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Abstract

We study the effect of bid caps on contestants’ aggregate equilibrium bids in variants

of all-pay contests with a large number of heterogeneous contestants and prizes.

We show that when contestants’ bidding costs are linear (all-pay auctions) or con-

cave, a bid cap always decreases revenue. With convex costs, in contrast, bid caps may

increase revenue. We also show that a flexible bid cap decreases revenue regardless of

the curvature of the bidding costs, even when these costs vary across contestants.

Our findings contrast with the results for two-player contests, obtained by Che and

Gale (1998, 2006), and support the results obtained by Gavious et al. (2002) and

Kaplan and Wettstein (2006). We explain intuitively which features of contests drive

these (in)consistencies.

1 Introduction

A bid cap is a design tool in contests, which limits contestants’ bids, effort, or investments.

In the context of political lobbying, Che and Gale (1998) showed, perhaps surprisingly, that

bid caps can increase aggregate equilibrium bids. Several other authors argued, in various

settings, that bid caps may or may not increase equilibrium aggregate bids. More recently,
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Olszewski and Siegel (2016b) observed that in large contests, such as the competition for

college admissions or NSF grants, imposing a bid cap (interpreted in their model as an effort

cap) may result in a Pareto-improving outcome.

While this literature has delivered several important and intriguing results, the overall

picture it provides regarding the effect of bid caps in contests is somewhat blurred. For

example, it is not obvious why bid caps that are not too small always weakly, and sometime

strictly, increase aggregate bids in Che and Gale’s (1998) all-pay auction with complete

information, but bid caps of any magnitude always weakly, and sometimes strictly, decrease

aggregate bids in Gavious et al.’s (2002) all-pay auctions with incomplete information. One

would like to know whether this difference is due to the different informational assumptions

and, more generally, which features of a contest make it possible to increase revenue or effort

by imposing a bid cap.

Similar questions arise in the context of flexible bid caps, that is, caps above which players

can bid at an additional (and possibly very high) cost. Kaplan and Wettstein (2006) showed

in a two-player model, in which the players have the same cost of bidding, that such caps

always decrease aggregate bids, but Che and Gale (2006) argued that this is not always true

when costs are heterogeneous. One would like to know whether this difference is due to the

different assumptions on costs and, more generally, to identify settings in which flexible bid

caps may increase revenue.

These questions are difficult or impossible to answer by analyzing all-pay contests directly,

since such an analysis is often intractable. We circumvent a direct analysis by employing

the mechanism-design approach to studying the equilibria of large contests, developed in Ol-

szewski and Siegel (2016a). This allows us to conduct the analysis in a tractable mechanism-

design framework, whose qualitative results apply to contests with sufficiently many players.

We show that in large all-pay auctions, in which players have linear costs, with complete

or incomplete information about their prize valuation, no bid cap can increase aggregate

equilibrium bids. This result generalizes to large contests in which players have concave

costs. In contrast, bid caps can increase revenue in large contests in which players have

convex costs. We provide some sufficient conditions under which this happens, and show

that bid caps can not only increase aggregate bids, but also increase the expected utility
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of each contestant. These results imply that incomplete information is not necessary for

bid caps to be an ineffective tool for increasing aggregate bids. We also show that in large

contests flexible bid caps are always an ineffective tool for increasing revenue, regardless of

the assumptions on contestants’ information and costs.

The departure of these results from those of Che and Gale (1998, 2006) arises because in

a small contest with asymmetric contestants different contestants face different competition

in equilibrium. More precisely, each contestant faces the equilibrium bidding strategies of

the other contestants, and these strategies differ across contestants. This difference allows

even a small decrease in a bid cap to have a substantial effect on the aggregate bids, and

allows a flexible cap to substantially affect the equilibrium allocation of the prize, thereby

affecting aggregate bids. But when there are many contestants, each faces almost the same

competition as the others, because they each face almost the same set of competitors. Con-

sequently, a small change in a bid cap leads to a small change in aggregate bids, and a

flexible cap cannot substantially change the equilibrium prize allocation, and consequently

the aggregate bids. This intuition also hints at why the results of Gavious et al. (2002) are

in line with ours. They assumed that players are ex-ante symmetric, and studied symmetric

equilibria. In such equilibria all players face the same competition, very similarly to what

happens in the equilibria of sufficiently large contests with possibly asymmetric players.

Related Literature

Che and Gale (1998) considered an all-pay auction with complete information and two

players with different valuations, and identified a range of bid caps that lead to higher

aggregate bids. Szech (2015) showed that changing the tie-breaking rule can further increase

revenue.

Kaplan and Wettstein (2006) argued that in many settings bid caps are not rigid, that

is, players can bid above the cap at an additional cost. They studied flexible caps, modelled

as an increase in the cost of each bid, and showed that in the setting of Che and Gale (1998)

a flexible cap always decreases the aggregate bids. Their observation that the effects of

rigid and flexible caps can be very different is puzzling, since the latter can approximate the

former. In response to Kaplan and Wettstein’s (2006) finding, Che and Gale (2006) showed
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that if different players face different costs of the same bid, then a flexible cap can increase

players’ aggregate costs.

Gavious et al. (2002) studied the symmetric equilibrium of contests with ex-ante sym-

metric players and incomplete information, and showed that imposing a (rigid) cap may

increase aggregate bids if: (a) sufficiently many players compete for a single prize and their

bidding cost function is convex; or (b) any number of players compete for a single prize and

the bidding cost function is sufficiently convex. They also showed that when the bidding

cost function is weakly concave, which includes all-pay auctions, a bid cap always decreases

revenue.

In a companion paper, Olszewski and Siegel (2016b) also study contests with a large

number of contestants and prizes, but focus on specific applications. Among other design

tools, they also consider bid caps, and describe bid caps that are Pareto-improving with

respect to all contestants.1 In the present paper, we provide an example in which a bid cap

is Pareto-improving with respect to all contestants and the collector of revenue.

The rest of the paper is organized as follows. Section 2 introduces the contest model.

Section 3 introduces the mechanism-design approach to studying large contests. Section 4

investigates the effect of rigid bid caps. Section 5 investigates the effect of flexible bid caps.

The appendix contains proofs not given in the main text.

2 Asymmetric contests

In the contests we consider,  players compete for  prizes of known values. The prizes are

denoted by 0 ≤ 1 ≤ 2 ≤ · · · ≤  ≤ 1. Prizes of value 0 are “no prize,” so it is without
loss of generality to have the same number of prizes as players. Player ’s privately-known

type  ∈ [0 1] is distributed according to a cdf 
 , and these distributions are commonly

known and independent across players.2 In the special case of complete information, each

cdf corresponds to a Dirac measure. Each player chooses a bid  (which can be interpreted

1In their model, bids are interpreted as effort, and contestants fully internalize the effects of their effort.

2All probability measures are defined on the -algebra of Borel sets.
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as effort or performance), the player with the highest bid obtains the highest prize, , the

player with the second-highest bid obtains the second-highest prize, −1, and so on. Ties

are resolved by a fair lottery. The utility of a player of type  from bidding  ≥ 0 and

obtaining prize  is

 ()− (), (1)

where  (0) = (0) = 0 and  and  are continuous and strictly increasing. Notice that (1)

can accommodate private information about ability by dividing each player’s utility by  to

obtain  ()−  () . Since we study some limits of sequences of contests when  diverges

to infinity, we refer to a contest with  players and  prizes as the “-th contest.”

A (rigid) bid cap is an exogenously specified bid  . If the bid cap  is introduced, no

player can bid more than  . The cap is binding if it is lower than some equilibrium bid of

the unconstrained contest. A flexible bid cap is a continuous and strictly increasing function

 with  (0) = 0 and  () ≥  (). If the flexible cap  is introduced, all bids are allowed,

but the cost of bidding increases from  to . The flexible cap is binding if  () strictly

exceeds  () for some equilibrium bid  of the unconstrained contest. Every contest, with or

without a cap, has at least one mixed-strategy Bayesian Nash equilibrium.3

3 Mechanism-design approach to studying contests

As pointed out in the introduction, the analysis of asymmetric contests of the kind described

in Section 2 is difficult or impossible. To overcome this problem, we will use the mechanism-

design approach to studying the equilibria of large contests, developed in Olszewski and

Siegel (2016a). We now describe this approach, which allows us to approximate the equilib-

rium outcomes of large contests by considering the mechanism that implements a particular

allocation of a continuum of prizes to a continuum of agent types.

3This follows from Corollary 5.2 in Reny (1999).
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3.1 Limit distributions

We first formalize a requirement that the contests in the sequence be “sufficiently similar”

as the number of players  grows large. Let  = (
P

=1 

 ) , so 

 () is the expected

percentile ranking (up to 1) of any player of type  in the -th contest given the distribution

of players’ types. Denote by  the empirical prize distribution, which assigns a mass of 1

to each prize  (recall that there is no uncertainty about the prizes). We require that 


converge in weak∗-topology to a continuous and strictly increasing distribution  , and 

converge to some (not necessarily continuous) distribution .4 Notice that the restriction

on  does not imply a similar restriction on distributions  
 of players’ types, so these

distributions may have gaps and atoms.5

The convergence of   and  to limit distributions  and  accommodates as a special,

extreme case sequences of complete-information contests with asymmetric players, in which

each player ’s type distribution 
 in the -th contest is a Dirac measure. A simple way

to see this is to first choose the desired limit distributions  and  and then set player ’s

deterministic type in the -th contest to be  = −1 () and prize  in the -th contest

to be  = −1 (), where

−1() = inf{ ∈ [0 1] :  () ≥ } for 0 ≤  ≤ 1.

Then, the -th contest is one of complete information,  converges to  , and  converges

to . Another special, extreme case is ex-ante symmetric players, with 
 =  for some

distributions  that converge to  .

3.2 Assortative allocation and transfers

As will be stated in the next subsection, the mechanism that approximates the equilibrium

outcomes of large contests implements the assortative allocation, which assigns to each type

 prize  () = −1 ( ()). That is, the location in the prize distribution of the prize

4Convergence in weak∗-topology can be defined as convergence of cdf s at points at which the limit cdf is

continuous (see Billingsley, 1995).

5The restriction on  precludes a limit mass of players that have an atom at a particular type, as is the

case when there is a non-vanishing fraction of identical players in a contest with complete information.

6



assigned to type  is the same as the location of type  in the type distribution. It is well

known (see, for example, Myerson (1981)) that the unique incentive-compatible mechanism

that implements the assortative allocation and gives type  = 0 a utility of 0 specifies for

every type  bid

 () = −1
µ

¡
 ()

¢− Z 

0


¡
 ()

¢


¶
. (2)

The aggregate bids in the mechanism that implements the assortative allocation areZ 1

0

 ()  (). (3)

3.3 Approximation results

Corollary 2 in Olszewski and Siegel (2016a), which we state as Theorem 1 below, shows that

the equilibria of large contests are approximated by the unique mechanism that implements

the assortative allocation.

Theorem 1 For any   0 there is an  such that for all  ≥  , in any equilibrium of

the -th contest without a bid cap each of a fraction of at least 1−  of the players  obtains

with probability at least 1 −  a prize that differs by at most  from  ( ), and bids with

probability at least 1−  within  of  ( ).

Theorem 1 implies that aggregate bids in large contests without a bid cap can be ap-

proximated by (3). More precisely, we define the average bid as the aggregate bids in an

equilibrium of the -th contest divided by . We then have the following corollary of Theorem

1, which appears as Corollary 1 in Olszewski and Siegel (2016c).

Corollary 1 For any   0 there is an  such that for all  ≥  , in any equilibrium of

the -th contest without a bid cap the average bid is within  of (3).

Similar approximation results hold when a bid cap is imposed. To formulate the results,

we say that a bid cap is binding in the limit if it is lower than the bid  () of some type

. For any such bid cap  , a minor modification of the proof from Olszewski and Siegel

(2016a) yields the following approximation result.
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Theorem 2 Given a bid cap  , which is binding in the limit, there exists a type ∗ with

(∗)   such that for any   0 there is an  such that for all  ≥  , in any equilibrium

of the -th contest with bid cap  ,

(A) each of a fraction of at least 1 −  of the players  with type   ∗ bids with

probability at least 1− within  of  ( ), and obtains with probability at least 1− a prize

that differs by at most  from  ( );

(B) each of a fraction of at least 1 −  of the players  with type   ∗ bids  with

probability at least 1 − , and obtains with probability at least 1 −  the prize () for a

randomly chosen   ∗ distributed according to  contingent on   ∗.

Type ∗ is indifferent between: (i) bidding (∗) and obtaining prize (∗); and (ii)

bidding and obtaining prize () for a randomly chosen   ∗ distributed according to

 contingent on   ∗. This indifference can be expressed as

∗
R 1
∗ (

()) ()

1−  (∗)
− () =

Z ∗

0


¡
 ()

¢
, (4)

as the left-hand side is the utility type ∗ obtains from (ii), and by (2) the right-hand side

is the utility type ∗ obtains from (i).

We denote by () the approximating limit bid of type  with a bid cap  , i.e.,

() = () for   ∗ and () =  for  ≥ ∗. We then obtain the equivalent of

Corollary 1.

Corollary 2 For any   0 there is an  such that for all  ≥  , in any equilibrium of

the -th contest with a bid cap  , which is binding in the limit, the average bid is within 

of (3) with  instead of .

4 The effect of a bid cap

4.1 Linear or concave bidding cost

We first prove the following result for a general bidding cost , which immediately implies

that a bid cap cannot increase the aggregate bids in a large all-pay auction, that is, a large

contest in which () = .
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Theorem 3 For any bid cap  , the aggregate cost of the limit bids with the cap is lower

than without the cap. That is,

1Z
0

( ()) () ≤
1Z
0

(()) ().

The inequality is strict if the cap is binding in the limit.

An almost immediate corollary of Theorem 3 and Corollary 2 is the following result.

Corollary 3 A bid cap weakly decreases the limit aggregate bids (3) when the bidding cost

 is weakly concave. The decrease is strict if the cap is binding in the limit. Thus, a binding

cap reduces aggregate bids in any equilibrium of a sufficiently large contest.

4.2 Comparison to small all-pay auctions

Corollary 3 contrasts with the finding of Che and Gale (1998) that bid caps may increase

aggregate bids in two-player all-pay auctions with complete information.6 To see why the

results are so different for small and large contests, we recall Che and Gale’s (1998) result

in the context of an example.

Example 1 Consider an all-pay auction with two players and one prize. Suppose player

1 values the prize at 2 and player 2 values the prize at 8. Without a bid cap, the unique

equilibrium of this all-pay auction has the following form: player 1 bids  = 0 with probability

34, and with the remaining probability randomizes uniformly over the interval (0 2). Player

2 randomizes uniformly over the interval (0 2). The resulting expected aggregate bids are 54.

In this setting, a bid cap   1 has no effect on the expected aggregate bids. If, for

example  = 32, then the equilibrium has the following form: player 1 bids  = 0 with

probability 34, randomizes uniformly on the interval (0 1) with probability 18, and bids

32 with the remaining probability of 18. Player 2 randomizes uniformly on the interval

(0 1) with probability 12, and bids 32 with the remaining probability of 12. The expected

6Note that our results from the previous section hold for large contests with both complete and incomplete

information and for all equilibria.
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aggregate bids in this equilibrium are still 54. In contrast, for all caps  between 0 and 1,

in equilibrium both players bid  =  with probability 1, so the aggregate bids are 2 . Thus,

the expected aggregate bids increase for  ∈ (58 1).

The intuition behind the example is as follows. When a binding bid cap  is imposed,

players shift to  the mass their strategies previously assigned to bids higher than  . This

makes bid  attractive compared to bids close to but lower than  , because by bidding 

a player now has a higher chance of winning. Thus, players also shift to  the mass their

strategies assigned to bids close to but lower than  . This in turn make bid  less attractive.

The shift of mass from bids lower than  continues until the excess attractiveness of bidding

 , due to the mass assigned to bids higher than  being shifted to  , is entirely eliminated.

If   1, the revenue increase from the shift in mass from the lower bids is equal to the

revenue loss from the shift in mass from the higher bids. But for   1, things are different.

Then, even if the entire mass assigned to bids between 0 and  is shifted to  , the mass

shifted to  of bids higher than  makes bidding  still relatively attractive to the player

with the lower valuation. As a result, this player’s atom at bid 0 is shifted in its entirety to

 , and this discrete shift generates a discontinuous increase in revenue.

Such a discontinuous shift is possible because the two players face different competition:

the low-valuation player faces the equilibrium bidding strategy of the high-valuation player,

while the high-valuation player faces the equilibrium bidding strategy of the low-valuation

player. When the number of players is large, the competition they face is similar, and coin-

cides in the limit, because they each face almost the same set of competitors. Consequently,

a small change in the value of a bid cap only has a small impact on the “average” equilibrium

strategy. Thus, bid caps cannot increase aggregate bids. Indeed, it follows from (4) and the

continuity of distribution  that ∗ is a continuous function of  . Given this intuition,

one can readily imagine that in a symmetric equilibrium, when players are ex-ante identical,

incomplete information may play a similar role to that of a large number of bidders, pre-

venting small changes in the value of a bid cap from having a large impact on equilibrium

strategies. Thus, the results of Gavious et al. (2002), which also hold for small contests, are

consistent with the ones we obtain for large contests, and differ from the results of Che and

Gale (1998).
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This intuition also indicates that the difference in the effect of bid caps between large

contests and small contests with ex-ante asymmetric players (or in an asymmetric equilib-

rium) is not due to the assumption that distribution  is continuous. While we cannot

investigate this in a rigorous manner, since the methods of Olszewski and Siegel (2016a)

do not generalize easily to distributions with atoms, we intuitively see no reason for our

results not to generalize to arbitrary distributions. To see why, suppose, for a moment, that

the approach from Olszewski and Siegel (2016a) can be applied to any distribution  , and

consider an  with an atom at the cutoff ∗. Then, for large  a fraction  of players with

type ∗ bids with high probability close to  (∗), and obtains with high probability a prize

close to that assigned to agents of type ∗ by the assortative allocation, and the remaining

fraction of 1−  bids  with high probability and obtains with high probability the prize

() for a randomly chosen  ≥ ∗ distributed according to  contingent on   ∗ or

 = ∗ and the agent being in the fraction 1− of the atom at ∗. The indifference of type

∗ between bidding  (∗) and bidding  yields a condition analogous to (4), and the rest

of the proof of Theorem 3 remains unaltered.

Thus, it seems that the impossibility of increasing aggregate bids with a bid cap is

a consequence of small changes in the value of a bid cap having only a small impact on

equilibrium strategies, which arises when different players face similar competition.

4.3 Convex bidding cost

As demonstrated by Gavious et al. (2002) in a single-prize setting, when the bidding cost

is convex, some bid caps increase aggregate bids. Before discussing conditions under which

this happens, we demonstrate this possibility and provide an intuition by an example. Our

example also demonstrates that some bid caps are Pareto-improving, a result analogous to

one obtained by Olszewski and Siegel (2016b) in a slightly different setting.

Example 2 Suppose the limit distribution  is uniform. In the limit, there is a mass 12 of

identical prizes. That is, the limit distribution  has an atom of size 12 at 0 and an atom

of size 12 at 1. Suppose first that the cost of bidding is () =  for all , and no bid cap

is imposed. Then, in the limit mechanism, each type   12 obtains a prize, and no type
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  12 obtains a prize. The former types bid 12, and the latter types bid 0. The revenue

(that is, the average bid) is 14.

For the cap of 14, we have that ∗, which is determined by equation (4), is equal to 13.

Types   13 bid 14, types   13 bid 0, and the average bid is (23)(14)  14.

Suppose now that () =  for   14 and () = 4 − 34 for   14. This function

is convex. Without a cap, each type   12 obtains a prize and no type   12 obtains a

prize. The former types bid 516, which costs them (516) = 12, and the latter types bid

0. A flexible cap  does not change the structure of this equilibrium. The only difference

is that each type   12 bids  such that () = 12, which clearly reduces aggregate

bids, as () ≤ (). In particular, this flexible cap can be () =  for   14 and

() = − (14)(− 1) for   14. For this family of flexible caps, the revenue decreases
as  increases.

When  diverges to infinity, our family of flexible caps converges the the (rigid) cap of

14. However, this “limit” cap increases revenue compared to the scenario without any cap,

as (23)(14)  (12)(516). Notice that not only is the revenue higher with the bid cap, but

each contestant is weakly better off (and some are strictly better off). The payoff of a type

 ≤ 13 is 0, regardless of whether the cap is imposed, as these types bid 0 and obtain no
prize. Types   13 are strictly better off as their payoff is (34) − (14)  0 with the

cap, and is max{0  − 12}  (34) − (14) without the cap. (Notice that the probability
of obtaining a prize in the scenario with the cap is (12)(23) = 34.)

The intuition behind the example is that without a cap, agents with high valuations

(  12) and agents with low valuations (  12) can be separated by a bid  such that

the former prefer obtaining a prize at bid  to obtaining no prize at bid 0, but the latter

have the opposite preference. This separation is possible for every continuous cost function,

whether or not it involves a flexible cap, because what matters for the separation is not the

bid but the cost incurred by agents. If the cost becomes higher, the bid that separates the

agents becomes lower, and in the limit coincides with the rigid cap. With the rigid cap,

however, agents can no longer be separated, because the cap (and any lower bid) is not a bid

 such that agents with higher valuations prefer obtaining a prize at bid  to obtaining no

prize at bid 0, but agents with lower valuations have the opposite preference. Thus, when

12



the cap becomes rigid a mass of lower-valuation agents who bid 0 with a flexible cap instead

bid the rigid cap. This increases the aggregate bids discretely, so if the separating bid  was

sufficiently close to the rigid cap ( = 4 is sufficiently high for this purpose in our example),

the discrete increase in the bids of the mass of lower-valuation agents overcomes the small

decrease in the bids of higher-valuation agents.

The intuition for obtaining a Pareto improvement can be explained as follows. Without

a cap, high-valuation contestants bid in a steep region of the cost function. Even a small

reduction of their bids enables them to save a lot in terms of costs. Thus, the gain coming

from the cap, which reduces their bids, is higher than the loss coming from the possibility

of obtaining a lower prize. In turn, low-valuation contestants bid in a flat region of the cost

function. Increases in their bids in this region do not raise their costs by much. Thus, the

loss coming from making higher bids in response to the cap is lower than the gain coming

from the possibility of obtaining a higher prize.

We now provide some sufficient conditions for a bid cap to increase the aggregate bids.

First, consider a specific (but important) distribution of prizes, which consists of a mass

  1 of identical prizes. That is,  has an atom of size 1−  at 0 and an atom of size  at

1. To simplify notation, we assume that (1) = 1. Then, given a bid cap  , (4) simplifies

to
∗

1−  (∗)
=  () . (5)

In this case, we can provide not only sufficient but also necessary conditions.

Theorem 4 If the distribution of prizes consists of a mass   1 of identical prizes, then

the limit aggregate bids with a bid cap  that is binding in the limit strictly exceed those

without it if and only if

(1−  (∗))  −1
¡
−1 (1− )

¢
. (6)

Proof. Without the cap, types   −1(1 − ) bid 0 and obtain no prize, and types

  −1(1− ) bid −1 (−1 (1− )) and obtain a prize. Thus, the aggregate bids without

the cap are −1 (−1 (1− )). For a cap   −1 (−1 (1− )), types lower than ∗ bid

13



0 and obtain no prize, and types higher than ∗ bid  and obtain a prize with probability

[1− (∗)]. Thus, the aggregate bids are higher with the cap than without it and only if

condition (6) is satisfied.

This seemingly simple result allows to determine the exact range of caps that increase

the aggregate bids for specific parameter values. For example, if  is uniform,  = 14, and

() = 2, then by (5) we have ∗ = 42(1 + 42). By plugging this into (6), we obtain a

quadratic inequality, which is satisfied for  ∈ ( 2√36 2
√
32).

Theorem 4 also allows to derive more specific sufficient conditions, which are easier to

interpret.

Proposition 1 For any convex cost  and any bid cap   0 that is binding in the limit,

if the mass of identical prizes   0 is small enough, then the limit aggregate bids with the

cap  strictly exceed those without the cap.

The next result allows for a general prize distribution  and generalizes the observation

made in Example 2.

Proposition 2 Suppose that a bid cap  is binding in the limit and the cost function is

convex and differentiable at the cap  . Fixing the value of () for    , if the derivative

of the cost function 0() at the bid cap  is sufficiently large, then the limit aggregate bids

with the cap  strictly exceed those without the cap.

Remark 1 Gavious et al. (2002) show that in a single-prize contest, if the bidding cost is

convex, then a binding cap increases aggregate bids if (a) the number of players is sufficiently

large, or (b) the cost function is sufficiently convex. Propositions 1 and 2 imply analogous

results in our limit setting with multiple prizes.

An immediate corollary of Theorem 2 and Corollary 1 is the following result.

Corollary 4 Under the conditions of Propositions 1 and 2, the bid cap  strictly increases

aggregate bids in any equilibrium of a sufficiently large contest.
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5 The effect of a flexible bid cap

In Example 2, introducing a flexible cap decreased aggregate bids. We now show that in

large contests this is true for any cost function and any flexible cap. For the result, let

() denote the limit bid of type  under a flexible bid cap . It follows immediately from

Theorem 1 that the limit equilibrium allocation under the cap  is the assortative allocation,

and the bids () are determined by equation (2), with  replaced by . This yields the

following result. We say that a flexible cap is binding in the limit if 
¡
()

¢
 

¡
()

¢
for some type .

Theorem 5 A flexible bid cap decreases the limit bid of each type . Therefore, it decreases

the limit aggregate bids. If the flexible cap is binding in the limit, the decrease is strict.

Proof. It follows from (2) that (()) = (()) for every  ∈ [0 1]. Since () ≥ ()

for all , it follows that () ≤ ().

An immediate corollary of Theorem 5 and Corollary 1 is the following result.

Corollary 5 A flexible bid cap that is binding in the limit strictly decreases aggregate bids

in any equilibrium of a sufficiently large contest.

The intuition for this result is analogous to that given by Kaplan and Wettstein (2006) in

the two-player model. It is the cost of a bid, not the bid itself, that matters for the player’s

payoff. Since there is a one-to-one correspondence between bids and their costs, one may

interpret a contest as a game in which players choose not bids but costs. When we replace

cost function  with cost function , the structure of equilibria (in both the finite and the

limit case) does not change. Players choose the same costs in both cases. And since cost 

corresponding to any bid  is higher than cost , the bids under  are higher than the bids

under .

As shown in Example 2, with a (rigid) bid cap we no longer have a one-to-one correspon-

dence between bids and their costs. This cap, as opposed to a flexible cap, imposes an upper

bound on costs, which makes high types choose the bid corresponding to this upper bound.

This creates an opportunity for lower types to pool with the high types by increasing their
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bids (their costs) by a relatively small amount, and thus gain a chance of obtaining one of

the prizes obtained by the high types in the unrestricted contest. The extra revenue created

by the higher bids of these lower types may offset the loss of revenue caused by the bound

imposed on the bids of the high types.

Until now, we studied the utility function  () − (), which implied that all bidders

have the same cost of bidding. With heterogeneous bidding costs, however, Che and Gale

(2006) demonstrated the possibility of increasing aggregate bids by imposing a flexible bid

cap. The intuition behind their result is as follows. In their two-player model, if a flexible bid

cap raises the cost of a lower-cost bidder by more than the cost of a higher-cost bidder (more

precisely, what Che and Gale call an “equalizing shift” of costs), the competition between

the two bidders becomes more equal, which provides incentives for more aggressive bidding.

This strategic effect may dominate the more direct effect that a higher cost discourages

higher bids.

But in large contests, flexible bid caps always decrease aggregate bids. That is, Theorem

5 and Corollary 5 hold even if the flexible caps vary across players. To see why, we note

that Theorems 1 and 2 as well as their corollaries apply to this more general environment,

because Olszewski and Siegel’s (2016a) approximation result applies to a more general utility

function (  ) that satisfies a single-crossing condition. This condition is satisfied, for

example, by (  ) =  ( ) − ( ), where  increases in  (for all   0) and , and

 increases in  and decreases in  (for all   0), with  ( 0) = ( 0) = 0 for all . For

simplicity (although the result holds for any prize distribution), suppose that the limit prize

distribution consists of a mass   1 of identical prizes. (So  has an atom of size 1−  at

0 and an atom of size  at 1).

Without a cap, in the limit mechanism the mass  of the highest types obtains prizes

and bids , where  is the bid that makes type  = −1 (1− ) indifferent between obtaining

a prize at that bid and obtaining no prize at bid 0. That is,


¡
−1 (1− )  1

¢
= (−1 (1− )  ).

With a flexible cap ( )  ( ), the allocation is the same, and the payment of any type

that obtains a prize is determined by the same equation with  replaced by . This implies
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that the bid of each type, and therefore the aggregate bids, is lower with the cap.

Intuitively, when the contest is sufficiently large a flexible bid cap has a negligible effect

on the allocation of prizes, in contrast to the small contests of Che and Gale (2006), in which

what they call an equalizing shift results in a higher probability of obtaining the prize by

the contestant with the lower valuation.

6 Appendix

Proof of Theorem 3. By definition of  , it suffices to show that

1Z
∗

() () ≤
1Z

∗

(()) (), (7)

where type ∗ is defined in Theorem 2. By rearranging (4) we obtain

(1−  (∗))() = ∗
Z 1

∗
(()) ()− (1−  (∗))

Z ∗

0


¡
 ()

¢
. (8)

Since

(1−  (∗))() =

1Z
∗

() (),

the equality (8) shows that (7) is equivalent to

∗
Z 1

∗
(()) ()− (1−  (∗))

Z ∗

0


¡
 ()

¢
 ≤

1Z
∗

(()) (). (9)

Since

(1−  (∗))
Z ∗

0


¡
 ()

¢
 =

1Z
∗

∙Z ∗

0


¡
 ()

¢


¸
 (),

to show (9) it suffices to show that

∗(())−
Z ∗

0


¡
 ()

¢
 ≤ (())

for every   ∗. By substituting (2), this inequality is equivalent to

∗(())−
Z ∗

0


¡
 ()

¢
 ≤ 

¡
 ()

¢− Z 

0


¡
 ()

¢
,
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which simplifies to Z 

∗

¡
 ()

¢
 ≤ (− ∗)

¡
 ()

¢
.

This inequality holds for every   ∗, since  is increasing, and is strict for an interval of

types   ∗ when the cap is binding,7 which completes the proof.

Proof of Corollary 3. It suffices to show that

1Z
∗

 () ≤
1Z

∗

() (),

with a strict inequality if the cap is binding in the limit.

Consider the random variable that takes value (()) when   ∗ and value ()

when  ≤ ∗. By Jensen’s inequality applied to this random variable,

−1

⎛⎝ 1Z
∗

(()) () +

∗Z
0

() ()

⎞⎠ ≤ 1Z
∗

−1((())) () +

∗Z
0

−1(()) ().

By Theorem 3,

−1

⎛⎝ 1Z
∗

() () +

∗Z
0

() ()

⎞⎠ ≤ −1

⎛⎝ 1Z
∗

(()) () +

∗Z
0

() ()

⎞⎠ ,
with a strict inequality if the cap is binding in the limit. Thus,

1Z
∗

 () = −1

⎛⎝ 1Z
∗

() () +

∗Z
0

() ()

⎞⎠− ∗Z
0

 ()

cannot exceed, and if the cap is binding in the limit is strictly less than,

1Z
∗

−1((())) () +

∗Z
0

−1(()) ()−
∗Z
0

 () =

1Z
∗

() ().

7If  () were the same for all  ∈ (∗ 1], then with no cap type ∗ would be indifferent between bidding
 (∗) and bidding  =  () for  ∈ (∗ 1]. So, with a binding cap   , types slightly below ∗ would

bid  , which would imply that type ∗ is not indifferent between bidding  (∗) and  .
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Proof of Proposition 1. By substituting ∗ () for 1− (∗) (from (5)), condition
(6) is equivalent to

∗




 ()



( )


, (10)

where  = −1 (−1 (1− )) is the bid of the types who obtain prizes in the limit mechanism

without cap, and  =  ( ) = −1 (1− ) is the type that is indifferent between bidding 

and obtaining a prize, and bidding 0 and obtaining no prize.

Since (5) implies that ∗ → 1 as  → 0, (10) holds for sufficiently small   0 if it holds

for  = 0 and ∗ = 1, that is, if and only if

( )




 ()


(11)

for  = −1 (1). The left-hand side is the average slope of  on [0 −1 (1)], and the right-hand

side is the average slope of  on [0 ]. Since   −1 (1) (no type bids more than −1 (1)

and  is binding in the limit) and  is convex, (11) holds.

Proof of Proposition 2. The cap decreases the bids of types higher than  in the

limit mechanism, where  is the type who provides effort in the limit mechanism without

a cap, and increases the bids of types between ∗ and  , where ∗ is the cutoff type that is

indifferent between bidding () and obtaining prize (), and bidding  and obtaining

the prize () for a randomly chosen   ∗. The aggregate bids are higher with the cap

than without it if and only ifZ 1

∗
( − ()) () =

Z 

∗
( − ()) () +

Z 1


( − ()) ()  0. (12)

If 0() → ∞, then (2) implies that  () →  for all  ∈ (  1]. Then, the second

component of the summation in (12) tends to 0, but the first component, which is positive,

stays unaltered. Thus, the cap decreases the aggregate bids of types higher than  by less

than it increases the aggregate bids of types between ∗ and  .
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