a say in how money given to her husband is spent. We do see this behavior, but we also see an opposing force: some women with very low agency never want money for themselves because they view money as men’s domain or are fearful of their husband finding out and becoming angry. The survey index obtained when we apply the statistical techniques is only weakly correlated with the lab game behavior, consistent with this putatively “true” measure actually being very noisy. We conclude that only the semi-structured interviews can be considered a “gold standard” in our setting. Another advantage of the qualitative interviews is that they cover many domains of agency, not just financial agency.

The primary contribution of our study is methodological: We introduce a novel mixed-methods way to develop a survey measure. Using mixed methods in the design of measurement scales is not new (Onwuegbuzie et al., 2010; Zhou, 2019). For example, Creswell and Clark (2017) describe a process of using qualitative methods to define a construct and then quantitative methods to assess the scale once it is developed. In addition, machine learning techniques have been used in the development of survey instruments, primarily to pare down full-length scales to short-form versions (Gonzalez, 2020). What is new is our use of machine learning to select quantitative questions by treating a qualitative measure of the construct as the “gold standard.” We refer to this new approach to survey module design as MASI, for MACHine learning and Semi-structured Interviews.\footnote{Masi means maternal aunt in Hindi.}

We believe that selecting survey questions based on their statistical correspondence to coded qualitative interviews is innovative and has applications beyond women’s agency.
Many complex concepts are best measured with open-ended questions, yet there is practical need for close-ended measures of them. One could apply MASI to create survey modules for other such constructs, such as financial insecurity or cultural assimilation.

The second contribution of our study is the new short survey module and index for women’s agency that we develop. Our study thus adds to the literature proposing measures of women’s agency or empowerment, which we review in the next section. We believe that the five-question module validated against semi-structured interviews is a valuable new resource for measuring women’s agency in north India, and perhaps elsewhere. A natural direction for future research is to replicate the study elsewhere to create short modules appropriate for other contexts and to assess the extent to which the same questions are or are not selected elsewhere. One could also apply our method to design a “universal” module based on how robustly it predicts qualitative interview scores across multiple contexts.

2 Related literature on women’s agency

2.1 The concept of agency

Agency is one aspect of women’s empowerment. Empowerment as defined by Kabeer (1999) encompasses resources, agency, and achievement and refers to the process of acquiring the ability to make choices. Contemporary notions of empowerment often build on Amartya Sen’s capabilities approach, as elaborated by Nussbaum (1999), who highlights that dignity and the freedom to actively determine one’s life are central to human beings.

Agency specifically refers to the ability to make decisions and act on one’s goals. It is often defined in a way that captures both an intrinsic characteristic and something with external, instrumental value. To do this, many definitions of agency reflect both an internal feeling of agency (sometimes defined as the ability to set goals, where the setting of goals is a reflection of the intrinsic sense of agency) and the external actions of pursuing goals, which is the instrumental aspect of agency (Donald et al., 2020).

Scholars have also highlighted that the conceptualization of women’s agency depends on the context, for example differing in more coercive settings. Individual actions must be viewed within social, economic, and cultural contexts, and there are multiplicities and hidden forms of women’s agency (Campbell and Mannell, 2016).

2.2 Measurement of women’s agency

There is an array of research on how to measure women’s empowerment and agency. Donald et al. (2020) and Laszlo et al. (2020) provide excellent overviews of this literature.
Recent proposed measurement tools include the Women’s Empowerment in Agriculture Index (WEAI) (Alkire et al., 2013) and PRO-WEAI (Malapit et al., 2019). WEAI is a set of survey questions that measures empowerment, agency, and inclusion in the agricultural sector (Alkire et al., 2013). It aggregates an individual’s empowerment across five domains and also measures women’s status relative to men in the household. The index was designed based on analysis of household survey data collected in Guatemala, Uganda, and Bangladesh, and it has been applied in several other contexts subsequently. PRO-WEAI adapts the WEAI to measure empowerment brought about by agriculture projects (Malapit et al., 2019). It includes further indicators that are most likely to change over the course of a project’s duration. This adaptation of the WEAI was informed by qualitative data from key informants and project participants.

Another proposed measure is SWPER, which was developed by analyzing responses to Demographic and Health Survey questions among partnered women in 34 African countries (Ewerling et al., 2017). SWPER includes 15 questions that represent three dimensions of empowerment: attitudes to violence, social independence, and decision making. SWPER was adapted into a 14-question version designed to be applicable in all low- and middle-income countries (Ewerling et al., 2020). Another recent contribution is by Maiorano et al. (2021), who introduce a choices-values-norms framework for measuring agency. Specifically on India, Kishor and Gupta (2004) adapt WEAI for nutrition, while Richardson et al. (2019) develop an index of National Family Health Survey questions using confirmatory factor analysis.

A different strand of the literature assesses current practices for measuring women’s agency. Donald et al. (2020) and Laszlo et al. (2020) highlight conceptual challenges and provide frameworks to guide measurement. Peterman et al. (2021) investigate how robust results are to different ways of constructing agency indicators from commonly-used survey questions. They conclude that current practices are often insufficient to capture women’s decision-making and call for further measurement innovation.

3 Description of study site and sample

3.1 Selection of study site and sample villages

We selected Kurukshetra district in the Indian state of Haryana as the study site based on several considerations. We chose north India because of our knowledge of the context and because women’s agency is an important topic of study there. To match our team’s language skills, we restricted attention to Hindi-speaking areas. Within this narrowed set of possible
sites, we chose Kurukshetra for practical reasons. First, we could draw on a pool of female surveyors who had worked on earlier studies conducted by J-PAL South Asia, the research organization through which our fieldwork was conducted. Second, the main town was large enough that we could recruit two lead research assistants from New Delhi who would be willing to be based there for several months. Third, Kurukshetra was within a few hours of New Delhi by car or train, which facilitated site visits by the principal investigators.

We focused on the rural population and worked backwards from our target sample size of 210 semi-structured interviews to determine how many villages within Kurukshetra to include in our sample. We were able to recruit two qualitative interviewers, and about 100 interviews each was the most they could conduct within the three months we had planned for the data collection. We wanted to complete data collection in each village within two or three days so that there would not be discussion among women about our study that might prime their answers. We expected each interviewer to conduct two to three interviews per day, which implied that our team should conduct about 10 qualitative interviews per village.

We, thus, included 21 villages in our sample in order to complete roughly 210 interviews.

We had a separate, larger team of surveyors that conducted the quantitative surveys and lab game. The quantitative team spent about the same number of days in each village, collecting data from twice as many women. The final sample size for that team was 443 women, of whom the 209 semi-structured interviewees are a subset.

We chose a random sample of villages for the study that were representative of Kurukshetra, with the selection stratified by village population, distance from the district headquarters, and the ratio of male to female literacy.⁶ We created a randomly ordered list of

⁶Using the 2011 Census, of the 407 villages in Kurukshetra district, we excluded the top and bottom 5% of
potential sample villages. We then visited the first 21 villages to obtain a roster of households with young children from the village ASHA, or Accredited Social Health Worker. We used these rosters to choose households for the sample. In the few cases where we could not obtain a roster from the ASHA, we replaced the village with the next village from its stratum on our list. Figure 1 shows the location of Kurukshetra district within India and the location of the 21 study villages.

3.2 Selection of study participants and descriptive statistics

We used the ASHA lists to choose a preliminary random sample of eligible women in each village. Our eligibility criterion was that a participant was a married woman with a child under the age of 10; we wanted the sample to be homogeneous in this way so that we could ask everyone similar questions, for example about their relationships with their husbands and about decisions over children’s health. The ASHA data included a household roster but not relationships among household members, so we chose households with a child under age 10 and a woman at least 15 years older than that child, who was feasibly the child’s mother. We aimed to enroll 20 women (with no more than one per household) in the study, and we randomly chose 50% of them for the semi-structured interview.

We collected the data between February and May 2019. We varied whether the qualitative or quantitative data collection came first. The quantitative team started fieldwork in a random half of villages, and the qualitative team started in the other half; halfway through the data collection, they switched villages. (We do not find significant differences in measured agency, either qualitative or quantitative, based on the order of data collection.)

The first step when the first team visited a household was to verify the woman’s eligibility for the study, which also required that she speak Hindi. We then explained the study and obtained informed consent.

Table 1 reports summary statistics for the sample, based on data collected in the quantitative survey. The women are on average 30 years old with a youngest child who is five years old. Women are, on average, 3 years younger than their husbands. The average years of schooling is 10. Most of the sample is Hindu; Sikhism is the second most common religion.
Table 1: Descriptive statistics for the sample

<table>
<thead>
<tr>
<th>Variable</th>
<th>Full sample</th>
<th>Sample with qual. interview</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of respondents</td>
<td>443</td>
<td>209</td>
</tr>
<tr>
<td>Age</td>
<td>29.720</td>
<td>29.512</td>
</tr>
<tr>
<td></td>
<td>[4.953]</td>
<td>[4.778]</td>
</tr>
<tr>
<td>Age at marriage</td>
<td>20.377</td>
<td>20.316</td>
</tr>
<tr>
<td></td>
<td>[2.584]</td>
<td>[2.708]</td>
</tr>
<tr>
<td>Husband-wife age gap</td>
<td>2.946</td>
<td>2.914</td>
</tr>
<tr>
<td></td>
<td>[2.821]</td>
<td>[2.702]</td>
</tr>
<tr>
<td>Age of youngest child</td>
<td>4.989</td>
<td>5.019</td>
</tr>
<tr>
<td></td>
<td>[2.765]</td>
<td>[2.792]</td>
</tr>
<tr>
<td>Can read and write</td>
<td>0.986</td>
<td>0.986</td>
</tr>
<tr>
<td></td>
<td>[0.116]</td>
<td>[0.119]</td>
</tr>
<tr>
<td>Years of education</td>
<td>9.916</td>
<td>10.024</td>
</tr>
<tr>
<td></td>
<td>[3.258]</td>
<td>[3.175]</td>
</tr>
<tr>
<td>Husband-wife education gap</td>
<td>0.853</td>
<td>0.660</td>
</tr>
<tr>
<td></td>
<td>[3.070]</td>
<td>[3.313]</td>
</tr>
<tr>
<td>Employed</td>
<td>0.165</td>
<td>0.182</td>
</tr>
<tr>
<td></td>
<td>[0.371]</td>
<td>[0.387]</td>
</tr>
<tr>
<td>Hindu</td>
<td>0.840</td>
<td>0.837</td>
</tr>
<tr>
<td></td>
<td>[0.367]</td>
<td>[0.370]</td>
</tr>
<tr>
<td>Sikh</td>
<td>0.151</td>
<td>0.144</td>
</tr>
<tr>
<td></td>
<td>[0.359]</td>
<td>[0.351]</td>
</tr>
<tr>
<td>Scheduled Caste/Scheduled Tribe</td>
<td>0.341</td>
<td>0.335</td>
</tr>
<tr>
<td></td>
<td>[0.475]</td>
<td>[0.473]</td>
</tr>
<tr>
<td>Other backward castes</td>
<td>0.501</td>
<td>0.502</td>
</tr>
<tr>
<td></td>
<td>[0.501]</td>
<td>[0.501]</td>
</tr>
<tr>
<td>Pukka house</td>
<td>0.386</td>
<td>0.373</td>
</tr>
<tr>
<td></td>
<td>[0.487]</td>
<td>[0.485]</td>
</tr>
</tbody>
</table>

Notes: Table reports variable means and standard deviations.
About a third of the sample belongs to a scheduled caste or scheduled tribe, and about half belong to an ‘other backward caste.’ Less than a fifth of women are employed, consistent with the low India-wide female employment rate.

4 Measuring agency with three types of data

4.1 Quantitative surveys

We administered a 45-minute survey that asked close-ended questions to the full sample of 443 study participants. It was conducted by female enumerators who had the typical qualifications for J-PAL South Asia quantitative surveyors.

After asking a few questions on demographic characteristics such as age and religion, the questionnaire focused on measures of women’s agency within her household. We asked a long list of such questions, aiming to be exhaustive. We drew on existing questions to measure instrumental and intrinsic agency from other surveys. These included questions from the Demographic and Health Surveys, Relative Autonomy Index (Ryan and Deci, 2000; Vaz et al., 2016), a J-PAL toolkit on measuring women’s agency that aggregated survey questions that were used in several research studies (Glennerster et al., 2018), and the Sexual Relationship Power Scale (Pulerwitz et al., 2000). We also included a handful of questions that we developed ourselves.

Concatenating all of the existing modules would introduce a lot of redundancy, resulting in a long and repetitive survey from the respondent’s point of view, so we made judgment calls in removing questions that overlapped. In total, we asked 63 questions measuring agency. The question order was not randomized. (The list of questions is provided in Appendix B.)

Some of the agency questions were about the woman’s say in specific decisions, such as, “If money is available, who in your household decides whether to pay school fees for a relative from your side of the family?” and “Can you go unescorted to the next village?” Other questions were more general, asking the woman about her overall impression of her agency. An example is, “This is a ten step ladder, where on the bottom, the first step, people who are completely coerced or powerless stand, and on the highest step, the tenth step, stand those with the most ability to advance goals that they value in their own homes and in the world. On which step are you today?”

We convert each of the survey responses to a single numerical variable. Some of the responses have a natural numerical unit (e.g., days) or are binary. For questions asked on a Likert scale, we treat the categorical response as a cardinal variable. In a handful of
cases where the numerical mapping is less clear, we make judgment calls. For example, in questions asked about whether women make decisions alone, jointly with their husband, or not at all, we code those responses as 2, 1, and 0. Note that we code all of the variables so that a higher value corresponds to more agency.\(^9\)

It is also possible to include multiple variables, or recodings, per survey question; the important constraint is the number of survey questions at the data collection stage, not the number of variables. For the ladder question mentioned above, we could construct variables for the response being \(\geq 2\), being \(\geq 3\), and so forth up to the response equaling 10, or we could be agnostic about whether a woman having sole decision-making power represents strictly greater agency than joint decision-making with her husband. This approach would use more information and allow the data to determine the best recodings. We use one variable per survey question in our main index for simplicity but note that one of the statistical algorithms we use (random forest) considers all possible recodings.

4.2 Semi-structured interviews

The semi-structured interviews were on average 45 minutes long. They were conducted primarily by two female interviewers who had prior experience with in-depth interviewing. A third interviewer conducted a few of the interviews. As part of their training, one of the authors (MB) observed each interviewer conducting pilot interviews and provided feedback to improve interview skills. The interviewers and MB met weekly to discuss substantive and methodological issues that arose, with learnings fed back into subsequent interviews.

The interviews, which were recorded, followed an interview guide (see Appendix C) that was refined through piloting. The initial guide covered five domains of agency within the household: the respondent’s decision-making around her children’s education and health, household expenditures, and her own fertility and mobility. In pilot interviews, employment emerged as another theme and was added as a sixth domain to probe in the interview.

The interviewers were trained to follow the interview guide and cover all six domains but to use their judgment to phrase questions differently, ask follow-up questions, or otherwise diverge from the guide if they felt that doing so would elicit better information from the respondent. The open-endedness of the interviews and the multiple domains allowed women to discuss direct and hidden strategies and the meanings behind their actions, including “bargaining and negotiation, deception and manipulation, subversion and resistance, and more intangible, cognitive processes of reflection and analysis” (Kabeer, 1999, p. 438).

\(^9\)A few of the questions have missing responses, primarily due to skip patterns in the survey. To include these questions in our analysis, we impute the value with the sample mean.
To ensure privacy during the interviews, we paired each interviewer with someone initially recruited for our quantitative surveyor team who acted as a “distractor.” The distractor would have a discussion with other family members in a separate room so that the qualitative interviewer and study participant could have an uninterrupted private conversation.

The interviews were transcribed, and two people, the same two who conducted the interviews, coded them using Dedoose software. We randomly assigned which interviews each person coded, so in about half the cases, it was an interview she had conducted.

We used a two-step approach to coding, following Deterding and Waters (2018). The first step in their “flexible coding” process is the development of “index codes” to represent the broad topics pursued during the research. In this study, the index codes were the six domains of agency that the interview focused on. The second step is the application of “analytic codes,” which emerge in the second reading of the transcripts. We paid attention to “speech practices” in our transcripts following Madhok (2014), since agency is often more than observable action, and women’s own words open up the range of possibilities of what they consider agentic in their particular context.

The analytic codes were used to arrive at ranks (i.e., scores) and ranking definitions for each index code. MB and the coders triply coded and then discussed ten transcripts to harmonize how the coders interpreted and applied the codes.

The ranks ranged from 1 for a woman with the lowest level of agency to a 4 for a woman with the highest level of agency. As an example of the ranking definition and how the analytic codes map to the definitions, in the mobility domain, a woman coded as a 1 needs explicit permission to leave the house and always goes accompanied by her husband or someone else to locations either inside or outside the village, which includes the neighborhood store, her children’s school, the hospital, the market, the bank and her natal village. If a woman has those restrictions but objects to them or sometimes tries to resist them, she is coded as a 2. That is, if the analytic codes “never goes alone” but also “resistance” were coded in the transcript under the index code “mobility,” the woman’s rank moved from 1 to 2. A woman who has some but not all of the restrictions was coded as a 3; for example, she might is allowed to go to locations inside the village by foot, but is unable to go unaccompanied to locations that require transportation. Women with the most agency over their mobility were coded as a 4. They are able to go unaccompanied to all locations.

The one domain not initially coded on a 1 to 4 scale is fertility. Many women had

10While we developed the coding approach by triply coding ten transcripts, we tried using a scale of 1 to 3, 1 to 4, and 1 to 5. We chose 1 to 4 because it seemed to best capture the nuances in the interviews and to allow us to define each rank distinctly.
Figure 2: Distribution of scores from semi-structured interviews, by domain

Notes: The histograms show the scores for the six domains covered in the qualitative interviews.

Figure 3: Distribution of overall scores from semi-structured interviews

Notes: The histogram shows the overall qualitative agency score for women in the sample, which is the simple average of her scores in the six domains.
discordant levels of agency across the four sub-domains of number of children, birth spacing, reversible birth control, and sterilization, so we coded a woman separately in each of the sub-domains and then averaged these scores. This fertility score was then re-scaled to also range from 1 to 4. Figure 2 shows histograms of the domain-specific scores.

We then calculate an overall agency score for the woman as the average across the six domains.11 Figure 3 shows the distribution of the overall agency score, as coded from the semi-structured interviews. Hereafter, we refer to the overall score as the qualitative score.

4.3 Lab game

We also used a “lab-in-the-field” game to measure women’s agency over household income. The game was conducted during the same visit and by the same surveyor as the quantitative survey. It took place in private at the end of the survey and took on average 15 minutes.

The measure uses real-stakes choices the woman makes, specifically her willingness to pay (WTP) to be the recipient of money given to the household. This measure was developed by Almås et al. (2018) in a study in urban Macedonia and has since been used in other settings (Barr et al., 2020). A potential advantage of a real-stakes choice is that it provides an objective, quantitative measure of the woman’s behavior. Because money is at stake, a respondent might be less subject to experimenter demand effects through which she gives insincere answers.

The woman is offered a choice between ₹300 (4 USD) for herself or an amount of money X to be given to her husband. We begin with $X = ₹700$. If the woman chooses the money for herself, we stop. If she chooses money for her husband, we decrement X by ₹100 and ask again: Does she prefer ₹300 for herself or ₹600 for her husband? The last amount we ask about is $X = ₹100$. We inform her that any transfer of money to her will take place privately and that we will not communicate with her husband about the game if she chooses money for herself. If she chooses for her husband to get the money, we will give it to him and explain that it is tied to his wife’s participation in our study. We also let her know that we will implement one of her choices, selected at random. This procedure gives her an incentive to report her true preferences (Becker et al., 1964).

As Almås et al. (2018) write, in a unitary household, that is, if the husband and wife have identical preferences or are perfectly altruistic toward each other, “women should not be willing to pay anything in order to receive the transfer themselves, and should instead try

11We test robustness to creating a standardized index across the six domains in section 6.
Figure 4: Distribution of women’s WTP to be recipient of money in lab game

Notes: The figure is a histogram of women’s crossover point in the lab game, or the maximum amount they would forgo for their household to be the recipient of the money. A woman whose WTP is ₹400 prefers ₹300 for herself to ₹700 for her husband. A negative WTP means the woman prefers money to go to her husband, all else equal, e.g., ₹-200 means that a woman prefers ₹200 for her husband to ₹300 for herself.

to maximize the transfer amount.” But, the authors continue, “in a non-unitary model, the weaker the position of the woman in the household (the lower her control of resources), the more she should be willing to pay to obtain control of that transfer.” Some women might prefer ₹300 for themselves over ₹400 or even ₹700 for their husband because they would have so little say in how their husband’s money is spent. We calculate a woman’s WTP to be the recipient of the money, which is the highest amount X at which she prefers money for her husband. If the highest amount is ₹700, her WTP is ₹400 (700 minus 300), for example. The higher the WTP, the more she is willing to forgo in total household money to be the recipient of the transfer, so the lower her agency. Thus, her WTP is an inverse measure of her agency. We use -WTP as the variable measuring agency.

However, the measure did not work as theoretically intended. Many women always preferred that their husband get the money even when it was a smaller amount than ₹300. For example, they prefer ₹100 for their husbands to ₹300 for themselves. These women have a negative WTP to control financial resources. Figure 4 shows the distribution of WTP.

We debriefed with women who had a negative WTP to understand their behavior in the game (Jackson, 2011). This revealed that their choice was linked to having low agency; they believed that women should not get involved with household finances, or they feared that their husband would find out they received money. The theoretical premise of the measure is that low-agency women will have a higher demand for agency, but many women with low agency in fact did not want more agency.

As a partial fix for this problem, we bottom code WTP at 0: we quantify agency as
\[
\min \{-WTP, 0\}.
\]
More importantly, after noticing this pattern in the field and then seeing the distribution of WTP, we became pessimistic that using WTP as the “truth” would yield a reliable survey measure of agency.

5 Statistical algorithms to select survey questions

The goal of our data analysis is to choose the best five survey questions to measure women’s agency. We do so by selecting those that are the best predictors of “true” agency.

An intuitive approach to finding the best subset of survey questions would be to try every possible combination of five questions and use the set that yields the highest \(R^2 \) in a linear regression in which the true measure is the outcome and the survey variables are the explanatory variables. A first problem with this approach is that it is subject to over-fitting. To address over-fitting, machine learning algorithms typically leave out a portion of the data during estimation, and then adjust the algorithm parameters or estimates based on how accurate the predictions are in the left-out sample. A second challenge is that an exhaustive search can be computationally infeasible (there are over 7 million ways to choose five variables from among 63). We thus apply two statistical algorithms (LASSO stability and random forest selection) that have the same objective of selecting a best subset of questions but that address over-fitting and are computationally feasible. We also use a third technique (backward sequential selection) that addresses computational feasibility and adds robustness through an iterative process, but does not cross-validate the prediction.

Standard supervised machine learning techniques like LASSO and random forest share our goal of out-of-sample prediction.\(^\text{12}\) The distinction here is we want to put a rigid constraint on the number of predictors to select. If standard LASSO chooses 15 variables, that would yield a survey module that is impractical for many purposes. The three statistical algorithms we implement, described below, aim to identify the five most valuable questions. This type of analysis is referred to as feature selection in the machine learning literature.

Below we first describe LASSO stability selection, which is our preferred approach; it strikes a balance between simplicity and robustness. The second algorithm builds on random forest and is more complex, while the third algorithm, backward sequential selection, is the simplest one. At the end of this section, we compare the algorithms in more detail.

\(^\text{12}\)Supervised machine learning uses labeled data to train the model. The qualitative scores serve as the labels in our analysis. Another approach would be to use only the quantitative survey questions as data and apply unsupervised machine learning techniques for feature selection (Solorio-Fernández et al., 2020).
5.1 LASSO stability selection

The primary algorithm we use is LASSO stability selection, in which the best questions are those most commonly selected when LASSO is repeatedly run on subsamples of the data. Meinshausen and Bühlmann (2010) show that variable selection through this combination of regularized regressions (e.g., LASSO) and resampling (e.g., drawing subsamples) is quite robust to the choice of the tuning or regularization parameter.13

Kshirsagar et al. (2017) recently applied the stability selection technique with a similar goal as ours of developing a short set of survey questions to measure something often measured with many questions. They select ten questions to measure a household’s likelihood of being poor; their “true” measure of poverty is based on a longer survey module that collected data on household consumption.

We use 50% subsamples and run LASSO 1000 times:14

1. Draw a 50% subsample of observations without replacement.

2. Run a LASSO regression of the true value of the outcome on all of the survey variables, keeping track of which predictors are selected, i.e., have coefficients not shrunk to 0.15

3. Complete 1000 iterations of steps 1 and 2.

The proposed survey module consists of the five survey questions chosen most frequently by LASSO across the iterations. We then combine them into an index by normalizing each of the variables to have a standard deviation of 1 and mean of 0 and averaging the standardized variables. We refer to this type of aggregation as a standardized index. Using (regular or LASSO) regression coefficients as weights to create a weighted index is another natural way to combine the variables. We opt for just an average of the standardized variables for simplicity and to make the aggregation less dependent on the estimates.

Unlike in some prediction exercises, there is a “correct” sign of each regression coefficient in our case. The premise of our criterion validation exercise is that we are regressing one measure of agency on another, so the sign of the coefficients should be positive. Nothing in

13As a brief primer on LASSO, it is a type of regularized regression. A regularized regression differs from a standard regression in that the estimator “shrinks” some coefficients toward zero to avoid the model overfitting the data. LASSO shrinks some coefficients all the way to zero; starting from a large set of regressors, only a subset will have non-zero coefficient estimates, or are selected for inclusion in the model. The tuning parameter specifies how aggressive the procedure should be in shrinking coefficients.

14Implemented in Stata on a standard desktop computer, the procedure takes 19 minutes to run. Backward sequential selection takes a few seconds. Random forest selection, implemented in R, takes 15 minutes.

15The LASSO tuning parameter is chosen within each iteration by 5-fold cross-validation.
the statistical procedure constrains the coefficients to be positive. Thus, one diagnostic for how well the procedure works is whether any of the coefficients are wrong-signed.

5.2 Random forest selection

The second algorithm we use is Genus et al.’s (2010) variable selection using random forest, or VSURF, algorithm. The basis of this algorithm is random forest, which classifies data using decision trees.16 VSURF entails building a series of random forests, first to narrow the variable set based on a variable importance metric and then to compare random forests that use different variable subsets to identify the variables with the most predictive power.17

This algorithm is considerably more complicated than the other two we implement. A reader who is not interested in the technical details can skip the rest of this subsection.

The algorithm proceeds as follows:

1. Build 100 random forests using all of the available predictors. Calculate the average across the forests of each variable’s variable importance (VI), which is a measure of the improvement in model prediction when one includes the variable.18 Retain a variable if the standard deviation of its VI across the 100 forests exceeds a threshold.19

2. Build 100 random forests using the most important variable from step 1, then 100 random forests using the two most important variables, and continue up to 100 random forests using all variables retained in step 1. From among these models (where each model is an average of 100 forests), retain the smallest one (i.e., fewest variables) among those with an out-of-bag (OOB) error less than a threshold.20

3. Build another set of random forest models, sequentially introducing the variables re-

16 With random forest, one builds decision trees to classify or fit the data. At each node of a tree, one of the variables is used to partition the data. Only a random subset of potential variables is considered at each split, and the one that best partitions the data is used. A random forest is an ensemble of many trees. For each tree, some observations are left out, and the predictions are validated against this “out of bag” sample.

17 In addition to this performance-based approach to using random forest for feature selection, there are approaches that use only variable importance, such as the one proposed by Strobl et al. (2008).

18 We use the default variable importance in the VSURF package written in R by Genus et al. (2015). It is the difference in out-of-bag error between trees built with the variable and those trees with the variable randomly permuted across observations, averaged across all trees in the forest that used the variable.

19 Variables with low average VI generally have a low standard deviation; the standard deviation rule is a more robust way to eliminate variables with low importance than doing so based on average VI. The threshold is calculated by estimating a decision tree (specifically CART) with 63 observations mapping to the available predictors. The dependent variable is the standard deviation of its VI, and the independent variable is its rank. The threshold is the minimum standard deviation predicted by the CART. Variables with a standard deviation below this threshold are eliminated.

20 The threshold is the sum of the minimum OOB error among the step 2 models (that vary in the number of included predictors) and the standard deviation of that model’s OOB error across the 100 forests.
tained after step 2, in the order of VI from step 1. Build and average 100 random forests that include the introduced variable. Keep the variable in the model if it decreases OOB error, relative to the model thus far, by more than a threshold amount.21

We tune the threshold in the final step of the algorithm so that our desired number of variables (five) are selected.22

5.3 Backward sequential selection

The third algorithm we use is a simplified version of a backward sequential selection technique using linear regression (Liu and Motoda, 1998). The general algorithm — iteratively removing the least important variable — is often referred to as recursive feature elimination (Guyon et al., 2002).

We start with the full set of survey questions and iteratively remove the one that leads to the smallest decrease in the R^2 of an ordinary least squares regression, stopping when the target number (in our case, five) questions are left.23 We do not include any cross-validation in the algorithm, although in principle one could.

At each step, we could assess the predictive power of multivariate regressions with the (remaining) candidate variables as regressors. Because ultimately most researchers will want to use the selected variables to construct an index, we combine them into an index at the selection stage. At the iteration with k variables left, for all combinations of $k - 1$ of them, we combine the variables into a standardized index and estimate a univariate regression of the true value of the outcome on the index.

The first step is to combine all the candidate survey variables on agency in an index. Then we iteratively remove variables as follows:

1. Discard one of the available variables and combine the remaining k variables into an index (after normalizing them).

2. Calculate the R^2 when the true measure of agency is regressed on the index.

3. Repeat steps 1 and 2 for all remaining variables.

21The threshold is proportional to the change in OOB error between the model at the end of step 1 and the model at the end of step 2. The threshold also depends on a multiplicative tuning parameter.

22In our application, 42 of the full set of 63 variables are retained at the end of step 1, and 13 of those variables are retained at the end of step 2.

23One can also run sequential selection in the forward direction, starting with an empty set and then sequentially adding the most predictive variable among the candidates. Backward selection typically outperforms forward selection (Leslie et al., 2018).
4. Drop from the set the variable that led to the smallest loss of R^2, relative to including all k in the set.

5. Repeat steps 1 to 4 until the desired number of variables for the index is reached.

The last five questions that remain comprise the proposed survey module, and the standardized index based on them is the proposed measure of women’s agency.

5.4 Comparison of the three algorithms

Our rationale for using three different algorithms was to better understand how sensitive the general approach we are proposing — combining machine learning and qualitative interviews for survey design — is to the specific statistical algorithm used.

LASSO stability selection and random forest selection both address over-fitting in each iteration or decision tree. An advantage of the LASSO approach is the final model’s transparency. For example, if a researcher wanted to use the model prediction instead of a standardized index to combine the variables, with LASSO stability selection the formula is a parsimonious linear equation. For random forest, the formula is an average across many trees of many interaction and non-linear terms. Moreover, the “wrapper algorithm” around LASSO used in LASSO stability selection is simple iteration. The VSURF (random forest) wrapper algorithm is more complex. Thus, the main reason we view LASSO stability selection as preferable to random forest selection for those applying our approach or using our selected questions is the transparency of both the algorithm and the resulting model.

Backward sequential selection’s disadvantage is that, in our implementation of it without cross-validation, it does not address over-fitting. Its advantage is its simplicity: It uses a standard linear regression in each iteration.

For each of the algorithms, we propose to combine the five variables into a standardized index. The algorithms differ in how restrictive this method of aggregation is. Backward sequential selection optimizes the predictive power of the top five questions when they are combined in this way; there is no mismatch between the predictive model and how the selected questions are then aggregated. LASSO stability selection collapses each question to a linear variable, which matches how the questions are then aggregated. However, two highly ranked variables could be collinear and thus redundant, with each chosen in different LASSO iterations. (This does not occur in practice in our application). Aggregating via a standardized index is the least appropriate for random forest. The advantage of random forest is that it allows for non-linearities and interaction terms, but the aggregation then discards this information. Thus, when we present the results, we also consider the predicted
value from the model as an alternative index. For random forest, the model prediction is opaque, but as an alternative index, it has a much stronger correlation with the true measure.

Putting this all together, we view LASSO stability selection as the preferred algorithm because it addresses over-fitting yet is transparent and intuitive. Backward sequential selection is a potentially useful alternative because it involves nothing more than a loop over ordinary linear regressions. Random forest can extract more information from five variables, so it may be of interest to researchers undeterred by a more complex algorithm and index.

6 Results: Validated survey module for women’s agency

6.1 Based on semi-structured interviews as gold standard

We report the best set of survey questions to measure agency, as determined by the MASI method, in Table 2. These are the questions chosen based on their correspondence with the qualitative score. Overall, the three statistical algorithms select similar sets of five questions that capture a considerable amount of the variation in the qualitative score.

Table 2, column (1) reports the questions selected with our preferred statistical technique of LASSO stability selection. The numbers in the cells are the rank for the question, in terms of how often it was selected in LASSO iterations estimated on subsamples of the data.\(^24\) The top question is about decision-making about large household purchases like a cow or bicycle. The variable was selected in 85% of the LASSO iterations, as reported in Table 3. The fifth question was selected 58% of the time. Table 3 provides the frequency of selection for the top ten variables; if a researcher seeks a ten-question module, these are the best choices based on the algorithm. The fourth- to sixth-ranked questions perform fairly similarly to each other, and the biggest gains from the algorithmic approach seem to be from identifying the best three questions. The lowest-ranked of the 63 candidate questions was selected in 2% of the LASSO iterations.

Interestingly, none of the general questions that ask a woman to assess her overall agency or perception of her power are among the top questions. The top three questions ask about her role in specific purchase decisions: large household purchases, clothing for herself, and items in the market. The other two questions pertain to her physical mobility (whether she can visit women in her neighborhood without permission) and to decisions about her

\(^24\) We calculated the qualitative score by averaging the six domain-specific scores. We repeated the analysis using an alternative qualitative score that is a standardized index across the domains. This change did not alter the top five questions selected by any of the three algorithms. While this amount of insensitivity need not always hold, this result provides some additional reassurance about the robustness of our method.
Table 2: Selected survey questions using semi-structured interviews

<table>
<thead>
<tr>
<th>Question</th>
<th>LASSO stability selection</th>
<th>Random forest selection (VSURF)</th>
<th>Backward sequential selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opinion heard when expensive item like a bicycle or cow is purchased?</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Need permission from other household members to buy clothing for self?</td>
<td>2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Allowed to buy things in the market without asking partner?</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Are you permitted to visit women in other neighborhoods to talk with them?</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Who do you consult with for decisions regarding your children’s health care?</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are you permitted to visit any place riding on public transport?</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Who in household decides to pay school fees for a relative from your side of family?</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Allowed to go alone to meet your friends for any reason?</td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

| 5-Question Standardized Index R^2 | 0.289 | 0.251 | 0.287 |
| 5-Question Model Prediction Index R^2 | 0.290 | 0.615 | 0.287 |

Notes: The table lists the top 5 survey questions selected. (See Appendix B for the full question wording.) The numbers in the cells in columns (1) to (3) indicate the selection order, with 1 referring to the best, or most predictive question. The R^2 is for a regression of the qualitative score on the index.
Table 3: Frequency of variable selection using LASSO stability selection

<table>
<thead>
<tr>
<th>Question</th>
<th>Percent of times selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opinion heard when expensive item like a bicycle or cow is purchased?</td>
<td>84.9</td>
</tr>
<tr>
<td>Need permission from other household members to buy clothing for self?</td>
<td>76.4</td>
</tr>
<tr>
<td>Allowed to buy things in the market without asking partner?</td>
<td>73.8</td>
</tr>
<tr>
<td>Are you permitted to visit women in other neighborhoods to talk with them?</td>
<td>59.3</td>
</tr>
<tr>
<td>Who do you consult with for decisions regarding your children’s health care?</td>
<td>58.1</td>
</tr>
<tr>
<td>Are you permitted to visit any place riding on public transport?</td>
<td>57.6</td>
</tr>
<tr>
<td>Allowed to go alone to meet your friends for any reason?</td>
<td>54.8</td>
</tr>
<tr>
<td>Can decide by self to purchase emergency medicine for child</td>
<td>52.3</td>
</tr>
<tr>
<td>Are you allowed to go alone to a relative’s house inside the village?</td>
<td>47.4</td>
</tr>
<tr>
<td>When husband has different opinion, voice opinion and argue more often than voice opinion but do as he says*</td>
<td>47.3</td>
</tr>
</tbody>
</table>

Notes: The numbers reported are how often, out of 1000 iterations of LASSO on 50% subsamples, a variable was selected as a regressor in the LASSO stability selection procedure. The dependent variable is the semi-structured interview score. * This variable is constructed from a series of separate questions. See Appendix B for more details and for the full wording of the questions.
children’s health care. The mobility question highlights that the best five-question module is likely to differ by context; restrictions on women’s travel within their village are more common in north India than many other places (Rahman and Rao, 2004; Jayachandran, 2015; Naybor et al., 2016).

All five of the selected variables are predictive in the correct direction; with the variables coded such that a higher value theoretically represents more agency, the raw correlation with the qualitative score is always positive. Appendix Table A.1 shows the correlation between the qualitative score and each of the selected variables.

The proposed way to combine the survey questions into one measure is to average the five variables: We code each survey question as a continuous variable, make them comparable by normalizing each to have a standard deviation of 1, and then average them. The R^2 of a univariate regression of the qualitative score on the resulting index is shown at the bottom of Table 2. The R^2 of 0.29 in column (1) is equivalent to a correlation coefficient of 0.54. The next row shows the R^2 if we instead use the model prediction as an index, specifically the predicted value of a LASSO regression of the qualitative score on the five variables. The similar R^2 indicates that one does not lose much information by using the standardized average. This simple way of aggregating, therefore, seems preferable for many purposes.

Appendix Table A.2 shows the correlation between the survey index and qualitative scores in each of the six domains. The index is most strongly correlated with the household expenditures and mobility domains, which is unsurprising as four of the five selected questions are within those two domains.

We now turn to the results using the two alternative statistical algorithms. Table 2, column (2) reports the top five questions selected using random forest selection. Three of the questions are in the set chosen by LASSO stability selection, though not in the same order. The new variables that are selected pertain to household spending and mobility. The R^2 when regressing the qualitative score on a standardized index of the random-forest-selected variables is 0.25. It is unsurprising that random forest performs worse than LASSO stability because, in averaging the five variables, we are ignoring the non-linearities and interactions that random forest selection allowed for when choosing variables.

It is also informative to assess random forest selection when using the model’s predicted value as the women’s agency index. We take the five selected variables, build a random

25 The formula is $1.02 + 0.071q_1 + 0.200q_2 + 0.049q_3 + 0.117q_4 + 0.167q_5$ where qn is the n^{th}-ranked question.

26 The two new questions in the top five set for random forest are ranked sixth and twelfth by LASSO stability selection. The two new questions in the top five for backward sequential selection are ranked seventh and twelfth by LASSO stability selection.
forest using them, and extract the predicted value for each observation. Here, random forest performs much better than LASSO stability selection; its model prediction is more strongly correlated with the qualitative score than is LASSO stability selection’s. This is again unsurprising: Random forest allows for more degrees of freedom when using the five variables as predictors. A researcher could choose to use the random forest set of questions and then estimate a random forest model with her data to extract the predicted value as the women’s agency index or use the predicted value from the random forest trained on our data.\footnote{R code that allows one to generate the predicted value from a random forest or LASSO model trained on our data is available from the corresponding author.} The resulting index would be a richer but more black-box measure.

In Table 2, column (3), we report the top questions based on backward sequential selection. Three of them overlap with the set chosen by LASSO stability selection (and three overlap with the random forest set). The new variables are related to household spending and mobility. The R^2 using this index is 0.29, almost identical to the LASSO stability selection R^2. It is somewhat surprising — and reassuring — that LASSO stability selection, which chooses variables taking into account out-of-sample fit and chooses them one-by-one without assessing their performance in a standardized index, achieves as much within-sample predictive power as backward sequential selection.

Comparison to randomly choosing variables

One way to gauge how valuable it is to use an algorithmic approach to survey question selection is to compare it to ad hoc selection. Figure 5 plots a histogram of index performance, specifically the R^2 when the qualitative score is regressed on the index, if we randomly select five questions from among the 63 candidates. The median R^2 across 1000 randomly selected sets of variables is 0.06. The three algorithm-selected indices have explanatory power that is well above not just the median, but also the 99th percentile of the distribution using randomly selected variables.

Comparison to LASSO

When we estimate standard LASSO using the qualitative score as the dependent variable and the 63 candidate survey variables as potential regressors, LASSO selects 15 regressors (which are listed in Appendix Table A.3). Reassuringly, among them are all 8 survey questions that are in the top 5 set for one or more of the statistical algorithms, which need not have been the case.

If all of the LASSO-selected variables are combined into a standardized index, the R^2
Figure 5: Selected indices compared to five randomly chosen variables

Notes: We take 1000 random draws of 5 out of 63 questions. The figure plots the distribution of R^2 when the qualitative score is regressed on a standardized index combining the 5 variables.

is 0.38. One can also, of course, use the predicted value of the LASSO regression as the agency index. This also yields an R^2 of 0.38, which is higher than one achieves with the five-question index, but at the cost of a longer survey module. We return to this trade-off between explanatory power and brevity later in this section.

Comparison to using all 63 close-ended survey questions

Another benchmark is if we used all 63 quantitative variables. The R^2 of a multivariate regression of the qualitative score on all of them is 0.51. All of the variables collectively explain 51% of the variation, while with the five questions chosen by LASSO stability selection combined into an index, one explains 29% of the variation. Thus, we sacrifice less than half of the explanatory power when we use just 5 out of 63, or 8%, of the potential survey questions, and combine them into one measure.

Using all 63 variables in a standardized index actually leads to a lower R^2 of 0.21 compared to the five-variable index. The cost of using more variables is not just that it requires a longer survey, but also that some variables are weak (or wrong-signed) predictors of agency as measured by the interview, so including them lowers the predictive power of the index.

An alternative way to extract information from the 63 variables is to use principal component analysis. If we use the first principal component of the 63 variables as the measure of agency, then in a regression of the qualitative score on the principal component,
the R^2 is 0.24, which is again lower than what our algorithms achieve.

Trade-off between length of module and explanatory power of index

The fact that an index using all 63 survey variables performs worse than using the five selected variables raises the question of how index performance is related to the number of variables selected. We repeated the three algorithms incrementing the number of selected variables from 1 to 63. Figure 6 plots the predictive power of the selected indices. For LASSO stability selection, the R^2 peaks at 0.35, with the best 19 questions included. Recall that the best 5 questions yield an R^2 of 0.29. The maximum R^2 is achieved with 13 questions and 16 questions using random forest selection and backward sequential selection, respectively.

Thus, there is a trade-off between a shorter survey module and an agency index that captures more information, up to a point. A researcher willing to use a longer module could take the best 10 or 15 questions instead of the best 5 that we have focused on. But what is also apparent is that after a point, even if fielding a longer survey were not costly, using a larger number of agency variables in the index seems to hurt performance.

Correlation with characteristics often associated with women’s agency

As another assessment of the indices, we report their correlation with factors often associated with agency. For example, one might expect younger women to have less agency. Also, agency is often believed to be negatively correlated with the age gap between the husband and wife (that is, women who are considerably younger than their husbands have less agency), and likewise with the husband-wife education gap. A first step is to check the correlation between these factors and the qualitative score itself. As reported in Appendix Table A.2, the qualitative agency score is indeed positively correlated with the woman’s age and negatively correlated with the husband-wife education gap. In turn, the indices chosen by the three algorithms have the same-signed correlations with age and the education gap. Surprisingly, both the qualitative score and the three indices have a small positive correlation with the husband-wife age gap.

How well would MASI have performed with a smaller sample size?

A sample size of 209 qualitative interviews might be impractically large in some applications, due to time or budget constraints. To understand how well MASI would work with a smaller sample size, we drew random subsamples of 100 observations (48% subsamples) and repeated the variable selection process, focusing on the LASSO stability selection algorithm. We repeated this 100 times and assessed how well the 100 resulting indices performed and

27
Figure 6: Explanatory power of selected indices when number of questions is varied

Panel (a): LASSO stability selection

Panel (b): Random forest selection

Panel (c): Backward sequential selection

Notes: The figures plot the R^2 of a regression of the qualitative score on an index constructed from the best k variables selected by the algorithm; the value k is plotted on the horizontal axis. LASSO stability selection produces a ranked list of all variables (as all variables are selected in some LASSO iterations in our application); thus an index is produced for each value of k from 1 to 63. Backward sequential selection also ranks all variables. For random forest, we vary the tuning parameter in the last step of the algorithm, which produces models with different values of k but not for all k. The maximum k shown in panel (b) is 14 because that is the maximum number of variables retained before the last step of the random forest algorithm across all possible values of the tuning parameters that influence earlier steps of the algorithm.
the degree to which the selected questions overlapped with those chosen with the full sample.

The top full-sample question, about the woman’s say in large household purchases, is among the top 5 selected questions 73% of the time when we use 100-observation subsets of the data. On average, 2.4 questions from the full-sample set of five questions were selected using the smaller samples. Another metric for assessing performance is the correlation between the resulting indices and the qualitative score. The average correlation using the smaller subsamples is 0.48; the correlation is 0.54 for the index created using the full sample.

To summarize, there is some instability in the specific questions chosen if one uses a smaller sample size. However, much of the value of MASI seems to derive from identifying the best one or two questions plus the next six to ten very good questions, and a smaller sample size seems to suffice for these purposes.

6.2 Based on lab game as gold standard

Given the problems with the lab game discussed in section 4.3, it is unsurprising that the statistical algorithms do not perform well when the lab game is treated as the “truth.” For completeness, we report the selected questions in Appendix Table A.4. One indication that the questions validated against the lab game measure are less reliable is that the index combining them is not strongly correlated with the “true” measure (R^2 of 0.05 using LASSO stability selection, for example). Moreover, the top question from LASSO stability selection is selected in only 18% of the LASSO runs. Also, two of the top questions based on random forest selection have a negative (i.e., wrong signed) correlation with the lab game measure of agency. These results reinforce our conclusion that the lab game was an inadequate tool for measuring women’s agency — and thus for applying MASI — in our study.

7 Conclusion

A first contribution of this study is to develop a new survey module for women’s agency. We select a five-question survey module, from a starting set of 63 questions, in a data-driven way. We propose as a women’s agency measure the standardized average of the five variables that map to the selected questions. This short module could be useful for two purposes, first, for those seeking an off-the-shelf way to measure agency in north India and perhaps elsewhere, and, second, as a set of standard questions that could be asked as part of longer modules, to enable comparisons across studies.

The module was created using data from married women with children in one part of India, so a valuable direction for future research is to replicate the study in other populations.
Indeed, the fact that some of the selected questions pertain to women’s physical mobility, a dimension of agency particularly salient in India, highlights the context-specificity of women’s agency and its measurement.

Another finding that highlights the importance of context is that behavior in a lab game, which was originally developed to measure women’s agency in Macedonia and replicated successfully in Zambia, mapped to agency in our study in too nuanced a way to serve as a “gold standard” measure. Specifically, the game uses a high demand for agency as a proxy for having low agency, but many women in our sample with low agency did not want more agency. We conclude that using semi-structured interviews to obtain a “true” measure of agency is advantageous in large part because such interviews are intrinsically context-specific, with the flow of the conversation adapting to the woman’s responses. Another nice feature of qualitative interviews is their flexibility to cover any number of domains, even beyond those we covered, e.g., political agency.

The second, larger contribution of our study is to introduce a new method for developing validated measures of constructs. The method combines machine learning and semi-structured interviews, or MASI for short. Based on the principle of criterion validation, we vet quantitative measures of a construct — women’s agency, in our case — by benchmarking them against semi-structured interviews. Specifically, we use statistical algorithms that build on standard supervised machine learning techniques to select the best survey questions based on how well they predict the measure of agency obtained through the time- and skill-intensive in-depth interviews.

MASI has many other potential applications. For example, the best questions to measure changes in a woman’s agency, such as those caused by policy interventions, might differ from the best ones to measure a woman’s current agency (our focus). One could carry out a similar study to create a survey module optimized for measuring changes in agency, with the data collection carried out at two points in time, and the statistical analysis centered around changes in responses.

More broadly, one could apply our approach to create quantitative measures of concepts very different from women’s agency. We believe that combining machine learning and semi-structured interviews to develop short survey measures of complex constructs has many promising applications.
References

Camfield, L. and D. Ruta (2007). Translation is not enough: using the Global Person Generated Index (GPGI) to assess individual quality of life in Bangladesh, Thailand, and Ethiopia. *Quality of Life Research* 16(6), 1039–1051.

Jose, R., N. Bhan, and A. Raj (2017). EMERGE measurement guidelines report 2: How to create scientifically valid social and behavioral measures on gender equality and empowerment. Center on Gender Equity and Health (GEH), University of California, San Diego School of Medicine. San Diego, CA.

App. Table A.1: Correlation of qualitative score and selected survey variables

<table>
<thead>
<tr>
<th>Qualitative agency score</th>
<th>Opinion heard when expensive item like a bicycle or cow is purchased?</th>
<th>Need permission from other household members to buy clothing for self?</th>
<th>Allowed to buy things in the market without asking partner?</th>
<th>Are you permitted to visit women in other neighborhoods to talk with them?</th>
<th>Who do you consult with for decisions regarding your children’s health care?</th>
<th>Are you permitted to visit any place riding on public transport?</th>
<th>Who in household decides to pay school fees for a relative from your side of family?</th>
<th>Allowed to go alone to meet your friends for any reason?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualitative agency score</td>
<td>1.000</td>
<td>0.318</td>
<td>0.338</td>
<td>0.346</td>
<td>0.295</td>
<td>0.218</td>
<td>0.332</td>
<td>0.176</td>
</tr>
<tr>
<td>Opinion heard when expensive item like a bicycle or cow is purchased?</td>
<td>0.318</td>
<td>1.000</td>
<td>0.192</td>
<td>0.324</td>
<td>0.120</td>
<td>0.155</td>
<td>0.211</td>
<td>0.019</td>
</tr>
<tr>
<td>Need permission from other household members to buy clothing for self?</td>
<td>0.338</td>
<td>0.192</td>
<td>1.000</td>
<td>0.346</td>
<td>0.120</td>
<td>0.155</td>
<td>0.211</td>
<td>0.019</td>
</tr>
<tr>
<td>Allowed to buy things in the market without asking partner?</td>
<td>0.346</td>
<td>0.287</td>
<td>0.324</td>
<td>1.000</td>
<td>0.155</td>
<td>0.123</td>
<td>-0.006</td>
<td>0.123</td>
</tr>
<tr>
<td>Are you permitted to visit women in other neighborhoods to talk with them?</td>
<td>0.295</td>
<td>0.120</td>
<td>0.155</td>
<td>0.211</td>
<td>0.119</td>
<td>1.000</td>
<td>0.019</td>
<td>0.143</td>
</tr>
<tr>
<td>Who do you consult with for decisions regarding your children’s health care?</td>
<td>0.218</td>
<td>-0.054</td>
<td>0.123</td>
<td>-0.006</td>
<td>0.119</td>
<td>1.000</td>
<td>0.019</td>
<td>0.206</td>
</tr>
<tr>
<td>Are you permitted to visit any place riding on public transport?</td>
<td>0.332</td>
<td>0.194</td>
<td>0.278</td>
<td>0.369</td>
<td>0.369</td>
<td>0.124</td>
<td>1.000</td>
<td>0.206</td>
</tr>
<tr>
<td>Who in household decides to pay school fees for a relative from your side of family?</td>
<td>0.176</td>
<td>0.019</td>
<td>0.143</td>
<td>0.206</td>
<td>-0.139</td>
<td>-0.013</td>
<td>0.145</td>
<td>-0.139</td>
</tr>
<tr>
<td>Allowed to go alone to meet your friends for any reason?</td>
<td>0.280</td>
<td>0.091</td>
<td>0.071</td>
<td>0.218</td>
<td>0.319</td>
<td>0.190</td>
<td>0.268</td>
<td>-0.018</td>
</tr>
</tbody>
</table>
App. Table A.2: Correlation of qualitative score, 5-question indices, and factors often associated with agency

<table>
<thead>
<tr>
<th></th>
<th>Qualitative agency score</th>
<th>LASSO stability selection 5-Q index</th>
<th>Random forest selection 5-Q index</th>
<th>Backward seq. selection 5-Q index</th>
<th>Fertility score</th>
<th>Education score</th>
<th>Health score</th>
<th>HH expenses score</th>
<th>Mobility score</th>
<th>Work score</th>
<th>Age</th>
<th>Husband-wife age gap</th>
<th>Husband-wife education gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualitative agency score</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>LASSO stability selection 5-Q index</td>
<td>0.532</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Random forest selection 5-Q index</td>
<td>0.503</td>
<td>0.830</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Backward seq. selection 5-Q index</td>
<td>0.539</td>
<td>0.820</td>
<td>0.791</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertility score</td>
<td>0.346</td>
<td>0.197</td>
<td>0.143</td>
<td>0.233</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education score</td>
<td>0.658</td>
<td>0.284</td>
<td>0.302</td>
<td>0.262</td>
<td>0.093</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health score</td>
<td>0.634</td>
<td>0.281</td>
<td>0.221</td>
<td>0.321</td>
<td>0.153</td>
<td>0.409</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HH expenses score</td>
<td>0.707</td>
<td>0.436</td>
<td>0.429</td>
<td>0.438</td>
<td>0.093</td>
<td>0.355</td>
<td>0.367</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobility score</td>
<td>0.697</td>
<td>0.339</td>
<td>0.415</td>
<td>0.364</td>
<td>0.017</td>
<td>0.299</td>
<td>0.345</td>
<td>0.533</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work score</td>
<td>0.479</td>
<td>0.322</td>
<td>0.232</td>
<td>0.283</td>
<td>0.131</td>
<td>0.170</td>
<td>0.046</td>
<td>0.083</td>
<td>0.157</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.218</td>
<td>0.187</td>
<td>0.187</td>
<td>0.177</td>
<td>-0.054</td>
<td>0.121</td>
<td>0.096</td>
<td>0.227</td>
<td>0.293</td>
<td>0.036</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Husband-wife age gap</td>
<td>0.071</td>
<td>0.032</td>
<td>0.016</td>
<td>0.034</td>
<td>-0.009</td>
<td>0.026</td>
<td>0.088</td>
<td>0.180</td>
<td>0.091</td>
<td>-0.122</td>
<td>-0.162</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Husband-wife education gap</td>
<td>-0.245</td>
<td>-0.075</td>
<td>-0.059</td>
<td>-0.141</td>
<td>-0.010</td>
<td>-0.170</td>
<td>-0.085</td>
<td>-0.235</td>
<td>-0.191</td>
<td>-0.137</td>
<td>0.055</td>
<td>0.054</td>
<td>1.000</td>
</tr>
</tbody>
</table>
App. Table A.3: All variables selected by regular LASSO (using semi-structured interview)

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can decide by self to purchase emergency medicine for child</td>
</tr>
<tr>
<td>Who accompanied you to healthcare provider?</td>
</tr>
<tr>
<td>Who do you consult with for decisions regarding your children’s health care?</td>
</tr>
<tr>
<td>Opinion heard when expensive item like a bicycle or cow is purchased?</td>
</tr>
<tr>
<td>Allowed to buy things in the market without asking partner?</td>
</tr>
<tr>
<td>Who in household decides to pay school fees for a relative from your side of family?</td>
</tr>
<tr>
<td>Who in household decides purchasing item like radio or paraffin lamp?</td>
</tr>
<tr>
<td>Need permission from other household members to buy clothing for self?</td>
</tr>
<tr>
<td>Do you have a bank or savings account that you yourself use?</td>
</tr>
<tr>
<td>Are you permitted to visit any place riding on public transport?</td>
</tr>
<tr>
<td>Are you permitted to visit women in other neighborhoods to talk with them?</td>
</tr>
<tr>
<td>Are you allowed to go alone to a relative’s house inside the village?</td>
</tr>
<tr>
<td>Allowed to go alone to meet your friends for any reason?</td>
</tr>
<tr>
<td>When husband has different opinion, voice opinion and argue more often than voice opinion but do as he says</td>
</tr>
<tr>
<td>In last 12 months, how often you and husband discussed children’s expenses</td>
</tr>
</tbody>
</table>

Notes: The variables listed are the 15 ones chosen by standard LASSO when the dependent variable is the semi-structured interview score and the possible regressors are the 63 close-ended survey questions.
App. Table A.4: Selected survey questions using lab game

<table>
<thead>
<tr>
<th>Question</th>
<th>LASSO stability selection</th>
<th>Random forest selection (VSURF)</th>
<th>Backward sequential selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>He (husband) expects me not to contradict him in public</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Since New Year’s Day, how often has this (husband threatening to hurt you) happened?</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>On which step are you? (0=powerless to 10=most ability)</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Are you allowed to go alone to a relative’s house inside the village?</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Opinion heard when expensive item like a bicycle or cow is purchased?</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He is upset if I express an opinion that disagrees with him</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Often when disagree what to do, do what partner wants</td>
<td></td>
<td>4*</td>
<td></td>
</tr>
<tr>
<td>Chose not to perform household roles in last 2 weeks</td>
<td></td>
<td>5*</td>
<td></td>
</tr>
<tr>
<td>Has partner/other male ever threatened to hurt or harm you?</td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

5-Question Standardized Index R² 0.045 0.011 0.047
5-Question Model Prediction Index R² 0.047 0.463 0.047

Notes: The table lists the top 5 survey questions selected. The numbers in the cells indicate the selection order, with 1 referring to the best, or most predictive question. * indicates that the variable, when coded so that a higher value maps to more agency, has a negative correlation with the WTP measure. The R^2 is for a regression of the agency measure from the lab game on the index.
Appendix B: Full list of close-ended questions measuring agency

<table>
<thead>
<tr>
<th>Question</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imagine that you were home alone, without your (prefill response from previous question) and one of your children was very sick. Could you make the choice on your own to purchase medication to treat your child?</td>
<td>“1. Yes 2. No -98. Don’t know -99. Refused to answer”</td>
</tr>
<tr>
<td>When was the last time you were unwell and visited a health care provider for treatment?</td>
<td>______ [DD] -98. Don’t know/ Can’t remember ______ [MM] -98. Don’t know/ Can’t remember ______ [YY] -98. Don’t know/ Can’t remember -99. Refused to answer</td>
</tr>
<tr>
<td>When you have small amounts of money, such as 20 or 50 INR, can you decide how to spend it on your own?</td>
<td>*1. Yes, always 2. Yes, usually 3. Yes, sometimes 4. Rarely 5. Very rarely 6. Never -98. Don’t know -99. Refused to answer</td>
</tr>
</tbody>
</table>

* For this question as asked, lower-valued responses represent more agency. The response is then reverse-coded in the data analysis so that for all variables, a higher value represents more agency.

*Recoded as: 1. Relatives from my husband’s side, father-in-law, or mother-in-law, 2. My husband, 3. No one, I decide on my own

bRecoded as: 1. With male relative, 2. With female relative, 3. Went alone

(Continue on next page)
(Continuation of table listing quantitative survey questions)

<table>
<thead>
<tr>
<th>Question</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>If you have some money you have earned, can you use it to purchase</td>
<td>*1. Yes, always 2. Yes, usually 3. Yes, sometimes 4. Rarely 5. Very rarely 6. Never -98. Don’t know -99. Refused to answer</td>
</tr>
<tr>
<td>clothing for yourself or children without asking the permission of</td>
<td></td>
</tr>
<tr>
<td>anyone else?</td>
<td></td>
</tr>
<tr>
<td>permission of your partner?</td>
<td></td>
</tr>
<tr>
<td>school fees for a relative from your side of the family?</td>
<td></td>
</tr>
<tr>
<td>items like a radio or a paraffin lamp?</td>
<td></td>
</tr>
<tr>
<td>Do you have to ask the permission of other household members to buy:</td>
<td>*1. Yes 2. No 3. Have never bought -99. Refused to answer</td>
</tr>
<tr>
<td>Vegetables or fruits</td>
<td></td>
</tr>
<tr>
<td>Do you have to ask the permission of other household members to buy:</td>
<td>1. Yes 2. No 3. Have never bought -99. Refused to answer</td>
</tr>
<tr>
<td>Clothing for yourself</td>
<td></td>
</tr>
<tr>
<td>Do you have to ask the permission of other household members to buy:</td>
<td>1. Yes 2. No 3. Have never bought -99. Refused to answer</td>
</tr>
<tr>
<td>Medicines for yourself</td>
<td></td>
</tr>
<tr>
<td>Do you have access to any cash available now for buying HH food or</td>
<td>*1. Yes 2. No -98. Don’t know -99. Refused to answer</td>
</tr>
<tr>
<td>medicine if you suddenly needed something?</td>
<td></td>
</tr>
<tr>
<td>How much money do you usually have on hand to meet these types of</td>
<td>————————— -99. Refused to answer</td>
</tr>
<tr>
<td>expenses?</td>
<td></td>
</tr>
<tr>
<td>Do you have a bank or savings account that you yourself use?</td>
<td>*1. Yes 2. No -99. Refused to answer</td>
</tr>
<tr>
<td>you?</td>
<td></td>
</tr>
<tr>
<td>husband?</td>
<td></td>
</tr>
<tr>
<td>Are you permitted to visit women in other neighborhoods to talk with</td>
<td>1. Never 2. Yes, but never alone 3. Yes, alone, with permission 4. Yes, alone, do not need permission -97. Not applicable -99. Refused to answer</td>
</tr>
<tr>
<td>them?</td>
<td></td>
</tr>
</tbody>
</table>

*Recoded as: 1. With male relative, 2. With female relative, 3. Went alone
<table>
<thead>
<tr>
<th>Question</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are you allowed to go alone to a relative’s house inside the village?</td>
<td>*1. Yes 2. No -97. Not applicable -99. Refused to answer</td>
</tr>
<tr>
<td>Are you allowed to go to the school/college alone or with friends?</td>
<td>*1. Yes 2. No -97. Not applicable -99. Refused to answer</td>
</tr>
<tr>
<td>Are you allowed to go alone to meet your friends for any reason (to get school notes, chat, play etc.)?</td>
<td>*1. Yes 2. No -97. Not applicable -99. Refused to answer</td>
</tr>
<tr>
<td>In the last one year, have you ever gone to the market within your village to buy personal items with friends? (no guardians)</td>
<td>1. Yes 2. No -97. Not applicable -99. Refused to answer</td>
</tr>
<tr>
<td>In the last one year, have you ever gone to the market within your village to buy personal items alone?</td>
<td>*1. Yes 2. No -97. Not applicable -99. Refused to answer</td>
</tr>
<tr>
<td>In the last one year, have you ever attended any sort of community events/activities? (Ex: fair, theatre, cultural program, religious event)</td>
<td>*1. Yes 2. No -97. Not applicable -99. Refused to answer</td>
</tr>
<tr>
<td>In the last one year, have you ever attended one of these events without guardians present (either alone or with friends)?</td>
<td>*1. Yes 2. No -97. Not applicable -99. Refused to answer</td>
</tr>
</tbody>
</table>

(Continue on next page)
(Continuation of table listing quantitative survey questions)

<table>
<thead>
<tr>
<th>Question</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>When your husband has a different opinion from you on a particular decision what do you do. Please tell us how many times you adopt each of these approaches (Surveyor: guide her through all the six options) G.26. Don’t voice your opinion but do what you think is right G.27. Don’t voice your opinion and wait for another occasion to see if he changes his mind G.28. Don’t voice your opinion but do what your husband thinks is right G.29. Voice your opinion but also make it clear that you will go along with his view G.30. Voice your opinion and argue why your choice is better G.31. Other: Please explain</td>
<td>1. Never 2. Rarely 3. Sometimes 4. Often 5. Most of the times 6. All the time -97. Not Applicable -98. Don’t know -99. Refused to answer</td>
</tr>
<tr>
<td>When you disagree with your husband, does he get angry with you?</td>
<td>1. Yes 2. No -99. Refused to answer</td>
</tr>
<tr>
<td>Has he (your husband, or other adult male in your household) ever threatened to hurt or harm you or someone close to you?</td>
<td>1. Yes 2. No -99. Refused to answer</td>
</tr>
</tbody>
</table>

(Continue on next page)

*Recoded as four binary variables for yes/no questions: When husband has different opinion, voice opinion and argue more often than voice opinion but do as he says; When husband has different opinion, voice opinion but do as he says more often than not voicing opinion and waiting for him to change mind; When husband has different opinion, wait for him to change mind more often than do as he says (but don’t voice opinion); When husband has different opinion do what you think more often than what he says (but don’t voice opinion)
(Continuation of table listing quantitative survey questions)

<table>
<thead>
<tr>
<th>Question</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>It’s wrong for me to question people who are in charge or in authority, like teachers or parents, leaders in the village etc.</td>
<td>1. Strongly agree 2. Agree 3. Neither agree nor disagree 4. Disagree 5. Strongly disagree -98. Don’t know 99. Refused to answer</td>
</tr>
<tr>
<td>Do you feel that people like yourself can generally change things in your community if they want to?</td>
<td>∗1. Yes, very easily 2. Yes, fairly easily 3. Yes, but with a little difficulty 4. Yes, but with a great deal of difficulty 5. No, not at all -98. Don’t know -99. Refused to answer</td>
</tr>
<tr>
<td>Do you participate in making major household purchases? Major household purchases include things like refrigerator, television, vehicle, livestock etc.?</td>
<td>∗1. Yes 2. No -99. Refused to answer</td>
</tr>
<tr>
<td>I do not participate in making major household purchases…</td>
<td>*1. Because I don’t like doing/ can’t/ don’t want to do it 2. Because it is not my responsibility 3. Because I don’t think it is important for me to make major household purchases 4. Because others don’t expect/ want me to make major household purchases 5. Because I will get in trouble if I do/ am not allowed to -96. Other (specify): -98. Don’t know -99. Refused to answer</td>
</tr>
<tr>
<td>Thinking about your role in the household and the expectations of you, in the past 2 weeks have you ever chosen for yourself not to perform any of your roles or responsibilities?</td>
<td>1. Never 2. One or two times 3. Several times 4. Often 5. Nearly every day -98. Not sure/don’t know -99. Refused to answer</td>
</tr>
<tr>
<td>This is a ten step ladder, where on the bottom, the first step, stand people who are completely coerced or powerless, and on the highest step, the tenth step, stand those with the most ability to advance goals that they value in their own homes and in the world. On which step are you today?</td>
<td>Response Options: 1-10 -98. Don’t know -99. Refused to answer</td>
</tr>
</tbody>
</table>

Notes: Table lists the 63 closed-ended questions used as the set from which the best 5 were selected.
Appendix C: Semi-structured interview guide

Thank you very much for speaking with me. My name is [NAME] and I work for an organization that works around the world to reduce poverty. The name of the organization is J-PAL. In India the organization’s office is in Delhi. We are not from the government.

Purpose of the study: The organization I work for conducts research all over India, and the results from the research are used to make better government programs. [Give example of immunization study in Haryana].

In this study, we are talking to many women in and around Kurukshetra. The reason we are doing this is to understand your experiences, your circumstances, your needs, and your struggles. We want to know how families make decisions on day-to-day events, such as child-rearing, household finances, health care issues in the family etc.

What will you have to do? We will talk to you for 30-45 minutes. We request that you answer as honestly as you can. Some of the questions might be of a personal or sensitive nature. If you ever feel uncomfortable, I want to remind you that it is okay to not answer. You should not feel obligated or pressured. We can stop the interview at any time. There will be no negative consequences if you stop the interview.

Why are we recording? We will also record the interview. It is difficult to talk and write notes at the same time. If I don’t record, I have to keep asking you what you said, and the interview will take longer. Because of the recorder, I can give you my full attention.

What is being done to maintain confidentiality? What you tell us, and the recording will only remain with our small research team. Maximum 3 or 4 people will be able to listen to the recording. Your name, your family members’ name, your address, the name of the village or anybody’s phone number, nothing will be in the recording. If I do something like that, I will be thrown out of my job. Our company takes the matter of confidentiality very seriously.

Why do we need privacy? I am requesting that we speak to you alone. There are two reasons for this. First, we have been told that we should only get the experiences of those mothers who have young children. That’s why we are talking only to you in your family. Second, if too many voices come into the recording, then it is difficult to listen to it later.

Why are you only talking to me and not other village women? We have selected you through a lottery. First, we selected about 20 villages in and around Kurukshetra through a lottery. Then we selected families within villages through a lottery.

Any questions? If you have any questions you may ask now or later. If you wish to contact later, please keep these numbers [give her the Contact Sheet].

SECTION I: INTRODUCTION

These questions are both as a way to start the conversation, but also important for the interviewer to remember for upcoming questions about the respondent’s work, children, and potential decision-makers within the household. Do not spend too much time on these questions as they are meant to be introductory and brief.

Note: The respondent may have already answered these questions in the quant survey. Say that she may already have answered these questions, and these are being asked again to refresh the researcher’s memory.

- How old are you?
- How many years has it been since you got married?
- How many children do you have? How many boys and how many girls? How old are they?
• Besides yourself, your husband, and children, how many people live in your household? Can you tell me who they are?
• Does your husband work? If yes, what work?
• Do you work outside the home? If yes, what work? [Throughout interview, probe about working where appropriate.]

SECTION II: CHILDREN’S SCHOOLING

The questions in this section are to understand the extent of involvement of the mother in decisions related to her children’s schooling.

The goal is to engage in a conversation to ascertain how engaged the mother is in these decisions, how she negotiates, the extent to which she cedes control, to whom she cedes control, whether she thinks of it as ceding control, etc. The ‘facts’ that are embedded in the question – whether it is a private or government school or how much it costs (which can be answered in a survey as well) – are conversation starters to get deeper into questions about decision-making power. The sub-questions are meant to ask for more details that should lead to a fuller account, a narrative, or a story. If they do not work, you can modify. Do not ask them like they are questions in a survey.

The questions will be asked separately for sons and daughters to understand gender differences. Note that we are only asking about her children under the age of 10. If there is no school age child, skip this section.

The next few questions are about your children – their schooling and healthcare. First, I’ll ask about your daughter’s education.

• Which school does she go to? Is it a government or private school? Does it cost money to go to this school? How much?
• Who decided on this school?
• Why did you choose this school?
• Did you think about any other schools? Which ones? [If there were other schools in consideration, probe about how choices were made, and why.]
• Was there agreement among family members about the school? If not, ask for details about the actors and events around the disagreement.
• Did you agree with the decision? Why/why not?
• Do you ever have to keep your daughter from going to school? I am not asking about when she is sick...for any other reason?
• Till what class do you want your daughter to study? Why?
• What are your hopes and aspirations for your daughter? Do you think you can help her fulfill these aspirations? Why/why not?

If you do not get much traction with the schooling questions, ask about aspirations for the daughter post-puberty.

Let’s now talk about your son’s education.

• Which school does he go to? Is it a government or private school? Does it cost money to go to this school? How much?
• Who decided on this school?
• Why did you choose this school?
• Did you think about any other schools? Which ones? [If there were other schools in consideration, probe about how choices were made, and why.]
• Was there agreement among family members about the school? If not, ask for details about the actors and events around the disagreement.
• Did you agree with the decision? Why/why not?
• Do you ever have to keep your son from going to school? I am not asking about when he is sick...for any other reason?
• Till what class do you want your son to study? Why?
• What are your hopes and aspirations for your son? Do you think you can help him fulfill these aspirations? Why/why not?

SECTION III: CHILDREN’S HEALTH CARE

Similar to Section II, this section is also about the extent of involvement of the mother in decisions related to her children, in this case, the child’s health care.

Again, the goal is to engage in a conversation and get a narrative account of an actual incident that involved her child. Any specific details that are “factual” – type of illness, which doctor, who took the child to the doctor etc. – are the bridge to allow the woman to talk in depth about her own engagement with all the small decisions that are involved in getting to the big picture of the decision-making process, her own control over these decisions, whether she cedes control, how much, and her opinions on the same.

Questions on the respondent’s mobility are embedded within the questions and should be probed. The questions will be asked separately for sons and daughters to understand gender differences.

I will now ask about your children’s health care.

• Can you remember the last time your child was sick, and you had to take your child to the doctor? Can you tell me about what happened?
 – Was it your son or daughter? When did this happen? How old was your child? What was the sickness? Which doctor or clinic or hospital did you take your child to?
 – Who decided on which doctor/hospital? Why?
 – Were you in agreement with the decision? Why?
 – Who took the child to the doctor? Why?
 – If she did not go, ask whether she wanted to go. If she wanted to go, ask why she did not go. If she did not want to go, ask why she did not want to go.
 – What was the treatment? Who took care of the treating the child?
 – Were you satisfied with the treatment? Why/why not?
• If the woman has a child of another gender, ask the same questions about that child.

If she has an infant, you can ask about vaccination.

SECTION IV: FERTILITY

The questions should probe about respondent’s choice and agency around the number of children, birth spacing, and decisions around breastfeeding.

• You said you have X children. Would you like to have more? Why/why not? Would your husband (in-laws; whoever she says is in charge) agree with your decision? If not, why not?
• According to you, what is the ideal spacing between children? [If there is a discrepancy between what she says is the ideal and we know to be the fact, probe about the discrepancy.] Whose decision as it to have a different spacing?
• Ask about contraception.
• Ask separately for son and daughter. Did you breastfeed daughter/son? For how long? Probe about decisions related to breastfeeding – who decided how long to breastfeed? Did she agree with the decision? Were there any disagreements in the household about this decision? Why? If she did not breastfeed, ask why.
• Ask about delivery – at home or institutional?

SECTION V: HOUSEHOLD EXPENSES

These questions are around a woman’s control (or lack thereof) over household budgets, and her involvement in decisions around making purchases of various sorts.

There’s a separation between purchasing smaller and larger items for the household. Determine what the appropriate small or large item is likely to be for the household and probe accordingly.

Questions on the respondent’s mobility are embedded within the questions and should be probed.

Finally, I’d like to ask about household expenses.

• Overall budgeting questions
 – How do you run the household?
 – If she works, asks if she hands over her pay or keeps it? Who is in charge of the household money?

• Buying items of daily need
 – Who is in charge of the money for buying items needed on a daily or regular basis?
 – Wheat, vegetables, milk, soap etc. Who goes out to buy these items?
 – If she goes, would she prefer that somebody else was in charge of doing the shopping?
 – If she doesn’t go, would she like to go? If she would like to go, why is she not able to?
 – Does she have a say in what items get purchased?
 – After marriage, did she have a say if she needed anything that she was used to buying before?
 – Any particular vegetable she liked, or any brand of soap?

• Buying items in an emergency
 – Questions about the different ways that the woman saves (buffalo milk money is hers, separate bank account for girl child through a government scheme, gullak etc.) are yielding responses, so continue asking about this.

• Buying a large item for the household
• What if the household won a lottery?

 Be attuned to any issue she raises about running debt with the local shop or money lenders and probe about how this plays into decision-making in household budgeting decisions.

SECTION VI: MOBILITY

The goal of adding this section on mobility is to understand the constraints placed on women’s physical mobility, and whether, and to what extent, she has agency in her own movement.

• When you go to visit your family/natal village, how do you go (means of transport)? Do you go by yourself or does someone need to accompany you? Probe about why.
• [DRAW A MOBILITY MAP.]

These are all the questions. Do you have any questions for me? Thanks very much for participating in this interview.