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Abstract

We study chip-strategy equilibria in two-player repeated games. Intuitively, in

these equilibria players exchange favors by taking individually suboptimal actions if

these actions create a “gain” for the opponent larger than the player’s “loss” from

taking it. In exchange, the player who provides a favor implicitly obtains from the

opponent a chip that entitles the player to receiving this kind of favor at some future

date. Players are initially endowed with a number of chips, and a player who runs

out of chips is no longer entitled to receive any favors until she provides a favor to

the opponent, in which case she receives one chip back.

We show that such simple chip strategies approximate efficient outcomes in a class

of repeated games with incomplete information, when discounting vanishes. This

class includes many important applications, studied in numerous previous papers,

such as the discrete-time favor exchange model of Möbius (2001), repeated auctions,

and the repeated Spulber’s duopoly in Athey and Bagwell (2001), among others.

1 Introduction

Everyday cooperation relies on simple principles, such as an exchange of favors. People

easily forgive others with whom they often interact for minor offenses or improper behavior.

Employees typically agree when fellow employees occasionally ask them for help, or to

replace them in performing some duty. Examples abound in various spheres of human

relations. This kind of behavior is most likely driven by the expectation of reciprocity
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when the roles happen to be reversed. However, long sequences of favors performed in one

direction, without any reciprocal behavior, are unlikely to be observed. Favor providers

would finally say that they have had enough.

The literature on repeated games or, more generally, dynamic games is very successful

in explaining cooperation. Yet this literature emphasizes equilibrium payoffs more than

equilibrium behavior. Cooperation is quite often (i) supported by trigger strategies, which

penalize any misbehavior by breaking cooperation, or (ii) attained in strategies constructed

by self-generation techniques, which are powerful for characterizing payoffs, but typically

not useful for characterizing behavior.

In this paper, we formally study a simple form of favor exchange, which is often called

chip strategies. Chip strategies were introduced in the context of a (two-player) favor-

exchange model by Möbius (2001). Intuitively, according to these strategies a player takes

an individually suboptimal action if that action creates a “gain” for the opponent larger

than the player’s “loss” from taking it. In exchange, the player implicitly obtains from the

opponent a chip that entitles the player to receive this kind of favor at some future date.

Players are initially endowed with a number of chips, and a player who runs out of chips

is no longer entitled to receive any favors, until she provides a favor to her opponent, in

which case the player receives one chip back.

We show that simple chip strategies, in which one favor is exchanged for one chip, are

capable of approximating efficient outcomes (for the discount factor tending to 1) in a

class of games which has a large array of applications. This class of games includes several

models studied extensively in the existing literature, such as the favor exchange model,

repeated auctions, or a repeated duopoly.1

Any attempt to explore behavior in repeated or dynamic interactions encounters nu-

merous difficulties. One of them is that “natural” patterns of behavior which resemble

what is observed in some real-life interactions are unlikely to be widely observed (for a

large range of games, monitoring or information structures). Instead, they are observed

1In addition, we generalize the existing results obtained in specific applications by allowing types to

evolve over time according to a Markov process. Markov types have previously been studied only in the

context of a repeated oligopoly.
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only in some specific settings.2

We also encounter these difficulties. In particular, our result requires strong assump-

tions: the stage game must be symmetric, it must be played by two players, and each

player’s private information must be captured by two possible types. We argue that these

are essential limitations on the possibility of approximating efficient outcomes in chip

strategies. We show that if a stage game is asymmetric, simple chip strategies typically

cannot approximate efficient outcomes. One needs to augment them with a public ran-

domization device, which allows players to exchange one favor for receiving some chips

only with some probability, or in other words, to introduce divisible chips. This is what

we call random chip strategies. We show that if players have more than two types, even

these random chip strategies may not approximate efficient outcomes.

In the case of more than two players, an additional difficulty arises if a favor is provided

by more than one player, and more than one player benefits from this favor. In this

case, it must be decided who should issue a chip (or what fraction of it) and who should

obtain it. This implies that if efficiency is to be attained, it must be attained in more

complicated strategies. We have no fully satisfying extension of chip strategies to more

general games. However, in a companion paper, Olszewski and Safronov (2015), we suggest

a more complicated version of chip strategies, constructed by imitating the d’Aspremont

and Gerard-Varet (1979) mechanism, which attain the efficient outcomes for a large class

of games with any number of types and players.

We view our main contribution as providing a positive model of playing some repeated

games with incomplete information, which may evolve over time according to a Markov

process. Our result shows that chip strategies approximate efficient cooperation in several

settings studied in the existing literature. We provide numerous applications, including (i)

to the favor-exchange model studied Möbius (2001) (more precisely, to a discrete version

of this model studied by Abdukadiroglu and Bagwell (2012, 2013)); (ii) to the repeated

Spulber’s (1995) duopoly studied by Athey and Bagwell (2001) and several other authors;

and to repeated auctions studied by Skrzypacz and Hopenhayn (2004) and others. We show

2Another issue is that different observers view different patterns of behavior to be more commonly

observed, in real-life interactions.
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that in these models the efficient outcome can be approximated in simple chip strategies,

when the discount factor converges to 1; moreover, the proof of these results are engagingly

simple, and potentially applicable to other settings, even ones not directly covered by our

general results.

The rest of the paper is organized as follows. In Section 2, we present two applications:

to a favor-exchange model and to repeated auctions. These applications are instructive

also from the technical perspective. In the former application, we explain the reasons for

attaining efficiency in chip-strategy equilibria in the simplest possible manner. The proof

for the latter application is in turn very close to the proof of our general result; the main

difference comes from the fact that we allow for Markov types in the general result, which

requires some arguments to be more involved. Section 3 contains the general result, and

Section 4 provides some additional applications, including to the repeated duopoly model

of Athey and Bagwell (2001). Sections 5-7 contain a discussion of chip strategies, and

a discussion of possible extensions of the result from Section 3. Technically demanding

proofs are relegated to appendices.

1.1 Related literature

To date, chip strategies have appeared in the existing literature only in the context of

specific applications (which we will discuss shortly). However, no systematic studies of

chip strategies have been carried out prior to this paper.

Möbius (2001) analyzed a model of voluntary favor exchange between two players.

In his model, favor opportunities arrive according to a Poisson process, and the benefit

of receiving a favor exceeds the cost of providing it. In the chip strategies studied by

Möbius (which are somewhat different and less efficient than those studied in our paper),

cooperation breaks down when a player issues a certain number of chips. Hauser and

Hopenhayn (2008) suggest two improvements to chip strategies that enhance the efficiency

of equilibria: exchanging favors and chips at different rates (i.e., not one to one), and

appreciation and depreciation of chips. Solving the model numerically, they demonstrate

that for a large set of parameter values, the efficiency gains are quite large. As already

mentioned earlier, Abdukadiroglu and Bagwell (2012, 2013) studied a discrete-time version
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of Möbius’ model. Their 2012 paper is closely related to our paper, because they analyze

chip strategies in the same form as we do here. They consider a fixed discount factor,

identify the optimal number of chips, and compare this optimal chip mechanism with a

more sophisticated favor-exchange relationship in which the size of a favor owed may decline

over time. For any given discount factor, the equilibria in chip strategies obviously cannot

be fully efficient, because incentive compatibility imposes a limit on the number of chips

that can be used. However, none of these papers shows (explicitly or implicitly) that any

kind of chip strategies attain efficient outcomes when the discount factor converges to 1.

With no restriction on strategies, the possibility of attaining efficient cooperation follows

from Fudenberg, Levine, and Maskin (1994).

Repeated Spulber’s duopolies (more generally, oligopolies) with i.i.d. types were studied

in Athey and Bagwell (2001, 2008), Athey, Bagwell, and Sanchirico (2004), Hörner and

Jamison (2007), and - with more general Markov types - by Escobar and Toikka (2010).

Even though the strategies in Athey and Bagwell (2008) resemble our one-chip strategy

profiles, and some elements of chip strategies appear in Hörner and Jamison (2007), it

remains the case that the primary focus of these papers is not on chip strategies per se.

Compared to the strategies used by these authors (even for i.i.d. types), chip strategies

are remarkably simple for showing that efficient outcomes can be approximated when the

discount factor converges to 1.

Skrzypacz and Hopenhayn (2004), Blume and Heidhues (2008), and Rachmilevich

(2013) study collusion in repeated auctions without communication, and show that players

can obtain a higher equilibrium total payoff than in (i) the repetition of stage-game Nash

equilibrium, or (ii) the bid rotation scheme in which players alternate between being the

winner and the loser. These strategy profiles differ from (and are less efficient than) chip

strategies, because the winners are determined exogenously. The strategies in Skrzypacz

and Hopenhayn, and Blume and Heidhues are defined only implicitly, and Rachmilevich

studies a version of one-chip equilibria in which the current loser decides who will be

the winner in the following period. Allowing for mediated communication, Aoyagi (2007)

shows that efficiency can be attained for a large class of repeated-auction settings. He
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obtains these results by modifying self-generation techniques.3 The strategies that attain

efficient payoffs resemble chip strategies in two-player auctions; however, players providing

favors are not compensated by obtaining chips but instead are compensated directly by an

increase in continuation payoffs, which makes the strategies less explicit.4

2 Applications, part I

2.1 Discrete model of favor exchange

In this section, we study a model of Abdulkadiroglu and Bagwell (2012), which in turn

is a discrete version of the model of favor exchange in Möbius (2001). In the stage game

of their model, either player 1 is given an income of $1 or player 2 is given an income of

$1, or neither player is given any income. The former two events occur with probability

p ∈ (0, 1/2) each, and the latter event occurs with probability 1 − 2p. Each player is

privately informed as to whether or not she receives income. Thus, if a player does not

receive income, then she does not observe either whether the opponent received any income.

If a player receives income, then the player may send the income to the other player. The

transferred income is worth γ > 1 to the receiver. So, making it value-enhancing.

This game is played repeatedly, states are i.i.d., and players have a common discount

factor δ. The payoffs are normalized by the factor of 1− δ. Players cannot store income,

that is, income must be either transferred or consumed in the period it is received. The

(ex ante) efficient (total) payoff, that is, the maximum of the sum of the players’ payoffs,

is

v = 2pγ.

That is, income should be transferred whenever received.

3He could not apply the results in Fudenberg, Levine, and Maskin (1994) directly, because, unlike other

cited papers, he allows for players’ payoffs to depend on other players’ signals.

4Similarly, the strategies used in auctions with more than two players, and the strategies studied in

Aoyagi (2003), share some features with the strategies used in Olszewski and Safronov (2015) to show that

efficient outcomes are attainable in a larger class of games with any number of players and players’ types.
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2.1.1 Description of efficient chip strategies

Consider the following strategies: at the beginning of each period, each player i holds

ki ∈ {0, ..., 2n} chips, where k1+k2 = 2n. If player i obtains an income of $1, and ki < 2n,

then player i gives the income to player j, and j gives i (implicitly) one chip in return. If

ki = 2n, i.e., when i already holds all the chips, then i consumes the $1 herself. No chip is

given in this case. At the beginning of period 1, each player has n chips.

We obtain the following result, proved in the next two sections:

Theorem 1 For every λ > 0, there is a δ < 1 such that for every δ > δ, there is a chip-

strategy equilibrium of the repeated game in which the players’ discount factor is δ, such

that the ex ante payoff of each player in this equilibrium exceeds v/2− λ.

2.1.2 Continuation payoffs

Assuming that both players play the prescribed chip strategies, denote the continuation

payoff of player 1 with k chips by Vk. By the symmetry of our model, the continuation

payoff of player 2 can be expressed analogously. These continuation payoffs are computed

before the players learn about their income in the current period. For k ∈ {1, ..., 2n− 1},

we have:

Vk = p {(1− δ)γ + δVk−1}+ pδVk+1 + (1− 2p)δVk. (1)

Indeed, the first component of the right-hand side corresponds to the payoff contingent on

player 2 receiving an income of $1 in the current period; the remaining two components

correspond to player 1 receiving an income of $1 and no player receiving any income,

respectively.

For k = 0 and 2n, we have:

V0 = pδV0 + pδV1 + (1− 2p)δV0, (2)

V2n = p{(1− δ)γ + δV2n−1}+ p{(1− δ) + δV2n}+ (1− 2p)δV2n. (3)

2.1.3 Payoff Efficiency and Incentive Constraints

We can now demonstrate the efficiency of the prescribed strategies:

7



Proposition 1 For any given n and λ > 0, there is an δ > 0 such that for every δ < δ,

we have:

Vk >
2n− 1

2n+ 1
pγ − λ

for all k = 0, ..., 2n.

Proof. The strategies induce a stochastic Markov chain over states k = 0, ..., 2n. By the

Ergodic Theorem (see, for example, Chapter 1, §12, Theorem 1 in Shiryaev, 1996) there

exists a probability distribution over states {πk : k = 0, ..., 2n} such that the probability of

being in state k after a sufficiently large number of periods is arbitrarily close to πk, inde-

pendent of the initial state.5 This probability distribution is an eigenvector corresponding

to eigenvalue 1 of the transition matrix



1− p p 0 . . . 0

p 1− 2p p . .

0 . . . . .

. . . . . . .

. . . . . 0

. . p 1− 2p p

0 . . . 0 p 1− p




,

in which the entry in row i and column j is equal to the probability of transiting from state

i to state j. Thus, it is easy to verify that the eigenvector corresponding to eigenvalue 1

must have coordinates equal to 1/(2n+ 1).

Since the expected payoff of each player in any state other than 0 and 2n is pγ, then

it follows that, when δ is sufficiently close to 1, the player’s continuation payoff is pγ with

probability arbitrarily close to (2n− 1)/(2n+1), which is the limit occupation probability

of states other than 0 and 2n.

It remains to show the incentive compatibility of the prescribed strategies. A player can

only deviate when she has income, by consuming the income herself rather than transferring

it to the opponent. The gain of this deviation, compared to playing as prescribed, is 1.

5One can easily verify that the assumptions of the Ergodic Theorem are satisfied; indeed, each state is

reached from any other state in 2n periods with positive probability.
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In turn, the gain from playing the prescribed strategy, compared to deviating, is that the

player will have one more chip in the next period. We will now prove that this gain is no

smaller than 1.

Proposition 2 For every n, there is a δ < 1 such that for every δ > δ, we have that

∆k := Vk − Vk−1 > 1 for all k = 1, ..., 2n.

Proof. From equations (1)-(3), by subtracting the equation for Vk−1 from the equation

for Vk, we obtain:

∆k = pδ∆k−1 + pδ∆k+1 + (1− 2p)δ∆k

for k = 2, ..., 2n− 1;

∆1 = p(1− δ)γ + pδ∆2 + (1− 2p)δ∆1;

and

∆2n = p(1− δ) + pδ∆2n−1 + (1− 2p)δ∆2n.

For δ = 1, this system of linear equations is satisfied when all ∆’s are equal to 0.

For δ < 1, the system is harder to solve, so we will evaluate ∆’s in approximation by

referring to the Implicit Function Theorem. By this theorem, one can differentiate the

equations for ∆’s with respect to δ, plug in δ = 1 and ∆k = 0 for all k, and obtain a

system of equations for the derivatives of ∆’s. This implies that if we replace each ∆k

by its derivative ∂∆k/∂δ, then our system of equations must be satisfied with δ = 1, and

with the free terms p(1 − δ)γ and p(1 − δ) replaced with their derivatives −pγ and −p,

respectively. In the matrix notation and after we divide by p, this new system of linear

equations can be expressed as




2 −1 0 . . . 0

−1 2 −1 . .

0 . . . . .

. . . . . . .

. . . . . 0

. .−1 2 −1

0 . . . 0 −1 2







∂∆2n/∂δ

.

.

.

∂∆1/∂δ




=




−1

0

.

.

.

0

−γ




.
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This system of linear equations can be easily solved by the Gauss-Jordan elimination

method; the unique solution is given by

∂∆k
∂δ

= −
(2n− k + 1)γ + k

2n+ 1
< −1

for all k. This means that ∆k > 1 for k = 1, ..., 2n and δ close to 1.

Two comments are essential. First, the matrix of this system of linear equations is

nonsingular, which is equivalent to the uniqueness of our solution. This validates the use

of the Implicit Function Theorem. Second, notice that we cannot use the Implicit Function

Theorem to approximate V ’s directly, because the matrix of the system of equations (1)-(3)

linearized at δ = 1 would have a determinant equal to zero.

2.2 Repeated auctions

In this section, we study the model of repeated auctions. In every period, two players

participate in a first-price auction;6 ties are resolved by a fifty-fifty lottery. At the end of

each period the identity of the winner, but not the bids, is revealed. Each player receives a

private signal about the object. These signals can take one of two values, H or L; they are

i.i.d. over time, but may be correlated across players. We restrict attention to symmetric

signal structures, that is, the probability distribution over type profiles is exhibited in the

following table:

Player 2’s signal




H q 2p

L 1− 2p− 2q q

L H


 ,

Player 1’s signal

where p, q ≥ 0 and p+ q < 1/2.

A player’s valuation of the object is a function of both signals: that of the player herself

and that of the player’s opponent. We restrict attention to symmetric valuations. That

6We assume this particular auction format only for concreteness. It is easy to check that all our

arguments apply to any auction in which (a) the player who makes a higher bid wins the object; (b) the

payment of a player who bids 0 is 0; and (c) the payment is continuous at 0, that is, the payment of a

player who bids close to 0 must also be close to 0.
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is, players have the same valuation function v. The valuations are strictly positive, and

weakly increasing in each signal, and each player’s valuation increases in the player’s own

signal by no less than in the signal of the player’s opponent. That is, v(H,H) ≥ v(H,L) ≥

v(L,H) ≥ v(L,L) > 0. Players have a common discount factor δ. We allow for sending

cheap-talk messages at the beginning of each period.

The efficient winner of the object is depicted in the following table:

Player 2’s signal




H player 2 any player

L any player player 1

L H


 .

Player 1’s signal

2.2.1 Description of efficient chip strategies

At the beginning of each period, each player i holds ki ∈ {0, ..., 2n} chips, where k1+ k2 =

2n. At the beginning of period 1, each player has n chips. If 0 < k1 < 2n, players report

their signals truthfully in the cheap-talk communication. If both players report the same

signal, they determine by a fifty-fifty lottery who will be the winner in the current period.7

At the bidding stage: (i) a player bids ρ if her signal is H and the opponent’s signal is L;

(b) she also bids ρ when players have the same signals, and the player was determined to

be the winner in the lottery; (c) if her signal is L and the opponent’s signal is H, the player

bids 0; and (d) she also bids 0 when players have the same signals, and the opponent was

determined to be the winner of the lottery. These actions generate the desired efficient

outcome, and before players submit their bids, they know who is supposed to be the winner

in the current period. A player with no chips bids 0, and a player with all 2n chips bids

ρ, regardless of signals. If 0 < k1, k2 < 2n, the winner gives the loser a chip; and when

ki = 2n and kj = 0, player i gives player j a chip.

If a player who was not supposed to win in the current period happens to win (which

cannot ever happen if players play the prescribed strategies), players switch to playing a

symmetric stage-game Bayesian Nash equilibrium from the following period. It is a stan-

dard exercise to show that such an equilibrium exists, and the bids in such an equilibrium

7As we argue later, this lottery can be performed by means of cheap-talk messages.
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are never lower than min{E(v(· | L), E(v(· | H)} > 0, where Ev(· | t) is the expected

value of the object for a player, contingent on t being the player’s signal. Therefore, in the

stage-game equilibrium, each player’s payoff is strictly lower than one half of the efficient

payoff. Thus, in states other than 0 and 2n players obtain a higher expected payoff by

playing the strategies prescribed than by playing the stage-game equilibrium. The exact

form of the stage-game equilibrium will be inessential for our purposes.

We obtain the following result, proved in the next two sections:

Theorem 2 For every λ > 0, there is a δ < 1 such that for every δ > δ, there is a chip-

strategy equilibrium of the repeated auction in which the players’ discount factor is δ such

that the ex ante expected total payoff in this equilibrium cannot be lower than the efficient

total payoff by more than λ.

Note that our result generalizes a result in Aoyagi (2007; see the discussion after Corol-

lary 8). In the symmetric two-player, two-signal case Aoyagi proves that the efficient

outcome can be approximated only under somewhat stronger assumptions (see his As-

sumption 1). More importantly, Aoyagi is not concerned with the form of strategies that

approximate efficient payoffs. We note, however, that Aoyagi also obtains results for other

IR and feasible payoff vectors, or other Pareto-efficient payoff vectors, as well as results for

more than two players and more than two signals.

2.2.2 Continuation payoffs

Assuming that both players play the prescribed strategies, denote by Vk the continuation

payoff of player 1 who currently has k chips. We will focus on player 1; the analysis of

player 2’s continuation payoffs is analogous by symmetry. These continuation payoffs are

computed before the players learn about their current signals. For k ∈ {1, ..., 2n − 1}, we

have:

Vk = (1− δ)C + δVk−1/2 + δVk+1/2,

with the per-period efficient payoff equal to

C = pv(H,H) + qv(H,L) + (1/2− p− q)v(L,L).
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For k = 0 and 2n, we have:

V0 = δV1,

and

V2n = (1− δ)D + δV2n−1,

where

D = 2pv(H,H) + qv(H,L) + (1− 2p− 2q)v(L,L) + qv(L,H).

2.2.3 Payoff Efficiency and Incentive Constraints

We can now demonstrate the efficiency and incentive compatibility of the prescribed strate-

gies:

Proposition 3 For any given n and λ > 0, there is a δ > 0 such that for every δ < δ, we

have that Vk is no lower than a (2n− 1)/4n share of the efficient total payoff 2C by more

than λ for all k = 0, ..., 2n.

Proof. As in the previous application, the proposition follows from the Ergodic Theorem.

Indeed, the ergodic probabilities πk, k = 0, ..., 2n, must satisfy the following system of

linear equations:




1 −1/2 0 . . . 0

−1 1 −1/2 . .

0 . . . . .

. . . . . . .

. . . . . 0

. .−1/2 1 −1

0 . . . 0 −1/2 1







π2n

.

.

.

π0




=




0

.

.

.

0




.

This yields π0 = π2n = 1/4n and π1 = ... = π2n−1 = 1/2n. So, players play inefficient

actions only in a probability close to 1/2n.

Proposition 4 For every n, there is a δ < 1 such that for every δ > δ, the prescribed

chip-strategy profile is an equilibrium of the repeated game.
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Proof. We will begin by showing that players have incentives to report their types truth-

fully. Consider first what they gain or lose in the current period by misreporting. Player

1 loses

(1− δ)

�
p

2p+ q
v(H,H) +

q/2

2p+ q
v(H,L)

�

by reporting L instead of H, and gains

(1− δ)

�
q/2

1− 2p− q
v(L,H) +

1/2− p− q

1− 2p− q
v(L,L)

�

by reporting H instead of L. Indeed, consider the first formula. When the player’s signal

is H, she assigns probability 2p/(2p+ q) to her opponent having signal H; in this case the

player loses v(H,H) with probability 1/2 by reporting L versus H. Similarly, she assigns

probability q/(2p+q) to her opponent having signal L; in this case the player loses v(H,L)

with probability 1/2 by reporting L versus H.

In turn, player 1 increases and decreases, respectively, her chance of having k+1 chips

instead of having k − 1 chips by

p+ q/2

2p+ q
=
1

2
and

1/2− p− q/2

1− 2p− q
=
1

2
.

Thus, we need to show that

(1− δ)

�
p

2p+ q
v(H,H) +

q/2

2p+ q
v(H,L)

�
> δ

1

2
(Vk+1 − Vk−1), (4)

and

(1− δ)

�
q/2

1− 2p− q
v(L,H) +

1/2− p− q

1− 2p− q
v(L,L)

�
< δ

1

2
(Vk+1 − Vk−1), (5)

for k = 1, ..., 2n− 1.

Let ∆k = Vk − Vk−1 for k = 1, ..., 2n. Then for k = 2, ..., 2n− 1, we have

∆k = δ∆k−1/2 + δ∆k+1/2.

At δ = 1, we have ∆k = 0 and

∂∆k
∂δ

=
1

2

∂∆k−1
∂δ

+
1

2

∂∆k+1
∂δ

.

For k = 1 and 2n, we have

∆2n = (1− δ)[D − C] + δ∆2n−1/2− δ∆2n/2
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and
∂∆2n
∂δ

= −
2[D − C]

3
+
1

3

∂∆2n−1
∂δ

;

∆1 = (1− δ)C + δ∆2/2− δ∆1/2

and
∂∆1
∂δ

= −
2C

3
+
1

3

∂∆2

∂δ
.

This implies that ∂∆k/∂δ is a weighted average of C and D − C for k = 1, ..., 2n. By

the Implicit Function Theorem, this is also true, in approximation, for the expressions on

the RHS of (4) and (5) multiplied by 2. Recalling the values of C,D, by (4) and (5), it

suffices to show that

q

1− 2p− q
v(L,H) +

1− 2p− 2q

1− 2p− q
v(L,L) <

< 2pv(H,H)+2qv(H,L)+(1−2p−2q)v(L,L), 2pv(H,H)+2qv(L,H)+(1−2p−2q)v(L,L) <

<
2p

2p+ q
v(H,H) +

q

2p+ q
v(H,L).

To show this, notice that each of the four expressions is a weighted average of v(H,H),

v(H,L), v(L,H), and v(L,L), where v(H,H) > v(H,L) > v(L,H) > v(L,L). Notice now

that the weights of the first expression are first-order stochastically dominated by both the

weights of the second expression (the first in the second display) and the weights of the

third expression (the second in the second display). In turn, both the weights of the second

expression and the weights of the third expression are first-order stochastically dominated

by the weights of the fourth expression.

Thus, players have incentives to report their types truthfully. Players have no incentive

to deviate at the bidding stage either, because if such a deviation changed the auction

outcome, it would be detected; a player who was supposed to be the loser would be the

winner (or the other way around).8 This would mean switching to a stage-game Bayesian

Nash equilibrium, in which the payoff of each player is strictly lower than one half of the

efficient payoff. This is a worse outcome compared to playing chip strategies where the

continuation payoff Vk converges to one half of the efficient payoff for all k = 0, ..., 2n given

that the discount factor converges to 1 and n is taken sufficiently large.

8Here we disregard as profitable any deviations to bids that are more than 0 but less than ρ.
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3 Result

We will now introduce the general setting. Let G be a two-player game. Denote by Ai the

set of actions, and by Ti the set of types of player i = 1, 2; denote by ui : A1×A2×T1×T2 →

R the payoff function of player i. In this section, we consider only symmetric games,

i.e., we assume that A1 = A2, T1 = T2, and u1(a1, a2, t1, t2) = u2(a2, a1, t2, t1). Players

are expected-payoff maximizers and discount future payoffs by a common discount factor

δ < 1. The payoffs are normalized by the factor of 1−δ. We allow players to communicate,

i.e., to send cheap-talk messages at the beginning of each period.9

We analyze only games in which each player’s type set has exactly two elements, i.e.,

|Ti| = 2 for i = 1, 2. We denote these two types by H and L. We assume that types evolve

according to a Markov process, i.e., the type of a player in the following period is equal

to the current type with probability p ∈ [1/2, 1), and is equal to the other type with the

remaining probability. In period 0, the probability distribution over the types is fifty-fifty.

Types are independent across players.

The efficient action profile (i.e., the action profile maximizing the sum of payoffs) is

specified to be symmetric for symmetric type profiles, i.e., if (aLH , aHL) is the specified

efficient action profile for type profile (L,H), then (aHL, aLH) is the specified action profile

for type profile (H,L). Finally, we assume that for type profiles (H,H) and (L,L), the

same actions are specified for both players in the efficient action profile. These actions

are denoted by aHH and aLL, respectively.10 We denote by v the (ex ante expected) total

9In some games, including the applications to favor exchange or repeated oligopoly, communication is

not necessary. However, in the general case players would not be able to coordinate on efficient actions

without learning about the opponents’ types.

10This assumption is without any loss of generality. If the efficient action profile is asymmetric - take

(a1, a2) as an example - then (a2, a1) is also efficient by symmetry, and it can be replaced with a fifty-fifty

lottery over over (a1, a2) and (a2, a1). Such a lottery does not even require the access to any public random-

ization device. Instead, players can generate the required public randomization device in communication

by randomizing simultaneously over two extraneous messages, with the interpretation that (a1, a2) is going

to be played if the messages “coincide,” and (a2, a1) is going to be played if the messages are different.
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efficient payoff, that is,

v =
u1(aLL, aLL, L, L) + u1(aLH , aHL, L,H) + u1(aHL, aLH ,H, L) + u1(aHH , aHH , H, L)

2
.

The players would each achieve the payoff of v/2 if they both would report their types

truthfully and then take efficient actions. We will assume, however, that each player obtains

a higher current payoff, if she reports one of the types - let us say L - no matter what the

player’s actual type is. More precisely, we assume that for any player 1’s current type t1

and player 2’s type t−12 in the previous period,

E[u1(aLt2 , at2L, t1, t2) | t
−1
2 ]−E[u1(aHt2 , at2H , t1, t2) | t

−1
2 ] > 0 (6)

The inequality guarantees that player 1 prefers reporting L to reporting H. This assump-

tion makes the setting appropriate for using chip strategies. Indeed, each player would

always prefer to play as if she was of type L. However, this is not what the other player

wants. Therefore, every time the player reports her more-preferred type L, but the op-

ponent reports the other type, the opponent provides the player a favor. In addition, we

assume that for t−12 = L,H the value of the difference in (6) for t1 = L exceeds that for

t1 = H, which makes favors desired from the efficiency perspective.

Finally, to specify the play when one of the players runs out of chips, we assume that

there exist action profiles (bL1 , b
L
2 ) and (bH1 , b

H
2 ), such that player 1 prefers action profile

(bt11 , b
t1
2 ) to be played when her type is t1, and which “reward” player 1 at the expense of

player 2. To be more precise, we will now provide definitions for the four quantities B,

A, B′, and A′, which are equal to the payoff differences between taking the efficient and

“reward” actions. These quantities will determine players’ incentives to report truthfully.

We begin with quantity B, defined as follows:

B = p2[u1(b
H
1 , b

H
2 , H, L)− u1(aHL, aLH , H, L)]

+p(1− p)[u1(b
H
1 , b

H
2 ,H,H)− u1(aHH , aHH , H,H)]

+(1− p)p[u1(b
L
1 , b

L
2 , L, L)− u1(aLL, aLL, L, L)]

+(1− p)2[u1(b
L
1 , b

L
2 , L,H)− u1(aLH , aHL, L,H)];

this quantity is the difference in player 1’s expected flow payoff between playing these

“reward” action profiles and playing the efficient action profiles, contingent on the type
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profile being (H,L) in the previous period. We define the second quantity A as follows:

A = p2[u1(aLH , aHL, L,H)− u1(b
H
2 , b

H
1 , L,H)]

+p(1− p)[u1(aHH , aHH , H,H)− u1(b
H
2 , b

H
1 , H,H)]

+(1− p)p[u1(aLL, aLL, L, L)− u1(b
L
2 , b

L
1 , L, L)]

+(1− p)2[u1(aHL, aLH , H, L)− u1(b
L
2 , b

L
1 , H,L)];

this quantity is the difference in player 1’s expected flow payoff between playing the efficient

action profiles and playing (bL2 , b
L
1 ) or (b

H
2 , b

H
1 ), as chosen by player 2, contingent on the type

profile being (L,H) in the previous period. Note that A > B, since the total payoff when

playing “reward” actions is lower that the total efficient payoff. Finally, the quantities B′,

and A′ are defined as:

B′ = p(1− p)[u1(b
L
1 , b

L
2 , L,H)− u1(aLH , aHL, L,H)]

+p2[u1(b
L
1 , b

L
2 , L, L)− u1(aLL, aLL, L, L)]

+(1− p)2[u1(b
H
1 , b

H
2 , H,H)− u1(aHH , aHH , H,H)]

+p(1− p)[u1(b
H
1 , b

H
2 ,H, L)− u1(aHL, aLH ,H, L)]

- this is the difference in player 1’s expected payoff between playing the efficient action

profiles and playing (bL1 , b
L
2 ) or (bH1 , b

H
2 ), contingent on the type profile being (L,L) in the

previous period - and

A′ = p(1− p)[u1(aLH , aHL, L,H)− u1(b
H
2 , b

H
1 , L,H)]

+(1− p)2[u1(aLL, aLL, L, L)− u1(b
L
2 , b

L
1 , L, L)]

+p2[u1(aHH , aHH , H,H)− u1(b
H
2 , b

H
1 , H,H)]

+p(1− p)[u1(aHL, aLH , H,L)− u1(b
L
2 , b

L
1 , H, L)]

- this is the difference in player 1’s expected payoff between playing the efficient action

profiles and playing (bL2 , b
L
1 ) or (bH2 , b

H
1 ), as chosen by player 2, contingent on the type

profile being (H,H) in the previous period.

We now make two assumptions:

Assumption I: Expressions (6) for t1 = L and t−12 = L,H are greater than A/2p, and

expressions (6) for t1 = H and t−12 = L,H are smaller than B/2p.
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Assumption II: Expression (6) for t1 = L and t−12 = L is greater than B′, and

expression (6) for t1 = H and t−12 = H is smaller than A′.

Assumptions I and II require some explanation. Although they look complicated, they

simply mean that a player is willing to receive a favor and give away a chip only when it

is efficient to do so. It is easier to first understand the assumptions, and the necessity of

making them, in the case when types evolve over time in the i.i.d. manner, in which case

the factor of 2p = 1.

Chip strategies must discipline players to report their types truthfully. These strategies

do so by letting player 1 play (bL1 , b
L
2 ) and (bH1 , b

H
2 ), when player 2 runs out of chips, and

letting player 2 play the symmetric action profiles when player 1 runs out of chips. In

these limit cases, players gain B (or B′) or lose A (or A′), compared to the case in which

the number of chips is strictly between the limits. Thus, these gain and loss must be large

enough to deter players from reporting type L when the actual type is H, but cannot be

too large, because that would give them incentives for reporting type H when the actual

type is L. Assumptions I and II ensure the right incentives in the i.i.d. case.

In the Markov case, a factor of 2p appears in Assumption I because the play returns to

a limit state with either 0 chips or 2n chips with some persistence, after the last chip has

been exchanged. This is compared to a one-period gain or loss in terms of flow payoffs.

This factor does not appear in Assumption II, because it only applies to: (i) the state in

which player 1 has 2n chips and the type profile in the previous period was (L,L), and

(ii) the state in which player 1 has no chip and the type profile in the previous period was

(H,H). In turn Assumption I applies to the state with 2n chips when the type profile in

the previous period was (H,L), and to the state with no chip when the type profile in the

previous period was (L,H). On the equilibrium path, the number of chips changes when

type profiles are (H,L) and (L,H), and does not change with type profiles (L,L) and

(H,H). There is thus some persistence in the former case, but there is no persistence in

the latter case. In addition, Assumption II incentivizes player 1 for reporting L truthfully

only in a state with 2n− 1 chips, and it incentivizes player 1 for reporting H truthfully in

a state with 1 chip. This is the reason that Assumption II has only one-way inequalities.

Finally, we assume that
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Assumption III: There exists a “bad” dynamic-game equilibrium, that is, an equilib-

rium in which the payoff of a player is strictly lower than v/2.

The simple chip strategies are defined as follows:

• There are 2n chips, which are distributed between the two players.

• If player 1 has k chips, and k �= 0 or 2n, then the players take the efficient action

profile: (aLH , aHL), (aHL, aLH), (aHH , aHH) or (aLL, aLL). The reported type profile

determines which of the four action profiles will be taken.

• If either (aHH , aHH) or (aLL, aLL) is played, then the distribution of chips remains

unaltered. If either (aLH , aHL) or (aHL, aLH) is played, then player 1 or player 2,

respectively, gives a chip to the opponent.

• In the limit state k = 2n, the action profile (bL1 , b
L
2 ) or (bH1 , b

H
2 ) is played, depending

on the report of player 1, and player 1 gives player 2 a chip. In the limit state k = 0,

the action profile (bL2 , b
L
1 ) or (bH2 , b

H
1 ) is played, depending on the report of player 2,

and player 2 gives player 1 a chip.

• Finally, the bad equilibrium is played off the equilibrium path.

We obtain the following result:

Theorem 3 For every λ > 0, there is a δ < 1 such that for every δ > δ, there is an

equilibrium in simple chip strategies in which players’ discount factor is δ, such that the ex

ante payoff of each player in this equilibrium exceeds v/2− λ.

Proof. The proof can be found in Appendix A.

4 Applications, part II

Our theorem has numerous applications. We will now discuss several of them.
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4.1 Spulber’s duopoly

Consider a repeated version of Spulber’s (1995) duopoly model, in which two firms meet

in periods t = 1, 2... Each firm’s cost of producing one unit of a good takes the value c = c

or c, and follows a first-order Markov process. If the cost in some period is c, then in

the following period it will be c with probability p ∈ [1/2, 1), and c with the remaining

probability. Similarly, if the cost in some period is c, then in the following period it will be

c with probability p, and c with the remaining probability. In any single period, the costs

of the two firms are independent random variables.

In every period of this dynamic game, firms select prices simultaneously. A single

consumer is willing to pay up to r > c > c dollars for one unit of the good, and buys

from the firm that offers a lower price; if the two prices are equal, she buys from each firm

with a fifty-fifty chance.

Firms are expected-profit maximizers and discount future payoffs by a common discount

factor δ < 1. In period 0, the cost of each firm takes the value c or c with a fifty-fifty chance.

Then, the efficient, or most collusive, total payoff of the two firms is

v = r −
3

4
c−

1

4
c.

Our main result implies that:

Theorem 4 For every λ > 0, there is a δ < 1 such that for every δ > δ, there is a simple

chip-strategy equilibrium of the dynamic game in which the firms’ discount factor is δ such

that the ex ante payoff of each firm in this equilibrium exceeds v/2− λ.

In short, the idea behind our chip strategies can be described as follows. On the

equilibrium path, if in some period, one firm charges a lower price than the other, then it

serves the consumer, but gives an implicit chip to the other firm. And if one of the firms

has no more chips, it lets the other firm serve the consumer for one period, and receives one

chip for this favor. Off the equilibrium path, firms play a bad dynamic-game equilibrium.

In terms of our general result, this means that the firms charge prices aLH = aLL = r − ρ,

aHL = aHH = r, where ρ is an infinitesimal number, and (bL1 , b
L
2 ) = (b

H
1 , b

H
2 ) = (r − ρ, r).

Assumptions I and II reduce to just saying that (r−c)/2 > (r−c)/2 > 0. Indeed, given the
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last period’s type profile being (H,L), the difference in player 1’s expected payoff between

playing (bL1 , b
L
2 ) and (bH1 , b

H
2 ) and playing the efficient action profiles is

B = p2[r − c] + (1− p)p

	
r − c

2



+ p(1− p)

	
r − c

2



∈

�
2p
r − c

2
, 2p

r − c

2

�
,

where ρ is taken to be 0. The difference in player 2’s expected payoff between playing the

efficient action profiles and playing (bL1 , b
L
2 ) and (bH1 , b

H
2 ) is

A = p2[r − c] + p(1− p)

	
r − c

2



+ p(1− p)

	
r − c

2



∈

�
2p
r − c

2
, 2p

r − c

2

�
.

Similarly,

B′= p2
	
r − c

2



+ (1− p)2

	
r − c

2



+ p(1− p)[r − c]

= p2
	
r − c

2



+ (1− p2)

	
r − c

2



∈

�
r − c

2
,
r − c

2

�

and

A′= p(1− p)[r − c] + (1− p)2
	
r − c

2



+ p2

	
r − c

2




=(1− p2)

	
r − c

2



+ p2

	
r − c

2



∈

�
r − c

2
,
r − c

2

�
.

Off equilibrium, i.e., when a firm charges a price other than r or r − ρ, or does not

charge the prescribed price in states k = 0 or 2n, the firms switch to playing a “bad”

equilibrium, in which both firms obtain relatively low payoffs. The bad equilibrium used

in this particular game can be, for example, the worst carrot-and-stick equilibrium from

Athey and Bagwell (2008).

In Athey and Bagwell’s carrot-and-stick equilibria, there are two states. In the war

state, all firms choose a price γ lower than r; and in the reward state, all firms charge price

r. Firms begin in the war state. In the war state, if both firms choose price γ < r, the

firms switch to the reward state with a probability µ, and return to the war state with the

remaining probability. In the reward state, if both firms choose price r, the firms remain

in the reward state with probability 1. In each period, if any firm charges a price other

than the prescribed price, the firms switch to the war state with probability 1.

The off-equilibrium payoff of each firm, when the discount factor converges to 1, is

bounded by r/2 − c/2 − c/2, regardless of the current cost profile, which is less than
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the efficient payoff.11 Notice that in this application, chip strategies require no explicit

communication, because types are revealed through actions.

4.2 Taking turns

Suppose two individuals have to perform an unpleasant duty, such as cleaning their shared

apartment. This task must be performed in every single period. The cost of performing

it is ci = c or c, i = 1, 2, where c < c ∈ (1, 2). The single player’s payoff from having the

task performed is 0, and the payoff is equal to −1 otherwise. The costs are independent

across individuals and Markov over time. It is efficient if the task is always performed by

an individual with lower cost.

This model has been studied by Leo (2015) who assumed that the costs are i.i.d. over

time, but allowed them to have more than two values - for example, to be continuously dis-

tributed on (1, 2). He showed numerically that the total payoff achieved by the simple chip

mechanism (with a sufficiently large number of chips, and for the parameter values assumed

in the numeric exercise) converges to an appropriately defined second-best outcome.

The approximate efficiency and incentive compatibility of the simple chip strategies in

Leo’s (2015) model with two possible cost values follow from our result. The efficient actions

are: aLH is to perform or volunteer, aHL is to do nothing, aHL and aLH are the symmetric

actions, and (aLL, aLL) = (aHH , aHH) is the action profile in which each individual performs

the duty with probability 1/2.12 Finally, the action profile (bL1 , b
L
2 ) = (bH1 , b

H
2 ) requires

individual 2 to perform the task no matter what the cost profile, while the action profile

(bL2 , b
L
1 ) = (b

H
2 , b

H
1 ) requires individual 1 to perform the task no matter what the cost profile.

The bad equilibrium is not cleaning the apartment.

In a similar model, players have in each period some good, let us say an apple, to be

consumed by one of them. The private type (high or low) of a player i = 1, 2 is the value

of consuming the apple. That is, if player i consumes the apple, her utility in that period

is equal to her type. In each period each player announces her type, and the player with

11The bound follows from the fact that strategies are independent of the firms’ costs.

12This action profile is feasible with a public randomization device, but does not require access to any

public randomization device, since players can generate the fifty-fifty lottery in communication.

23



the higher type consumes the apple; if both players announce the same type, the apple is

allocated by the fifty-fifty lottery. Players also have the option of not allowing anybody to

consume the apple. Again, simple chip equilibria approximate the efficient outcome.

4.3 Other applications

4.3.1 Repeated auctions

In our result, we assumed that types are independent across players, and evolve according

to a Markov process. Alternatively, our result could be extended to the setting with

interdependent types, with type profile being symmetric across players and i.i.d. over

time. The proof parallels very closely the proof for the repeated auctions.

We conjecture, but have not shown formally, that our theorem generalizes to symmetric

probability distribution over types, which are not necessarily independent across players,

and evolve according to a Markov process.

4.3.2 Other versions of favor exchange

In Section 6, we will continue the discussion of the favor exchange model from Section 2.

We consider here a distinct version of the model. In every period, both players obtain a

dollar, which can be consumed or transferred. The transfer creates γ > 1 value for the

opponent when her type is L, but only the value of µ < 1 when the opponent’s type is H.

The distribution over type profiles is the same as in Section 2 with L corresponding to the

opponent receiving $1. If both players report type L, then players know that one of them

is lying. However, this does not matter for incentive compatibility. The player who has no

chips is prescribed to transfer her income to the opponent even if this transfer is inefficient,

while the opponent is prescribed to consume her income herself. Then B = (1 − p) + pµ

and A = (1−p)γ+p, and since these values fall between µ and γ,13 our result from Section

3 implies that the simple chip strategies approximate the efficient outcome.

13By reporting H, type L loses γ because she is not provided a favor, and by reporting L, type H gains

µ because she is provided a favor although she should not be.
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4.3.3 Dynamic cheap talk

Suppose a sender recommends a receiver one of two actions, say, to invest either in a risky

or in a safe asset. The sender is equally likely to obtain the signal that the receiver should

invest in the risky assets as well as the signal that the receiver should invest in the safe

asset. The sender always prefers that the receiver invests in the risky asset, though she

gets a higher payoff conditionally on the signal that the receiver should invest in the risky

asset. The efficiency requires the “right” action of the receiver, and the receiver will take

the safe action in the absence of any advice from the sender.

Since the game is asymmetric, our results do not apply directly. However, the approx-

imate efficiency and incentive compatibility follow from analogous arguments. In such a

simple chip equilibrium, the sender recommends the right investment, and the receiver

follows the sender’s advice. Finally, the receiver always takes the risky action if the sender

collects all the chips, and always takes the safe action if the receiver collects all the chips.

5 Asymmetric games

We have been assuming the symmetry of a stage game. This assumption is essential if

we restrict attention to simple chip strategies. In this section, we will use an example

to show that the efficient outcome may not be approximated in simple chip strategies in

asymmetric games. Then, we will introduce a slightly more general class of random chip

strategies, and show that the efficient outcome in this example can be approximated in this

more general class. 14 Random chip strategies differ from simple chip strategies only in

that they allow for chips to be transferred with some probability.

Consider the game in which the signal of player 1 determines which actions are ef-

ficient. This is a feature of numerous settings, including some asymmetric versions of

favor-exchange models and repeated auctions. More specifically, suppose that in each pe-

riod players have an indivisible good, such as an apple, to share. If player 1’s signal is L,

then player 2 values the apple more, but if player 1’s signal is H, player 1 values the apple

more. (For example, the value of the apple is constant for player 2, but varies over time

14The general result for asymmetric games is shown in our companion paper, Olszewski and Safronov

(2015).
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for player 1.) Player 1 obtains signal H with probability θ; signal L is obtained with the

remaining probability. Suppose further that player 1 can suggest who gets to consume the

apple, and player 2 can agree or disagree. If player 2 disagrees, no player is allowed to

consume the apple. Otherwise, the apple is allocated according to player 1’s suggestion.

If θ = 1/2, then one can easily show that the efficient outcome can be approximated

by simple chip strategies in which player 1 obtains the apple and gives player 2 a chip

when she says “mine.” Player 2 obtains the apple and gives player 1 a chip when player 1

says “yours”. This is contingent on the number of chips not reaching a limit value. For

the limit value, player 1 says “mine” or “yours,” depending on who has all the chips, but

independently of her signal. If player 2 has all the chips but player 1 says “mine” (which

can happen only off the equilibrium path), this triggers the phase in which no player is

ever allowed to consume an apple.

Proposition 5 Suppose that θ �= 1/2. Then there exists a bound K > 0 such that for all

δ < 1 the ex ante expected total payoff of any equilibrium in simple chip strategies is lower

than the efficient total payoff by at least K.

Proof. Let θ > 1/2. Denote by k the number of chips that player 1 has. Then, the

transition probability from the state with k chips to the state with k − 1 chips is greater

than 1/2, while that to the state with k+1 chips is smaller than 1/2. Since the transition

probability from the state with 2n chips to the state with 2n− 1 chips, and from the state

with 0 chips to the state with 1 chip, is equal to 1, the ergodic probability distribution

over states πk, k = 0, 1, ..., 2n, must satisfy the following system of linear equations:




0 1− θ 0 . . . 0

1 0 1− θ . .

0 θ 0 1− θ . .

. . . . . . .

. . θ 0 1− θ 0

. . θ 0 1

0 . . . 0 θ 0







π2n

.

.

.

π0




=




π2n

.

.

.

π0




.
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This system can be solved by the Gauss-Jordan method. This yields

π2n=(1− θ)

�
1− θ

θ

�2n−2�
1

θ

�
·

·



1 +

�
1

θ

��
1 +

�
1− θ

θ

�
+ ...+

�
1− θ

θ

�2n−2�
+ (1− θ)

�
1− θ

θ

�2n−2�
1

θ

��−1
.

Thus the probability of being in an inefficient state 2n is

π2n →n→∞

2θ − 1

2θ
> 0.

This yields the required bound, since the efficient total payoff could be approximated in

simple chip strategies only when the probability of being in an inefficient state limits to 0.

We will now show that the efficient outcome can be approximated by random chip

strategies. These strategies allow for using a public randomization device. Player 1 obtains

the apple and gives player 2 a chip when she says “mine,” but only with probability q such

that qθ = 1 − θ. Player 2 obtains the apple and gives player 1 a chip (with probability

1) when player 1 says “yours”. This is contingent on the number of chips not reaching

a limit value. For a limit value, the apple is allocated independent of player 1’s signal.

That is, player 1 obtains the apple with probability r2n if player 2 has no chips, and player

2 obtains the apple with the remaining probability of 1 − r2n. If player 1 has no chips,

player 1 obtains the apple with probability r0, and player 2 obtains the apple with the

remaining probability of 1− r0. With probability 1− θ, one chip is returned to the player

who currently has no chips. Off the equilibrium path, no player is ever allowed to consume

an apple.

Proposition 6 For every λ > 0, there is a δ < 1 such that for every δ > δ, there is a

random chip-strategy equilibrium of the repeated game in which the players’ discount factor

is δ, such that the ex ante expected total payoff in this equilibrium cannot be lower than the

efficient total payoff by more than λ.

Proof. The fact that the random chip strategies generate the total payoff that converges

to the efficient total payoff (as the number of chips 2n diverges to ∞) follows from the

Ergodic Theorem by the arguments we have used several times previously.
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To show that incentive constraints are satisfied, we first evaluate the continuation payoff

of player 1; this payoff will be denoted by Vk. For k ∈ {1, ..., 2n− 1}, we have:

Vk = θ{(1− δ)AH + δ(qVk−1 + (1− q)Vk}+ (1− θ)δVk+1,

where At is the value of an apple for type t = H,L of player 1. For k = 0 and 2n, we have:

V0 = r0[(1− δ)θAH + (1− δ)(1− θ)AL] + θδV0 + (1− θ)δV1,

V2n = r2n[(1− δ)θAH + (1− δ)(1− θ)AL] + θδV2n + (1− θ)δV2n−1.

It follows that for the difference ∆k = Vk − Vk−1:

∆k = θqδ∆k−1 + θ(1− q)δ∆k + (1− θ)δ∆k+1

for k = 2, ..., 2n− 1, which yields (since 1− θ = qθ)

∂∆k
∂δ

=
1

2

∂∆k−1
∂δ

+
1

2

∂∆k+1
∂δ

, (7)

where the derivatives are evaluated at δ = 1; in addition, note that ∆k = 0 for δ = 1.

Similarly,

∆1 = (1− r0)(1− δ)θAH − r0(1− δ)(1− θ)AL + (1− θ)δ∆2 + θδ(1− q)∆1,

∂∆1
∂δ

=
−(1− r0)θAH + r0(1− θ)AL

2− 2θ
+
1

2

∂∆2
∂δ

and

∆2n = −(1− r2n)(1− δ)θAH + r2n(1− δ)(1− θ)AL + (1− θ)δ∆2n−1 + θδ(1− q)∆2n,

∂∆2n
∂δ

=
(1− r2n)θAH − r2n(1− θ)AL

2− 2θ
+
1

2

∂∆2n−1

∂δ
.

Take r0 and rn such that

−(1− r0)θAH + r0(1− θ)AL
2− 2θ

=
−1

2(1 + q)
AH ,

(1− r2n)θAH − r2n(1− θ)AL
2− 2θ

=
−1

2(1 + q)
AL.
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Such r0, r2n ∈ (0, 1) exist, since the LHS falls below the RHS for r0 = 0, but the LHS

exceeds the RHS for r0 = 1; also, the LHS exceeds the RHS for r2n = 0, but the LHS falls

below the RHS for r2n = 1. Thus,

∂∆1
∂δ

=
−1

2(1 + q)
AH +

1

2

∂∆2

∂δ
, (8)

and
∂∆2n
∂δ

=
−1

2(1 + q)
AL +

1

2

∂∆2n−1
∂δ

. (9)

Equations (7)-(9) imply that ∆k for k = 1, ..., 2n, for a sufficiently large discount factor,

and in approximation, is a convex combination of (1− δ) 1
1+q
AL and (1− δ) 1

1+q
AH . This in

turn implies that player 1 has the right incentives. Indeed, by “reporting” H instead of L,

player 1 gains AL, but loses 1 chip with probability 1− q, and 2 chips with probability q.

And by “reporting” L instead of H, player 1 loses AH , but gains 1 chip with probability

1− q and 2 chips with probability q.

6 The play in limit states

When a limit number of chips is reached, simple chip strategies prescribe the type-dependent

action profiles (bL1 , b
L
2 ) and (bH1 , b

H
2 ) such that Assumptions I and II are satisfied. This is

sufficient for Theorem 3, but necessary only when we want (as the simple chip strategies

do) to leave the limit state in one period.

In some stage games, there exist no action profiles (bL1 , b
L
2 ) and (b

H
1 , b

H
2 ) with the required

property, yet chip strategies achieve efficiency when we allow the play to stay in the limit

case for more than one period. The favor exchange model provides an example.15

We can replace the action profiles (bL1 , b
L
2 ) and (bH1 , b

H
2 ) with action profiles that depend

on the type of the opponent (player with no chips), that is, with some action profiles

(bLL1 , b
LL
2 ), (b

LH
1 , bLH2 ), (bHL1 , bHL2 ), and (bHH1 , bHH2 ) such that A, B, A′, and B′ for the new

action profiles fall within an appropriate range.

Of course, the opponent must have incentives to truthfully reveal her type. This is

the case for some but not all stage games. For some other games, the opponent may

15Note first that we can always adjust the game making all actions possible for all types (perhaps, at

very large or infinite costs).
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have the incentive to always report the same type. In this case, the chip strategies may

prescribe staying in the limit case until the other, “unwanted” type is reported.16 This is

exactly the case in the favor-exchange model, in which the action bLL2 = bHL2 (assuming

that this is player 2 who already has no chips) is “consume,” and the action bLH2 = bHH2 is

“transfer”Ṗlayer 2 is prescribed to “transfer” if the cost of doing it is a dollar but “consume”

if the cost of doing it is infinite. This obviously requires appropriately modified conditions

corresponding to A, B, A′, and B′.

7 More than two types, more than two players

The case of more than two types turns out to be even more restrictive. We demonstrate

below that even random chip strategies may not approximate efficient outcomes.

Consider the model in which two players have an apple in each period. Suppose that

there are three possible, equally likely values of the apple - 1, 2, and 3 - that are i.i.d. over

time and independent across players.

In the efficient outcome the apple is allocated to the higher type (or randomly if the

types are equal). Now, consider an arbitrary chip-strategy profile. Suppose that each

player begins the game with n chips. If player i announces type �ti which is higher than

type �tj announced by player j, then player i obtains the apple and gives a chip to player j,

with a probability that depends on the two announcements. That is, if �ti > �tj, then player

i gives player j a chip with probability pi,j. If the players announce the same type, the

state of chips is unchanged, and each player consumes the apple with probability 1/2.17 If

a player reaches 0 chips, the player’s opponent consumes the apple, and gives the player a

chip with probability pr.

We will show that:

Proposition 7 There exists a value V strictly lower than the efficient payoff, such that any

random chip strategies attaining the total payoff higher than V are not incentive compatible,

if players are patient enough.

16One can even push this logic further, and prescribe staying in the limit case until the other, “unwanted”

type is reported a given number of times.

17This assumption is made only for the sake of simplicity.
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Proof. The proof of this result can be found in Appendix B.

The case of more than two players raises an additional difficulty, namely, groups of

players may provide favors to other groups of players, and the contribution of different

players from the former groups, as well as the benefits to the players from the latter

groups, may be different. This must be reflected in the transition of the distribution of

chips in the economy.

Overcoming these difficulties calls for more complicated strategies, which is somewhat

in tension with the objective of providing a positive model of playing dynamic games.

We have no fully satisfying resolution of this issue. In a companion paper Olszewski and

Safronov (2015), we suggest a more complicated version of chip strategies, constructed by

imitating the mechanism in d’Aspremont and Gerard-Varet (1979), which approximate the

efficient outcomes for a large class of games (with any number of types and players).
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9 Appendix A

It will be convenient to provide first a little more detailed description of the chip strate-

gies on the equilibrium path. In particular, this will allow for introducing our notation.

The strategy profile has 4(2n + 1) − 6 states. Each state is described by a number

k ∈ {0, 1, ..., 2n}, and the profile of players’ types t = (t1, t2) ∈ {L,H}2, as reported

in the previous period, with the exception that k = 0 implies that t = (L,H) and k = 2n

implies that t = (H,L). The number k is interpreted as player 1 having k chips.

In all states except when k = 0 or 2n, if the reported type profile is t = (t1, t2), the

players are supposed to take the efficient action profile. If t1 = t2, the value of k does not

change. If t1 = H and t2 = L, then k is replaced with k + 1 at the end of the current

period; and if t1 = L and t2 = H, then k is replaced with k − 1.

If the current state has k = 2n, then players are supposed to play (bL1 , b
L
2 ) or (bH1 , b

H
2 ),

the choice between the two being determined by the report of player 1, and k = 2n is

replaced with k = 2n− 1 at the end of the current period. If the current state has k = 0,

then players are supposed to play (bL2 , b
L
1 ) or (bH2 , b

H
1 ), determined by the report of player

2, and k = 0 is replaced with k = 1.

Notice that state k = 0 can be reached only when type profile t = (L,H) was reported

in the previous period, and state k = 2n can be reached only when type profile (H,L) was

reported in the previous period.

9.1 Continuation payoffs

Assuming that both players play the prescribed strategies, denote the continuation payoff

of player 1 in state k, t by Vk,t. By the symmetry of our model, the continuation payoff

of player 2 can be expressed analogously. These continuation payoffs are computed before

the players learn about their types in the current period. For k ∈ {1, ..., 2n− 1}, we have:

Vk,L,H =(1− δ){p
2u1(aLH , aHL, L,H) + p(1− p)u1(aLL, aLL, L, L) (10)

+(1− p)pu1(aHH , aHH , H,H) + (1− p)
2u1(aHL, aLH , H, L)}

+δ{p2Vk−1,L,H + p(1− p)Vk,L,L + (1− p)pVk,H,H + (1− p)
2Vk+1,H,L}.
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Indeed, the first component of the right-hand side corresponds the payoff contingent on

player 1 having type L in the current period, and player 2 having type H; the remaining

components correspond to the other type profiles.

Similarly, we obtain:

Vk,L,L=(1− δ){p(1− p)u1(aLH , aHL, L,H) + p
2u1(aLL, aLL, L, L) (11)

+(1− p)2u1(aHH , aHH , H,H) + (1− p)pu1(aHL, aLH , H,L)}

+δ
�
p(1− p)Vk−1,L,H + p

2Vk,L,L + (1− p)
2Vk,H,H + (1− p)pVk+1,H,L

�
;

Vk,H,H =(1− δ){(1− p)pu1(aLH , aHL, L,H) + (1− p)
2u1(aLL, aLL, L, L) (12)

+p2u1(aHH , aHH ,H,H) + p(1− p)u1(aHL, aLH ,H, L)}

+δ
�
(1− p)pVk−1,L,H + (1− p)

2Vk,L,L + p
2Vk,H,H + p(1− p)Vk+1,H,L

�
;

and

Vk,H,L=(1− δ){(1− p)
2u1(aLH , aHL, L,H) + (1− p)pu1(aLL, aLL, L, L) (13)

+p(1− p)u1(aHH , aHH , H,H) + p
2u1(aHL, aLH , H, L)}

+δ
�
(1− p)2Vk−1,L,H + (1− p)pVk,L,L + p(1− p)Vk,H,H + p

2Vk+1,H,L
�

.

For k = 0 and 2n, we have:

V0,L,H =(1− δ){p
2u1(b

H
2 , b

H
1 , L,H) + p(1− p)u1(b

L
2 , b

L
1 , L, L) (14)

+(1− p)pu1(b
H
2 , b

H
1 , H,H) + (1− p)

2u1(b
L
2 , b

L
1 , H, L)}

+δ
�
p2V1,L,H + p(1− p)V1,L,L + (1− p)pV1,H,H + (1− p)

2V1,H,L
�

,

V2n,H,L=(1− δ){(1− p)
2u1(b

L
1 , b

L
2 , L,H) + (1− p)pu1(b

L
1 , b

L
2 , L, L) (15)

+p(1− p)u1(b
H
1 , b

H
2 , H,H) + p

2u1(b
H
1 , b

H
2 , H, L)}

+δ
�
(1− p)2V2n−1,L,H + (1− p)pV2n−1,L,L + p(1− p)V2n−1,H,H + p

2V2n−1,H,L
�

.

9.1.1 Payoff Efficiency of Prescribed Strategies

We can now demonstrate the efficiency of the prescribed strategies:
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Proposition 8 For every λ > 0, there are values δ < 1 and n0 such that for every δ > δ

and n > n0, we have that ���Vk,t −
v

2

��� < λ

for all k = 0, ..., 2n and t ∈ {L,H}2 (t = (L,H) when k = 0 and t = (H,L) when k = 2n).

Proof. The strategies induce a stochastic Markov chain over states k, t. It is easy to check

that in 2n+2 periods each state is reached from any other state with positive probability.

Thus, by the Ergodic Theorem there exists a probability distribution over states {πk,t : k, t}

such that the probability of being in state k, t after a sufficiently large number of periods

is arbitrarily close to πk,t. This probability distribution is an eigenvector of the transition

matrix corresponding to eigenvalue 1.

To estimate the probabilities π0,t and π2n,t, consider first an auxiliary Markov chain

with 8n states, in which instead of states with k = 0 or k = 2n we have four states {0, 2n},

t for t ∈ {L,H}2. One should think of the “number” {0, 2n} as being between the 1

and 2n− 1. The transitions are as in the Markov chain induced by our strategies, except

states {0, 2n}, t. In state {0, 2n}, (L,H), the chain transits to: 1, (H,L) with probability

(1− p)2; to 2n− 1, (L,H) with probability p2; and to {0, 2n}, (L,L) and {0, 2n}, (H,H)

with probability p(1 − p) each. In state {0, 2n}, (H,L), the chain transits to: 1, (H,L)

with probability p2; to 2n − 1, (L,H) with probability (1 − p)2; and to {0, 2n}, (L,L)

and {0, 2n}, (H,H) with probability p(1− p) each. In states {0, 2n}, (L,L) and {0, 2n},

(H,H), the chain transits to: 1, (H,L) with probability p(1 − p); to 2n − 1, (L,H) with

probability p(1−p); and to {0, 2n}, (L,L) and to {0, 2n}, (H,H) with probability (1−p)2

and p2, and p2 and (1− p)2, respectively.

The ergodic theorem still applies to the new chain. For any t = (t1, t2) ∈ {H,L}
2, this

new chain is completely symmetric across states k, t, where k = 1, ..., 2n− 1, {0, 2n} , and

therefore for all k the sum of ergodic probabilities πk,t over t ∈ {L,H}2 is equal to 1/2n.

Claim 1 We will show that πk,t = 1/8n for all k and t.

Indeed, the current state can be equal to k, (H,H) only when the previous state was

equal to k, t. This happens with probability (1 − p)2 if t = (L,L), with probability p2 if
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t = (H,H), and with probability p(1− p) if t = (H,L) or (L,H). This yields

πk,(H,H) = (1− p)pπk,(L,H) + (1− p)
2πk,(L,L) + p

2πk,(H,H) + p(1− p)πk,(H,L).

Similarly,

πk,(L,L) = p(1− p)πk,(L,H) + p
2πk,(L,L) + (1− p)

2πk,(H,H) + (1− p)pπk,(H,L).

In turn, the current state can be equal to k, (H,L) only when the previous state was

k−1, t. (Recall that k = {0, 2n} is a number which is one above k = 2n−1 and one below

k = 1.) This happens with probability p(1− p) if t = (L,L) or (H,H), with probability p2

if t = (H,L), and with probability (1− p)2 if t = (L,H). This yields

πk,(H,L) = (1− p)
2πk−1,(L,H) + (1− p)pπk−1,(L,L) + p(1− p)πk−1,(H,H) + p

2πk−1,(H,L).

Similarly,

πk,(L,H) = p
2πk+1,(L,H) + p(1− p)πk+1,(L,L) + (1− p)pπk+1,(H,H) + (1− p)

2πk+1,(H,L).

Due to symmetry across k, any solution of the system of these four equations, which we

will call ergodic equations for states k, t, must have all πk,t equal, which yields πk,t = 1/8n

for all k and t.

We will now return to the analysis of original chain induced by our strategies.

Claim 2 We will show that the ratio πk,t/π1,(L,H), for k = 0, 1 and all t, is independent of

n, and so is the ratio πk,t/π2n−1,(H,L), for k = 2n− 1, 2n and all t.

Similarly to the proof of the previous claim, we obtain that the following “ergodic”

equations:

π0,(L,H) = p
2π1,(L,H) + p(1− p)π1,(L.L) + (1− p)pπ1,(H,H) + (1− p)

2π1,(H,L),

π1,(H,H) = (1− p)pπ1,(L,H)+(1− p)
2π1,(L,L)+ p

2π1,(H,H)+ p(1− p)π1,(H,L)+(1− p)pπ0,(L,H),

π1,(L,L) = p(1− p)π1,(L,H)+ p
2π1,(L,L)+ (1− p)

2π1,(H,H)+ (1− p)pπ1,(H,L)+ p(1− p)π0,(L,H),

and

π1,(H,L) = (1− p)
2π0,(L,H).
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Divide each equation by π1,(L,H). This yields a system of equations with variables

πk,t/π1,(L,H) for k = 0, 1 and t �= (L,H). This system has a unique solution, independent

of n, and this yields the first part of the claim. Obviously, the second part can be proved

in an analogous way.

Claim 3 We will show that πk,t = π2,(H,L) = π2n−2,(L,H) for k = 2, ..., 0, ..., 2n − 2 and all

t.

Indeed, notice first that by symmetry π2,(H,L) = π2n−2,(L,H). Next, observe that ex-

cept states 2, (H,L) and 2n − 2, (L,H), the ergodic equations for states k, t, where

k = 2, ..., 0, ..., 2n−2, include no probability π0,d, π1,d, π2n−1,d, or πn,d, for any d ∈ {L,H}2.

This means that for any given π2,(H,L) and π2n−2,(L,H), the remaining probabilities πk,t,

where k = 2, ..., 0, ..., 2n− 2, are determined by these ergodic equations.

The original chain induced by our strategies can be obtained from the chain used in

Claim 1 by renaming state {0, 2n}, (L,H) as 0, (L,H), renaming state {0, 2n}, (H,L)

as 2n, (H,L), changing appropriately the transition probabilities in the two states, and

removing states {0, 2n}, (L,L) and {0, 2n}, (H,H). This means that for any given

π2,(H,L) = π2n−2,(L,H), the remaining probabilities πk,t, where k = 2, ..., 0, ..., 2n − 2, are

determined by the same ergodic equations as in the case of the original chain induced by

our strategies. And since by Claim 1 πk,t = π2,(H,L) = π2n−2,(L,H) for k = 2, ..., 0, ..., 2n− 2

and all t, the same must be true when π’s are replaced with π’s.

Finally, the ergodic equations for 2, (H,L) and 2n − 2, (L,H) imply that π2,(H,L) is a

weighted average of π1,t for t ∈ {L,H}2 and π2n−2,(L,H) is a weighted average of π2n−1,t

for t ∈ {L,H}2 with weights p2, (1 − p)2, p(1 − p), p(1 − p). This together with Claim

2 and 3 imply that any two probabilities πk,t, where k = 0, 1, 2n − 1, 2n and t ∈ {L,H}2

are proportional , and the coefficients of proportionality depend only on p, that is, are

independent of n. Thus, all probabilities converge to zero as n diverges to infinity.

Since our strategies are inefficient only in states 0, (L,H) and 2n, (H,L), this means

that as 1− δ is sufficiently close to 0, the inefficiency is approximately proportional to the

sum of the ergodic probabilities of states 0, (L,H) and 2n, (H,L). Therefore it disappears

when n diverges to infinity. By symmetry of the strategies the payoff of each player is close
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to a half of the efficient payoff.

9.1.2 Incentive Constraints

We will now turn to verifying the incentive constraints. The constraints for the states in

which k = 0 or 2n are immediate, since no player wants to trigger the bad equilibrium, the

action profiles bL and bH are independent of the report of the player with no chips, and

the player with all chips can choose between bL and bH . Thus, consider the states k such

that 0 < k < 2n. For each of these 8n − 4 states, there are two constraints to check: one

for the player with type L and one for the player with type H.

Suppose that the play is in state k, t. We will check the constraints for player 1. (By

symmetry, this will imply the constraints for player 2.) Consider first the effect of playing

the prescribed strategies, compared to a deviation, on the state in the following period.

If t1 = L, by reporting honestly player 1 will be in a state with one fewer chip compared

to reporting state H, but the distribution over the next period’s state t+1 ∈ {L,H}2 will

be exactly the same under the two possible reports. Similarly, if t1 = H, player 1 will

be in a state with one more chip by reporting honestly compared to reporting L, but the

distribution over t+1 ∈ {L,H}2 will be exactly the same. This is so, because the state next

period depends on the actual type of the player, not the reported type.

Let ∆k,t := Vk,t−Vk−1,t for all k and t. Thus, depending of whether the type of player 2

was H or L in the previous period, the continuation payoff of player 1 of type L decreases

in expectation by p∆k,(L,H)+(1−p)∆k+1,(L,L) or (1−p)∆k,(L,H)+p∆k+1,(L,L) when reporting

truthfully compared to lying about her type. And player 1 of type H gains by reporting

truthfully p∆k,(H,H)+(1− p)∆k+1,(H,L) or (1− p)∆k,(H,H)+ p∆k+1,(H,L). In turn, the player

of type L gains expression (6) for t1 = L. Player 1 of type H loses expression (6) for

t1 = H.

Proposition 9 For all k = 1, ..., 2n − 1 and t, player 1 has incentives to report her type

honestly.

Proof. We will first establish the relations between different ∆’s. For k = 2, ..., 2n− 1, by

applying (10)-(13) we obtain:

∆k,L,H = δ
�
p2∆k−1,L,H + p(1− p)∆k,L,L + (1− p)p∆k,H,H + (1− p)

2∆k+1,H,L
�

, (16)
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∆k,L,L = δ
�
p(1− p)∆k−1,L,H + p

2∆k,L,L + (1− p)
2∆k,H,H + (1− p)p∆k+1,H,L

�
, (17)

∆k,H,H = δ
�
(1− p)p∆k−1,L,H + (1− p)

2∆k,L,L + p
2∆k,H,H + p(1− p)∆k+1,H,L

�
, (18)

and

∆k,H,L = δ
�
(1− p)2∆k−1,L,H + (1− p)p∆k,L,L + p(1− p)∆k,H,H + p

2∆k+1,H,L
�

. (19)

In turn, for k = 1 and t = (L,H), and k = 2n and t = (H,L), we obtain

∆1,L,H = (1− δ)A+ δ
�
−p2∆1,L,H + (1− p)

2∆2,H,L
�

(20)

and

∆2n,H,L = (1− δ)B + δ
�
(1− p)2∆2n−1,L,H − p

2∆2n,H,L
�

. (21)

Finally, we must also introduce the terms ∆1,H,H and ∆2n,L,L because in states with

k = 1 chip player 1 of type H may deviate by reporting L, and in states with k = 2n− 1

chips player 1 of type L may deviate by reporting H. This will result in moving to a state

with 0 or 2n chips, respectively, but at profile t = (H,H) or (L,L). We have that

∆1,H,H = δ {−p(1− p)∆1,L,H + p(1− p)∆2,H,L}+ (1− δ) · A
′ (22)

and

∆2n,L,L = δ {p(1− p)∆2n−1,L,H − p(1− p)∆2n,H,L}+ (1− δ) ·B
′. (23)

For δ = 1, this system of linear equations is satisfied by all ∆’s being equal to 0.

For δ < 1, we will evaluate ∆’s in approximation by referring to the Implicit Function

Theorem. By this theorem, one can differentiate the equations for ∆’s with respect to

δ, plug in δ = 1 and ∆k,t = 0 for all k and t, and obtain a system of equations for the

derivatives of ∆’s. That is, if we replace each ∆k,t by its derivative ∂∆k,t/∂δ, then our

system of linear equations must be satisfied for δ = 1, and (1− δ)A and (1− δ)B replaced

with −A and −B, respectively. We will solve this new system of linear equation. The

solution will be unique, which will also validate the use of the Implicit Function Theorem,

as well as guarantee that all ∆’s being equal to 0 is a unique solution of the system for

δ = 1.
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We will show that all incentive constraints are satisfied for every given n, provided the

discount factor is large enough.18 To show this, we will derive a simple recursive condition

which shows that the values of ∂∆k,t/∂δ evolve linearly with the current number of chips

k. Then by using equations for ∂∆1,t/∂δ and ∂∆2n,t/∂δ, we will find the values of all

∂∆k,t/∂δ’s at δ = 1. This will enable us to evaluate ∆k,t ≈ (1− δ) · (−∂∆k,t/∂δ).

In order to derive recursive condition for ∂∆k,t/∂δ’s, add together the equations for

∂∆k,t/∂δ’s corresponding to (16)-(19). This yields:

∂∆k,L,H/∂δ + ∂∆k,H,L/∂δ = ∂∆k−1,L,H/∂δ + ∂∆k+1,H,L/∂δ.

This equation can also be expressed as ∂∆k,H,L/∂δ − ∂∆k−1,L,H/∂δ = ∂∆k+1,H,L/∂δ −

∂∆k,L,H/∂δ, which means that the value of ∂∆k,H,L/∂δ − ∂∆k−1,L,H/∂δ is the same for all

k. To simplify analysis, denote this value as ρ.

Subtracting the equations for ∂∆k,t/∂δ’s corresponding to (16) from (19), we obtain

that

∂∆k,H,L/∂δ − ∂∆k,L,H/∂δ =
2p− 1

p
ρ,

and from that we derive that

∂∆k+1,H,L/∂δ − ∂∆k,H,L/∂δ = ∂∆k+1,L,H/∂δ − ∂∆k,L,H/∂δ =
1− p

p
ρ. (24)

The last equation shows that the difference between ∂∆k,t/∂δ’s for two consecutive

values of k, given type profiles H,L or L,H, is independent of k. The difference between

∂∆k,t/∂δ’s for two consecutive values of k, given type profiles L,L or H,H is equal to

that given H,L or L,H by the equations corresponding to (17) or (18) for ∂∆k,t/∂δ’s. In

particular, this means that the values of ∂∆k,t/∂δ’s change linearly with k.

We can now find the values of ∂∆k,t/∂δ’s explicitly by using the equations for the states

with extreme numbers of chips k = 1 and 2n. By the equation corresponding to (20),

∂∆1,L,H/∂δ = −A+
�
−p2∂∆1,L,H/∂δ + (1− p)

2∂∆2,H,L/∂δ
�

,

18For larger values of n, the threshold for the discount factor above which the incentive constraints are

satisfied is typically larger.
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and since ∂∆2,H,L/∂δ − ∂∆1,L,H/∂δ = ρ, this is equivalent to

∂∆1,L,H/∂δ =
−A+ (1− p)2ρ

2p
. (25)

Similarly by the equation corresponding to (21) and ∂∆2n,H,L/∂δ− ∂∆2n−1,L,H/∂δ = ρ, we

obtain that

∂∆2n,H,L/∂δ =
−B − ρ(1− p)2

2p
. (26)

Applying 2n− 2 times equation (24), we have that

∂∆2n−1,L,H/∂δ =
−A+ (1− p)2ρ

2p
+ (2n− 2)

1− p

p
ρ

and

∂∆2n,H,L/∂δ =
−A+ (1− p)2ρ

2p
+ (2n− 2)

1− p

p
ρ+ ρ. (27)

Combining equations (27) and (26), we obtain that

ρ =
(A−B)/2p

(1−p)2

p
+ 1 + (2n− 2)1−p

p

Using this value of ρ, one can now find all ∂∆k,t/∂δ’s for typesH,L and L,H. Similarly,

one can find the (approximate) values of ∆k,t. In particular, we can immediately see that

∆k,t
1−δ

’s for k = 1, ..., 2n and types H,L and L,H are weighted averages of A
2p

and B
2p

. And

by (17) or (18), so are
∆k,t
1−δ

’s for k = 2, ..., 2n − 1 and types L,L and H,H. The values of

∆k,t
1−δ

for k = 1 are the closest to A
2p

, and the values of
∆k,t
1−δ

for k = 2n are the closest to B
2p

.

The higher k is, the closer the value
∆k,t
1−δ

is to B
2p

. By Assumption I from Section 3, this

shows that player 1 has incentives to report her type truthfully, except two cases: (i) when

her type is L and she has 2n− 1 chips; (ii) when her type is H and she has 1 chip. These

two cases are exceptional because the analysis of incentives involves ∆2n,(L,L) and ∆1,(H,H),

respectively. So, they must be considered separately.

Consider case (i). By deviating and reporting H, player 1 gains, compared to report-

ing truthfully, p∆2n−1,(L,H) + (1 − p)∆2n,(L,L) or (1 − p)∆2n−1,(L,H) + p∆2n,(L,L), but loses

expression (6) for t1 = L. By Assumption I, ∆2n−1,(L,H) is smaller than the loss, and by

Assumption II, ∆2n,(L,L) is smaller than the loss, preventing player 1 from deviating. Case

(ii) follows from analogous arguments.
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10 Appendix B

Denote by Vk the continuation payoff of player 1 with k chips. Then, Vk, 0 < k < 2n, can

be written as:

Vk =
1

3

	
1(1− δ)

1

6
+ δ

�
1

3
Vk +

1

3
[p1,2Vk+1 + (1− p1,2)Vk)] +

1

3
[p1,3Vk+1 + (1− p1,3)Vk)]

�

+

+
1

3

	
2(1− δ)

3

6
+ δ

�
1

3
[p1,2Vk−1 + (1− p1,2)Vk)] +

1

3
Vk +

1

3
[p2,3Vk+1 + (1− p2,3)Vk)]

�

+

+
1

3

	
3(1− δ)

5

6
+ δ

�
1

3
[p1,3Vk−1 + (1− p1,3)Vk)] +

1

3
[p2,3Vk−1 + (1− p2,3)Vk)] +

1

3
Vk

�

.

The value function Vk is represented as the sum of three terms, each term corresponds

to one of the three types 1, 2, and 3. For example, the first of these terms represents the

case when the type of player 1 is equal to 1. In this case, player 1 values the apple at 1,

and obtains it with probability 1/6. With probability 1/3 player 2 is also of type 1, and

therefore number of chips remains the same. With probability 1/3 player 2’s type is 2, and

then player 1 obtains a chip with probability p1,2. Finally, with probability 1/3 player 2’s

type is 3, and then player 1 obtains a chip with probability p1,3.

The expression above can be simplified to:

Vk = (1− δ)
22

18
+ δ[pVk−1 + (1− 2p)Vk + pVk+1], (28)

where

p =
1

9
(p1,2 + p1,3 + p2,3).

For k = 2n, one has

V2n = (1− δ)2 + δ[prV2n−1 + (1− pr)V2n].

Indeed, if a player has all chips, she obtains the apple, no matter what the types are, which

has the expected payoff of 2. With probability pr the opponent obtains a chip back, and

with the remaining probability the distribution of chips remains the same.

When δ goes to 1,
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V2n =
(1− δ)2 + δprV2n−1
(1− δ)(1− pr) + pr

=
(1− δ)2

pr
+

	
1−

(1− δ)

pr



V2n−1 + o(1− δ), (29)

where o(1− δ) stands for an expression that goes to 0 (when δ goes to 1) faster than 1− δ.

To check the second equality, multiply it (omitting term o(1− δ)) by (1− δ)(1− pr) + pr,

and remove each term containing (1− δ)2. Similarly,

V0 =

	
1−

(1− δ)

pr



V1 + o(1− δ). (30)

From now on, we will omit all terms o(1 − δ); That is, all equalities and equations

should be understood as holding up to such a term.

We will now derive the following recursive formula:

Vk = (1− δ)αk + [1− (1− δ)βk]Vk+1 (31)

for some coefficients αk and βk; these coefficients will also be determined. By (30), this

formula holds for k = 0 with α0 = 0 and β0 = 1/pr. Assume that it holds for k. Plug the

expression for Vk from (31) into equation (28) for k + 1 to compute that

Vk+1 = (1− δ)

�
22

18p
+ αk

�
+

	
1− (1− δ)

�
1

p
+ βk

�

Vk+2,

which gives the recursive equations:

αk+1 = αk +
22

18p
,

βk+1 = βk +
1

p
.

Since α0 = 0 and β0 = 1/pr,

α2n−1 = (2n− 1)
22

18p
,

and

β2n−1 =
1

pr
+ (2n− 1)

1

p
.
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By using (31) for k = 2n− 1 and (29), compute that

V2n =
2s+ (2n− 1)22

18

2s+ (2n− 1)
, (32)

where

s =
p

pr
.

Thus, V2n is a weighted average of 22/18 - the efficient per-player payoff, and 1 - the

expected per-player payoff in the inefficient state (i.e., when the player with 2n chips

obtains on average (1/3)1 + (1/3)2 + (1/3)3 = 2, and the opponent obtains 0).

To approximate the efficient outcome s must be much lower than 2n. We will show

that this implies that incentive constraints cannot be satisfied for all k. First, estimate

Vk+1 − Vk - the value of an extra chip for a player with k chips. By (31),

Vk+1 − Vk = −(1− δ)αk + (1− δ)βkVk+1.

It also follows from (31) that Vk+1, for k = 0, ..., 2n− 1, is equal to (up to a term o(1− δ))

the same weighted average as V2n in (32). By plugging in this weighted average for Vk+1,

and plugging in the formulas for αk, βk, we obtain that

Vk+1 − Vk = −(1− δ)k
22

18p
+ (1− δ)

	
1

pr
+ k

1

p



2s+ (2n− 1)22

18

2s+ (2n− 1)
.

Thus, Vk+1 − Vk is linear in k. At k = 0, one has

V1 − V0 = (1− δ)
1

pr

2s+ (2n− 1)22
18

2s + (2n− 1)
. (33)

In turn at k = 2n− 1, one has

V2n− V2n−1 = −(1− δ)(2n− 1)
22

18spr
+ (1− δ)

	
1

pr
+ (2n− 1)

1

spr



2s+ (2n− 1)22

18

2s+ (2n− 1)
. (34)

This enables us to compute the ratio of V1− V0 to V2n− V2n−1, and using the fact that

2n− 1 must be much larger than s, we obtain that this ratio is close to 11/7.

Player 1 with type ti by reporting type 1 obtains the flow payoff of

44



(1− δ)ti
1

6
;

and if the current continuation payoff is Vk, this report will change her continuation payoff

by

	
1

3
p1,2 +

1

3
p1,3



(Vk+1 − Vk).

We have omitted the factor δ, because Vk+1 − Vk is of order 1 − δ, and all our quantities

are evaluated up to terms o(1− δ).

Therefore, the total effect on payoff of reporting type 1 is

(1− δ)ti
1

6
+

	
1

3
p1,2 +

1

3
p1,3



(Vk+1 − Vk). (35)

Similarly, the effect on player 1’s payoff of reporting type 2 is:

(1− δ)ti
3

6
+
1

3
p1,2(Vk−1 − Vk) +

1

3
p2,3(Vk+1 − Vk), (36)

and the effect on player 1’s payoff of reporting type 3 is:

(1− δ)ti
5

6
+

	
1

3
p1,3 +

1

3
p2,3



(Vk−1 − Vk). (37)

The strategies are incentive compatible when for every type ti ∈ {1, 2, 3} player 1 has

incentives to report this type honestly; in particular, she prefers to report this type type

to reporting any neighbor type.19 Types 1, 2 prefer not to mimic one another if:

(1− δ)
2

6
<
1

3
(p1,2 + p1,3 − p2,3)(Vk+1 − Vk) +

1

3
p1,2(Vk − Vk−1) < (1− δ)

4

6
; (38)

similarly, types 2, 3 prefer not to mimic one another if:

(1− δ)
4

6
<
1

3
p2,3(Vk+1 − Vk) +

1

3
(−p1,2 + p1,3 + p2,3)(Vk − Vk−1) < (1− δ)

6

6
. (39)

19In fact, this condition is equivalent to incentive compatibility, but this will be inessential for our

analysis.
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Indeed, we obtain these inequalities from (35)-(37).

Since the middle terms in these inequalities are linear in Vk−Vk−1, which is linear in k,

and the ratio (V1−V0)/(V2n−V2n−1) is close to 11/7, the ratio of the two bounds: (1− δ)4
6

and (1 − δ)2
6

in (38), and (1 − δ)6
6

and (1 − δ)4
6

in (39) has to be at least 11/7. It is the

case for (38) but not for (39). This means that the strategies are not incentive compatible.

Remark 1 The ratio of two neighbor types 3/2 being lower than the ratio (V1−V0)/(V2n−

V2n−1) is what made the random chip strategies violating incentive constraints. Were it

not the case, one could fairly easily find probabilities p1,2, p1,3, p2,3 and pr such that the

strategies would be incentive compatible, and would attain an almost efficient outcome for

large enough discount factors.
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